xref: /openbmc/linux/drivers/media/i2c/aptina-pll.c (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 /*
2  * Aptina Sensor PLL Configuration
3  *
4  * Copyright (C) 2012 Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * version 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License for more details.
14  */
15 
16 #include <linux/device.h>
17 #include <linux/gcd.h>
18 #include <linux/kernel.h>
19 #include <linux/lcm.h>
20 #include <linux/module.h>
21 
22 #include "aptina-pll.h"
23 
24 int aptina_pll_calculate(struct device *dev,
25 			 const struct aptina_pll_limits *limits,
26 			 struct aptina_pll *pll)
27 {
28 	unsigned int mf_min;
29 	unsigned int mf_max;
30 	unsigned int p1_min;
31 	unsigned int p1_max;
32 	unsigned int p1;
33 	unsigned int div;
34 
35 	dev_dbg(dev, "PLL: ext clock %u pix clock %u\n",
36 		pll->ext_clock, pll->pix_clock);
37 
38 	if (pll->ext_clock < limits->ext_clock_min ||
39 	    pll->ext_clock > limits->ext_clock_max) {
40 		dev_err(dev, "pll: invalid external clock frequency.\n");
41 		return -EINVAL;
42 	}
43 
44 	if (pll->pix_clock == 0 || pll->pix_clock > limits->pix_clock_max) {
45 		dev_err(dev, "pll: invalid pixel clock frequency.\n");
46 		return -EINVAL;
47 	}
48 
49 	/* Compute the multiplier M and combined N*P1 divisor. */
50 	div = gcd(pll->pix_clock, pll->ext_clock);
51 	pll->m = pll->pix_clock / div;
52 	div = pll->ext_clock / div;
53 
54 	/* We now have the smallest M and N*P1 values that will result in the
55 	 * desired pixel clock frequency, but they might be out of the valid
56 	 * range. Compute the factor by which we should multiply them given the
57 	 * following constraints:
58 	 *
59 	 * - minimum/maximum multiplier
60 	 * - minimum/maximum multiplier output clock frequency assuming the
61 	 *   minimum/maximum N value
62 	 * - minimum/maximum combined N*P1 divisor
63 	 */
64 	mf_min = DIV_ROUND_UP(limits->m_min, pll->m);
65 	mf_min = max(mf_min, limits->out_clock_min /
66 		     (pll->ext_clock / limits->n_min * pll->m));
67 	mf_min = max(mf_min, limits->n_min * limits->p1_min / div);
68 	mf_max = limits->m_max / pll->m;
69 	mf_max = min(mf_max, limits->out_clock_max /
70 		    (pll->ext_clock / limits->n_max * pll->m));
71 	mf_max = min(mf_max, DIV_ROUND_UP(limits->n_max * limits->p1_max, div));
72 
73 	dev_dbg(dev, "pll: mf min %u max %u\n", mf_min, mf_max);
74 	if (mf_min > mf_max) {
75 		dev_err(dev, "pll: no valid combined N*P1 divisor.\n");
76 		return -EINVAL;
77 	}
78 
79 	/*
80 	 * We're looking for the highest acceptable P1 value for which a
81 	 * multiplier factor MF exists that fulfills the following conditions:
82 	 *
83 	 * 1. p1 is in the [p1_min, p1_max] range given by the limits and is
84 	 *    even
85 	 * 2. mf is in the [mf_min, mf_max] range computed above
86 	 * 3. div * mf is a multiple of p1, in order to compute
87 	 *	n = div * mf / p1
88 	 *	m = pll->m * mf
89 	 * 4. the internal clock frequency, given by ext_clock / n, is in the
90 	 *    [int_clock_min, int_clock_max] range given by the limits
91 	 * 5. the output clock frequency, given by ext_clock / n * m, is in the
92 	 *    [out_clock_min, out_clock_max] range given by the limits
93 	 *
94 	 * The first naive approach is to iterate over all p1 values acceptable
95 	 * according to (1) and all mf values acceptable according to (2), and
96 	 * stop at the first combination that fulfills (3), (4) and (5). This
97 	 * has a O(n^2) complexity.
98 	 *
99 	 * Instead of iterating over all mf values in the [mf_min, mf_max] range
100 	 * we can compute the mf increment between two acceptable values
101 	 * according to (3) with
102 	 *
103 	 *	mf_inc = p1 / gcd(div, p1)			(6)
104 	 *
105 	 * and round the minimum up to the nearest multiple of mf_inc. This will
106 	 * restrict the number of mf values to be checked.
107 	 *
108 	 * Furthermore, conditions (4) and (5) only restrict the range of
109 	 * acceptable p1 and mf values by modifying the minimum and maximum
110 	 * limits. (5) can be expressed as
111 	 *
112 	 *	ext_clock / (div * mf / p1) * m * mf >= out_clock_min
113 	 *	ext_clock / (div * mf / p1) * m * mf <= out_clock_max
114 	 *
115 	 * or
116 	 *
117 	 *	p1 >= out_clock_min * div / (ext_clock * m)	(7)
118 	 *	p1 <= out_clock_max * div / (ext_clock * m)
119 	 *
120 	 * Similarly, (4) can be expressed as
121 	 *
122 	 *	mf >= ext_clock * p1 / (int_clock_max * div)	(8)
123 	 *	mf <= ext_clock * p1 / (int_clock_min * div)
124 	 *
125 	 * We can thus iterate over the restricted p1 range defined by the
126 	 * combination of (1) and (7), and then compute the restricted mf range
127 	 * defined by the combination of (2), (6) and (8). If the resulting mf
128 	 * range is not empty, any value in the mf range is acceptable. We thus
129 	 * select the mf lwoer bound and the corresponding p1 value.
130 	 */
131 	if (limits->p1_min == 0) {
132 		dev_err(dev, "pll: P1 minimum value must be >0.\n");
133 		return -EINVAL;
134 	}
135 
136 	p1_min = max(limits->p1_min, DIV_ROUND_UP(limits->out_clock_min * div,
137 		     pll->ext_clock * pll->m));
138 	p1_max = min(limits->p1_max, limits->out_clock_max * div /
139 		     (pll->ext_clock * pll->m));
140 
141 	for (p1 = p1_max & ~1; p1 >= p1_min; p1 -= 2) {
142 		unsigned int mf_inc = p1 / gcd(div, p1);
143 		unsigned int mf_high;
144 		unsigned int mf_low;
145 
146 		mf_low = roundup(max(mf_min, DIV_ROUND_UP(pll->ext_clock * p1,
147 					limits->int_clock_max * div)), mf_inc);
148 		mf_high = min(mf_max, pll->ext_clock * p1 /
149 			      (limits->int_clock_min * div));
150 
151 		if (mf_low > mf_high)
152 			continue;
153 
154 		pll->n = div * mf_low / p1;
155 		pll->m *= mf_low;
156 		pll->p1 = p1;
157 		dev_dbg(dev, "PLL: N %u M %u P1 %u\n", pll->n, pll->m, pll->p1);
158 		return 0;
159 	}
160 
161 	dev_err(dev, "pll: no valid N and P1 divisors found.\n");
162 	return -EINVAL;
163 }
164 EXPORT_SYMBOL_GPL(aptina_pll_calculate);
165 
166 MODULE_DESCRIPTION("Aptina PLL Helpers");
167 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
168 MODULE_LICENSE("GPL v2");
169