xref: /openbmc/linux/drivers/media/i2c/aptina-pll.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Aptina Sensor PLL Configuration
4  *
5  * Copyright (C) 2012 Laurent Pinchart <laurent.pinchart@ideasonboard.com>
6  */
7 
8 #include <linux/device.h>
9 #include <linux/gcd.h>
10 #include <linux/kernel.h>
11 #include <linux/lcm.h>
12 #include <linux/module.h>
13 
14 #include "aptina-pll.h"
15 
16 int aptina_pll_calculate(struct device *dev,
17 			 const struct aptina_pll_limits *limits,
18 			 struct aptina_pll *pll)
19 {
20 	unsigned int mf_min;
21 	unsigned int mf_max;
22 	unsigned int p1_min;
23 	unsigned int p1_max;
24 	unsigned int p1;
25 	unsigned int div;
26 
27 	dev_dbg(dev, "PLL: ext clock %u pix clock %u\n",
28 		pll->ext_clock, pll->pix_clock);
29 
30 	if (pll->ext_clock < limits->ext_clock_min ||
31 	    pll->ext_clock > limits->ext_clock_max) {
32 		dev_err(dev, "pll: invalid external clock frequency.\n");
33 		return -EINVAL;
34 	}
35 
36 	if (pll->pix_clock == 0 || pll->pix_clock > limits->pix_clock_max) {
37 		dev_err(dev, "pll: invalid pixel clock frequency.\n");
38 		return -EINVAL;
39 	}
40 
41 	/* Compute the multiplier M and combined N*P1 divisor. */
42 	div = gcd(pll->pix_clock, pll->ext_clock);
43 	pll->m = pll->pix_clock / div;
44 	div = pll->ext_clock / div;
45 
46 	/* We now have the smallest M and N*P1 values that will result in the
47 	 * desired pixel clock frequency, but they might be out of the valid
48 	 * range. Compute the factor by which we should multiply them given the
49 	 * following constraints:
50 	 *
51 	 * - minimum/maximum multiplier
52 	 * - minimum/maximum multiplier output clock frequency assuming the
53 	 *   minimum/maximum N value
54 	 * - minimum/maximum combined N*P1 divisor
55 	 */
56 	mf_min = DIV_ROUND_UP(limits->m_min, pll->m);
57 	mf_min = max(mf_min, limits->out_clock_min /
58 		     (pll->ext_clock / limits->n_min * pll->m));
59 	mf_min = max(mf_min, limits->n_min * limits->p1_min / div);
60 	mf_max = limits->m_max / pll->m;
61 	mf_max = min(mf_max, limits->out_clock_max /
62 		    (pll->ext_clock / limits->n_max * pll->m));
63 	mf_max = min(mf_max, DIV_ROUND_UP(limits->n_max * limits->p1_max, div));
64 
65 	dev_dbg(dev, "pll: mf min %u max %u\n", mf_min, mf_max);
66 	if (mf_min > mf_max) {
67 		dev_err(dev, "pll: no valid combined N*P1 divisor.\n");
68 		return -EINVAL;
69 	}
70 
71 	/*
72 	 * We're looking for the highest acceptable P1 value for which a
73 	 * multiplier factor MF exists that fulfills the following conditions:
74 	 *
75 	 * 1. p1 is in the [p1_min, p1_max] range given by the limits and is
76 	 *    even
77 	 * 2. mf is in the [mf_min, mf_max] range computed above
78 	 * 3. div * mf is a multiple of p1, in order to compute
79 	 *	n = div * mf / p1
80 	 *	m = pll->m * mf
81 	 * 4. the internal clock frequency, given by ext_clock / n, is in the
82 	 *    [int_clock_min, int_clock_max] range given by the limits
83 	 * 5. the output clock frequency, given by ext_clock / n * m, is in the
84 	 *    [out_clock_min, out_clock_max] range given by the limits
85 	 *
86 	 * The first naive approach is to iterate over all p1 values acceptable
87 	 * according to (1) and all mf values acceptable according to (2), and
88 	 * stop at the first combination that fulfills (3), (4) and (5). This
89 	 * has a O(n^2) complexity.
90 	 *
91 	 * Instead of iterating over all mf values in the [mf_min, mf_max] range
92 	 * we can compute the mf increment between two acceptable values
93 	 * according to (3) with
94 	 *
95 	 *	mf_inc = p1 / gcd(div, p1)			(6)
96 	 *
97 	 * and round the minimum up to the nearest multiple of mf_inc. This will
98 	 * restrict the number of mf values to be checked.
99 	 *
100 	 * Furthermore, conditions (4) and (5) only restrict the range of
101 	 * acceptable p1 and mf values by modifying the minimum and maximum
102 	 * limits. (5) can be expressed as
103 	 *
104 	 *	ext_clock / (div * mf / p1) * m * mf >= out_clock_min
105 	 *	ext_clock / (div * mf / p1) * m * mf <= out_clock_max
106 	 *
107 	 * or
108 	 *
109 	 *	p1 >= out_clock_min * div / (ext_clock * m)	(7)
110 	 *	p1 <= out_clock_max * div / (ext_clock * m)
111 	 *
112 	 * Similarly, (4) can be expressed as
113 	 *
114 	 *	mf >= ext_clock * p1 / (int_clock_max * div)	(8)
115 	 *	mf <= ext_clock * p1 / (int_clock_min * div)
116 	 *
117 	 * We can thus iterate over the restricted p1 range defined by the
118 	 * combination of (1) and (7), and then compute the restricted mf range
119 	 * defined by the combination of (2), (6) and (8). If the resulting mf
120 	 * range is not empty, any value in the mf range is acceptable. We thus
121 	 * select the mf lwoer bound and the corresponding p1 value.
122 	 */
123 	if (limits->p1_min == 0) {
124 		dev_err(dev, "pll: P1 minimum value must be >0.\n");
125 		return -EINVAL;
126 	}
127 
128 	p1_min = max(limits->p1_min, DIV_ROUND_UP(limits->out_clock_min * div,
129 		     pll->ext_clock * pll->m));
130 	p1_max = min(limits->p1_max, limits->out_clock_max * div /
131 		     (pll->ext_clock * pll->m));
132 
133 	for (p1 = p1_max & ~1; p1 >= p1_min; p1 -= 2) {
134 		unsigned int mf_inc = p1 / gcd(div, p1);
135 		unsigned int mf_high;
136 		unsigned int mf_low;
137 
138 		mf_low = roundup(max(mf_min, DIV_ROUND_UP(pll->ext_clock * p1,
139 					limits->int_clock_max * div)), mf_inc);
140 		mf_high = min(mf_max, pll->ext_clock * p1 /
141 			      (limits->int_clock_min * div));
142 
143 		if (mf_low > mf_high)
144 			continue;
145 
146 		pll->n = div * mf_low / p1;
147 		pll->m *= mf_low;
148 		pll->p1 = p1;
149 		dev_dbg(dev, "PLL: N %u M %u P1 %u\n", pll->n, pll->m, pll->p1);
150 		return 0;
151 	}
152 
153 	dev_err(dev, "pll: no valid N and P1 divisors found.\n");
154 	return -EINVAL;
155 }
156 EXPORT_SYMBOL_GPL(aptina_pll_calculate);
157 
158 MODULE_DESCRIPTION("Aptina PLL Helpers");
159 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
160 MODULE_LICENSE("GPL v2");
161