xref: /openbmc/linux/drivers/media/i2c/adv7842.c (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /*
2  * adv7842 - Analog Devices ADV7842 video decoder driver
3  *
4  * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
5  *
6  * This program is free software; you may redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17  * SOFTWARE.
18  *
19  */
20 
21 /*
22  * References (c = chapter, p = page):
23  * REF_01 - Analog devices, ADV7842,
24  *		Register Settings Recommendations, Rev. 1.9, April 2011
25  * REF_02 - Analog devices, Software User Guide, UG-206,
26  *		ADV7842 I2C Register Maps, Rev. 0, November 2010
27  * REF_03 - Analog devices, Hardware User Guide, UG-214,
28  *		ADV7842 Fast Switching 2:1 HDMI 1.4 Receiver with 3D-Comb
29  *		Decoder and Digitizer , Rev. 0, January 2011
30  */
31 
32 
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/slab.h>
36 #include <linux/i2c.h>
37 #include <linux/delay.h>
38 #include <linux/videodev2.h>
39 #include <linux/workqueue.h>
40 #include <linux/v4l2-dv-timings.h>
41 #include <linux/hdmi.h>
42 #include <media/v4l2-device.h>
43 #include <media/v4l2-ctrls.h>
44 #include <media/v4l2-dv-timings.h>
45 #include <media/adv7842.h>
46 
47 static int debug;
48 module_param(debug, int, 0644);
49 MODULE_PARM_DESC(debug, "debug level (0-2)");
50 
51 MODULE_DESCRIPTION("Analog Devices ADV7842 video decoder driver");
52 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
53 MODULE_AUTHOR("Martin Bugge <marbugge@cisco.com>");
54 MODULE_LICENSE("GPL");
55 
56 /* ADV7842 system clock frequency */
57 #define ADV7842_fsc (28636360)
58 
59 /*
60 **********************************************************************
61 *
62 *  Arrays with configuration parameters for the ADV7842
63 *
64 **********************************************************************
65 */
66 
67 struct adv7842_state {
68 	struct adv7842_platform_data pdata;
69 	struct v4l2_subdev sd;
70 	struct media_pad pad;
71 	struct v4l2_ctrl_handler hdl;
72 	enum adv7842_mode mode;
73 	struct v4l2_dv_timings timings;
74 	enum adv7842_vid_std_select vid_std_select;
75 	v4l2_std_id norm;
76 	struct {
77 		u8 edid[256];
78 		u32 present;
79 	} hdmi_edid;
80 	struct {
81 		u8 edid[256];
82 		u32 present;
83 	} vga_edid;
84 	struct v4l2_fract aspect_ratio;
85 	u32 rgb_quantization_range;
86 	bool is_cea_format;
87 	struct workqueue_struct *work_queues;
88 	struct delayed_work delayed_work_enable_hotplug;
89 	bool restart_stdi_once;
90 	bool hdmi_port_a;
91 
92 	/* i2c clients */
93 	struct i2c_client *i2c_sdp_io;
94 	struct i2c_client *i2c_sdp;
95 	struct i2c_client *i2c_cp;
96 	struct i2c_client *i2c_vdp;
97 	struct i2c_client *i2c_afe;
98 	struct i2c_client *i2c_hdmi;
99 	struct i2c_client *i2c_repeater;
100 	struct i2c_client *i2c_edid;
101 	struct i2c_client *i2c_infoframe;
102 	struct i2c_client *i2c_cec;
103 	struct i2c_client *i2c_avlink;
104 
105 	/* controls */
106 	struct v4l2_ctrl *detect_tx_5v_ctrl;
107 	struct v4l2_ctrl *analog_sampling_phase_ctrl;
108 	struct v4l2_ctrl *free_run_color_ctrl_manual;
109 	struct v4l2_ctrl *free_run_color_ctrl;
110 	struct v4l2_ctrl *rgb_quantization_range_ctrl;
111 };
112 
113 /* Unsupported timings. This device cannot support 720p30. */
114 static const struct v4l2_dv_timings adv7842_timings_exceptions[] = {
115 	V4L2_DV_BT_CEA_1280X720P30,
116 	{ }
117 };
118 
119 static bool adv7842_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
120 {
121 	int i;
122 
123 	for (i = 0; adv7842_timings_exceptions[i].bt.width; i++)
124 		if (v4l2_match_dv_timings(t, adv7842_timings_exceptions + i, 0))
125 			return false;
126 	return true;
127 }
128 
129 struct adv7842_video_standards {
130 	struct v4l2_dv_timings timings;
131 	u8 vid_std;
132 	u8 v_freq;
133 };
134 
135 /* sorted by number of lines */
136 static const struct adv7842_video_standards adv7842_prim_mode_comp[] = {
137 	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
138 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
139 	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
140 	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
141 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
142 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
143 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
144 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
145 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
146 	/* TODO add 1920x1080P60_RB (CVT timing) */
147 	{ },
148 };
149 
150 /* sorted by number of lines */
151 static const struct adv7842_video_standards adv7842_prim_mode_gr[] = {
152 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
153 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
154 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
155 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
156 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
157 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
158 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
159 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
160 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
161 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
162 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
163 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
164 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
165 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
166 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
167 	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
168 	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
169 	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
170 	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
171 	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
172 	/* TODO add 1600X1200P60_RB (not a DMT timing) */
173 	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
174 	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
175 	{ },
176 };
177 
178 /* sorted by number of lines */
179 static const struct adv7842_video_standards adv7842_prim_mode_hdmi_comp[] = {
180 	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
181 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
182 	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
183 	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
184 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
185 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
186 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
187 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
188 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
189 	{ },
190 };
191 
192 /* sorted by number of lines */
193 static const struct adv7842_video_standards adv7842_prim_mode_hdmi_gr[] = {
194 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
195 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
196 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
197 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
198 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
199 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
200 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
201 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
202 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
203 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
204 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
205 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
206 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
207 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
208 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
209 	{ },
210 };
211 
212 /* ----------------------------------------------------------------------- */
213 
214 static inline struct adv7842_state *to_state(struct v4l2_subdev *sd)
215 {
216 	return container_of(sd, struct adv7842_state, sd);
217 }
218 
219 static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl)
220 {
221 	return &container_of(ctrl->handler, struct adv7842_state, hdl)->sd;
222 }
223 
224 static inline unsigned htotal(const struct v4l2_bt_timings *t)
225 {
226 	return V4L2_DV_BT_FRAME_WIDTH(t);
227 }
228 
229 static inline unsigned vtotal(const struct v4l2_bt_timings *t)
230 {
231 	return V4L2_DV_BT_FRAME_HEIGHT(t);
232 }
233 
234 
235 /* ----------------------------------------------------------------------- */
236 
237 static s32 adv_smbus_read_byte_data_check(struct i2c_client *client,
238 					  u8 command, bool check)
239 {
240 	union i2c_smbus_data data;
241 
242 	if (!i2c_smbus_xfer(client->adapter, client->addr, client->flags,
243 			    I2C_SMBUS_READ, command,
244 			    I2C_SMBUS_BYTE_DATA, &data))
245 		return data.byte;
246 	if (check)
247 		v4l_err(client, "error reading %02x, %02x\n",
248 			client->addr, command);
249 	return -EIO;
250 }
251 
252 static s32 adv_smbus_read_byte_data(struct i2c_client *client, u8 command)
253 {
254 	int i;
255 
256 	for (i = 0; i < 3; i++) {
257 		int ret = adv_smbus_read_byte_data_check(client, command, true);
258 
259 		if (ret >= 0) {
260 			if (i)
261 				v4l_err(client, "read ok after %d retries\n", i);
262 			return ret;
263 		}
264 	}
265 	v4l_err(client, "read failed\n");
266 	return -EIO;
267 }
268 
269 static s32 adv_smbus_write_byte_data(struct i2c_client *client,
270 				     u8 command, u8 value)
271 {
272 	union i2c_smbus_data data;
273 	int err;
274 	int i;
275 
276 	data.byte = value;
277 	for (i = 0; i < 3; i++) {
278 		err = i2c_smbus_xfer(client->adapter, client->addr,
279 				     client->flags,
280 				     I2C_SMBUS_WRITE, command,
281 				     I2C_SMBUS_BYTE_DATA, &data);
282 		if (!err)
283 			break;
284 	}
285 	if (err < 0)
286 		v4l_err(client, "error writing %02x, %02x, %02x\n",
287 			client->addr, command, value);
288 	return err;
289 }
290 
291 static void adv_smbus_write_byte_no_check(struct i2c_client *client,
292 					  u8 command, u8 value)
293 {
294 	union i2c_smbus_data data;
295 	data.byte = value;
296 
297 	i2c_smbus_xfer(client->adapter, client->addr,
298 		       client->flags,
299 		       I2C_SMBUS_WRITE, command,
300 		       I2C_SMBUS_BYTE_DATA, &data);
301 }
302 
303 static s32 adv_smbus_write_i2c_block_data(struct i2c_client *client,
304 				  u8 command, unsigned length, const u8 *values)
305 {
306 	union i2c_smbus_data data;
307 
308 	if (length > I2C_SMBUS_BLOCK_MAX)
309 		length = I2C_SMBUS_BLOCK_MAX;
310 	data.block[0] = length;
311 	memcpy(data.block + 1, values, length);
312 	return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
313 			      I2C_SMBUS_WRITE, command,
314 			      I2C_SMBUS_I2C_BLOCK_DATA, &data);
315 }
316 
317 /* ----------------------------------------------------------------------- */
318 
319 static inline int io_read(struct v4l2_subdev *sd, u8 reg)
320 {
321 	struct i2c_client *client = v4l2_get_subdevdata(sd);
322 
323 	return adv_smbus_read_byte_data(client, reg);
324 }
325 
326 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
327 {
328 	struct i2c_client *client = v4l2_get_subdevdata(sd);
329 
330 	return adv_smbus_write_byte_data(client, reg, val);
331 }
332 
333 static inline int io_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
334 {
335 	return io_write(sd, reg, (io_read(sd, reg) & mask) | val);
336 }
337 
338 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
339 {
340 	struct adv7842_state *state = to_state(sd);
341 
342 	return adv_smbus_read_byte_data(state->i2c_avlink, reg);
343 }
344 
345 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
346 {
347 	struct adv7842_state *state = to_state(sd);
348 
349 	return adv_smbus_write_byte_data(state->i2c_avlink, reg, val);
350 }
351 
352 static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
353 {
354 	struct adv7842_state *state = to_state(sd);
355 
356 	return adv_smbus_read_byte_data(state->i2c_cec, reg);
357 }
358 
359 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
360 {
361 	struct adv7842_state *state = to_state(sd);
362 
363 	return adv_smbus_write_byte_data(state->i2c_cec, reg, val);
364 }
365 
366 static inline int cec_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
367 {
368 	return cec_write(sd, reg, (cec_read(sd, reg) & mask) | val);
369 }
370 
371 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
372 {
373 	struct adv7842_state *state = to_state(sd);
374 
375 	return adv_smbus_read_byte_data(state->i2c_infoframe, reg);
376 }
377 
378 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
379 {
380 	struct adv7842_state *state = to_state(sd);
381 
382 	return adv_smbus_write_byte_data(state->i2c_infoframe, reg, val);
383 }
384 
385 static inline int sdp_io_read(struct v4l2_subdev *sd, u8 reg)
386 {
387 	struct adv7842_state *state = to_state(sd);
388 
389 	return adv_smbus_read_byte_data(state->i2c_sdp_io, reg);
390 }
391 
392 static inline int sdp_io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
393 {
394 	struct adv7842_state *state = to_state(sd);
395 
396 	return adv_smbus_write_byte_data(state->i2c_sdp_io, reg, val);
397 }
398 
399 static inline int sdp_io_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
400 {
401 	return sdp_io_write(sd, reg, (sdp_io_read(sd, reg) & mask) | val);
402 }
403 
404 static inline int sdp_read(struct v4l2_subdev *sd, u8 reg)
405 {
406 	struct adv7842_state *state = to_state(sd);
407 
408 	return adv_smbus_read_byte_data(state->i2c_sdp, reg);
409 }
410 
411 static inline int sdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
412 {
413 	struct adv7842_state *state = to_state(sd);
414 
415 	return adv_smbus_write_byte_data(state->i2c_sdp, reg, val);
416 }
417 
418 static inline int sdp_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
419 {
420 	return sdp_write(sd, reg, (sdp_read(sd, reg) & mask) | val);
421 }
422 
423 static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
424 {
425 	struct adv7842_state *state = to_state(sd);
426 
427 	return adv_smbus_read_byte_data(state->i2c_afe, reg);
428 }
429 
430 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
431 {
432 	struct adv7842_state *state = to_state(sd);
433 
434 	return adv_smbus_write_byte_data(state->i2c_afe, reg, val);
435 }
436 
437 static inline int afe_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
438 {
439 	return afe_write(sd, reg, (afe_read(sd, reg) & mask) | val);
440 }
441 
442 static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
443 {
444 	struct adv7842_state *state = to_state(sd);
445 
446 	return adv_smbus_read_byte_data(state->i2c_repeater, reg);
447 }
448 
449 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
450 {
451 	struct adv7842_state *state = to_state(sd);
452 
453 	return adv_smbus_write_byte_data(state->i2c_repeater, reg, val);
454 }
455 
456 static inline int rep_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
457 {
458 	return rep_write(sd, reg, (rep_read(sd, reg) & mask) | val);
459 }
460 
461 static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
462 {
463 	struct adv7842_state *state = to_state(sd);
464 
465 	return adv_smbus_read_byte_data(state->i2c_edid, reg);
466 }
467 
468 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
469 {
470 	struct adv7842_state *state = to_state(sd);
471 
472 	return adv_smbus_write_byte_data(state->i2c_edid, reg, val);
473 }
474 
475 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
476 {
477 	struct adv7842_state *state = to_state(sd);
478 
479 	return adv_smbus_read_byte_data(state->i2c_hdmi, reg);
480 }
481 
482 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
483 {
484 	struct adv7842_state *state = to_state(sd);
485 
486 	return adv_smbus_write_byte_data(state->i2c_hdmi, reg, val);
487 }
488 
489 static inline int hdmi_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
490 {
491 	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & mask) | val);
492 }
493 
494 static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
495 {
496 	struct adv7842_state *state = to_state(sd);
497 
498 	return adv_smbus_read_byte_data(state->i2c_cp, reg);
499 }
500 
501 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
502 {
503 	struct adv7842_state *state = to_state(sd);
504 
505 	return adv_smbus_write_byte_data(state->i2c_cp, reg, val);
506 }
507 
508 static inline int cp_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
509 {
510 	return cp_write(sd, reg, (cp_read(sd, reg) & mask) | val);
511 }
512 
513 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
514 {
515 	struct adv7842_state *state = to_state(sd);
516 
517 	return adv_smbus_read_byte_data(state->i2c_vdp, reg);
518 }
519 
520 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
521 {
522 	struct adv7842_state *state = to_state(sd);
523 
524 	return adv_smbus_write_byte_data(state->i2c_vdp, reg, val);
525 }
526 
527 static void main_reset(struct v4l2_subdev *sd)
528 {
529 	struct i2c_client *client = v4l2_get_subdevdata(sd);
530 
531 	v4l2_dbg(1, debug, sd, "%s:\n", __func__);
532 
533 	adv_smbus_write_byte_no_check(client, 0xff, 0x80);
534 
535 	mdelay(5);
536 }
537 
538 /* ----------------------------------------------------------------------- */
539 
540 static inline bool is_analog_input(struct v4l2_subdev *sd)
541 {
542 	struct adv7842_state *state = to_state(sd);
543 
544 	return ((state->mode == ADV7842_MODE_RGB) ||
545 		(state->mode == ADV7842_MODE_COMP));
546 }
547 
548 static inline bool is_digital_input(struct v4l2_subdev *sd)
549 {
550 	struct adv7842_state *state = to_state(sd);
551 
552 	return state->mode == ADV7842_MODE_HDMI;
553 }
554 
555 static const struct v4l2_dv_timings_cap adv7842_timings_cap_analog = {
556 	.type = V4L2_DV_BT_656_1120,
557 	/* keep this initialization for compatibility with GCC < 4.4.6 */
558 	.reserved = { 0 },
559 	V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000,
560 		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
561 			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
562 		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
563 			V4L2_DV_BT_CAP_CUSTOM)
564 };
565 
566 static const struct v4l2_dv_timings_cap adv7842_timings_cap_digital = {
567 	.type = V4L2_DV_BT_656_1120,
568 	/* keep this initialization for compatibility with GCC < 4.4.6 */
569 	.reserved = { 0 },
570 	V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 225000000,
571 		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
572 			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
573 		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
574 			V4L2_DV_BT_CAP_CUSTOM)
575 };
576 
577 static inline const struct v4l2_dv_timings_cap *
578 adv7842_get_dv_timings_cap(struct v4l2_subdev *sd)
579 {
580 	return is_digital_input(sd) ? &adv7842_timings_cap_digital :
581 				      &adv7842_timings_cap_analog;
582 }
583 
584 /* ----------------------------------------------------------------------- */
585 
586 static void adv7842_delayed_work_enable_hotplug(struct work_struct *work)
587 {
588 	struct delayed_work *dwork = to_delayed_work(work);
589 	struct adv7842_state *state = container_of(dwork,
590 			struct adv7842_state, delayed_work_enable_hotplug);
591 	struct v4l2_subdev *sd = &state->sd;
592 	int present = state->hdmi_edid.present;
593 	u8 mask = 0;
594 
595 	v4l2_dbg(2, debug, sd, "%s: enable hotplug on ports: 0x%x\n",
596 			__func__, present);
597 
598 	if (present & (0x04 << ADV7842_EDID_PORT_A))
599 		mask |= 0x20;
600 	if (present & (0x04 << ADV7842_EDID_PORT_B))
601 		mask |= 0x10;
602 	io_write_and_or(sd, 0x20, 0xcf, mask);
603 }
604 
605 static int edid_write_vga_segment(struct v4l2_subdev *sd)
606 {
607 	struct i2c_client *client = v4l2_get_subdevdata(sd);
608 	struct adv7842_state *state = to_state(sd);
609 	const u8 *val = state->vga_edid.edid;
610 	int err = 0;
611 	int i;
612 
613 	v4l2_dbg(2, debug, sd, "%s: write EDID on VGA port\n", __func__);
614 
615 	/* HPA disable on port A and B */
616 	io_write_and_or(sd, 0x20, 0xcf, 0x00);
617 
618 	/* Disable I2C access to internal EDID ram from VGA DDC port */
619 	rep_write_and_or(sd, 0x7f, 0x7f, 0x00);
620 
621 	/* edid segment pointer '1' for VGA port */
622 	rep_write_and_or(sd, 0x77, 0xef, 0x10);
623 
624 	for (i = 0; !err && i < 256; i += I2C_SMBUS_BLOCK_MAX)
625 		err = adv_smbus_write_i2c_block_data(state->i2c_edid, i,
626 					     I2C_SMBUS_BLOCK_MAX, val + i);
627 	if (err)
628 		return err;
629 
630 	/* Calculates the checksums and enables I2C access
631 	 * to internal EDID ram from VGA DDC port.
632 	 */
633 	rep_write_and_or(sd, 0x7f, 0x7f, 0x80);
634 
635 	for (i = 0; i < 1000; i++) {
636 		if (rep_read(sd, 0x79) & 0x20)
637 			break;
638 		mdelay(1);
639 	}
640 	if (i == 1000) {
641 		v4l_err(client, "error enabling edid on VGA port\n");
642 		return -EIO;
643 	}
644 
645 	/* enable hotplug after 200 ms */
646 	queue_delayed_work(state->work_queues,
647 			&state->delayed_work_enable_hotplug, HZ / 5);
648 
649 	return 0;
650 }
651 
652 static int edid_spa_location(const u8 *edid)
653 {
654 	u8 d;
655 
656 	/*
657 	 * TODO, improve and update for other CEA extensions
658 	 * currently only for 1 segment (256 bytes),
659 	 * i.e. 1 extension block and CEA revision 3.
660 	 */
661 	if ((edid[0x7e] != 1) ||
662 	    (edid[0x80] != 0x02) ||
663 	    (edid[0x81] != 0x03)) {
664 		return -EINVAL;
665 	}
666 	/*
667 	 * search Vendor Specific Data Block (tag 3)
668 	 */
669 	d = edid[0x82] & 0x7f;
670 	if (d > 4) {
671 		int i = 0x84;
672 		int end = 0x80 + d;
673 		do {
674 			u8 tag = edid[i]>>5;
675 			u8 len = edid[i] & 0x1f;
676 
677 			if ((tag == 3) && (len >= 5))
678 				return i + 4;
679 			i += len + 1;
680 		} while (i < end);
681 	}
682 	return -EINVAL;
683 }
684 
685 static int edid_write_hdmi_segment(struct v4l2_subdev *sd, u8 port)
686 {
687 	struct i2c_client *client = v4l2_get_subdevdata(sd);
688 	struct adv7842_state *state = to_state(sd);
689 	const u8 *val = state->hdmi_edid.edid;
690 	int spa_loc = edid_spa_location(val);
691 	int err = 0;
692 	int i;
693 
694 	v4l2_dbg(2, debug, sd, "%s: write EDID on port %c (spa at 0x%x)\n",
695 			__func__, (port == ADV7842_EDID_PORT_A) ? 'A' : 'B', spa_loc);
696 
697 	/* HPA disable on port A and B */
698 	io_write_and_or(sd, 0x20, 0xcf, 0x00);
699 
700 	/* Disable I2C access to internal EDID ram from HDMI DDC ports */
701 	rep_write_and_or(sd, 0x77, 0xf3, 0x00);
702 
703 	if (!state->hdmi_edid.present)
704 		return 0;
705 
706 	/* edid segment pointer '0' for HDMI ports */
707 	rep_write_and_or(sd, 0x77, 0xef, 0x00);
708 
709 	for (i = 0; !err && i < 256; i += I2C_SMBUS_BLOCK_MAX)
710 		err = adv_smbus_write_i2c_block_data(state->i2c_edid, i,
711 						     I2C_SMBUS_BLOCK_MAX, val + i);
712 	if (err)
713 		return err;
714 
715 	if (spa_loc < 0)
716 		spa_loc = 0xc0; /* Default value [REF_02, p. 199] */
717 
718 	if (port == ADV7842_EDID_PORT_A) {
719 		rep_write(sd, 0x72, val[spa_loc]);
720 		rep_write(sd, 0x73, val[spa_loc + 1]);
721 	} else {
722 		rep_write(sd, 0x74, val[spa_loc]);
723 		rep_write(sd, 0x75, val[spa_loc + 1]);
724 	}
725 	rep_write(sd, 0x76, spa_loc & 0xff);
726 	rep_write_and_or(sd, 0x77, 0xbf, (spa_loc >> 2) & 0x40);
727 
728 	/* Calculates the checksums and enables I2C access to internal
729 	 * EDID ram from HDMI DDC ports
730 	 */
731 	rep_write_and_or(sd, 0x77, 0xf3, state->hdmi_edid.present);
732 
733 	for (i = 0; i < 1000; i++) {
734 		if (rep_read(sd, 0x7d) & state->hdmi_edid.present)
735 			break;
736 		mdelay(1);
737 	}
738 	if (i == 1000) {
739 		v4l_err(client, "error enabling edid on port %c\n",
740 				(port == ADV7842_EDID_PORT_A) ? 'A' : 'B');
741 		return -EIO;
742 	}
743 
744 	/* enable hotplug after 200 ms */
745 	queue_delayed_work(state->work_queues,
746 			&state->delayed_work_enable_hotplug, HZ / 5);
747 
748 	return 0;
749 }
750 
751 /* ----------------------------------------------------------------------- */
752 
753 #ifdef CONFIG_VIDEO_ADV_DEBUG
754 static void adv7842_inv_register(struct v4l2_subdev *sd)
755 {
756 	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
757 	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
758 	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
759 	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
760 	v4l2_info(sd, "0x400-0x4ff: SDP_IO Map\n");
761 	v4l2_info(sd, "0x500-0x5ff: SDP Map\n");
762 	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
763 	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
764 	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
765 	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
766 	v4l2_info(sd, "0xa00-0xaff: CP Map\n");
767 	v4l2_info(sd, "0xb00-0xbff: VDP Map\n");
768 }
769 
770 static int adv7842_g_register(struct v4l2_subdev *sd,
771 			      struct v4l2_dbg_register *reg)
772 {
773 	reg->size = 1;
774 	switch (reg->reg >> 8) {
775 	case 0:
776 		reg->val = io_read(sd, reg->reg & 0xff);
777 		break;
778 	case 1:
779 		reg->val = avlink_read(sd, reg->reg & 0xff);
780 		break;
781 	case 2:
782 		reg->val = cec_read(sd, reg->reg & 0xff);
783 		break;
784 	case 3:
785 		reg->val = infoframe_read(sd, reg->reg & 0xff);
786 		break;
787 	case 4:
788 		reg->val = sdp_io_read(sd, reg->reg & 0xff);
789 		break;
790 	case 5:
791 		reg->val = sdp_read(sd, reg->reg & 0xff);
792 		break;
793 	case 6:
794 		reg->val = afe_read(sd, reg->reg & 0xff);
795 		break;
796 	case 7:
797 		reg->val = rep_read(sd, reg->reg & 0xff);
798 		break;
799 	case 8:
800 		reg->val = edid_read(sd, reg->reg & 0xff);
801 		break;
802 	case 9:
803 		reg->val = hdmi_read(sd, reg->reg & 0xff);
804 		break;
805 	case 0xa:
806 		reg->val = cp_read(sd, reg->reg & 0xff);
807 		break;
808 	case 0xb:
809 		reg->val = vdp_read(sd, reg->reg & 0xff);
810 		break;
811 	default:
812 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
813 		adv7842_inv_register(sd);
814 		break;
815 	}
816 	return 0;
817 }
818 
819 static int adv7842_s_register(struct v4l2_subdev *sd,
820 		const struct v4l2_dbg_register *reg)
821 {
822 	u8 val = reg->val & 0xff;
823 
824 	switch (reg->reg >> 8) {
825 	case 0:
826 		io_write(sd, reg->reg & 0xff, val);
827 		break;
828 	case 1:
829 		avlink_write(sd, reg->reg & 0xff, val);
830 		break;
831 	case 2:
832 		cec_write(sd, reg->reg & 0xff, val);
833 		break;
834 	case 3:
835 		infoframe_write(sd, reg->reg & 0xff, val);
836 		break;
837 	case 4:
838 		sdp_io_write(sd, reg->reg & 0xff, val);
839 		break;
840 	case 5:
841 		sdp_write(sd, reg->reg & 0xff, val);
842 		break;
843 	case 6:
844 		afe_write(sd, reg->reg & 0xff, val);
845 		break;
846 	case 7:
847 		rep_write(sd, reg->reg & 0xff, val);
848 		break;
849 	case 8:
850 		edid_write(sd, reg->reg & 0xff, val);
851 		break;
852 	case 9:
853 		hdmi_write(sd, reg->reg & 0xff, val);
854 		break;
855 	case 0xa:
856 		cp_write(sd, reg->reg & 0xff, val);
857 		break;
858 	case 0xb:
859 		vdp_write(sd, reg->reg & 0xff, val);
860 		break;
861 	default:
862 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
863 		adv7842_inv_register(sd);
864 		break;
865 	}
866 	return 0;
867 }
868 #endif
869 
870 static int adv7842_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
871 {
872 	struct adv7842_state *state = to_state(sd);
873 	int prev = v4l2_ctrl_g_ctrl(state->detect_tx_5v_ctrl);
874 	u8 reg_io_6f = io_read(sd, 0x6f);
875 	int val = 0;
876 
877 	if (reg_io_6f & 0x02)
878 		val |= 1; /* port A */
879 	if (reg_io_6f & 0x01)
880 		val |= 2; /* port B */
881 
882 	v4l2_dbg(1, debug, sd, "%s: 0x%x -> 0x%x\n", __func__, prev, val);
883 
884 	if (val != prev)
885 		return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, val);
886 	return 0;
887 }
888 
889 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
890 		u8 prim_mode,
891 		const struct adv7842_video_standards *predef_vid_timings,
892 		const struct v4l2_dv_timings *timings)
893 {
894 	int i;
895 
896 	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
897 		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
898 					  is_digital_input(sd) ? 250000 : 1000000))
899 			continue;
900 		/* video std */
901 		io_write(sd, 0x00, predef_vid_timings[i].vid_std);
902 		/* v_freq and prim mode */
903 		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) + prim_mode);
904 		return 0;
905 	}
906 
907 	return -1;
908 }
909 
910 static int configure_predefined_video_timings(struct v4l2_subdev *sd,
911 		struct v4l2_dv_timings *timings)
912 {
913 	struct adv7842_state *state = to_state(sd);
914 	int err;
915 
916 	v4l2_dbg(1, debug, sd, "%s\n", __func__);
917 
918 	/* reset to default values */
919 	io_write(sd, 0x16, 0x43);
920 	io_write(sd, 0x17, 0x5a);
921 	/* disable embedded syncs for auto graphics mode */
922 	cp_write_and_or(sd, 0x81, 0xef, 0x00);
923 	cp_write(sd, 0x26, 0x00);
924 	cp_write(sd, 0x27, 0x00);
925 	cp_write(sd, 0x28, 0x00);
926 	cp_write(sd, 0x29, 0x00);
927 	cp_write(sd, 0x8f, 0x40);
928 	cp_write(sd, 0x90, 0x00);
929 	cp_write(sd, 0xa5, 0x00);
930 	cp_write(sd, 0xa6, 0x00);
931 	cp_write(sd, 0xa7, 0x00);
932 	cp_write(sd, 0xab, 0x00);
933 	cp_write(sd, 0xac, 0x00);
934 
935 	switch (state->mode) {
936 	case ADV7842_MODE_COMP:
937 	case ADV7842_MODE_RGB:
938 		err = find_and_set_predefined_video_timings(sd,
939 				0x01, adv7842_prim_mode_comp, timings);
940 		if (err)
941 			err = find_and_set_predefined_video_timings(sd,
942 					0x02, adv7842_prim_mode_gr, timings);
943 		break;
944 	case ADV7842_MODE_HDMI:
945 		err = find_and_set_predefined_video_timings(sd,
946 				0x05, adv7842_prim_mode_hdmi_comp, timings);
947 		if (err)
948 			err = find_and_set_predefined_video_timings(sd,
949 					0x06, adv7842_prim_mode_hdmi_gr, timings);
950 		break;
951 	default:
952 		v4l2_dbg(2, debug, sd, "%s: Unknown mode %d\n",
953 				__func__, state->mode);
954 		err = -1;
955 		break;
956 	}
957 
958 
959 	return err;
960 }
961 
962 static void configure_custom_video_timings(struct v4l2_subdev *sd,
963 		const struct v4l2_bt_timings *bt)
964 {
965 	struct adv7842_state *state = to_state(sd);
966 	struct i2c_client *client = v4l2_get_subdevdata(sd);
967 	u32 width = htotal(bt);
968 	u32 height = vtotal(bt);
969 	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
970 	u16 cp_start_eav = width - bt->hfrontporch;
971 	u16 cp_start_vbi = height - bt->vfrontporch + 1;
972 	u16 cp_end_vbi = bt->vsync + bt->vbackporch + 1;
973 	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
974 		((width * (ADV7842_fsc / 100)) / ((u32)bt->pixelclock / 100)) : 0;
975 	const u8 pll[2] = {
976 		0xc0 | ((width >> 8) & 0x1f),
977 		width & 0xff
978 	};
979 
980 	v4l2_dbg(2, debug, sd, "%s\n", __func__);
981 
982 	switch (state->mode) {
983 	case ADV7842_MODE_COMP:
984 	case ADV7842_MODE_RGB:
985 		/* auto graphics */
986 		io_write(sd, 0x00, 0x07); /* video std */
987 		io_write(sd, 0x01, 0x02); /* prim mode */
988 		/* enable embedded syncs for auto graphics mode */
989 		cp_write_and_or(sd, 0x81, 0xef, 0x10);
990 
991 		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
992 		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
993 		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
994 		if (adv_smbus_write_i2c_block_data(client, 0x16, 2, pll)) {
995 			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
996 			break;
997 		}
998 
999 		/* active video - horizontal timing */
1000 		cp_write(sd, 0x26, (cp_start_sav >> 8) & 0xf);
1001 		cp_write(sd, 0x27, (cp_start_sav & 0xff));
1002 		cp_write(sd, 0x28, (cp_start_eav >> 8) & 0xf);
1003 		cp_write(sd, 0x29, (cp_start_eav & 0xff));
1004 
1005 		/* active video - vertical timing */
1006 		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1007 		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1008 					((cp_end_vbi >> 8) & 0xf));
1009 		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1010 		break;
1011 	case ADV7842_MODE_HDMI:
1012 		/* set default prim_mode/vid_std for HDMI
1013 		   according to [REF_03, c. 4.2] */
1014 		io_write(sd, 0x00, 0x02); /* video std */
1015 		io_write(sd, 0x01, 0x06); /* prim mode */
1016 		break;
1017 	default:
1018 		v4l2_dbg(2, debug, sd, "%s: Unknown mode %d\n",
1019 				__func__, state->mode);
1020 		break;
1021 	}
1022 
1023 	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1024 	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1025 	cp_write(sd, 0xab, (height >> 4) & 0xff);
1026 	cp_write(sd, 0xac, (height & 0x0f) << 4);
1027 }
1028 
1029 static void adv7842_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1030 {
1031 	struct adv7842_state *state = to_state(sd);
1032 	u8 offset_buf[4];
1033 
1034 	if (auto_offset) {
1035 		offset_a = 0x3ff;
1036 		offset_b = 0x3ff;
1037 		offset_c = 0x3ff;
1038 	}
1039 
1040 	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1041 		 __func__, auto_offset ? "Auto" : "Manual",
1042 		 offset_a, offset_b, offset_c);
1043 
1044 	offset_buf[0]= (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1045 	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1046 	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1047 	offset_buf[3] = offset_c & 0x0ff;
1048 
1049 	/* Registers must be written in this order with no i2c access in between */
1050 	if (adv_smbus_write_i2c_block_data(state->i2c_cp, 0x77, 4, offset_buf))
1051 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1052 }
1053 
1054 static void adv7842_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1055 {
1056 	struct adv7842_state *state = to_state(sd);
1057 	u8 gain_buf[4];
1058 	u8 gain_man = 1;
1059 	u8 agc_mode_man = 1;
1060 
1061 	if (auto_gain) {
1062 		gain_man = 0;
1063 		agc_mode_man = 0;
1064 		gain_a = 0x100;
1065 		gain_b = 0x100;
1066 		gain_c = 0x100;
1067 	}
1068 
1069 	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1070 		 __func__, auto_gain ? "Auto" : "Manual",
1071 		 gain_a, gain_b, gain_c);
1072 
1073 	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1074 	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1075 	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1076 	gain_buf[3] = ((gain_c & 0x0ff));
1077 
1078 	/* Registers must be written in this order with no i2c access in between */
1079 	if (adv_smbus_write_i2c_block_data(state->i2c_cp, 0x73, 4, gain_buf))
1080 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1081 }
1082 
1083 static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1084 {
1085 	struct adv7842_state *state = to_state(sd);
1086 	bool rgb_output = io_read(sd, 0x02) & 0x02;
1087 	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1088 
1089 	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1090 			__func__, state->rgb_quantization_range,
1091 			rgb_output, hdmi_signal);
1092 
1093 	adv7842_set_gain(sd, true, 0x0, 0x0, 0x0);
1094 	adv7842_set_offset(sd, true, 0x0, 0x0, 0x0);
1095 
1096 	switch (state->rgb_quantization_range) {
1097 	case V4L2_DV_RGB_RANGE_AUTO:
1098 		if (state->mode == ADV7842_MODE_RGB) {
1099 			/* Receiving analog RGB signal
1100 			 * Set RGB full range (0-255) */
1101 			io_write_and_or(sd, 0x02, 0x0f, 0x10);
1102 			break;
1103 		}
1104 
1105 		if (state->mode == ADV7842_MODE_COMP) {
1106 			/* Receiving analog YPbPr signal
1107 			 * Set automode */
1108 			io_write_and_or(sd, 0x02, 0x0f, 0xf0);
1109 			break;
1110 		}
1111 
1112 		if (hdmi_signal) {
1113 			/* Receiving HDMI signal
1114 			 * Set automode */
1115 			io_write_and_or(sd, 0x02, 0x0f, 0xf0);
1116 			break;
1117 		}
1118 
1119 		/* Receiving DVI-D signal
1120 		 * ADV7842 selects RGB limited range regardless of
1121 		 * input format (CE/IT) in automatic mode */
1122 		if (state->timings.bt.standards & V4L2_DV_BT_STD_CEA861) {
1123 			/* RGB limited range (16-235) */
1124 			io_write_and_or(sd, 0x02, 0x0f, 0x00);
1125 		} else {
1126 			/* RGB full range (0-255) */
1127 			io_write_and_or(sd, 0x02, 0x0f, 0x10);
1128 
1129 			if (is_digital_input(sd) && rgb_output) {
1130 				adv7842_set_offset(sd, false, 0x40, 0x40, 0x40);
1131 			} else {
1132 				adv7842_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1133 				adv7842_set_offset(sd, false, 0x70, 0x70, 0x70);
1134 			}
1135 		}
1136 		break;
1137 	case V4L2_DV_RGB_RANGE_LIMITED:
1138 		if (state->mode == ADV7842_MODE_COMP) {
1139 			/* YCrCb limited range (16-235) */
1140 			io_write_and_or(sd, 0x02, 0x0f, 0x20);
1141 			break;
1142 		}
1143 
1144 		/* RGB limited range (16-235) */
1145 		io_write_and_or(sd, 0x02, 0x0f, 0x00);
1146 
1147 		break;
1148 	case V4L2_DV_RGB_RANGE_FULL:
1149 		if (state->mode == ADV7842_MODE_COMP) {
1150 			/* YCrCb full range (0-255) */
1151 			io_write_and_or(sd, 0x02, 0x0f, 0x60);
1152 			break;
1153 		}
1154 
1155 		/* RGB full range (0-255) */
1156 		io_write_and_or(sd, 0x02, 0x0f, 0x10);
1157 
1158 		if (is_analog_input(sd) || hdmi_signal)
1159 			break;
1160 
1161 		/* Adjust gain/offset for DVI-D signals only */
1162 		if (rgb_output) {
1163 			adv7842_set_offset(sd, false, 0x40, 0x40, 0x40);
1164 		} else {
1165 			adv7842_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1166 			adv7842_set_offset(sd, false, 0x70, 0x70, 0x70);
1167 		}
1168 		break;
1169 	}
1170 }
1171 
1172 static int adv7842_s_ctrl(struct v4l2_ctrl *ctrl)
1173 {
1174 	struct v4l2_subdev *sd = to_sd(ctrl);
1175 	struct adv7842_state *state = to_state(sd);
1176 
1177 	/* TODO SDP ctrls
1178 	   contrast/brightness/hue/free run is acting a bit strange,
1179 	   not sure if sdp csc is correct.
1180 	 */
1181 	switch (ctrl->id) {
1182 	/* standard ctrls */
1183 	case V4L2_CID_BRIGHTNESS:
1184 		cp_write(sd, 0x3c, ctrl->val);
1185 		sdp_write(sd, 0x14, ctrl->val);
1186 		/* ignore lsb sdp 0x17[3:2] */
1187 		return 0;
1188 	case V4L2_CID_CONTRAST:
1189 		cp_write(sd, 0x3a, ctrl->val);
1190 		sdp_write(sd, 0x13, ctrl->val);
1191 		/* ignore lsb sdp 0x17[1:0] */
1192 		return 0;
1193 	case V4L2_CID_SATURATION:
1194 		cp_write(sd, 0x3b, ctrl->val);
1195 		sdp_write(sd, 0x15, ctrl->val);
1196 		/* ignore lsb sdp 0x17[5:4] */
1197 		return 0;
1198 	case V4L2_CID_HUE:
1199 		cp_write(sd, 0x3d, ctrl->val);
1200 		sdp_write(sd, 0x16, ctrl->val);
1201 		/* ignore lsb sdp 0x17[7:6] */
1202 		return 0;
1203 		/* custom ctrls */
1204 	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1205 		afe_write(sd, 0xc8, ctrl->val);
1206 		return 0;
1207 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1208 		cp_write_and_or(sd, 0xbf, ~0x04, (ctrl->val << 2));
1209 		sdp_write_and_or(sd, 0xdd, ~0x04, (ctrl->val << 2));
1210 		return 0;
1211 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR: {
1212 		u8 R = (ctrl->val & 0xff0000) >> 16;
1213 		u8 G = (ctrl->val & 0x00ff00) >> 8;
1214 		u8 B = (ctrl->val & 0x0000ff);
1215 		/* RGB -> YUV, numerical approximation */
1216 		int Y = 66 * R + 129 * G + 25 * B;
1217 		int U = -38 * R - 74 * G + 112 * B;
1218 		int V = 112 * R - 94 * G - 18 * B;
1219 
1220 		/* Scale down to 8 bits with rounding */
1221 		Y = (Y + 128) >> 8;
1222 		U = (U + 128) >> 8;
1223 		V = (V + 128) >> 8;
1224 		/* make U,V positive */
1225 		Y += 16;
1226 		U += 128;
1227 		V += 128;
1228 
1229 		v4l2_dbg(1, debug, sd, "R %x, G %x, B %x\n", R, G, B);
1230 		v4l2_dbg(1, debug, sd, "Y %x, U %x, V %x\n", Y, U, V);
1231 
1232 		/* CP */
1233 		cp_write(sd, 0xc1, R);
1234 		cp_write(sd, 0xc0, G);
1235 		cp_write(sd, 0xc2, B);
1236 		/* SDP */
1237 		sdp_write(sd, 0xde, Y);
1238 		sdp_write(sd, 0xdf, (V & 0xf0) | ((U >> 4) & 0x0f));
1239 		return 0;
1240 	}
1241 	case V4L2_CID_DV_RX_RGB_RANGE:
1242 		state->rgb_quantization_range = ctrl->val;
1243 		set_rgb_quantization_range(sd);
1244 		return 0;
1245 	}
1246 	return -EINVAL;
1247 }
1248 
1249 static inline bool no_power(struct v4l2_subdev *sd)
1250 {
1251 	return io_read(sd, 0x0c) & 0x24;
1252 }
1253 
1254 static inline bool no_cp_signal(struct v4l2_subdev *sd)
1255 {
1256 	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0) || !(cp_read(sd, 0xb1) & 0x80);
1257 }
1258 
1259 static inline bool is_hdmi(struct v4l2_subdev *sd)
1260 {
1261 	return hdmi_read(sd, 0x05) & 0x80;
1262 }
1263 
1264 static int adv7842_g_input_status(struct v4l2_subdev *sd, u32 *status)
1265 {
1266 	struct adv7842_state *state = to_state(sd);
1267 
1268 	*status = 0;
1269 
1270 	if (io_read(sd, 0x0c) & 0x24)
1271 		*status |= V4L2_IN_ST_NO_POWER;
1272 
1273 	if (state->mode == ADV7842_MODE_SDP) {
1274 		/* status from SDP block */
1275 		if (!(sdp_read(sd, 0x5A) & 0x01))
1276 			*status |= V4L2_IN_ST_NO_SIGNAL;
1277 
1278 		v4l2_dbg(1, debug, sd, "%s: SDP status = 0x%x\n",
1279 				__func__, *status);
1280 		return 0;
1281 	}
1282 	/* status from CP block */
1283 	if ((cp_read(sd, 0xb5) & 0xd0) != 0xd0 ||
1284 			!(cp_read(sd, 0xb1) & 0x80))
1285 		/* TODO channel 2 */
1286 		*status |= V4L2_IN_ST_NO_SIGNAL;
1287 
1288 	if (is_digital_input(sd) && ((io_read(sd, 0x74) & 0x03) != 0x03))
1289 		*status |= V4L2_IN_ST_NO_SIGNAL;
1290 
1291 	v4l2_dbg(1, debug, sd, "%s: CP status = 0x%x\n",
1292 			__func__, *status);
1293 
1294 	return 0;
1295 }
1296 
1297 struct stdi_readback {
1298 	u16 bl, lcf, lcvs;
1299 	u8 hs_pol, vs_pol;
1300 	bool interlaced;
1301 };
1302 
1303 static int stdi2dv_timings(struct v4l2_subdev *sd,
1304 		struct stdi_readback *stdi,
1305 		struct v4l2_dv_timings *timings)
1306 {
1307 	struct adv7842_state *state = to_state(sd);
1308 	u32 hfreq = (ADV7842_fsc * 8) / stdi->bl;
1309 	u32 pix_clk;
1310 	int i;
1311 
1312 	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1313 		const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
1314 
1315 		if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1316 					   adv7842_get_dv_timings_cap(sd),
1317 					   adv7842_check_dv_timings, NULL))
1318 			continue;
1319 		if (vtotal(bt) != stdi->lcf + 1)
1320 			continue;
1321 		if (bt->vsync != stdi->lcvs)
1322 			continue;
1323 
1324 		pix_clk = hfreq * htotal(bt);
1325 
1326 		if ((pix_clk < bt->pixelclock + 1000000) &&
1327 		    (pix_clk > bt->pixelclock - 1000000)) {
1328 			*timings = v4l2_dv_timings_presets[i];
1329 			return 0;
1330 		}
1331 	}
1332 
1333 	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs,
1334 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1335 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1336 			    timings))
1337 		return 0;
1338 	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1339 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1340 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1341 			    state->aspect_ratio, timings))
1342 		return 0;
1343 
1344 	v4l2_dbg(2, debug, sd,
1345 		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1346 		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
1347 		stdi->hs_pol, stdi->vs_pol);
1348 	return -1;
1349 }
1350 
1351 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1352 {
1353 	u32 status;
1354 
1355 	adv7842_g_input_status(sd, &status);
1356 	if (status & V4L2_IN_ST_NO_SIGNAL) {
1357 		v4l2_dbg(2, debug, sd, "%s: no signal\n", __func__);
1358 		return -ENOLINK;
1359 	}
1360 
1361 	stdi->bl = ((cp_read(sd, 0xb1) & 0x3f) << 8) | cp_read(sd, 0xb2);
1362 	stdi->lcf = ((cp_read(sd, 0xb3) & 0x7) << 8) | cp_read(sd, 0xb4);
1363 	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1364 
1365 	if ((cp_read(sd, 0xb5) & 0x80) && ((cp_read(sd, 0xb5) & 0x03) == 0x01)) {
1366 		stdi->hs_pol = ((cp_read(sd, 0xb5) & 0x10) ?
1367 			((cp_read(sd, 0xb5) & 0x08) ? '+' : '-') : 'x');
1368 		stdi->vs_pol = ((cp_read(sd, 0xb5) & 0x40) ?
1369 			((cp_read(sd, 0xb5) & 0x20) ? '+' : '-') : 'x');
1370 	} else {
1371 		stdi->hs_pol = 'x';
1372 		stdi->vs_pol = 'x';
1373 	}
1374 	stdi->interlaced = (cp_read(sd, 0xb1) & 0x40) ? true : false;
1375 
1376 	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1377 		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1378 		return -ENOLINK;
1379 	}
1380 
1381 	v4l2_dbg(2, debug, sd,
1382 		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1383 		 __func__, stdi->lcf, stdi->bl, stdi->lcvs,
1384 		 stdi->hs_pol, stdi->vs_pol,
1385 		 stdi->interlaced ? "interlaced" : "progressive");
1386 
1387 	return 0;
1388 }
1389 
1390 static int adv7842_enum_dv_timings(struct v4l2_subdev *sd,
1391 				   struct v4l2_enum_dv_timings *timings)
1392 {
1393 	if (timings->pad != 0)
1394 		return -EINVAL;
1395 
1396 	return v4l2_enum_dv_timings_cap(timings,
1397 		adv7842_get_dv_timings_cap(sd), adv7842_check_dv_timings, NULL);
1398 }
1399 
1400 static int adv7842_dv_timings_cap(struct v4l2_subdev *sd,
1401 				  struct v4l2_dv_timings_cap *cap)
1402 {
1403 	if (cap->pad != 0)
1404 		return -EINVAL;
1405 
1406 	*cap = *adv7842_get_dv_timings_cap(sd);
1407 	return 0;
1408 }
1409 
1410 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1411    if the format is listed in adv7842_timings[] */
1412 static void adv7842_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1413 		struct v4l2_dv_timings *timings)
1414 {
1415 	v4l2_find_dv_timings_cap(timings, adv7842_get_dv_timings_cap(sd),
1416 			is_digital_input(sd) ? 250000 : 1000000,
1417 			adv7842_check_dv_timings, NULL);
1418 }
1419 
1420 static int adv7842_query_dv_timings(struct v4l2_subdev *sd,
1421 				    struct v4l2_dv_timings *timings)
1422 {
1423 	struct adv7842_state *state = to_state(sd);
1424 	struct v4l2_bt_timings *bt = &timings->bt;
1425 	struct stdi_readback stdi = { 0 };
1426 
1427 	v4l2_dbg(1, debug, sd, "%s:\n", __func__);
1428 
1429 	memset(timings, 0, sizeof(struct v4l2_dv_timings));
1430 
1431 	/* SDP block */
1432 	if (state->mode == ADV7842_MODE_SDP)
1433 		return -ENODATA;
1434 
1435 	/* read STDI */
1436 	if (read_stdi(sd, &stdi)) {
1437 		state->restart_stdi_once = true;
1438 		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1439 		return -ENOLINK;
1440 	}
1441 	bt->interlaced = stdi.interlaced ?
1442 		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1443 
1444 	if (is_digital_input(sd)) {
1445 		uint32_t freq;
1446 
1447 		timings->type = V4L2_DV_BT_656_1120;
1448 
1449 		bt->width = (hdmi_read(sd, 0x07) & 0x0f) * 256 + hdmi_read(sd, 0x08);
1450 		bt->height = (hdmi_read(sd, 0x09) & 0x0f) * 256 + hdmi_read(sd, 0x0a);
1451 		freq = ((hdmi_read(sd, 0x51) << 1) + (hdmi_read(sd, 0x52) >> 7)) * 1000000;
1452 		freq += ((hdmi_read(sd, 0x52) & 0x7f) * 7813);
1453 		if (is_hdmi(sd)) {
1454 			/* adjust for deep color mode */
1455 			freq = freq * 8 / (((hdmi_read(sd, 0x0b) & 0xc0) >> 6) * 2 + 8);
1456 		}
1457 		bt->pixelclock = freq;
1458 		bt->hfrontporch = (hdmi_read(sd, 0x20) & 0x03) * 256 +
1459 			hdmi_read(sd, 0x21);
1460 		bt->hsync = (hdmi_read(sd, 0x22) & 0x03) * 256 +
1461 			hdmi_read(sd, 0x23);
1462 		bt->hbackporch = (hdmi_read(sd, 0x24) & 0x03) * 256 +
1463 			hdmi_read(sd, 0x25);
1464 		bt->vfrontporch = ((hdmi_read(sd, 0x2a) & 0x1f) * 256 +
1465 			hdmi_read(sd, 0x2b)) / 2;
1466 		bt->vsync = ((hdmi_read(sd, 0x2e) & 0x1f) * 256 +
1467 			hdmi_read(sd, 0x2f)) / 2;
1468 		bt->vbackporch = ((hdmi_read(sd, 0x32) & 0x1f) * 256 +
1469 			hdmi_read(sd, 0x33)) / 2;
1470 		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1471 			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1472 		if (bt->interlaced == V4L2_DV_INTERLACED) {
1473 			bt->height += (hdmi_read(sd, 0x0b) & 0x0f) * 256 +
1474 					hdmi_read(sd, 0x0c);
1475 			bt->il_vfrontporch = ((hdmi_read(sd, 0x2c) & 0x1f) * 256 +
1476 					hdmi_read(sd, 0x2d)) / 2;
1477 			bt->il_vsync = ((hdmi_read(sd, 0x30) & 0x1f) * 256 +
1478 					hdmi_read(sd, 0x31)) / 2;
1479 			bt->il_vbackporch = ((hdmi_read(sd, 0x34) & 0x1f) * 256 +
1480 					hdmi_read(sd, 0x35)) / 2;
1481 		}
1482 		adv7842_fill_optional_dv_timings_fields(sd, timings);
1483 	} else {
1484 		/* find format
1485 		 * Since LCVS values are inaccurate [REF_03, p. 339-340],
1486 		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1487 		 */
1488 		if (!stdi2dv_timings(sd, &stdi, timings))
1489 			goto found;
1490 		stdi.lcvs += 1;
1491 		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1492 		if (!stdi2dv_timings(sd, &stdi, timings))
1493 			goto found;
1494 		stdi.lcvs -= 2;
1495 		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1496 		if (stdi2dv_timings(sd, &stdi, timings)) {
1497 			/*
1498 			 * The STDI block may measure wrong values, especially
1499 			 * for lcvs and lcf. If the driver can not find any
1500 			 * valid timing, the STDI block is restarted to measure
1501 			 * the video timings again. The function will return an
1502 			 * error, but the restart of STDI will generate a new
1503 			 * STDI interrupt and the format detection process will
1504 			 * restart.
1505 			 */
1506 			if (state->restart_stdi_once) {
1507 				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1508 				/* TODO restart STDI for Sync Channel 2 */
1509 				/* enter one-shot mode */
1510 				cp_write_and_or(sd, 0x86, 0xf9, 0x00);
1511 				/* trigger STDI restart */
1512 				cp_write_and_or(sd, 0x86, 0xf9, 0x04);
1513 				/* reset to continuous mode */
1514 				cp_write_and_or(sd, 0x86, 0xf9, 0x02);
1515 				state->restart_stdi_once = false;
1516 				return -ENOLINK;
1517 			}
1518 			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1519 			return -ERANGE;
1520 		}
1521 		state->restart_stdi_once = true;
1522 	}
1523 found:
1524 
1525 	if (debug > 1)
1526 		v4l2_print_dv_timings(sd->name, "adv7842_query_dv_timings:",
1527 				timings, true);
1528 	return 0;
1529 }
1530 
1531 static int adv7842_s_dv_timings(struct v4l2_subdev *sd,
1532 				struct v4l2_dv_timings *timings)
1533 {
1534 	struct adv7842_state *state = to_state(sd);
1535 	struct v4l2_bt_timings *bt;
1536 	int err;
1537 
1538 	v4l2_dbg(1, debug, sd, "%s:\n", __func__);
1539 
1540 	if (state->mode == ADV7842_MODE_SDP)
1541 		return -ENODATA;
1542 
1543 	if (v4l2_match_dv_timings(&state->timings, timings, 0)) {
1544 		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1545 		return 0;
1546 	}
1547 
1548 	bt = &timings->bt;
1549 
1550 	if (!v4l2_valid_dv_timings(timings, adv7842_get_dv_timings_cap(sd),
1551 				   adv7842_check_dv_timings, NULL))
1552 		return -ERANGE;
1553 
1554 	adv7842_fill_optional_dv_timings_fields(sd, timings);
1555 
1556 	state->timings = *timings;
1557 
1558 	cp_write(sd, 0x91, bt->interlaced ? 0x40 : 0x00);
1559 
1560 	/* Use prim_mode and vid_std when available */
1561 	err = configure_predefined_video_timings(sd, timings);
1562 	if (err) {
1563 		/* custom settings when the video format
1564 		  does not have prim_mode/vid_std */
1565 		configure_custom_video_timings(sd, bt);
1566 	}
1567 
1568 	set_rgb_quantization_range(sd);
1569 
1570 
1571 	if (debug > 1)
1572 		v4l2_print_dv_timings(sd->name, "adv7842_s_dv_timings: ",
1573 				      timings, true);
1574 	return 0;
1575 }
1576 
1577 static int adv7842_g_dv_timings(struct v4l2_subdev *sd,
1578 				struct v4l2_dv_timings *timings)
1579 {
1580 	struct adv7842_state *state = to_state(sd);
1581 
1582 	if (state->mode == ADV7842_MODE_SDP)
1583 		return -ENODATA;
1584 	*timings = state->timings;
1585 	return 0;
1586 }
1587 
1588 static void enable_input(struct v4l2_subdev *sd)
1589 {
1590 	struct adv7842_state *state = to_state(sd);
1591 
1592 	set_rgb_quantization_range(sd);
1593 	switch (state->mode) {
1594 	case ADV7842_MODE_SDP:
1595 	case ADV7842_MODE_COMP:
1596 	case ADV7842_MODE_RGB:
1597 		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1598 		break;
1599 	case ADV7842_MODE_HDMI:
1600 		hdmi_write(sd, 0x01, 0x00); /* Enable HDMI clock terminators */
1601 		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1602 		hdmi_write_and_or(sd, 0x1a, 0xef, 0x00); /* Unmute audio */
1603 		break;
1604 	default:
1605 		v4l2_dbg(2, debug, sd, "%s: Unknown mode %d\n",
1606 			 __func__, state->mode);
1607 		break;
1608 	}
1609 }
1610 
1611 static void disable_input(struct v4l2_subdev *sd)
1612 {
1613 	hdmi_write_and_or(sd, 0x1a, 0xef, 0x10); /* Mute audio [REF_01, c. 2.2.2] */
1614 	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 8.29] */
1615 	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1616 	hdmi_write(sd, 0x01, 0x78); /* Disable HDMI clock terminators */
1617 }
1618 
1619 static void sdp_csc_coeff(struct v4l2_subdev *sd,
1620 			  const struct adv7842_sdp_csc_coeff *c)
1621 {
1622 	/* csc auto/manual */
1623 	sdp_io_write_and_or(sd, 0xe0, 0xbf, c->manual ? 0x00 : 0x40);
1624 
1625 	if (!c->manual)
1626 		return;
1627 
1628 	/* csc scaling */
1629 	sdp_io_write_and_or(sd, 0xe0, 0x7f, c->scaling == 2 ? 0x80 : 0x00);
1630 
1631 	/* A coeff */
1632 	sdp_io_write_and_or(sd, 0xe0, 0xe0, c->A1 >> 8);
1633 	sdp_io_write(sd, 0xe1, c->A1);
1634 	sdp_io_write_and_or(sd, 0xe2, 0xe0, c->A2 >> 8);
1635 	sdp_io_write(sd, 0xe3, c->A2);
1636 	sdp_io_write_and_or(sd, 0xe4, 0xe0, c->A3 >> 8);
1637 	sdp_io_write(sd, 0xe5, c->A3);
1638 
1639 	/* A scale */
1640 	sdp_io_write_and_or(sd, 0xe6, 0x80, c->A4 >> 8);
1641 	sdp_io_write(sd, 0xe7, c->A4);
1642 
1643 	/* B coeff */
1644 	sdp_io_write_and_or(sd, 0xe8, 0xe0, c->B1 >> 8);
1645 	sdp_io_write(sd, 0xe9, c->B1);
1646 	sdp_io_write_and_or(sd, 0xea, 0xe0, c->B2 >> 8);
1647 	sdp_io_write(sd, 0xeb, c->B2);
1648 	sdp_io_write_and_or(sd, 0xec, 0xe0, c->B3 >> 8);
1649 	sdp_io_write(sd, 0xed, c->B3);
1650 
1651 	/* B scale */
1652 	sdp_io_write_and_or(sd, 0xee, 0x80, c->B4 >> 8);
1653 	sdp_io_write(sd, 0xef, c->B4);
1654 
1655 	/* C coeff */
1656 	sdp_io_write_and_or(sd, 0xf0, 0xe0, c->C1 >> 8);
1657 	sdp_io_write(sd, 0xf1, c->C1);
1658 	sdp_io_write_and_or(sd, 0xf2, 0xe0, c->C2 >> 8);
1659 	sdp_io_write(sd, 0xf3, c->C2);
1660 	sdp_io_write_and_or(sd, 0xf4, 0xe0, c->C3 >> 8);
1661 	sdp_io_write(sd, 0xf5, c->C3);
1662 
1663 	/* C scale */
1664 	sdp_io_write_and_or(sd, 0xf6, 0x80, c->C4 >> 8);
1665 	sdp_io_write(sd, 0xf7, c->C4);
1666 }
1667 
1668 static void select_input(struct v4l2_subdev *sd,
1669 			 enum adv7842_vid_std_select vid_std_select)
1670 {
1671 	struct adv7842_state *state = to_state(sd);
1672 
1673 	switch (state->mode) {
1674 	case ADV7842_MODE_SDP:
1675 		io_write(sd, 0x00, vid_std_select); /* video std: CVBS or YC mode */
1676 		io_write(sd, 0x01, 0); /* prim mode */
1677 		/* enable embedded syncs for auto graphics mode */
1678 		cp_write_and_or(sd, 0x81, 0xef, 0x10);
1679 
1680 		afe_write(sd, 0x00, 0x00); /* power up ADC */
1681 		afe_write(sd, 0xc8, 0x00); /* phase control */
1682 
1683 		io_write(sd, 0xdd, 0x90); /* Manual 2x output clock */
1684 		/* script says register 0xde, which don't exist in manual */
1685 
1686 		/* Manual analog input muxing mode, CVBS (6.4)*/
1687 		afe_write_and_or(sd, 0x02, 0x7f, 0x80);
1688 		if (vid_std_select == ADV7842_SDP_VID_STD_CVBS_SD_4x1) {
1689 			afe_write(sd, 0x03, 0xa0); /* ADC0 to AIN10 (CVBS), ADC1 N/C*/
1690 			afe_write(sd, 0x04, 0x00); /* ADC2 N/C,ADC3 N/C*/
1691 		} else {
1692 			afe_write(sd, 0x03, 0xa0); /* ADC0 to AIN10 (CVBS), ADC1 N/C*/
1693 			afe_write(sd, 0x04, 0xc0); /* ADC2 to AIN12, ADC3 N/C*/
1694 		}
1695 		afe_write(sd, 0x0c, 0x1f); /* ADI recommend write */
1696 		afe_write(sd, 0x12, 0x63); /* ADI recommend write */
1697 
1698 		sdp_io_write(sd, 0xb2, 0x60); /* Disable AV codes */
1699 		sdp_io_write(sd, 0xc8, 0xe3); /* Disable Ancillary data */
1700 
1701 		/* SDP recommended settings */
1702 		sdp_write(sd, 0x00, 0x3F); /* Autodetect PAL NTSC (not SECAM) */
1703 		sdp_write(sd, 0x01, 0x00); /* Pedestal Off */
1704 
1705 		sdp_write(sd, 0x03, 0xE4); /* Manual VCR Gain Luma 0x40B */
1706 		sdp_write(sd, 0x04, 0x0B); /* Manual Luma setting */
1707 		sdp_write(sd, 0x05, 0xC3); /* Manual Chroma setting 0x3FE */
1708 		sdp_write(sd, 0x06, 0xFE); /* Manual Chroma setting */
1709 		sdp_write(sd, 0x12, 0x0D); /* Frame TBC,I_P, 3D comb enabled */
1710 		sdp_write(sd, 0xA7, 0x00); /* ADI Recommended Write */
1711 		sdp_io_write(sd, 0xB0, 0x00); /* Disable H and v blanking */
1712 
1713 		/* deinterlacer enabled and 3D comb */
1714 		sdp_write_and_or(sd, 0x12, 0xf6, 0x09);
1715 
1716 		break;
1717 
1718 	case ADV7842_MODE_COMP:
1719 	case ADV7842_MODE_RGB:
1720 		/* Automatic analog input muxing mode */
1721 		afe_write_and_or(sd, 0x02, 0x7f, 0x00);
1722 		/* set mode and select free run resolution */
1723 		io_write(sd, 0x00, vid_std_select); /* video std */
1724 		io_write(sd, 0x01, 0x02); /* prim mode */
1725 		cp_write_and_or(sd, 0x81, 0xef, 0x10); /* enable embedded syncs
1726 							  for auto graphics mode */
1727 
1728 		afe_write(sd, 0x00, 0x00); /* power up ADC */
1729 		afe_write(sd, 0xc8, 0x00); /* phase control */
1730 		if (state->mode == ADV7842_MODE_COMP) {
1731 			/* force to YCrCb */
1732 			io_write_and_or(sd, 0x02, 0x0f, 0x60);
1733 		} else {
1734 			/* force to RGB */
1735 			io_write_and_or(sd, 0x02, 0x0f, 0x10);
1736 		}
1737 
1738 		/* set ADI recommended settings for digitizer */
1739 		/* "ADV7842 Register Settings Recommendations
1740 		 * (rev. 1.8, November 2010)" p. 9. */
1741 		afe_write(sd, 0x0c, 0x1f); /* ADC Range improvement */
1742 		afe_write(sd, 0x12, 0x63); /* ADC Range improvement */
1743 
1744 		/* set to default gain for RGB */
1745 		cp_write(sd, 0x73, 0x10);
1746 		cp_write(sd, 0x74, 0x04);
1747 		cp_write(sd, 0x75, 0x01);
1748 		cp_write(sd, 0x76, 0x00);
1749 
1750 		cp_write(sd, 0x3e, 0x04); /* CP core pre-gain control */
1751 		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1752 		cp_write(sd, 0x40, 0x5c); /* CP core pre-gain control. Graphics mode */
1753 		break;
1754 
1755 	case ADV7842_MODE_HDMI:
1756 		/* Automatic analog input muxing mode */
1757 		afe_write_and_or(sd, 0x02, 0x7f, 0x00);
1758 		/* set mode and select free run resolution */
1759 		if (state->hdmi_port_a)
1760 			hdmi_write(sd, 0x00, 0x02); /* select port A */
1761 		else
1762 			hdmi_write(sd, 0x00, 0x03); /* select port B */
1763 		io_write(sd, 0x00, vid_std_select); /* video std */
1764 		io_write(sd, 0x01, 5); /* prim mode */
1765 		cp_write_and_or(sd, 0x81, 0xef, 0x00); /* disable embedded syncs
1766 							  for auto graphics mode */
1767 
1768 		/* set ADI recommended settings for HDMI: */
1769 		/* "ADV7842 Register Settings Recommendations
1770 		 * (rev. 1.8, November 2010)" p. 3. */
1771 		hdmi_write(sd, 0xc0, 0x00);
1772 		hdmi_write(sd, 0x0d, 0x34); /* ADI recommended write */
1773 		hdmi_write(sd, 0x3d, 0x10); /* ADI recommended write */
1774 		hdmi_write(sd, 0x44, 0x85); /* TMDS PLL optimization */
1775 		hdmi_write(sd, 0x46, 0x1f); /* ADI recommended write */
1776 		hdmi_write(sd, 0x57, 0xb6); /* TMDS PLL optimization */
1777 		hdmi_write(sd, 0x58, 0x03); /* TMDS PLL optimization */
1778 		hdmi_write(sd, 0x60, 0x88); /* TMDS PLL optimization */
1779 		hdmi_write(sd, 0x61, 0x88); /* TMDS PLL optimization */
1780 		hdmi_write(sd, 0x6c, 0x18); /* Disable ISRC clearing bit,
1781 					       Improve robustness */
1782 		hdmi_write(sd, 0x75, 0x10); /* DDC drive strength */
1783 		hdmi_write(sd, 0x85, 0x1f); /* equaliser */
1784 		hdmi_write(sd, 0x87, 0x70); /* ADI recommended write */
1785 		hdmi_write(sd, 0x89, 0x04); /* equaliser */
1786 		hdmi_write(sd, 0x8a, 0x1e); /* equaliser */
1787 		hdmi_write(sd, 0x93, 0x04); /* equaliser */
1788 		hdmi_write(sd, 0x94, 0x1e); /* equaliser */
1789 		hdmi_write(sd, 0x99, 0xa1); /* ADI recommended write */
1790 		hdmi_write(sd, 0x9b, 0x09); /* ADI recommended write */
1791 		hdmi_write(sd, 0x9d, 0x02); /* equaliser */
1792 
1793 		afe_write(sd, 0x00, 0xff); /* power down ADC */
1794 		afe_write(sd, 0xc8, 0x40); /* phase control */
1795 
1796 		/* set to default gain for HDMI */
1797 		cp_write(sd, 0x73, 0x10);
1798 		cp_write(sd, 0x74, 0x04);
1799 		cp_write(sd, 0x75, 0x01);
1800 		cp_write(sd, 0x76, 0x00);
1801 
1802 		/* reset ADI recommended settings for digitizer */
1803 		/* "ADV7842 Register Settings Recommendations
1804 		 * (rev. 2.5, June 2010)" p. 17. */
1805 		afe_write(sd, 0x12, 0xfb); /* ADC noise shaping filter controls */
1806 		afe_write(sd, 0x0c, 0x0d); /* CP core gain controls */
1807 		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1808 
1809 		/* CP coast control */
1810 		cp_write(sd, 0xc3, 0x33); /* Component mode */
1811 
1812 		/* color space conversion, autodetect color space */
1813 		io_write_and_or(sd, 0x02, 0x0f, 0xf0);
1814 		break;
1815 
1816 	default:
1817 		v4l2_dbg(2, debug, sd, "%s: Unknown mode %d\n",
1818 			 __func__, state->mode);
1819 		break;
1820 	}
1821 }
1822 
1823 static int adv7842_s_routing(struct v4l2_subdev *sd,
1824 		u32 input, u32 output, u32 config)
1825 {
1826 	struct adv7842_state *state = to_state(sd);
1827 
1828 	v4l2_dbg(2, debug, sd, "%s: input %d\n", __func__, input);
1829 
1830 	switch (input) {
1831 	case ADV7842_SELECT_HDMI_PORT_A:
1832 		state->mode = ADV7842_MODE_HDMI;
1833 		state->vid_std_select = ADV7842_HDMI_COMP_VID_STD_HD_1250P;
1834 		state->hdmi_port_a = true;
1835 		break;
1836 	case ADV7842_SELECT_HDMI_PORT_B:
1837 		state->mode = ADV7842_MODE_HDMI;
1838 		state->vid_std_select = ADV7842_HDMI_COMP_VID_STD_HD_1250P;
1839 		state->hdmi_port_a = false;
1840 		break;
1841 	case ADV7842_SELECT_VGA_COMP:
1842 		state->mode = ADV7842_MODE_COMP;
1843 		state->vid_std_select = ADV7842_RGB_VID_STD_AUTO_GRAPH_MODE;
1844 		break;
1845 	case ADV7842_SELECT_VGA_RGB:
1846 		state->mode = ADV7842_MODE_RGB;
1847 		state->vid_std_select = ADV7842_RGB_VID_STD_AUTO_GRAPH_MODE;
1848 		break;
1849 	case ADV7842_SELECT_SDP_CVBS:
1850 		state->mode = ADV7842_MODE_SDP;
1851 		state->vid_std_select = ADV7842_SDP_VID_STD_CVBS_SD_4x1;
1852 		break;
1853 	case ADV7842_SELECT_SDP_YC:
1854 		state->mode = ADV7842_MODE_SDP;
1855 		state->vid_std_select = ADV7842_SDP_VID_STD_YC_SD4_x1;
1856 		break;
1857 	default:
1858 		return -EINVAL;
1859 	}
1860 
1861 	disable_input(sd);
1862 	select_input(sd, state->vid_std_select);
1863 	enable_input(sd);
1864 
1865 	v4l2_subdev_notify(sd, ADV7842_FMT_CHANGE, NULL);
1866 
1867 	return 0;
1868 }
1869 
1870 static int adv7842_enum_mbus_fmt(struct v4l2_subdev *sd, unsigned int index,
1871 				 u32 *code)
1872 {
1873 	if (index)
1874 		return -EINVAL;
1875 	/* Good enough for now */
1876 	*code = MEDIA_BUS_FMT_FIXED;
1877 	return 0;
1878 }
1879 
1880 static int adv7842_g_mbus_fmt(struct v4l2_subdev *sd,
1881 			      struct v4l2_mbus_framefmt *fmt)
1882 {
1883 	struct adv7842_state *state = to_state(sd);
1884 
1885 	fmt->width = state->timings.bt.width;
1886 	fmt->height = state->timings.bt.height;
1887 	fmt->code = MEDIA_BUS_FMT_FIXED;
1888 	fmt->field = V4L2_FIELD_NONE;
1889 
1890 	if (state->mode == ADV7842_MODE_SDP) {
1891 		/* SPD block */
1892 		if (!(sdp_read(sd, 0x5A) & 0x01))
1893 			return -EINVAL;
1894 		fmt->width = 720;
1895 		/* valid signal */
1896 		if (state->norm & V4L2_STD_525_60)
1897 			fmt->height = 480;
1898 		else
1899 			fmt->height = 576;
1900 		fmt->colorspace = V4L2_COLORSPACE_SMPTE170M;
1901 		return 0;
1902 	}
1903 
1904 	if (state->timings.bt.standards & V4L2_DV_BT_STD_CEA861) {
1905 		fmt->colorspace = (state->timings.bt.height <= 576) ?
1906 			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1907 	}
1908 	return 0;
1909 }
1910 
1911 static void adv7842_irq_enable(struct v4l2_subdev *sd, bool enable)
1912 {
1913 	if (enable) {
1914 		/* Enable SSPD, STDI and CP locked/unlocked interrupts */
1915 		io_write(sd, 0x46, 0x9c);
1916 		/* ESDP_50HZ_DET interrupt */
1917 		io_write(sd, 0x5a, 0x10);
1918 		/* Enable CABLE_DET_A/B_ST (+5v) interrupt */
1919 		io_write(sd, 0x73, 0x03);
1920 		/* Enable V_LOCKED and DE_REGEN_LCK interrupts */
1921 		io_write(sd, 0x78, 0x03);
1922 		/* Enable SDP Standard Detection Change and SDP Video Detected */
1923 		io_write(sd, 0xa0, 0x09);
1924 		/* Enable HDMI_MODE interrupt */
1925 		io_write(sd, 0x69, 0x08);
1926 	} else {
1927 		io_write(sd, 0x46, 0x0);
1928 		io_write(sd, 0x5a, 0x0);
1929 		io_write(sd, 0x73, 0x0);
1930 		io_write(sd, 0x78, 0x0);
1931 		io_write(sd, 0xa0, 0x0);
1932 		io_write(sd, 0x69, 0x0);
1933 	}
1934 }
1935 
1936 static int adv7842_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
1937 {
1938 	struct adv7842_state *state = to_state(sd);
1939 	u8 fmt_change_cp, fmt_change_digital, fmt_change_sdp;
1940 	u8 irq_status[6];
1941 
1942 	adv7842_irq_enable(sd, false);
1943 
1944 	/* read status */
1945 	irq_status[0] = io_read(sd, 0x43);
1946 	irq_status[1] = io_read(sd, 0x57);
1947 	irq_status[2] = io_read(sd, 0x70);
1948 	irq_status[3] = io_read(sd, 0x75);
1949 	irq_status[4] = io_read(sd, 0x9d);
1950 	irq_status[5] = io_read(sd, 0x66);
1951 
1952 	/* and clear */
1953 	if (irq_status[0])
1954 		io_write(sd, 0x44, irq_status[0]);
1955 	if (irq_status[1])
1956 		io_write(sd, 0x58, irq_status[1]);
1957 	if (irq_status[2])
1958 		io_write(sd, 0x71, irq_status[2]);
1959 	if (irq_status[3])
1960 		io_write(sd, 0x76, irq_status[3]);
1961 	if (irq_status[4])
1962 		io_write(sd, 0x9e, irq_status[4]);
1963 	if (irq_status[5])
1964 		io_write(sd, 0x67, irq_status[5]);
1965 
1966 	adv7842_irq_enable(sd, true);
1967 
1968 	v4l2_dbg(1, debug, sd, "%s: irq %x, %x, %x, %x, %x, %x\n", __func__,
1969 		 irq_status[0], irq_status[1], irq_status[2],
1970 		 irq_status[3], irq_status[4], irq_status[5]);
1971 
1972 	/* format change CP */
1973 	fmt_change_cp = irq_status[0] & 0x9c;
1974 
1975 	/* format change SDP */
1976 	if (state->mode == ADV7842_MODE_SDP)
1977 		fmt_change_sdp = (irq_status[1] & 0x30) | (irq_status[4] & 0x09);
1978 	else
1979 		fmt_change_sdp = 0;
1980 
1981 	/* digital format CP */
1982 	if (is_digital_input(sd))
1983 		fmt_change_digital = irq_status[3] & 0x03;
1984 	else
1985 		fmt_change_digital = 0;
1986 
1987 	/* format change */
1988 	if (fmt_change_cp || fmt_change_digital || fmt_change_sdp) {
1989 		v4l2_dbg(1, debug, sd,
1990 			 "%s: fmt_change_cp = 0x%x, fmt_change_digital = 0x%x, fmt_change_sdp = 0x%x\n",
1991 			 __func__, fmt_change_cp, fmt_change_digital,
1992 			 fmt_change_sdp);
1993 		v4l2_subdev_notify(sd, ADV7842_FMT_CHANGE, NULL);
1994 		if (handled)
1995 			*handled = true;
1996 	}
1997 
1998 	/* HDMI/DVI mode */
1999 	if (irq_status[5] & 0x08) {
2000 		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
2001 			 (io_read(sd, 0x65) & 0x08) ? "HDMI" : "DVI");
2002 		set_rgb_quantization_range(sd);
2003 		if (handled)
2004 			*handled = true;
2005 	}
2006 
2007 	/* tx 5v detect */
2008 	if (irq_status[2] & 0x3) {
2009 		v4l2_dbg(1, debug, sd, "%s: irq tx_5v\n", __func__);
2010 		adv7842_s_detect_tx_5v_ctrl(sd);
2011 		if (handled)
2012 			*handled = true;
2013 	}
2014 	return 0;
2015 }
2016 
2017 static int adv7842_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2018 {
2019 	struct adv7842_state *state = to_state(sd);
2020 	u8 *data = NULL;
2021 
2022 	memset(edid->reserved, 0, sizeof(edid->reserved));
2023 
2024 	switch (edid->pad) {
2025 	case ADV7842_EDID_PORT_A:
2026 	case ADV7842_EDID_PORT_B:
2027 		if (state->hdmi_edid.present & (0x04 << edid->pad))
2028 			data = state->hdmi_edid.edid;
2029 		break;
2030 	case ADV7842_EDID_PORT_VGA:
2031 		if (state->vga_edid.present)
2032 			data = state->vga_edid.edid;
2033 		break;
2034 	default:
2035 		return -EINVAL;
2036 	}
2037 
2038 	if (edid->start_block == 0 && edid->blocks == 0) {
2039 		edid->blocks = data ? 2 : 0;
2040 		return 0;
2041 	}
2042 
2043 	if (!data)
2044 		return -ENODATA;
2045 
2046 	if (edid->start_block >= 2)
2047 		return -EINVAL;
2048 
2049 	if (edid->start_block + edid->blocks > 2)
2050 		edid->blocks = 2 - edid->start_block;
2051 
2052 	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2053 
2054 	return 0;
2055 }
2056 
2057 static int adv7842_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *e)
2058 {
2059 	struct adv7842_state *state = to_state(sd);
2060 	int err = 0;
2061 
2062 	memset(e->reserved, 0, sizeof(e->reserved));
2063 
2064 	if (e->pad > ADV7842_EDID_PORT_VGA)
2065 		return -EINVAL;
2066 	if (e->start_block != 0)
2067 		return -EINVAL;
2068 	if (e->blocks > 2) {
2069 		e->blocks = 2;
2070 		return -E2BIG;
2071 	}
2072 
2073 	/* todo, per edid */
2074 	state->aspect_ratio = v4l2_calc_aspect_ratio(e->edid[0x15],
2075 			e->edid[0x16]);
2076 
2077 	switch (e->pad) {
2078 	case ADV7842_EDID_PORT_VGA:
2079 		memset(&state->vga_edid.edid, 0, 256);
2080 		state->vga_edid.present = e->blocks ? 0x1 : 0x0;
2081 		memcpy(&state->vga_edid.edid, e->edid, 128 * e->blocks);
2082 		err = edid_write_vga_segment(sd);
2083 		break;
2084 	case ADV7842_EDID_PORT_A:
2085 	case ADV7842_EDID_PORT_B:
2086 		memset(&state->hdmi_edid.edid, 0, 256);
2087 		if (e->blocks)
2088 			state->hdmi_edid.present |= 0x04 << e->pad;
2089 		else
2090 			state->hdmi_edid.present &= ~(0x04 << e->pad);
2091 		memcpy(&state->hdmi_edid.edid, e->edid, 128 * e->blocks);
2092 		err = edid_write_hdmi_segment(sd, e->pad);
2093 		break;
2094 	default:
2095 		return -EINVAL;
2096 	}
2097 	if (err < 0)
2098 		v4l2_err(sd, "error %d writing edid on port %d\n", err, e->pad);
2099 	return err;
2100 }
2101 
2102 struct adv7842_cfg_read_infoframe {
2103 	const char *desc;
2104 	u8 present_mask;
2105 	u8 head_addr;
2106 	u8 payload_addr;
2107 };
2108 
2109 static void log_infoframe(struct v4l2_subdev *sd, struct adv7842_cfg_read_infoframe *cri)
2110 {
2111 	int i;
2112 	uint8_t buffer[32];
2113 	union hdmi_infoframe frame;
2114 	u8 len;
2115 	struct i2c_client *client = v4l2_get_subdevdata(sd);
2116 	struct device *dev = &client->dev;
2117 
2118 	if (!(io_read(sd, 0x60) & cri->present_mask)) {
2119 		v4l2_info(sd, "%s infoframe not received\n", cri->desc);
2120 		return;
2121 	}
2122 
2123 	for (i = 0; i < 3; i++)
2124 		buffer[i] = infoframe_read(sd, cri->head_addr + i);
2125 
2126 	len = buffer[2] + 1;
2127 
2128 	if (len + 3 > sizeof(buffer)) {
2129 		v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__, cri->desc, len);
2130 		return;
2131 	}
2132 
2133 	for (i = 0; i < len; i++)
2134 		buffer[i + 3] = infoframe_read(sd, cri->payload_addr + i);
2135 
2136 	if (hdmi_infoframe_unpack(&frame, buffer) < 0) {
2137 		v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__, cri->desc);
2138 		return;
2139 	}
2140 
2141 	hdmi_infoframe_log(KERN_INFO, dev, &frame);
2142 }
2143 
2144 static void adv7842_log_infoframes(struct v4l2_subdev *sd)
2145 {
2146 	int i;
2147 	struct adv7842_cfg_read_infoframe cri[] = {
2148 		{ "AVI", 0x01, 0xe0, 0x00 },
2149 		{ "Audio", 0x02, 0xe3, 0x1c },
2150 		{ "SDP", 0x04, 0xe6, 0x2a },
2151 		{ "Vendor", 0x10, 0xec, 0x54 }
2152 	};
2153 
2154 	if (!(hdmi_read(sd, 0x05) & 0x80)) {
2155 		v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2156 		return;
2157 	}
2158 
2159 	for (i = 0; i < ARRAY_SIZE(cri); i++)
2160 		log_infoframe(sd, &cri[i]);
2161 }
2162 
2163 static const char * const prim_mode_txt[] = {
2164 	"SDP",
2165 	"Component",
2166 	"Graphics",
2167 	"Reserved",
2168 	"CVBS & HDMI AUDIO",
2169 	"HDMI-Comp",
2170 	"HDMI-GR",
2171 	"Reserved",
2172 	"Reserved",
2173 	"Reserved",
2174 	"Reserved",
2175 	"Reserved",
2176 	"Reserved",
2177 	"Reserved",
2178 	"Reserved",
2179 	"Reserved",
2180 };
2181 
2182 static int adv7842_sdp_log_status(struct v4l2_subdev *sd)
2183 {
2184 	/* SDP (Standard definition processor) block */
2185 	uint8_t sdp_signal_detected = sdp_read(sd, 0x5A) & 0x01;
2186 
2187 	v4l2_info(sd, "Chip powered %s\n", no_power(sd) ? "off" : "on");
2188 	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x\n",
2189 		  io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f);
2190 
2191 	v4l2_info(sd, "SDP: free run: %s\n",
2192 		(sdp_read(sd, 0x56) & 0x01) ? "on" : "off");
2193 	v4l2_info(sd, "SDP: %s\n", sdp_signal_detected ?
2194 		"valid SD/PR signal detected" : "invalid/no signal");
2195 	if (sdp_signal_detected) {
2196 		static const char * const sdp_std_txt[] = {
2197 			"NTSC-M/J",
2198 			"1?",
2199 			"NTSC-443",
2200 			"60HzSECAM",
2201 			"PAL-M",
2202 			"5?",
2203 			"PAL-60",
2204 			"7?", "8?", "9?", "a?", "b?",
2205 			"PAL-CombN",
2206 			"d?",
2207 			"PAL-BGHID",
2208 			"SECAM"
2209 		};
2210 		v4l2_info(sd, "SDP: standard %s\n",
2211 			sdp_std_txt[sdp_read(sd, 0x52) & 0x0f]);
2212 		v4l2_info(sd, "SDP: %s\n",
2213 			(sdp_read(sd, 0x59) & 0x08) ? "50Hz" : "60Hz");
2214 		v4l2_info(sd, "SDP: %s\n",
2215 			(sdp_read(sd, 0x57) & 0x08) ? "Interlaced" : "Progressive");
2216 		v4l2_info(sd, "SDP: deinterlacer %s\n",
2217 			(sdp_read(sd, 0x12) & 0x08) ? "enabled" : "disabled");
2218 		v4l2_info(sd, "SDP: csc %s mode\n",
2219 			(sdp_io_read(sd, 0xe0) & 0x40) ? "auto" : "manual");
2220 	}
2221 	return 0;
2222 }
2223 
2224 static int adv7842_cp_log_status(struct v4l2_subdev *sd)
2225 {
2226 	/* CP block */
2227 	struct adv7842_state *state = to_state(sd);
2228 	struct v4l2_dv_timings timings;
2229 	uint8_t reg_io_0x02 = io_read(sd, 0x02);
2230 	uint8_t reg_io_0x21 = io_read(sd, 0x21);
2231 	uint8_t reg_rep_0x77 = rep_read(sd, 0x77);
2232 	uint8_t reg_rep_0x7d = rep_read(sd, 0x7d);
2233 	bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2234 	bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2235 	bool audio_mute = io_read(sd, 0x65) & 0x40;
2236 
2237 	static const char * const csc_coeff_sel_rb[16] = {
2238 		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2239 		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2240 		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2241 		"reserved", "reserved", "reserved", "reserved", "manual"
2242 	};
2243 	static const char * const input_color_space_txt[16] = {
2244 		"RGB limited range (16-235)", "RGB full range (0-255)",
2245 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2246 		"xvYCC Bt.601", "xvYCC Bt.709",
2247 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2248 		"invalid", "invalid", "invalid", "invalid", "invalid",
2249 		"invalid", "invalid", "automatic"
2250 	};
2251 	static const char * const rgb_quantization_range_txt[] = {
2252 		"Automatic",
2253 		"RGB limited range (16-235)",
2254 		"RGB full range (0-255)",
2255 	};
2256 	static const char * const deep_color_mode_txt[4] = {
2257 		"8-bits per channel",
2258 		"10-bits per channel",
2259 		"12-bits per channel",
2260 		"16-bits per channel (not supported)"
2261 	};
2262 
2263 	v4l2_info(sd, "-----Chip status-----\n");
2264 	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2265 	v4l2_info(sd, "HDMI/DVI-D port selected: %s\n",
2266 			state->hdmi_port_a ? "A" : "B");
2267 	v4l2_info(sd, "EDID A %s, B %s\n",
2268 		  ((reg_rep_0x7d & 0x04) && (reg_rep_0x77 & 0x04)) ?
2269 		  "enabled" : "disabled",
2270 		  ((reg_rep_0x7d & 0x08) && (reg_rep_0x77 & 0x08)) ?
2271 		  "enabled" : "disabled");
2272 	v4l2_info(sd, "HPD A %s, B %s\n",
2273 		  reg_io_0x21 & 0x02 ? "enabled" : "disabled",
2274 		  reg_io_0x21 & 0x01 ? "enabled" : "disabled");
2275 	v4l2_info(sd, "CEC %s\n", !!(cec_read(sd, 0x2a) & 0x01) ?
2276 			"enabled" : "disabled");
2277 
2278 	v4l2_info(sd, "-----Signal status-----\n");
2279 	if (state->hdmi_port_a) {
2280 		v4l2_info(sd, "Cable detected (+5V power): %s\n",
2281 			  io_read(sd, 0x6f) & 0x02 ? "true" : "false");
2282 		v4l2_info(sd, "TMDS signal detected: %s\n",
2283 			  (io_read(sd, 0x6a) & 0x02) ? "true" : "false");
2284 		v4l2_info(sd, "TMDS signal locked: %s\n",
2285 			  (io_read(sd, 0x6a) & 0x20) ? "true" : "false");
2286 	} else {
2287 		v4l2_info(sd, "Cable detected (+5V power):%s\n",
2288 			  io_read(sd, 0x6f) & 0x01 ? "true" : "false");
2289 		v4l2_info(sd, "TMDS signal detected: %s\n",
2290 			  (io_read(sd, 0x6a) & 0x01) ? "true" : "false");
2291 		v4l2_info(sd, "TMDS signal locked: %s\n",
2292 			  (io_read(sd, 0x6a) & 0x10) ? "true" : "false");
2293 	}
2294 	v4l2_info(sd, "CP free run: %s\n",
2295 		  (!!(cp_read(sd, 0xff) & 0x10) ? "on" : "off"));
2296 	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2297 		  io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2298 		  (io_read(sd, 0x01) & 0x70) >> 4);
2299 
2300 	v4l2_info(sd, "-----Video Timings-----\n");
2301 	if (no_cp_signal(sd)) {
2302 		v4l2_info(sd, "STDI: not locked\n");
2303 	} else {
2304 		uint32_t bl = ((cp_read(sd, 0xb1) & 0x3f) << 8) | cp_read(sd, 0xb2);
2305 		uint32_t lcf = ((cp_read(sd, 0xb3) & 0x7) << 8) | cp_read(sd, 0xb4);
2306 		uint32_t lcvs = cp_read(sd, 0xb3) >> 3;
2307 		uint32_t fcl = ((cp_read(sd, 0xb8) & 0x1f) << 8) | cp_read(sd, 0xb9);
2308 		char hs_pol = ((cp_read(sd, 0xb5) & 0x10) ?
2309 				((cp_read(sd, 0xb5) & 0x08) ? '+' : '-') : 'x');
2310 		char vs_pol = ((cp_read(sd, 0xb5) & 0x40) ?
2311 				((cp_read(sd, 0xb5) & 0x20) ? '+' : '-') : 'x');
2312 		v4l2_info(sd,
2313 			"STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, fcl = %d, %s, %chsync, %cvsync\n",
2314 			lcf, bl, lcvs, fcl,
2315 			(cp_read(sd, 0xb1) & 0x40) ?
2316 				"interlaced" : "progressive",
2317 			hs_pol, vs_pol);
2318 	}
2319 	if (adv7842_query_dv_timings(sd, &timings))
2320 		v4l2_info(sd, "No video detected\n");
2321 	else
2322 		v4l2_print_dv_timings(sd->name, "Detected format: ",
2323 				      &timings, true);
2324 	v4l2_print_dv_timings(sd->name, "Configured format: ",
2325 			&state->timings, true);
2326 
2327 	if (no_cp_signal(sd))
2328 		return 0;
2329 
2330 	v4l2_info(sd, "-----Color space-----\n");
2331 	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2332 		  rgb_quantization_range_txt[state->rgb_quantization_range]);
2333 	v4l2_info(sd, "Input color space: %s\n",
2334 		  input_color_space_txt[reg_io_0x02 >> 4]);
2335 	v4l2_info(sd, "Output color space: %s %s, saturator %s\n",
2336 		  (reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2337 		  (reg_io_0x02 & 0x04) ? "(16-235)" : "(0-255)",
2338 		  ((reg_io_0x02 & 0x04) ^ (reg_io_0x02 & 0x01)) ?
2339 					"enabled" : "disabled");
2340 	v4l2_info(sd, "Color space conversion: %s\n",
2341 		  csc_coeff_sel_rb[cp_read(sd, 0xf4) >> 4]);
2342 
2343 	if (!is_digital_input(sd))
2344 		return 0;
2345 
2346 	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2347 	v4l2_info(sd, "HDCP encrypted content: %s\n",
2348 			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2349 	v4l2_info(sd, "HDCP keys read: %s%s\n",
2350 			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2351 			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2352 	if (!is_hdmi(sd))
2353 		return 0;
2354 
2355 	v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2356 			audio_pll_locked ? "locked" : "not locked",
2357 			audio_sample_packet_detect ? "detected" : "not detected",
2358 			audio_mute ? "muted" : "enabled");
2359 	if (audio_pll_locked && audio_sample_packet_detect) {
2360 		v4l2_info(sd, "Audio format: %s\n",
2361 			(hdmi_read(sd, 0x07) & 0x40) ? "multi-channel" : "stereo");
2362 	}
2363 	v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2364 			(hdmi_read(sd, 0x5c) << 8) +
2365 			(hdmi_read(sd, 0x5d) & 0xf0));
2366 	v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2367 			(hdmi_read(sd, 0x5e) << 8) +
2368 			hdmi_read(sd, 0x5f));
2369 	v4l2_info(sd, "AV Mute: %s\n",
2370 			(hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2371 	v4l2_info(sd, "Deep color mode: %s\n",
2372 			deep_color_mode_txt[hdmi_read(sd, 0x0b) >> 6]);
2373 
2374 	adv7842_log_infoframes(sd);
2375 
2376 	return 0;
2377 }
2378 
2379 static int adv7842_log_status(struct v4l2_subdev *sd)
2380 {
2381 	struct adv7842_state *state = to_state(sd);
2382 
2383 	if (state->mode == ADV7842_MODE_SDP)
2384 		return adv7842_sdp_log_status(sd);
2385 	return adv7842_cp_log_status(sd);
2386 }
2387 
2388 static int adv7842_querystd(struct v4l2_subdev *sd, v4l2_std_id *std)
2389 {
2390 	struct adv7842_state *state = to_state(sd);
2391 
2392 	v4l2_dbg(1, debug, sd, "%s:\n", __func__);
2393 
2394 	if (state->mode != ADV7842_MODE_SDP)
2395 		return -ENODATA;
2396 
2397 	if (!(sdp_read(sd, 0x5A) & 0x01)) {
2398 		*std = 0;
2399 		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
2400 		return 0;
2401 	}
2402 
2403 	switch (sdp_read(sd, 0x52) & 0x0f) {
2404 	case 0:
2405 		/* NTSC-M/J */
2406 		*std &= V4L2_STD_NTSC;
2407 		break;
2408 	case 2:
2409 		/* NTSC-443 */
2410 		*std &= V4L2_STD_NTSC_443;
2411 		break;
2412 	case 3:
2413 		/* 60HzSECAM */
2414 		*std &= V4L2_STD_SECAM;
2415 		break;
2416 	case 4:
2417 		/* PAL-M */
2418 		*std &= V4L2_STD_PAL_M;
2419 		break;
2420 	case 6:
2421 		/* PAL-60 */
2422 		*std &= V4L2_STD_PAL_60;
2423 		break;
2424 	case 0xc:
2425 		/* PAL-CombN */
2426 		*std &= V4L2_STD_PAL_Nc;
2427 		break;
2428 	case 0xe:
2429 		/* PAL-BGHID */
2430 		*std &= V4L2_STD_PAL;
2431 		break;
2432 	case 0xf:
2433 		/* SECAM */
2434 		*std &= V4L2_STD_SECAM;
2435 		break;
2436 	default:
2437 		*std &= V4L2_STD_ALL;
2438 		break;
2439 	}
2440 	return 0;
2441 }
2442 
2443 static void adv7842_s_sdp_io(struct v4l2_subdev *sd, struct adv7842_sdp_io_sync_adjustment *s)
2444 {
2445 	if (s && s->adjust) {
2446 		sdp_io_write(sd, 0x94, (s->hs_beg >> 8) & 0xf);
2447 		sdp_io_write(sd, 0x95, s->hs_beg & 0xff);
2448 		sdp_io_write(sd, 0x96, (s->hs_width >> 8) & 0xf);
2449 		sdp_io_write(sd, 0x97, s->hs_width & 0xff);
2450 		sdp_io_write(sd, 0x98, (s->de_beg >> 8) & 0xf);
2451 		sdp_io_write(sd, 0x99, s->de_beg & 0xff);
2452 		sdp_io_write(sd, 0x9a, (s->de_end >> 8) & 0xf);
2453 		sdp_io_write(sd, 0x9b, s->de_end & 0xff);
2454 		sdp_io_write(sd, 0xa8, s->vs_beg_o);
2455 		sdp_io_write(sd, 0xa9, s->vs_beg_e);
2456 		sdp_io_write(sd, 0xaa, s->vs_end_o);
2457 		sdp_io_write(sd, 0xab, s->vs_end_e);
2458 		sdp_io_write(sd, 0xac, s->de_v_beg_o);
2459 		sdp_io_write(sd, 0xad, s->de_v_beg_e);
2460 		sdp_io_write(sd, 0xae, s->de_v_end_o);
2461 		sdp_io_write(sd, 0xaf, s->de_v_end_e);
2462 	} else {
2463 		/* set to default */
2464 		sdp_io_write(sd, 0x94, 0x00);
2465 		sdp_io_write(sd, 0x95, 0x00);
2466 		sdp_io_write(sd, 0x96, 0x00);
2467 		sdp_io_write(sd, 0x97, 0x20);
2468 		sdp_io_write(sd, 0x98, 0x00);
2469 		sdp_io_write(sd, 0x99, 0x00);
2470 		sdp_io_write(sd, 0x9a, 0x00);
2471 		sdp_io_write(sd, 0x9b, 0x00);
2472 		sdp_io_write(sd, 0xa8, 0x04);
2473 		sdp_io_write(sd, 0xa9, 0x04);
2474 		sdp_io_write(sd, 0xaa, 0x04);
2475 		sdp_io_write(sd, 0xab, 0x04);
2476 		sdp_io_write(sd, 0xac, 0x04);
2477 		sdp_io_write(sd, 0xad, 0x04);
2478 		sdp_io_write(sd, 0xae, 0x04);
2479 		sdp_io_write(sd, 0xaf, 0x04);
2480 	}
2481 }
2482 
2483 static int adv7842_s_std(struct v4l2_subdev *sd, v4l2_std_id norm)
2484 {
2485 	struct adv7842_state *state = to_state(sd);
2486 	struct adv7842_platform_data *pdata = &state->pdata;
2487 
2488 	v4l2_dbg(1, debug, sd, "%s:\n", __func__);
2489 
2490 	if (state->mode != ADV7842_MODE_SDP)
2491 		return -ENODATA;
2492 
2493 	if (norm & V4L2_STD_625_50)
2494 		adv7842_s_sdp_io(sd, &pdata->sdp_io_sync_625);
2495 	else if (norm & V4L2_STD_525_60)
2496 		adv7842_s_sdp_io(sd, &pdata->sdp_io_sync_525);
2497 	else
2498 		adv7842_s_sdp_io(sd, NULL);
2499 
2500 	if (norm & V4L2_STD_ALL) {
2501 		state->norm = norm;
2502 		return 0;
2503 	}
2504 	return -EINVAL;
2505 }
2506 
2507 static int adv7842_g_std(struct v4l2_subdev *sd, v4l2_std_id *norm)
2508 {
2509 	struct adv7842_state *state = to_state(sd);
2510 
2511 	v4l2_dbg(1, debug, sd, "%s:\n", __func__);
2512 
2513 	if (state->mode != ADV7842_MODE_SDP)
2514 		return -ENODATA;
2515 
2516 	*norm = state->norm;
2517 	return 0;
2518 }
2519 
2520 /* ----------------------------------------------------------------------- */
2521 
2522 static int adv7842_core_init(struct v4l2_subdev *sd)
2523 {
2524 	struct adv7842_state *state = to_state(sd);
2525 	struct adv7842_platform_data *pdata = &state->pdata;
2526 	hdmi_write(sd, 0x48,
2527 		   (pdata->disable_pwrdnb ? 0x80 : 0) |
2528 		   (pdata->disable_cable_det_rst ? 0x40 : 0));
2529 
2530 	disable_input(sd);
2531 
2532 	/*
2533 	 * Disable I2C access to internal EDID ram from HDMI DDC ports
2534 	 * Disable auto edid enable when leaving powerdown mode
2535 	 */
2536 	rep_write_and_or(sd, 0x77, 0xd3, 0x20);
2537 
2538 	/* power */
2539 	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
2540 	io_write(sd, 0x15, 0x80);   /* Power up pads */
2541 
2542 	/* video format */
2543 	io_write(sd, 0x02,
2544 		 0xf0 |
2545 		 pdata->alt_gamma << 3 |
2546 		 pdata->op_656_range << 2 |
2547 		 pdata->rgb_out << 1 |
2548 		 pdata->alt_data_sat << 0);
2549 	io_write(sd, 0x03, pdata->op_format_sel);
2550 	io_write_and_or(sd, 0x04, 0x1f, pdata->op_ch_sel << 5);
2551 	io_write_and_or(sd, 0x05, 0xf0, pdata->blank_data << 3 |
2552 			pdata->insert_av_codes << 2 |
2553 			pdata->replicate_av_codes << 1 |
2554 			pdata->invert_cbcr << 0);
2555 
2556 	/* HDMI audio */
2557 	hdmi_write_and_or(sd, 0x1a, 0xf1, 0x08); /* Wait 1 s before unmute */
2558 
2559 	/* Drive strength */
2560 	io_write_and_or(sd, 0x14, 0xc0,
2561 			pdata->dr_str_data << 4 |
2562 			pdata->dr_str_clk << 2 |
2563 			pdata->dr_str_sync);
2564 
2565 	/* HDMI free run */
2566 	cp_write_and_or(sd, 0xba, 0xfc, pdata->hdmi_free_run_enable |
2567 					(pdata->hdmi_free_run_mode << 1));
2568 
2569 	/* SPD free run */
2570 	sdp_write_and_or(sd, 0xdd, 0xf0, pdata->sdp_free_run_force |
2571 					 (pdata->sdp_free_run_cbar_en << 1) |
2572 					 (pdata->sdp_free_run_man_col_en << 2) |
2573 					 (pdata->sdp_free_run_auto << 3));
2574 
2575 	/* TODO from platform data */
2576 	cp_write(sd, 0x69, 0x14);   /* Enable CP CSC */
2577 	io_write(sd, 0x06, 0xa6);   /* positive VS and HS and DE */
2578 	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2579 	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */
2580 
2581 	afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2582 	io_write_and_or(sd, 0x30, ~(1 << 4), pdata->output_bus_lsb_to_msb << 4);
2583 
2584 	sdp_csc_coeff(sd, &pdata->sdp_csc_coeff);
2585 
2586 	/* todo, improve settings for sdram */
2587 	if (pdata->sd_ram_size >= 128) {
2588 		sdp_write(sd, 0x12, 0x0d); /* Frame TBC,3D comb enabled */
2589 		if (pdata->sd_ram_ddr) {
2590 			/* SDP setup for the AD eval board */
2591 			sdp_io_write(sd, 0x6f, 0x00); /* DDR mode */
2592 			sdp_io_write(sd, 0x75, 0x0a); /* 128 MB memory size */
2593 			sdp_io_write(sd, 0x7a, 0xa5); /* Timing Adjustment */
2594 			sdp_io_write(sd, 0x7b, 0x8f); /* Timing Adjustment */
2595 			sdp_io_write(sd, 0x60, 0x01); /* SDRAM reset */
2596 		} else {
2597 			sdp_io_write(sd, 0x75, 0x0a); /* 64 MB memory size ?*/
2598 			sdp_io_write(sd, 0x74, 0x00); /* must be zero for sdr sdram */
2599 			sdp_io_write(sd, 0x79, 0x33); /* CAS latency to 3,
2600 							 depends on memory */
2601 			sdp_io_write(sd, 0x6f, 0x01); /* SDR mode */
2602 			sdp_io_write(sd, 0x7a, 0xa5); /* Timing Adjustment */
2603 			sdp_io_write(sd, 0x7b, 0x8f); /* Timing Adjustment */
2604 			sdp_io_write(sd, 0x60, 0x01); /* SDRAM reset */
2605 		}
2606 	} else {
2607 		/*
2608 		 * Manual UG-214, rev 0 is bit confusing on this bit
2609 		 * but a '1' disables any signal if the Ram is active.
2610 		 */
2611 		sdp_io_write(sd, 0x29, 0x10); /* Tristate memory interface */
2612 	}
2613 
2614 	select_input(sd, pdata->vid_std_select);
2615 
2616 	enable_input(sd);
2617 
2618 	if (pdata->hpa_auto) {
2619 		/* HPA auto, HPA 0.5s after Edid set and Cable detect */
2620 		hdmi_write(sd, 0x69, 0x5c);
2621 	} else {
2622 		/* HPA manual */
2623 		hdmi_write(sd, 0x69, 0xa3);
2624 		/* HPA disable on port A and B */
2625 		io_write_and_or(sd, 0x20, 0xcf, 0x00);
2626 	}
2627 
2628 	/* LLC */
2629 	io_write(sd, 0x19, 0x80 | pdata->llc_dll_phase);
2630 	io_write(sd, 0x33, 0x40);
2631 
2632 	/* interrupts */
2633 	io_write(sd, 0x40, 0xf2); /* Configure INT1 */
2634 
2635 	adv7842_irq_enable(sd, true);
2636 
2637 	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2638 }
2639 
2640 /* ----------------------------------------------------------------------- */
2641 
2642 static int adv7842_ddr_ram_test(struct v4l2_subdev *sd)
2643 {
2644 	/*
2645 	 * From ADV784x external Memory test.pdf
2646 	 *
2647 	 * Reset must just been performed before running test.
2648 	 * Recommended to reset after test.
2649 	 */
2650 	int i;
2651 	int pass = 0;
2652 	int fail = 0;
2653 	int complete = 0;
2654 
2655 	io_write(sd, 0x00, 0x01);  /* Program SDP 4x1 */
2656 	io_write(sd, 0x01, 0x00);  /* Program SDP mode */
2657 	afe_write(sd, 0x80, 0x92); /* SDP Recommeneded Write */
2658 	afe_write(sd, 0x9B, 0x01); /* SDP Recommeneded Write ADV7844ES1 */
2659 	afe_write(sd, 0x9C, 0x60); /* SDP Recommeneded Write ADV7844ES1 */
2660 	afe_write(sd, 0x9E, 0x02); /* SDP Recommeneded Write ADV7844ES1 */
2661 	afe_write(sd, 0xA0, 0x0B); /* SDP Recommeneded Write ADV7844ES1 */
2662 	afe_write(sd, 0xC3, 0x02); /* Memory BIST Initialisation */
2663 	io_write(sd, 0x0C, 0x40);  /* Power up ADV7844 */
2664 	io_write(sd, 0x15, 0xBA);  /* Enable outputs */
2665 	sdp_write(sd, 0x12, 0x00); /* Disable 3D comb, Frame TBC & 3DNR */
2666 	io_write(sd, 0xFF, 0x04);  /* Reset memory controller */
2667 
2668 	mdelay(5);
2669 
2670 	sdp_write(sd, 0x12, 0x00);    /* Disable 3D Comb, Frame TBC & 3DNR */
2671 	sdp_io_write(sd, 0x2A, 0x01); /* Memory BIST Initialisation */
2672 	sdp_io_write(sd, 0x7c, 0x19); /* Memory BIST Initialisation */
2673 	sdp_io_write(sd, 0x80, 0x87); /* Memory BIST Initialisation */
2674 	sdp_io_write(sd, 0x81, 0x4a); /* Memory BIST Initialisation */
2675 	sdp_io_write(sd, 0x82, 0x2c); /* Memory BIST Initialisation */
2676 	sdp_io_write(sd, 0x83, 0x0e); /* Memory BIST Initialisation */
2677 	sdp_io_write(sd, 0x84, 0x94); /* Memory BIST Initialisation */
2678 	sdp_io_write(sd, 0x85, 0x62); /* Memory BIST Initialisation */
2679 	sdp_io_write(sd, 0x7d, 0x00); /* Memory BIST Initialisation */
2680 	sdp_io_write(sd, 0x7e, 0x1a); /* Memory BIST Initialisation */
2681 
2682 	mdelay(5);
2683 
2684 	sdp_io_write(sd, 0xd9, 0xd5); /* Enable BIST Test */
2685 	sdp_write(sd, 0x12, 0x05); /* Enable FRAME TBC & 3D COMB */
2686 
2687 	mdelay(20);
2688 
2689 	for (i = 0; i < 10; i++) {
2690 		u8 result = sdp_io_read(sd, 0xdb);
2691 		if (result & 0x10) {
2692 			complete++;
2693 			if (result & 0x20)
2694 				fail++;
2695 			else
2696 				pass++;
2697 		}
2698 		mdelay(20);
2699 	}
2700 
2701 	v4l2_dbg(1, debug, sd,
2702 		"Ram Test: completed %d of %d: pass %d, fail %d\n",
2703 		complete, i, pass, fail);
2704 
2705 	if (!complete || fail)
2706 		return -EIO;
2707 	return 0;
2708 }
2709 
2710 static void adv7842_rewrite_i2c_addresses(struct v4l2_subdev *sd,
2711 		struct adv7842_platform_data *pdata)
2712 {
2713 	io_write(sd, 0xf1, pdata->i2c_sdp << 1);
2714 	io_write(sd, 0xf2, pdata->i2c_sdp_io << 1);
2715 	io_write(sd, 0xf3, pdata->i2c_avlink << 1);
2716 	io_write(sd, 0xf4, pdata->i2c_cec << 1);
2717 	io_write(sd, 0xf5, pdata->i2c_infoframe << 1);
2718 
2719 	io_write(sd, 0xf8, pdata->i2c_afe << 1);
2720 	io_write(sd, 0xf9, pdata->i2c_repeater << 1);
2721 	io_write(sd, 0xfa, pdata->i2c_edid << 1);
2722 	io_write(sd, 0xfb, pdata->i2c_hdmi << 1);
2723 
2724 	io_write(sd, 0xfd, pdata->i2c_cp << 1);
2725 	io_write(sd, 0xfe, pdata->i2c_vdp << 1);
2726 }
2727 
2728 static int adv7842_command_ram_test(struct v4l2_subdev *sd)
2729 {
2730 	struct i2c_client *client = v4l2_get_subdevdata(sd);
2731 	struct adv7842_state *state = to_state(sd);
2732 	struct adv7842_platform_data *pdata = client->dev.platform_data;
2733 	struct v4l2_dv_timings timings;
2734 	int ret = 0;
2735 
2736 	if (!pdata)
2737 		return -ENODEV;
2738 
2739 	if (!pdata->sd_ram_size || !pdata->sd_ram_ddr) {
2740 		v4l2_info(sd, "no sdram or no ddr sdram\n");
2741 		return -EINVAL;
2742 	}
2743 
2744 	main_reset(sd);
2745 
2746 	adv7842_rewrite_i2c_addresses(sd, pdata);
2747 
2748 	/* run ram test */
2749 	ret = adv7842_ddr_ram_test(sd);
2750 
2751 	main_reset(sd);
2752 
2753 	adv7842_rewrite_i2c_addresses(sd, pdata);
2754 
2755 	/* and re-init chip and state */
2756 	adv7842_core_init(sd);
2757 
2758 	disable_input(sd);
2759 
2760 	select_input(sd, state->vid_std_select);
2761 
2762 	enable_input(sd);
2763 
2764 	edid_write_vga_segment(sd);
2765 	edid_write_hdmi_segment(sd, ADV7842_EDID_PORT_A);
2766 	edid_write_hdmi_segment(sd, ADV7842_EDID_PORT_B);
2767 
2768 	timings = state->timings;
2769 
2770 	memset(&state->timings, 0, sizeof(struct v4l2_dv_timings));
2771 
2772 	adv7842_s_dv_timings(sd, &timings);
2773 
2774 	return ret;
2775 }
2776 
2777 static long adv7842_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
2778 {
2779 	switch (cmd) {
2780 	case ADV7842_CMD_RAM_TEST:
2781 		return adv7842_command_ram_test(sd);
2782 	}
2783 	return -ENOTTY;
2784 }
2785 
2786 /* ----------------------------------------------------------------------- */
2787 
2788 static const struct v4l2_ctrl_ops adv7842_ctrl_ops = {
2789 	.s_ctrl = adv7842_s_ctrl,
2790 };
2791 
2792 static const struct v4l2_subdev_core_ops adv7842_core_ops = {
2793 	.log_status = adv7842_log_status,
2794 	.ioctl = adv7842_ioctl,
2795 	.interrupt_service_routine = adv7842_isr,
2796 #ifdef CONFIG_VIDEO_ADV_DEBUG
2797 	.g_register = adv7842_g_register,
2798 	.s_register = adv7842_s_register,
2799 #endif
2800 };
2801 
2802 static const struct v4l2_subdev_video_ops adv7842_video_ops = {
2803 	.g_std = adv7842_g_std,
2804 	.s_std = adv7842_s_std,
2805 	.s_routing = adv7842_s_routing,
2806 	.querystd = adv7842_querystd,
2807 	.g_input_status = adv7842_g_input_status,
2808 	.s_dv_timings = adv7842_s_dv_timings,
2809 	.g_dv_timings = adv7842_g_dv_timings,
2810 	.query_dv_timings = adv7842_query_dv_timings,
2811 	.enum_mbus_fmt = adv7842_enum_mbus_fmt,
2812 	.g_mbus_fmt = adv7842_g_mbus_fmt,
2813 	.try_mbus_fmt = adv7842_g_mbus_fmt,
2814 	.s_mbus_fmt = adv7842_g_mbus_fmt,
2815 };
2816 
2817 static const struct v4l2_subdev_pad_ops adv7842_pad_ops = {
2818 	.get_edid = adv7842_get_edid,
2819 	.set_edid = adv7842_set_edid,
2820 	.enum_dv_timings = adv7842_enum_dv_timings,
2821 	.dv_timings_cap = adv7842_dv_timings_cap,
2822 };
2823 
2824 static const struct v4l2_subdev_ops adv7842_ops = {
2825 	.core = &adv7842_core_ops,
2826 	.video = &adv7842_video_ops,
2827 	.pad = &adv7842_pad_ops,
2828 };
2829 
2830 /* -------------------------- custom ctrls ---------------------------------- */
2831 
2832 static const struct v4l2_ctrl_config adv7842_ctrl_analog_sampling_phase = {
2833 	.ops = &adv7842_ctrl_ops,
2834 	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2835 	.name = "Analog Sampling Phase",
2836 	.type = V4L2_CTRL_TYPE_INTEGER,
2837 	.min = 0,
2838 	.max = 0x1f,
2839 	.step = 1,
2840 	.def = 0,
2841 };
2842 
2843 static const struct v4l2_ctrl_config adv7842_ctrl_free_run_color_manual = {
2844 	.ops = &adv7842_ctrl_ops,
2845 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2846 	.name = "Free Running Color, Manual",
2847 	.type = V4L2_CTRL_TYPE_BOOLEAN,
2848 	.max = 1,
2849 	.step = 1,
2850 	.def = 1,
2851 };
2852 
2853 static const struct v4l2_ctrl_config adv7842_ctrl_free_run_color = {
2854 	.ops = &adv7842_ctrl_ops,
2855 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2856 	.name = "Free Running Color",
2857 	.type = V4L2_CTRL_TYPE_INTEGER,
2858 	.max = 0xffffff,
2859 	.step = 0x1,
2860 };
2861 
2862 
2863 static void adv7842_unregister_clients(struct v4l2_subdev *sd)
2864 {
2865 	struct adv7842_state *state = to_state(sd);
2866 	if (state->i2c_avlink)
2867 		i2c_unregister_device(state->i2c_avlink);
2868 	if (state->i2c_cec)
2869 		i2c_unregister_device(state->i2c_cec);
2870 	if (state->i2c_infoframe)
2871 		i2c_unregister_device(state->i2c_infoframe);
2872 	if (state->i2c_sdp_io)
2873 		i2c_unregister_device(state->i2c_sdp_io);
2874 	if (state->i2c_sdp)
2875 		i2c_unregister_device(state->i2c_sdp);
2876 	if (state->i2c_afe)
2877 		i2c_unregister_device(state->i2c_afe);
2878 	if (state->i2c_repeater)
2879 		i2c_unregister_device(state->i2c_repeater);
2880 	if (state->i2c_edid)
2881 		i2c_unregister_device(state->i2c_edid);
2882 	if (state->i2c_hdmi)
2883 		i2c_unregister_device(state->i2c_hdmi);
2884 	if (state->i2c_cp)
2885 		i2c_unregister_device(state->i2c_cp);
2886 	if (state->i2c_vdp)
2887 		i2c_unregister_device(state->i2c_vdp);
2888 
2889 	state->i2c_avlink = NULL;
2890 	state->i2c_cec = NULL;
2891 	state->i2c_infoframe = NULL;
2892 	state->i2c_sdp_io = NULL;
2893 	state->i2c_sdp = NULL;
2894 	state->i2c_afe = NULL;
2895 	state->i2c_repeater = NULL;
2896 	state->i2c_edid = NULL;
2897 	state->i2c_hdmi = NULL;
2898 	state->i2c_cp = NULL;
2899 	state->i2c_vdp = NULL;
2900 }
2901 
2902 static struct i2c_client *adv7842_dummy_client(struct v4l2_subdev *sd, const char *desc,
2903 					       u8 addr, u8 io_reg)
2904 {
2905 	struct i2c_client *client = v4l2_get_subdevdata(sd);
2906 	struct i2c_client *cp;
2907 
2908 	io_write(sd, io_reg, addr << 1);
2909 
2910 	if (addr == 0) {
2911 		v4l2_err(sd, "no %s i2c addr configured\n", desc);
2912 		return NULL;
2913 	}
2914 
2915 	cp = i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1);
2916 	if (!cp)
2917 		v4l2_err(sd, "register %s on i2c addr 0x%x failed\n", desc, addr);
2918 
2919 	return cp;
2920 }
2921 
2922 static int adv7842_register_clients(struct v4l2_subdev *sd)
2923 {
2924 	struct adv7842_state *state = to_state(sd);
2925 	struct adv7842_platform_data *pdata = &state->pdata;
2926 
2927 	state->i2c_avlink = adv7842_dummy_client(sd, "avlink", pdata->i2c_avlink, 0xf3);
2928 	state->i2c_cec = adv7842_dummy_client(sd, "cec", pdata->i2c_cec, 0xf4);
2929 	state->i2c_infoframe = adv7842_dummy_client(sd, "infoframe", pdata->i2c_infoframe, 0xf5);
2930 	state->i2c_sdp_io = adv7842_dummy_client(sd, "sdp_io", pdata->i2c_sdp_io, 0xf2);
2931 	state->i2c_sdp = adv7842_dummy_client(sd, "sdp", pdata->i2c_sdp, 0xf1);
2932 	state->i2c_afe = adv7842_dummy_client(sd, "afe", pdata->i2c_afe, 0xf8);
2933 	state->i2c_repeater = adv7842_dummy_client(sd, "repeater", pdata->i2c_repeater, 0xf9);
2934 	state->i2c_edid = adv7842_dummy_client(sd, "edid", pdata->i2c_edid, 0xfa);
2935 	state->i2c_hdmi = adv7842_dummy_client(sd, "hdmi", pdata->i2c_hdmi, 0xfb);
2936 	state->i2c_cp = adv7842_dummy_client(sd, "cp", pdata->i2c_cp, 0xfd);
2937 	state->i2c_vdp = adv7842_dummy_client(sd, "vdp", pdata->i2c_vdp, 0xfe);
2938 
2939 	if (!state->i2c_avlink ||
2940 	    !state->i2c_cec ||
2941 	    !state->i2c_infoframe ||
2942 	    !state->i2c_sdp_io ||
2943 	    !state->i2c_sdp ||
2944 	    !state->i2c_afe ||
2945 	    !state->i2c_repeater ||
2946 	    !state->i2c_edid ||
2947 	    !state->i2c_hdmi ||
2948 	    !state->i2c_cp ||
2949 	    !state->i2c_vdp)
2950 		return -1;
2951 
2952 	return 0;
2953 }
2954 
2955 static int adv7842_probe(struct i2c_client *client,
2956 			 const struct i2c_device_id *id)
2957 {
2958 	struct adv7842_state *state;
2959 	static const struct v4l2_dv_timings cea640x480 =
2960 		V4L2_DV_BT_CEA_640X480P59_94;
2961 	struct adv7842_platform_data *pdata = client->dev.platform_data;
2962 	struct v4l2_ctrl_handler *hdl;
2963 	struct v4l2_subdev *sd;
2964 	u16 rev;
2965 	int err;
2966 
2967 	/* Check if the adapter supports the needed features */
2968 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
2969 		return -EIO;
2970 
2971 	v4l_dbg(1, debug, client, "detecting adv7842 client on address 0x%x\n",
2972 		client->addr << 1);
2973 
2974 	if (!pdata) {
2975 		v4l_err(client, "No platform data!\n");
2976 		return -ENODEV;
2977 	}
2978 
2979 	state = devm_kzalloc(&client->dev, sizeof(struct adv7842_state), GFP_KERNEL);
2980 	if (!state) {
2981 		v4l_err(client, "Could not allocate adv7842_state memory!\n");
2982 		return -ENOMEM;
2983 	}
2984 
2985 	/* platform data */
2986 	state->pdata = *pdata;
2987 	state->timings = cea640x480;
2988 
2989 	sd = &state->sd;
2990 	v4l2_i2c_subdev_init(sd, client, &adv7842_ops);
2991 	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2992 	state->mode = pdata->mode;
2993 
2994 	state->hdmi_port_a = pdata->input == ADV7842_SELECT_HDMI_PORT_A;
2995 	state->restart_stdi_once = true;
2996 
2997 	/* i2c access to adv7842? */
2998 	rev = adv_smbus_read_byte_data_check(client, 0xea, false) << 8 |
2999 		adv_smbus_read_byte_data_check(client, 0xeb, false);
3000 	if (rev != 0x2012) {
3001 		v4l2_info(sd, "got rev=0x%04x on first read attempt\n", rev);
3002 		rev = adv_smbus_read_byte_data_check(client, 0xea, false) << 8 |
3003 			adv_smbus_read_byte_data_check(client, 0xeb, false);
3004 	}
3005 	if (rev != 0x2012) {
3006 		v4l2_info(sd, "not an adv7842 on address 0x%x (rev=0x%04x)\n",
3007 			  client->addr << 1, rev);
3008 		return -ENODEV;
3009 	}
3010 
3011 	if (pdata->chip_reset)
3012 		main_reset(sd);
3013 
3014 	/* control handlers */
3015 	hdl = &state->hdl;
3016 	v4l2_ctrl_handler_init(hdl, 6);
3017 
3018 	/* add in ascending ID order */
3019 	v4l2_ctrl_new_std(hdl, &adv7842_ctrl_ops,
3020 			  V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3021 	v4l2_ctrl_new_std(hdl, &adv7842_ctrl_ops,
3022 			  V4L2_CID_CONTRAST, 0, 255, 1, 128);
3023 	v4l2_ctrl_new_std(hdl, &adv7842_ctrl_ops,
3024 			  V4L2_CID_SATURATION, 0, 255, 1, 128);
3025 	v4l2_ctrl_new_std(hdl, &adv7842_ctrl_ops,
3026 			  V4L2_CID_HUE, 0, 128, 1, 0);
3027 
3028 	/* custom controls */
3029 	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3030 			V4L2_CID_DV_RX_POWER_PRESENT, 0, 3, 0, 0);
3031 	state->analog_sampling_phase_ctrl = v4l2_ctrl_new_custom(hdl,
3032 			&adv7842_ctrl_analog_sampling_phase, NULL);
3033 	state->free_run_color_ctrl_manual = v4l2_ctrl_new_custom(hdl,
3034 			&adv7842_ctrl_free_run_color_manual, NULL);
3035 	state->free_run_color_ctrl = v4l2_ctrl_new_custom(hdl,
3036 			&adv7842_ctrl_free_run_color, NULL);
3037 	state->rgb_quantization_range_ctrl =
3038 		v4l2_ctrl_new_std_menu(hdl, &adv7842_ctrl_ops,
3039 			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3040 			0, V4L2_DV_RGB_RANGE_AUTO);
3041 	sd->ctrl_handler = hdl;
3042 	if (hdl->error) {
3043 		err = hdl->error;
3044 		goto err_hdl;
3045 	}
3046 	state->detect_tx_5v_ctrl->is_private = true;
3047 	state->rgb_quantization_range_ctrl->is_private = true;
3048 	state->analog_sampling_phase_ctrl->is_private = true;
3049 	state->free_run_color_ctrl_manual->is_private = true;
3050 	state->free_run_color_ctrl->is_private = true;
3051 
3052 	if (adv7842_s_detect_tx_5v_ctrl(sd)) {
3053 		err = -ENODEV;
3054 		goto err_hdl;
3055 	}
3056 
3057 	if (adv7842_register_clients(sd) < 0) {
3058 		err = -ENOMEM;
3059 		v4l2_err(sd, "failed to create all i2c clients\n");
3060 		goto err_i2c;
3061 	}
3062 
3063 	/* work queues */
3064 	state->work_queues = create_singlethread_workqueue(client->name);
3065 	if (!state->work_queues) {
3066 		v4l2_err(sd, "Could not create work queue\n");
3067 		err = -ENOMEM;
3068 		goto err_i2c;
3069 	}
3070 
3071 	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3072 			adv7842_delayed_work_enable_hotplug);
3073 
3074 	state->pad.flags = MEDIA_PAD_FL_SOURCE;
3075 	err = media_entity_init(&sd->entity, 1, &state->pad, 0);
3076 	if (err)
3077 		goto err_work_queues;
3078 
3079 	err = adv7842_core_init(sd);
3080 	if (err)
3081 		goto err_entity;
3082 
3083 	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3084 		  client->addr << 1, client->adapter->name);
3085 	return 0;
3086 
3087 err_entity:
3088 	media_entity_cleanup(&sd->entity);
3089 err_work_queues:
3090 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3091 	destroy_workqueue(state->work_queues);
3092 err_i2c:
3093 	adv7842_unregister_clients(sd);
3094 err_hdl:
3095 	v4l2_ctrl_handler_free(hdl);
3096 	return err;
3097 }
3098 
3099 /* ----------------------------------------------------------------------- */
3100 
3101 static int adv7842_remove(struct i2c_client *client)
3102 {
3103 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3104 	struct adv7842_state *state = to_state(sd);
3105 
3106 	adv7842_irq_enable(sd, false);
3107 
3108 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3109 	destroy_workqueue(state->work_queues);
3110 	v4l2_device_unregister_subdev(sd);
3111 	media_entity_cleanup(&sd->entity);
3112 	adv7842_unregister_clients(sd);
3113 	v4l2_ctrl_handler_free(sd->ctrl_handler);
3114 	return 0;
3115 }
3116 
3117 /* ----------------------------------------------------------------------- */
3118 
3119 static struct i2c_device_id adv7842_id[] = {
3120 	{ "adv7842", 0 },
3121 	{ }
3122 };
3123 MODULE_DEVICE_TABLE(i2c, adv7842_id);
3124 
3125 /* ----------------------------------------------------------------------- */
3126 
3127 static struct i2c_driver adv7842_driver = {
3128 	.driver = {
3129 		.owner = THIS_MODULE,
3130 		.name = "adv7842",
3131 	},
3132 	.probe = adv7842_probe,
3133 	.remove = adv7842_remove,
3134 	.id_table = adv7842_id,
3135 };
3136 
3137 module_i2c_driver(adv7842_driver);
3138