1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * adv7842 - Analog Devices ADV7842 video decoder driver 4 * 5 * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved. 6 */ 7 8 /* 9 * References (c = chapter, p = page): 10 * REF_01 - Analog devices, ADV7842, 11 * Register Settings Recommendations, Rev. 1.9, April 2011 12 * REF_02 - Analog devices, Software User Guide, UG-206, 13 * ADV7842 I2C Register Maps, Rev. 0, November 2010 14 * REF_03 - Analog devices, Hardware User Guide, UG-214, 15 * ADV7842 Fast Switching 2:1 HDMI 1.4 Receiver with 3D-Comb 16 * Decoder and Digitizer , Rev. 0, January 2011 17 */ 18 19 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/slab.h> 23 #include <linux/i2c.h> 24 #include <linux/delay.h> 25 #include <linux/videodev2.h> 26 #include <linux/workqueue.h> 27 #include <linux/v4l2-dv-timings.h> 28 #include <linux/hdmi.h> 29 #include <media/cec.h> 30 #include <media/v4l2-device.h> 31 #include <media/v4l2-event.h> 32 #include <media/v4l2-ctrls.h> 33 #include <media/v4l2-dv-timings.h> 34 #include <media/i2c/adv7842.h> 35 36 static int debug; 37 module_param(debug, int, 0644); 38 MODULE_PARM_DESC(debug, "debug level (0-2)"); 39 40 MODULE_DESCRIPTION("Analog Devices ADV7842 video decoder driver"); 41 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>"); 42 MODULE_AUTHOR("Martin Bugge <marbugge@cisco.com>"); 43 MODULE_LICENSE("GPL"); 44 45 /* ADV7842 system clock frequency */ 46 #define ADV7842_fsc (28636360) 47 48 #define ADV7842_RGB_OUT (1 << 1) 49 50 #define ADV7842_OP_FORMAT_SEL_8BIT (0 << 0) 51 #define ADV7842_OP_FORMAT_SEL_10BIT (1 << 0) 52 #define ADV7842_OP_FORMAT_SEL_12BIT (2 << 0) 53 54 #define ADV7842_OP_MODE_SEL_SDR_422 (0 << 5) 55 #define ADV7842_OP_MODE_SEL_DDR_422 (1 << 5) 56 #define ADV7842_OP_MODE_SEL_SDR_444 (2 << 5) 57 #define ADV7842_OP_MODE_SEL_DDR_444 (3 << 5) 58 #define ADV7842_OP_MODE_SEL_SDR_422_2X (4 << 5) 59 #define ADV7842_OP_MODE_SEL_ADI_CM (5 << 5) 60 61 #define ADV7842_OP_CH_SEL_GBR (0 << 5) 62 #define ADV7842_OP_CH_SEL_GRB (1 << 5) 63 #define ADV7842_OP_CH_SEL_BGR (2 << 5) 64 #define ADV7842_OP_CH_SEL_RGB (3 << 5) 65 #define ADV7842_OP_CH_SEL_BRG (4 << 5) 66 #define ADV7842_OP_CH_SEL_RBG (5 << 5) 67 68 #define ADV7842_OP_SWAP_CB_CR (1 << 0) 69 70 #define ADV7842_MAX_ADDRS (3) 71 72 /* 73 ********************************************************************** 74 * 75 * Arrays with configuration parameters for the ADV7842 76 * 77 ********************************************************************** 78 */ 79 80 struct adv7842_format_info { 81 u32 code; 82 u8 op_ch_sel; 83 bool rgb_out; 84 bool swap_cb_cr; 85 u8 op_format_sel; 86 }; 87 88 struct adv7842_state { 89 struct adv7842_platform_data pdata; 90 struct v4l2_subdev sd; 91 struct media_pad pads[ADV7842_PAD_SOURCE + 1]; 92 struct v4l2_ctrl_handler hdl; 93 enum adv7842_mode mode; 94 struct v4l2_dv_timings timings; 95 enum adv7842_vid_std_select vid_std_select; 96 97 const struct adv7842_format_info *format; 98 99 v4l2_std_id norm; 100 struct { 101 u8 edid[512]; 102 u32 blocks; 103 u32 present; 104 } hdmi_edid; 105 struct { 106 u8 edid[128]; 107 u32 blocks; 108 u32 present; 109 } vga_edid; 110 struct v4l2_fract aspect_ratio; 111 u32 rgb_quantization_range; 112 bool is_cea_format; 113 struct delayed_work delayed_work_enable_hotplug; 114 bool restart_stdi_once; 115 bool hdmi_port_a; 116 117 /* i2c clients */ 118 struct i2c_client *i2c_sdp_io; 119 struct i2c_client *i2c_sdp; 120 struct i2c_client *i2c_cp; 121 struct i2c_client *i2c_vdp; 122 struct i2c_client *i2c_afe; 123 struct i2c_client *i2c_hdmi; 124 struct i2c_client *i2c_repeater; 125 struct i2c_client *i2c_edid; 126 struct i2c_client *i2c_infoframe; 127 struct i2c_client *i2c_cec; 128 struct i2c_client *i2c_avlink; 129 130 /* controls */ 131 struct v4l2_ctrl *detect_tx_5v_ctrl; 132 struct v4l2_ctrl *analog_sampling_phase_ctrl; 133 struct v4l2_ctrl *free_run_color_ctrl_manual; 134 struct v4l2_ctrl *free_run_color_ctrl; 135 struct v4l2_ctrl *rgb_quantization_range_ctrl; 136 137 struct cec_adapter *cec_adap; 138 u8 cec_addr[ADV7842_MAX_ADDRS]; 139 u8 cec_valid_addrs; 140 bool cec_enabled_adap; 141 }; 142 143 /* Unsupported timings. This device cannot support 720p30. */ 144 static const struct v4l2_dv_timings adv7842_timings_exceptions[] = { 145 V4L2_DV_BT_CEA_1280X720P30, 146 { } 147 }; 148 149 static bool adv7842_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl) 150 { 151 int i; 152 153 for (i = 0; adv7842_timings_exceptions[i].bt.width; i++) 154 if (v4l2_match_dv_timings(t, adv7842_timings_exceptions + i, 0, false)) 155 return false; 156 return true; 157 } 158 159 struct adv7842_video_standards { 160 struct v4l2_dv_timings timings; 161 u8 vid_std; 162 u8 v_freq; 163 }; 164 165 /* sorted by number of lines */ 166 static const struct adv7842_video_standards adv7842_prim_mode_comp[] = { 167 /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */ 168 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 }, 169 { V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 }, 170 { V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 }, 171 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 }, 172 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 }, 173 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 }, 174 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 }, 175 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 }, 176 /* TODO add 1920x1080P60_RB (CVT timing) */ 177 { }, 178 }; 179 180 /* sorted by number of lines */ 181 static const struct adv7842_video_standards adv7842_prim_mode_gr[] = { 182 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 }, 183 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 }, 184 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 }, 185 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 }, 186 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 }, 187 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 }, 188 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 }, 189 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 }, 190 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 }, 191 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 }, 192 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 }, 193 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 }, 194 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 }, 195 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 }, 196 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 }, 197 { V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 }, 198 { V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 }, 199 { V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 }, 200 { V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 }, 201 { V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */ 202 /* TODO add 1600X1200P60_RB (not a DMT timing) */ 203 { V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 }, 204 { V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */ 205 { }, 206 }; 207 208 /* sorted by number of lines */ 209 static const struct adv7842_video_standards adv7842_prim_mode_hdmi_comp[] = { 210 { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, 211 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 }, 212 { V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 }, 213 { V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 }, 214 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 }, 215 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 }, 216 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 }, 217 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 }, 218 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 }, 219 { }, 220 }; 221 222 /* sorted by number of lines */ 223 static const struct adv7842_video_standards adv7842_prim_mode_hdmi_gr[] = { 224 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 }, 225 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 }, 226 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 }, 227 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 }, 228 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 }, 229 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 }, 230 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 }, 231 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 }, 232 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 }, 233 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 }, 234 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 }, 235 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 }, 236 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 }, 237 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 }, 238 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 }, 239 { }, 240 }; 241 242 static const struct v4l2_event adv7842_ev_fmt = { 243 .type = V4L2_EVENT_SOURCE_CHANGE, 244 .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION, 245 }; 246 247 /* ----------------------------------------------------------------------- */ 248 249 static inline struct adv7842_state *to_state(struct v4l2_subdev *sd) 250 { 251 return container_of(sd, struct adv7842_state, sd); 252 } 253 254 static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl) 255 { 256 return &container_of(ctrl->handler, struct adv7842_state, hdl)->sd; 257 } 258 259 static inline unsigned htotal(const struct v4l2_bt_timings *t) 260 { 261 return V4L2_DV_BT_FRAME_WIDTH(t); 262 } 263 264 static inline unsigned vtotal(const struct v4l2_bt_timings *t) 265 { 266 return V4L2_DV_BT_FRAME_HEIGHT(t); 267 } 268 269 270 /* ----------------------------------------------------------------------- */ 271 272 static s32 adv_smbus_read_byte_data_check(struct i2c_client *client, 273 u8 command, bool check) 274 { 275 union i2c_smbus_data data; 276 277 if (!i2c_smbus_xfer(client->adapter, client->addr, client->flags, 278 I2C_SMBUS_READ, command, 279 I2C_SMBUS_BYTE_DATA, &data)) 280 return data.byte; 281 if (check) 282 v4l_err(client, "error reading %02x, %02x\n", 283 client->addr, command); 284 return -EIO; 285 } 286 287 static s32 adv_smbus_read_byte_data(struct i2c_client *client, u8 command) 288 { 289 int i; 290 291 for (i = 0; i < 3; i++) { 292 int ret = adv_smbus_read_byte_data_check(client, command, true); 293 294 if (ret >= 0) { 295 if (i) 296 v4l_err(client, "read ok after %d retries\n", i); 297 return ret; 298 } 299 } 300 v4l_err(client, "read failed\n"); 301 return -EIO; 302 } 303 304 static s32 adv_smbus_write_byte_data(struct i2c_client *client, 305 u8 command, u8 value) 306 { 307 union i2c_smbus_data data; 308 int err; 309 int i; 310 311 data.byte = value; 312 for (i = 0; i < 3; i++) { 313 err = i2c_smbus_xfer(client->adapter, client->addr, 314 client->flags, 315 I2C_SMBUS_WRITE, command, 316 I2C_SMBUS_BYTE_DATA, &data); 317 if (!err) 318 break; 319 } 320 if (err < 0) 321 v4l_err(client, "error writing %02x, %02x, %02x\n", 322 client->addr, command, value); 323 return err; 324 } 325 326 static void adv_smbus_write_byte_no_check(struct i2c_client *client, 327 u8 command, u8 value) 328 { 329 union i2c_smbus_data data; 330 data.byte = value; 331 332 i2c_smbus_xfer(client->adapter, client->addr, 333 client->flags, 334 I2C_SMBUS_WRITE, command, 335 I2C_SMBUS_BYTE_DATA, &data); 336 } 337 338 /* ----------------------------------------------------------------------- */ 339 340 static inline int io_read(struct v4l2_subdev *sd, u8 reg) 341 { 342 struct i2c_client *client = v4l2_get_subdevdata(sd); 343 344 return adv_smbus_read_byte_data(client, reg); 345 } 346 347 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val) 348 { 349 struct i2c_client *client = v4l2_get_subdevdata(sd); 350 351 return adv_smbus_write_byte_data(client, reg, val); 352 } 353 354 static inline int io_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 355 { 356 return io_write(sd, reg, (io_read(sd, reg) & mask) | val); 357 } 358 359 static inline int io_write_clr_set(struct v4l2_subdev *sd, 360 u8 reg, u8 mask, u8 val) 361 { 362 return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val); 363 } 364 365 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg) 366 { 367 struct adv7842_state *state = to_state(sd); 368 369 return adv_smbus_read_byte_data(state->i2c_avlink, reg); 370 } 371 372 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val) 373 { 374 struct adv7842_state *state = to_state(sd); 375 376 return adv_smbus_write_byte_data(state->i2c_avlink, reg, val); 377 } 378 379 static inline int cec_read(struct v4l2_subdev *sd, u8 reg) 380 { 381 struct adv7842_state *state = to_state(sd); 382 383 return adv_smbus_read_byte_data(state->i2c_cec, reg); 384 } 385 386 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val) 387 { 388 struct adv7842_state *state = to_state(sd); 389 390 return adv_smbus_write_byte_data(state->i2c_cec, reg, val); 391 } 392 393 static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 394 { 395 return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val); 396 } 397 398 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg) 399 { 400 struct adv7842_state *state = to_state(sd); 401 402 return adv_smbus_read_byte_data(state->i2c_infoframe, reg); 403 } 404 405 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val) 406 { 407 struct adv7842_state *state = to_state(sd); 408 409 return adv_smbus_write_byte_data(state->i2c_infoframe, reg, val); 410 } 411 412 static inline int sdp_io_read(struct v4l2_subdev *sd, u8 reg) 413 { 414 struct adv7842_state *state = to_state(sd); 415 416 return adv_smbus_read_byte_data(state->i2c_sdp_io, reg); 417 } 418 419 static inline int sdp_io_write(struct v4l2_subdev *sd, u8 reg, u8 val) 420 { 421 struct adv7842_state *state = to_state(sd); 422 423 return adv_smbus_write_byte_data(state->i2c_sdp_io, reg, val); 424 } 425 426 static inline int sdp_io_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 427 { 428 return sdp_io_write(sd, reg, (sdp_io_read(sd, reg) & mask) | val); 429 } 430 431 static inline int sdp_read(struct v4l2_subdev *sd, u8 reg) 432 { 433 struct adv7842_state *state = to_state(sd); 434 435 return adv_smbus_read_byte_data(state->i2c_sdp, reg); 436 } 437 438 static inline int sdp_write(struct v4l2_subdev *sd, u8 reg, u8 val) 439 { 440 struct adv7842_state *state = to_state(sd); 441 442 return adv_smbus_write_byte_data(state->i2c_sdp, reg, val); 443 } 444 445 static inline int sdp_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 446 { 447 return sdp_write(sd, reg, (sdp_read(sd, reg) & mask) | val); 448 } 449 450 static inline int afe_read(struct v4l2_subdev *sd, u8 reg) 451 { 452 struct adv7842_state *state = to_state(sd); 453 454 return adv_smbus_read_byte_data(state->i2c_afe, reg); 455 } 456 457 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val) 458 { 459 struct adv7842_state *state = to_state(sd); 460 461 return adv_smbus_write_byte_data(state->i2c_afe, reg, val); 462 } 463 464 static inline int afe_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 465 { 466 return afe_write(sd, reg, (afe_read(sd, reg) & mask) | val); 467 } 468 469 static inline int rep_read(struct v4l2_subdev *sd, u8 reg) 470 { 471 struct adv7842_state *state = to_state(sd); 472 473 return adv_smbus_read_byte_data(state->i2c_repeater, reg); 474 } 475 476 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val) 477 { 478 struct adv7842_state *state = to_state(sd); 479 480 return adv_smbus_write_byte_data(state->i2c_repeater, reg, val); 481 } 482 483 static inline int rep_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 484 { 485 return rep_write(sd, reg, (rep_read(sd, reg) & mask) | val); 486 } 487 488 static inline int edid_read(struct v4l2_subdev *sd, u8 reg) 489 { 490 struct adv7842_state *state = to_state(sd); 491 492 return adv_smbus_read_byte_data(state->i2c_edid, reg); 493 } 494 495 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val) 496 { 497 struct adv7842_state *state = to_state(sd); 498 499 return adv_smbus_write_byte_data(state->i2c_edid, reg, val); 500 } 501 502 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg) 503 { 504 struct adv7842_state *state = to_state(sd); 505 506 return adv_smbus_read_byte_data(state->i2c_hdmi, reg); 507 } 508 509 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val) 510 { 511 struct adv7842_state *state = to_state(sd); 512 513 return adv_smbus_write_byte_data(state->i2c_hdmi, reg, val); 514 } 515 516 static inline int hdmi_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 517 { 518 return hdmi_write(sd, reg, (hdmi_read(sd, reg) & mask) | val); 519 } 520 521 static inline int cp_read(struct v4l2_subdev *sd, u8 reg) 522 { 523 struct adv7842_state *state = to_state(sd); 524 525 return adv_smbus_read_byte_data(state->i2c_cp, reg); 526 } 527 528 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val) 529 { 530 struct adv7842_state *state = to_state(sd); 531 532 return adv_smbus_write_byte_data(state->i2c_cp, reg, val); 533 } 534 535 static inline int cp_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 536 { 537 return cp_write(sd, reg, (cp_read(sd, reg) & mask) | val); 538 } 539 540 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg) 541 { 542 struct adv7842_state *state = to_state(sd); 543 544 return adv_smbus_read_byte_data(state->i2c_vdp, reg); 545 } 546 547 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val) 548 { 549 struct adv7842_state *state = to_state(sd); 550 551 return adv_smbus_write_byte_data(state->i2c_vdp, reg, val); 552 } 553 554 static void main_reset(struct v4l2_subdev *sd) 555 { 556 struct i2c_client *client = v4l2_get_subdevdata(sd); 557 558 v4l2_dbg(1, debug, sd, "%s:\n", __func__); 559 560 adv_smbus_write_byte_no_check(client, 0xff, 0x80); 561 562 mdelay(5); 563 } 564 565 /* ----------------------------------------------------------------------------- 566 * Format helpers 567 */ 568 569 static const struct adv7842_format_info adv7842_formats[] = { 570 { MEDIA_BUS_FMT_RGB888_1X24, ADV7842_OP_CH_SEL_RGB, true, false, 571 ADV7842_OP_MODE_SEL_SDR_444 | ADV7842_OP_FORMAT_SEL_8BIT }, 572 { MEDIA_BUS_FMT_YUYV8_2X8, ADV7842_OP_CH_SEL_RGB, false, false, 573 ADV7842_OP_MODE_SEL_SDR_422 | ADV7842_OP_FORMAT_SEL_8BIT }, 574 { MEDIA_BUS_FMT_YVYU8_2X8, ADV7842_OP_CH_SEL_RGB, false, true, 575 ADV7842_OP_MODE_SEL_SDR_422 | ADV7842_OP_FORMAT_SEL_8BIT }, 576 { MEDIA_BUS_FMT_YUYV10_2X10, ADV7842_OP_CH_SEL_RGB, false, false, 577 ADV7842_OP_MODE_SEL_SDR_422 | ADV7842_OP_FORMAT_SEL_10BIT }, 578 { MEDIA_BUS_FMT_YVYU10_2X10, ADV7842_OP_CH_SEL_RGB, false, true, 579 ADV7842_OP_MODE_SEL_SDR_422 | ADV7842_OP_FORMAT_SEL_10BIT }, 580 { MEDIA_BUS_FMT_YUYV12_2X12, ADV7842_OP_CH_SEL_RGB, false, false, 581 ADV7842_OP_MODE_SEL_SDR_422 | ADV7842_OP_FORMAT_SEL_12BIT }, 582 { MEDIA_BUS_FMT_YVYU12_2X12, ADV7842_OP_CH_SEL_RGB, false, true, 583 ADV7842_OP_MODE_SEL_SDR_422 | ADV7842_OP_FORMAT_SEL_12BIT }, 584 { MEDIA_BUS_FMT_UYVY8_1X16, ADV7842_OP_CH_SEL_RBG, false, false, 585 ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_8BIT }, 586 { MEDIA_BUS_FMT_VYUY8_1X16, ADV7842_OP_CH_SEL_RBG, false, true, 587 ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_8BIT }, 588 { MEDIA_BUS_FMT_YUYV8_1X16, ADV7842_OP_CH_SEL_RGB, false, false, 589 ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_8BIT }, 590 { MEDIA_BUS_FMT_YVYU8_1X16, ADV7842_OP_CH_SEL_RGB, false, true, 591 ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_8BIT }, 592 { MEDIA_BUS_FMT_UYVY10_1X20, ADV7842_OP_CH_SEL_RBG, false, false, 593 ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_10BIT }, 594 { MEDIA_BUS_FMT_VYUY10_1X20, ADV7842_OP_CH_SEL_RBG, false, true, 595 ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_10BIT }, 596 { MEDIA_BUS_FMT_YUYV10_1X20, ADV7842_OP_CH_SEL_RGB, false, false, 597 ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_10BIT }, 598 { MEDIA_BUS_FMT_YVYU10_1X20, ADV7842_OP_CH_SEL_RGB, false, true, 599 ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_10BIT }, 600 { MEDIA_BUS_FMT_UYVY12_1X24, ADV7842_OP_CH_SEL_RBG, false, false, 601 ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_12BIT }, 602 { MEDIA_BUS_FMT_VYUY12_1X24, ADV7842_OP_CH_SEL_RBG, false, true, 603 ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_12BIT }, 604 { MEDIA_BUS_FMT_YUYV12_1X24, ADV7842_OP_CH_SEL_RGB, false, false, 605 ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_12BIT }, 606 { MEDIA_BUS_FMT_YVYU12_1X24, ADV7842_OP_CH_SEL_RGB, false, true, 607 ADV7842_OP_MODE_SEL_SDR_422_2X | ADV7842_OP_FORMAT_SEL_12BIT }, 608 }; 609 610 static const struct adv7842_format_info * 611 adv7842_format_info(struct adv7842_state *state, u32 code) 612 { 613 unsigned int i; 614 615 for (i = 0; i < ARRAY_SIZE(adv7842_formats); ++i) { 616 if (adv7842_formats[i].code == code) 617 return &adv7842_formats[i]; 618 } 619 620 return NULL; 621 } 622 623 /* ----------------------------------------------------------------------- */ 624 625 static inline bool is_analog_input(struct v4l2_subdev *sd) 626 { 627 struct adv7842_state *state = to_state(sd); 628 629 return ((state->mode == ADV7842_MODE_RGB) || 630 (state->mode == ADV7842_MODE_COMP)); 631 } 632 633 static inline bool is_digital_input(struct v4l2_subdev *sd) 634 { 635 struct adv7842_state *state = to_state(sd); 636 637 return state->mode == ADV7842_MODE_HDMI; 638 } 639 640 static const struct v4l2_dv_timings_cap adv7842_timings_cap_analog = { 641 .type = V4L2_DV_BT_656_1120, 642 /* keep this initialization for compatibility with GCC < 4.4.6 */ 643 .reserved = { 0 }, 644 V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 170000000, 645 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | 646 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT, 647 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING | 648 V4L2_DV_BT_CAP_CUSTOM) 649 }; 650 651 static const struct v4l2_dv_timings_cap adv7842_timings_cap_digital = { 652 .type = V4L2_DV_BT_656_1120, 653 /* keep this initialization for compatibility with GCC < 4.4.6 */ 654 .reserved = { 0 }, 655 V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 225000000, 656 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | 657 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT, 658 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING | 659 V4L2_DV_BT_CAP_CUSTOM) 660 }; 661 662 static inline const struct v4l2_dv_timings_cap * 663 adv7842_get_dv_timings_cap(struct v4l2_subdev *sd) 664 { 665 return is_digital_input(sd) ? &adv7842_timings_cap_digital : 666 &adv7842_timings_cap_analog; 667 } 668 669 /* ----------------------------------------------------------------------- */ 670 671 static u16 adv7842_read_cable_det(struct v4l2_subdev *sd) 672 { 673 u8 reg = io_read(sd, 0x6f); 674 u16 val = 0; 675 676 if (reg & 0x02) 677 val |= 1; /* port A */ 678 if (reg & 0x01) 679 val |= 2; /* port B */ 680 return val; 681 } 682 683 static void adv7842_delayed_work_enable_hotplug(struct work_struct *work) 684 { 685 struct delayed_work *dwork = to_delayed_work(work); 686 struct adv7842_state *state = container_of(dwork, 687 struct adv7842_state, delayed_work_enable_hotplug); 688 struct v4l2_subdev *sd = &state->sd; 689 int present = state->hdmi_edid.present; 690 u8 mask = 0; 691 692 v4l2_dbg(2, debug, sd, "%s: enable hotplug on ports: 0x%x\n", 693 __func__, present); 694 695 if (present & (0x04 << ADV7842_EDID_PORT_A)) 696 mask |= 0x20; 697 if (present & (0x04 << ADV7842_EDID_PORT_B)) 698 mask |= 0x10; 699 io_write_and_or(sd, 0x20, 0xcf, mask); 700 } 701 702 static int edid_write_vga_segment(struct v4l2_subdev *sd) 703 { 704 struct i2c_client *client = v4l2_get_subdevdata(sd); 705 struct adv7842_state *state = to_state(sd); 706 const u8 *edid = state->vga_edid.edid; 707 u32 blocks = state->vga_edid.blocks; 708 int err = 0; 709 int i; 710 711 v4l2_dbg(2, debug, sd, "%s: write EDID on VGA port\n", __func__); 712 713 if (!state->vga_edid.present) 714 return 0; 715 716 /* HPA disable on port A and B */ 717 io_write_and_or(sd, 0x20, 0xcf, 0x00); 718 719 /* Disable I2C access to internal EDID ram from VGA DDC port */ 720 rep_write_and_or(sd, 0x7f, 0x7f, 0x00); 721 722 /* edid segment pointer '1' for VGA port */ 723 rep_write_and_or(sd, 0x77, 0xef, 0x10); 724 725 for (i = 0; !err && i < blocks * 128; i += I2C_SMBUS_BLOCK_MAX) 726 err = i2c_smbus_write_i2c_block_data(state->i2c_edid, i, 727 I2C_SMBUS_BLOCK_MAX, 728 edid + i); 729 if (err) 730 return err; 731 732 /* Calculates the checksums and enables I2C access 733 * to internal EDID ram from VGA DDC port. 734 */ 735 rep_write_and_or(sd, 0x7f, 0x7f, 0x80); 736 737 for (i = 0; i < 1000; i++) { 738 if (rep_read(sd, 0x79) & 0x20) 739 break; 740 mdelay(1); 741 } 742 if (i == 1000) { 743 v4l_err(client, "error enabling edid on VGA port\n"); 744 return -EIO; 745 } 746 747 /* enable hotplug after 200 ms */ 748 schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 5); 749 750 return 0; 751 } 752 753 static int edid_write_hdmi_segment(struct v4l2_subdev *sd, u8 port) 754 { 755 struct i2c_client *client = v4l2_get_subdevdata(sd); 756 struct adv7842_state *state = to_state(sd); 757 const u8 *edid = state->hdmi_edid.edid; 758 u32 blocks = state->hdmi_edid.blocks; 759 unsigned int spa_loc; 760 u16 pa, parent_pa; 761 int err = 0; 762 int i; 763 764 v4l2_dbg(2, debug, sd, "%s: write EDID on port %c\n", 765 __func__, (port == ADV7842_EDID_PORT_A) ? 'A' : 'B'); 766 767 /* HPA disable on port A and B */ 768 io_write_and_or(sd, 0x20, 0xcf, 0x00); 769 770 /* Disable I2C access to internal EDID ram from HDMI DDC ports */ 771 rep_write_and_or(sd, 0x77, 0xf3, 0x00); 772 773 if (!state->hdmi_edid.present) { 774 cec_phys_addr_invalidate(state->cec_adap); 775 return 0; 776 } 777 778 pa = v4l2_get_edid_phys_addr(edid, blocks * 128, &spa_loc); 779 err = v4l2_phys_addr_validate(pa, &parent_pa, NULL); 780 if (err) 781 return err; 782 783 if (!spa_loc) { 784 /* 785 * There is no SPA, so just set spa_loc to 128 and pa to whatever 786 * data is there. 787 */ 788 spa_loc = 128; 789 pa = (edid[spa_loc] << 8) | edid[spa_loc + 1]; 790 } 791 792 793 for (i = 0; !err && i < blocks * 128; i += I2C_SMBUS_BLOCK_MAX) { 794 /* set edid segment pointer for HDMI ports */ 795 if (i % 256 == 0) 796 rep_write_and_or(sd, 0x77, 0xef, i >= 256 ? 0x10 : 0x00); 797 err = i2c_smbus_write_i2c_block_data(state->i2c_edid, i, 798 I2C_SMBUS_BLOCK_MAX, edid + i); 799 } 800 if (err) 801 return err; 802 803 if (port == ADV7842_EDID_PORT_A) { 804 rep_write(sd, 0x72, pa >> 8); 805 rep_write(sd, 0x73, pa & 0xff); 806 } else { 807 rep_write(sd, 0x74, pa >> 8); 808 rep_write(sd, 0x75, pa & 0xff); 809 } 810 rep_write(sd, 0x76, spa_loc & 0xff); 811 rep_write_and_or(sd, 0x77, 0xbf, (spa_loc >> 2) & 0x40); 812 813 /* Calculates the checksums and enables I2C access to internal 814 * EDID ram from HDMI DDC ports 815 */ 816 rep_write_and_or(sd, 0x77, 0xf3, state->hdmi_edid.present); 817 818 for (i = 0; i < 1000; i++) { 819 if (rep_read(sd, 0x7d) & state->hdmi_edid.present) 820 break; 821 mdelay(1); 822 } 823 if (i == 1000) { 824 v4l_err(client, "error enabling edid on port %c\n", 825 (port == ADV7842_EDID_PORT_A) ? 'A' : 'B'); 826 return -EIO; 827 } 828 cec_s_phys_addr(state->cec_adap, parent_pa, false); 829 830 /* enable hotplug after 200 ms */ 831 schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 5); 832 833 return 0; 834 } 835 836 /* ----------------------------------------------------------------------- */ 837 838 #ifdef CONFIG_VIDEO_ADV_DEBUG 839 static void adv7842_inv_register(struct v4l2_subdev *sd) 840 { 841 v4l2_info(sd, "0x000-0x0ff: IO Map\n"); 842 v4l2_info(sd, "0x100-0x1ff: AVLink Map\n"); 843 v4l2_info(sd, "0x200-0x2ff: CEC Map\n"); 844 v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n"); 845 v4l2_info(sd, "0x400-0x4ff: SDP_IO Map\n"); 846 v4l2_info(sd, "0x500-0x5ff: SDP Map\n"); 847 v4l2_info(sd, "0x600-0x6ff: AFE Map\n"); 848 v4l2_info(sd, "0x700-0x7ff: Repeater Map\n"); 849 v4l2_info(sd, "0x800-0x8ff: EDID Map\n"); 850 v4l2_info(sd, "0x900-0x9ff: HDMI Map\n"); 851 v4l2_info(sd, "0xa00-0xaff: CP Map\n"); 852 v4l2_info(sd, "0xb00-0xbff: VDP Map\n"); 853 } 854 855 static int adv7842_g_register(struct v4l2_subdev *sd, 856 struct v4l2_dbg_register *reg) 857 { 858 reg->size = 1; 859 switch (reg->reg >> 8) { 860 case 0: 861 reg->val = io_read(sd, reg->reg & 0xff); 862 break; 863 case 1: 864 reg->val = avlink_read(sd, reg->reg & 0xff); 865 break; 866 case 2: 867 reg->val = cec_read(sd, reg->reg & 0xff); 868 break; 869 case 3: 870 reg->val = infoframe_read(sd, reg->reg & 0xff); 871 break; 872 case 4: 873 reg->val = sdp_io_read(sd, reg->reg & 0xff); 874 break; 875 case 5: 876 reg->val = sdp_read(sd, reg->reg & 0xff); 877 break; 878 case 6: 879 reg->val = afe_read(sd, reg->reg & 0xff); 880 break; 881 case 7: 882 reg->val = rep_read(sd, reg->reg & 0xff); 883 break; 884 case 8: 885 reg->val = edid_read(sd, reg->reg & 0xff); 886 break; 887 case 9: 888 reg->val = hdmi_read(sd, reg->reg & 0xff); 889 break; 890 case 0xa: 891 reg->val = cp_read(sd, reg->reg & 0xff); 892 break; 893 case 0xb: 894 reg->val = vdp_read(sd, reg->reg & 0xff); 895 break; 896 default: 897 v4l2_info(sd, "Register %03llx not supported\n", reg->reg); 898 adv7842_inv_register(sd); 899 break; 900 } 901 return 0; 902 } 903 904 static int adv7842_s_register(struct v4l2_subdev *sd, 905 const struct v4l2_dbg_register *reg) 906 { 907 u8 val = reg->val & 0xff; 908 909 switch (reg->reg >> 8) { 910 case 0: 911 io_write(sd, reg->reg & 0xff, val); 912 break; 913 case 1: 914 avlink_write(sd, reg->reg & 0xff, val); 915 break; 916 case 2: 917 cec_write(sd, reg->reg & 0xff, val); 918 break; 919 case 3: 920 infoframe_write(sd, reg->reg & 0xff, val); 921 break; 922 case 4: 923 sdp_io_write(sd, reg->reg & 0xff, val); 924 break; 925 case 5: 926 sdp_write(sd, reg->reg & 0xff, val); 927 break; 928 case 6: 929 afe_write(sd, reg->reg & 0xff, val); 930 break; 931 case 7: 932 rep_write(sd, reg->reg & 0xff, val); 933 break; 934 case 8: 935 edid_write(sd, reg->reg & 0xff, val); 936 break; 937 case 9: 938 hdmi_write(sd, reg->reg & 0xff, val); 939 break; 940 case 0xa: 941 cp_write(sd, reg->reg & 0xff, val); 942 break; 943 case 0xb: 944 vdp_write(sd, reg->reg & 0xff, val); 945 break; 946 default: 947 v4l2_info(sd, "Register %03llx not supported\n", reg->reg); 948 adv7842_inv_register(sd); 949 break; 950 } 951 return 0; 952 } 953 #endif 954 955 static int adv7842_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd) 956 { 957 struct adv7842_state *state = to_state(sd); 958 u16 cable_det = adv7842_read_cable_det(sd); 959 960 v4l2_dbg(1, debug, sd, "%s: 0x%x\n", __func__, cable_det); 961 962 return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det); 963 } 964 965 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd, 966 u8 prim_mode, 967 const struct adv7842_video_standards *predef_vid_timings, 968 const struct v4l2_dv_timings *timings) 969 { 970 int i; 971 972 for (i = 0; predef_vid_timings[i].timings.bt.width; i++) { 973 if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings, 974 is_digital_input(sd) ? 250000 : 1000000, false)) 975 continue; 976 /* video std */ 977 io_write(sd, 0x00, predef_vid_timings[i].vid_std); 978 /* v_freq and prim mode */ 979 io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) + prim_mode); 980 return 0; 981 } 982 983 return -1; 984 } 985 986 static int configure_predefined_video_timings(struct v4l2_subdev *sd, 987 struct v4l2_dv_timings *timings) 988 { 989 struct adv7842_state *state = to_state(sd); 990 int err; 991 992 v4l2_dbg(1, debug, sd, "%s\n", __func__); 993 994 /* reset to default values */ 995 io_write(sd, 0x16, 0x43); 996 io_write(sd, 0x17, 0x5a); 997 /* disable embedded syncs for auto graphics mode */ 998 cp_write_and_or(sd, 0x81, 0xef, 0x00); 999 cp_write(sd, 0x26, 0x00); 1000 cp_write(sd, 0x27, 0x00); 1001 cp_write(sd, 0x28, 0x00); 1002 cp_write(sd, 0x29, 0x00); 1003 cp_write(sd, 0x8f, 0x40); 1004 cp_write(sd, 0x90, 0x00); 1005 cp_write(sd, 0xa5, 0x00); 1006 cp_write(sd, 0xa6, 0x00); 1007 cp_write(sd, 0xa7, 0x00); 1008 cp_write(sd, 0xab, 0x00); 1009 cp_write(sd, 0xac, 0x00); 1010 1011 switch (state->mode) { 1012 case ADV7842_MODE_COMP: 1013 case ADV7842_MODE_RGB: 1014 err = find_and_set_predefined_video_timings(sd, 1015 0x01, adv7842_prim_mode_comp, timings); 1016 if (err) 1017 err = find_and_set_predefined_video_timings(sd, 1018 0x02, adv7842_prim_mode_gr, timings); 1019 break; 1020 case ADV7842_MODE_HDMI: 1021 err = find_and_set_predefined_video_timings(sd, 1022 0x05, adv7842_prim_mode_hdmi_comp, timings); 1023 if (err) 1024 err = find_and_set_predefined_video_timings(sd, 1025 0x06, adv7842_prim_mode_hdmi_gr, timings); 1026 break; 1027 default: 1028 v4l2_dbg(2, debug, sd, "%s: Unknown mode %d\n", 1029 __func__, state->mode); 1030 err = -1; 1031 break; 1032 } 1033 1034 1035 return err; 1036 } 1037 1038 static void configure_custom_video_timings(struct v4l2_subdev *sd, 1039 const struct v4l2_bt_timings *bt) 1040 { 1041 struct adv7842_state *state = to_state(sd); 1042 struct i2c_client *client = v4l2_get_subdevdata(sd); 1043 u32 width = htotal(bt); 1044 u32 height = vtotal(bt); 1045 u16 cp_start_sav = bt->hsync + bt->hbackporch - 4; 1046 u16 cp_start_eav = width - bt->hfrontporch; 1047 u16 cp_start_vbi = height - bt->vfrontporch + 1; 1048 u16 cp_end_vbi = bt->vsync + bt->vbackporch + 1; 1049 u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ? 1050 ((width * (ADV7842_fsc / 100)) / ((u32)bt->pixelclock / 100)) : 0; 1051 const u8 pll[2] = { 1052 0xc0 | ((width >> 8) & 0x1f), 1053 width & 0xff 1054 }; 1055 1056 v4l2_dbg(2, debug, sd, "%s\n", __func__); 1057 1058 switch (state->mode) { 1059 case ADV7842_MODE_COMP: 1060 case ADV7842_MODE_RGB: 1061 /* auto graphics */ 1062 io_write(sd, 0x00, 0x07); /* video std */ 1063 io_write(sd, 0x01, 0x02); /* prim mode */ 1064 /* enable embedded syncs for auto graphics mode */ 1065 cp_write_and_or(sd, 0x81, 0xef, 0x10); 1066 1067 /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */ 1068 /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */ 1069 /* IO-map reg. 0x16 and 0x17 should be written in sequence */ 1070 if (i2c_smbus_write_i2c_block_data(client, 0x16, 2, pll)) { 1071 v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n"); 1072 break; 1073 } 1074 1075 /* active video - horizontal timing */ 1076 cp_write(sd, 0x26, (cp_start_sav >> 8) & 0xf); 1077 cp_write(sd, 0x27, (cp_start_sav & 0xff)); 1078 cp_write(sd, 0x28, (cp_start_eav >> 8) & 0xf); 1079 cp_write(sd, 0x29, (cp_start_eav & 0xff)); 1080 1081 /* active video - vertical timing */ 1082 cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff); 1083 cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) | 1084 ((cp_end_vbi >> 8) & 0xf)); 1085 cp_write(sd, 0xa7, cp_end_vbi & 0xff); 1086 break; 1087 case ADV7842_MODE_HDMI: 1088 /* set default prim_mode/vid_std for HDMI 1089 according to [REF_03, c. 4.2] */ 1090 io_write(sd, 0x00, 0x02); /* video std */ 1091 io_write(sd, 0x01, 0x06); /* prim mode */ 1092 break; 1093 default: 1094 v4l2_dbg(2, debug, sd, "%s: Unknown mode %d\n", 1095 __func__, state->mode); 1096 break; 1097 } 1098 1099 cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7); 1100 cp_write(sd, 0x90, ch1_fr_ll & 0xff); 1101 cp_write(sd, 0xab, (height >> 4) & 0xff); 1102 cp_write(sd, 0xac, (height & 0x0f) << 4); 1103 } 1104 1105 static void adv7842_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c) 1106 { 1107 struct adv7842_state *state = to_state(sd); 1108 u8 offset_buf[4]; 1109 1110 if (auto_offset) { 1111 offset_a = 0x3ff; 1112 offset_b = 0x3ff; 1113 offset_c = 0x3ff; 1114 } 1115 1116 v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n", 1117 __func__, auto_offset ? "Auto" : "Manual", 1118 offset_a, offset_b, offset_c); 1119 1120 offset_buf[0]= (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4); 1121 offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6); 1122 offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8); 1123 offset_buf[3] = offset_c & 0x0ff; 1124 1125 /* Registers must be written in this order with no i2c access in between */ 1126 if (i2c_smbus_write_i2c_block_data(state->i2c_cp, 0x77, 4, offset_buf)) 1127 v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__); 1128 } 1129 1130 static void adv7842_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c) 1131 { 1132 struct adv7842_state *state = to_state(sd); 1133 u8 gain_buf[4]; 1134 u8 gain_man = 1; 1135 u8 agc_mode_man = 1; 1136 1137 if (auto_gain) { 1138 gain_man = 0; 1139 agc_mode_man = 0; 1140 gain_a = 0x100; 1141 gain_b = 0x100; 1142 gain_c = 0x100; 1143 } 1144 1145 v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n", 1146 __func__, auto_gain ? "Auto" : "Manual", 1147 gain_a, gain_b, gain_c); 1148 1149 gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4)); 1150 gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6)); 1151 gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8)); 1152 gain_buf[3] = ((gain_c & 0x0ff)); 1153 1154 /* Registers must be written in this order with no i2c access in between */ 1155 if (i2c_smbus_write_i2c_block_data(state->i2c_cp, 0x73, 4, gain_buf)) 1156 v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__); 1157 } 1158 1159 static void set_rgb_quantization_range(struct v4l2_subdev *sd) 1160 { 1161 struct adv7842_state *state = to_state(sd); 1162 bool rgb_output = io_read(sd, 0x02) & 0x02; 1163 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80; 1164 u8 y = HDMI_COLORSPACE_RGB; 1165 1166 if (hdmi_signal && (io_read(sd, 0x60) & 1)) 1167 y = infoframe_read(sd, 0x01) >> 5; 1168 1169 v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n", 1170 __func__, state->rgb_quantization_range, 1171 rgb_output, hdmi_signal); 1172 1173 adv7842_set_gain(sd, true, 0x0, 0x0, 0x0); 1174 adv7842_set_offset(sd, true, 0x0, 0x0, 0x0); 1175 io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4); 1176 1177 switch (state->rgb_quantization_range) { 1178 case V4L2_DV_RGB_RANGE_AUTO: 1179 if (state->mode == ADV7842_MODE_RGB) { 1180 /* Receiving analog RGB signal 1181 * Set RGB full range (0-255) */ 1182 io_write_and_or(sd, 0x02, 0x0f, 0x10); 1183 break; 1184 } 1185 1186 if (state->mode == ADV7842_MODE_COMP) { 1187 /* Receiving analog YPbPr signal 1188 * Set automode */ 1189 io_write_and_or(sd, 0x02, 0x0f, 0xf0); 1190 break; 1191 } 1192 1193 if (hdmi_signal) { 1194 /* Receiving HDMI signal 1195 * Set automode */ 1196 io_write_and_or(sd, 0x02, 0x0f, 0xf0); 1197 break; 1198 } 1199 1200 /* Receiving DVI-D signal 1201 * ADV7842 selects RGB limited range regardless of 1202 * input format (CE/IT) in automatic mode */ 1203 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) { 1204 /* RGB limited range (16-235) */ 1205 io_write_and_or(sd, 0x02, 0x0f, 0x00); 1206 } else { 1207 /* RGB full range (0-255) */ 1208 io_write_and_or(sd, 0x02, 0x0f, 0x10); 1209 1210 if (is_digital_input(sd) && rgb_output) { 1211 adv7842_set_offset(sd, false, 0x40, 0x40, 0x40); 1212 } else { 1213 adv7842_set_gain(sd, false, 0xe0, 0xe0, 0xe0); 1214 adv7842_set_offset(sd, false, 0x70, 0x70, 0x70); 1215 } 1216 } 1217 break; 1218 case V4L2_DV_RGB_RANGE_LIMITED: 1219 if (state->mode == ADV7842_MODE_COMP) { 1220 /* YCrCb limited range (16-235) */ 1221 io_write_and_or(sd, 0x02, 0x0f, 0x20); 1222 break; 1223 } 1224 1225 if (y != HDMI_COLORSPACE_RGB) 1226 break; 1227 1228 /* RGB limited range (16-235) */ 1229 io_write_and_or(sd, 0x02, 0x0f, 0x00); 1230 1231 break; 1232 case V4L2_DV_RGB_RANGE_FULL: 1233 if (state->mode == ADV7842_MODE_COMP) { 1234 /* YCrCb full range (0-255) */ 1235 io_write_and_or(sd, 0x02, 0x0f, 0x60); 1236 break; 1237 } 1238 1239 if (y != HDMI_COLORSPACE_RGB) 1240 break; 1241 1242 /* RGB full range (0-255) */ 1243 io_write_and_or(sd, 0x02, 0x0f, 0x10); 1244 1245 if (is_analog_input(sd) || hdmi_signal) 1246 break; 1247 1248 /* Adjust gain/offset for DVI-D signals only */ 1249 if (rgb_output) { 1250 adv7842_set_offset(sd, false, 0x40, 0x40, 0x40); 1251 } else { 1252 adv7842_set_gain(sd, false, 0xe0, 0xe0, 0xe0); 1253 adv7842_set_offset(sd, false, 0x70, 0x70, 0x70); 1254 } 1255 break; 1256 } 1257 } 1258 1259 static int adv7842_s_ctrl(struct v4l2_ctrl *ctrl) 1260 { 1261 struct v4l2_subdev *sd = to_sd(ctrl); 1262 struct adv7842_state *state = to_state(sd); 1263 1264 /* TODO SDP ctrls 1265 contrast/brightness/hue/free run is acting a bit strange, 1266 not sure if sdp csc is correct. 1267 */ 1268 switch (ctrl->id) { 1269 /* standard ctrls */ 1270 case V4L2_CID_BRIGHTNESS: 1271 cp_write(sd, 0x3c, ctrl->val); 1272 sdp_write(sd, 0x14, ctrl->val); 1273 /* ignore lsb sdp 0x17[3:2] */ 1274 return 0; 1275 case V4L2_CID_CONTRAST: 1276 cp_write(sd, 0x3a, ctrl->val); 1277 sdp_write(sd, 0x13, ctrl->val); 1278 /* ignore lsb sdp 0x17[1:0] */ 1279 return 0; 1280 case V4L2_CID_SATURATION: 1281 cp_write(sd, 0x3b, ctrl->val); 1282 sdp_write(sd, 0x15, ctrl->val); 1283 /* ignore lsb sdp 0x17[5:4] */ 1284 return 0; 1285 case V4L2_CID_HUE: 1286 cp_write(sd, 0x3d, ctrl->val); 1287 sdp_write(sd, 0x16, ctrl->val); 1288 /* ignore lsb sdp 0x17[7:6] */ 1289 return 0; 1290 /* custom ctrls */ 1291 case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE: 1292 afe_write(sd, 0xc8, ctrl->val); 1293 return 0; 1294 case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL: 1295 cp_write_and_or(sd, 0xbf, ~0x04, (ctrl->val << 2)); 1296 sdp_write_and_or(sd, 0xdd, ~0x04, (ctrl->val << 2)); 1297 return 0; 1298 case V4L2_CID_ADV_RX_FREE_RUN_COLOR: { 1299 u8 R = (ctrl->val & 0xff0000) >> 16; 1300 u8 G = (ctrl->val & 0x00ff00) >> 8; 1301 u8 B = (ctrl->val & 0x0000ff); 1302 /* RGB -> YUV, numerical approximation */ 1303 int Y = 66 * R + 129 * G + 25 * B; 1304 int U = -38 * R - 74 * G + 112 * B; 1305 int V = 112 * R - 94 * G - 18 * B; 1306 1307 /* Scale down to 8 bits with rounding */ 1308 Y = (Y + 128) >> 8; 1309 U = (U + 128) >> 8; 1310 V = (V + 128) >> 8; 1311 /* make U,V positive */ 1312 Y += 16; 1313 U += 128; 1314 V += 128; 1315 1316 v4l2_dbg(1, debug, sd, "R %x, G %x, B %x\n", R, G, B); 1317 v4l2_dbg(1, debug, sd, "Y %x, U %x, V %x\n", Y, U, V); 1318 1319 /* CP */ 1320 cp_write(sd, 0xc1, R); 1321 cp_write(sd, 0xc0, G); 1322 cp_write(sd, 0xc2, B); 1323 /* SDP */ 1324 sdp_write(sd, 0xde, Y); 1325 sdp_write(sd, 0xdf, (V & 0xf0) | ((U >> 4) & 0x0f)); 1326 return 0; 1327 } 1328 case V4L2_CID_DV_RX_RGB_RANGE: 1329 state->rgb_quantization_range = ctrl->val; 1330 set_rgb_quantization_range(sd); 1331 return 0; 1332 } 1333 return -EINVAL; 1334 } 1335 1336 static int adv7842_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 1337 { 1338 struct v4l2_subdev *sd = to_sd(ctrl); 1339 1340 if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) { 1341 ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC; 1342 if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80)) 1343 ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3; 1344 return 0; 1345 } 1346 return -EINVAL; 1347 } 1348 1349 static inline bool no_power(struct v4l2_subdev *sd) 1350 { 1351 return io_read(sd, 0x0c) & 0x24; 1352 } 1353 1354 static inline bool no_cp_signal(struct v4l2_subdev *sd) 1355 { 1356 return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0) || !(cp_read(sd, 0xb1) & 0x80); 1357 } 1358 1359 static inline bool is_hdmi(struct v4l2_subdev *sd) 1360 { 1361 return hdmi_read(sd, 0x05) & 0x80; 1362 } 1363 1364 static int adv7842_g_input_status(struct v4l2_subdev *sd, u32 *status) 1365 { 1366 struct adv7842_state *state = to_state(sd); 1367 1368 *status = 0; 1369 1370 if (io_read(sd, 0x0c) & 0x24) 1371 *status |= V4L2_IN_ST_NO_POWER; 1372 1373 if (state->mode == ADV7842_MODE_SDP) { 1374 /* status from SDP block */ 1375 if (!(sdp_read(sd, 0x5A) & 0x01)) 1376 *status |= V4L2_IN_ST_NO_SIGNAL; 1377 1378 v4l2_dbg(1, debug, sd, "%s: SDP status = 0x%x\n", 1379 __func__, *status); 1380 return 0; 1381 } 1382 /* status from CP block */ 1383 if ((cp_read(sd, 0xb5) & 0xd0) != 0xd0 || 1384 !(cp_read(sd, 0xb1) & 0x80)) 1385 /* TODO channel 2 */ 1386 *status |= V4L2_IN_ST_NO_SIGNAL; 1387 1388 if (is_digital_input(sd) && ((io_read(sd, 0x74) & 0x03) != 0x03)) 1389 *status |= V4L2_IN_ST_NO_SIGNAL; 1390 1391 v4l2_dbg(1, debug, sd, "%s: CP status = 0x%x\n", 1392 __func__, *status); 1393 1394 return 0; 1395 } 1396 1397 struct stdi_readback { 1398 u16 bl, lcf, lcvs; 1399 u8 hs_pol, vs_pol; 1400 bool interlaced; 1401 }; 1402 1403 static int stdi2dv_timings(struct v4l2_subdev *sd, 1404 struct stdi_readback *stdi, 1405 struct v4l2_dv_timings *timings) 1406 { 1407 struct adv7842_state *state = to_state(sd); 1408 u32 hfreq = (ADV7842_fsc * 8) / stdi->bl; 1409 u32 pix_clk; 1410 int i; 1411 1412 for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) { 1413 const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt; 1414 1415 if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i], 1416 adv7842_get_dv_timings_cap(sd), 1417 adv7842_check_dv_timings, NULL)) 1418 continue; 1419 if (vtotal(bt) != stdi->lcf + 1) 1420 continue; 1421 if (bt->vsync != stdi->lcvs) 1422 continue; 1423 1424 pix_clk = hfreq * htotal(bt); 1425 1426 if ((pix_clk < bt->pixelclock + 1000000) && 1427 (pix_clk > bt->pixelclock - 1000000)) { 1428 *timings = v4l2_dv_timings_presets[i]; 1429 return 0; 1430 } 1431 } 1432 1433 if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0, 1434 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) | 1435 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0), 1436 false, timings)) 1437 return 0; 1438 if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs, 1439 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) | 1440 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0), 1441 false, state->aspect_ratio, timings)) 1442 return 0; 1443 1444 v4l2_dbg(2, debug, sd, 1445 "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n", 1446 __func__, stdi->lcvs, stdi->lcf, stdi->bl, 1447 stdi->hs_pol, stdi->vs_pol); 1448 return -1; 1449 } 1450 1451 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi) 1452 { 1453 u32 status; 1454 1455 adv7842_g_input_status(sd, &status); 1456 if (status & V4L2_IN_ST_NO_SIGNAL) { 1457 v4l2_dbg(2, debug, sd, "%s: no signal\n", __func__); 1458 return -ENOLINK; 1459 } 1460 1461 stdi->bl = ((cp_read(sd, 0xb1) & 0x3f) << 8) | cp_read(sd, 0xb2); 1462 stdi->lcf = ((cp_read(sd, 0xb3) & 0x7) << 8) | cp_read(sd, 0xb4); 1463 stdi->lcvs = cp_read(sd, 0xb3) >> 3; 1464 1465 if ((cp_read(sd, 0xb5) & 0x80) && ((cp_read(sd, 0xb5) & 0x03) == 0x01)) { 1466 stdi->hs_pol = ((cp_read(sd, 0xb5) & 0x10) ? 1467 ((cp_read(sd, 0xb5) & 0x08) ? '+' : '-') : 'x'); 1468 stdi->vs_pol = ((cp_read(sd, 0xb5) & 0x40) ? 1469 ((cp_read(sd, 0xb5) & 0x20) ? '+' : '-') : 'x'); 1470 } else { 1471 stdi->hs_pol = 'x'; 1472 stdi->vs_pol = 'x'; 1473 } 1474 stdi->interlaced = (cp_read(sd, 0xb1) & 0x40) ? true : false; 1475 1476 if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) { 1477 v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__); 1478 return -ENOLINK; 1479 } 1480 1481 v4l2_dbg(2, debug, sd, 1482 "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n", 1483 __func__, stdi->lcf, stdi->bl, stdi->lcvs, 1484 stdi->hs_pol, stdi->vs_pol, 1485 stdi->interlaced ? "interlaced" : "progressive"); 1486 1487 return 0; 1488 } 1489 1490 static int adv7842_enum_dv_timings(struct v4l2_subdev *sd, 1491 struct v4l2_enum_dv_timings *timings) 1492 { 1493 if (timings->pad != 0) 1494 return -EINVAL; 1495 1496 return v4l2_enum_dv_timings_cap(timings, 1497 adv7842_get_dv_timings_cap(sd), adv7842_check_dv_timings, NULL); 1498 } 1499 1500 static int adv7842_dv_timings_cap(struct v4l2_subdev *sd, 1501 struct v4l2_dv_timings_cap *cap) 1502 { 1503 if (cap->pad != 0) 1504 return -EINVAL; 1505 1506 *cap = *adv7842_get_dv_timings_cap(sd); 1507 return 0; 1508 } 1509 1510 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings 1511 if the format is listed in adv7842_timings[] */ 1512 static void adv7842_fill_optional_dv_timings_fields(struct v4l2_subdev *sd, 1513 struct v4l2_dv_timings *timings) 1514 { 1515 v4l2_find_dv_timings_cap(timings, adv7842_get_dv_timings_cap(sd), 1516 is_digital_input(sd) ? 250000 : 1000000, 1517 adv7842_check_dv_timings, NULL); 1518 timings->bt.flags |= V4L2_DV_FL_CAN_DETECT_REDUCED_FPS; 1519 } 1520 1521 static int adv7842_query_dv_timings(struct v4l2_subdev *sd, 1522 struct v4l2_dv_timings *timings) 1523 { 1524 struct adv7842_state *state = to_state(sd); 1525 struct v4l2_bt_timings *bt = &timings->bt; 1526 struct stdi_readback stdi = { 0 }; 1527 1528 v4l2_dbg(1, debug, sd, "%s:\n", __func__); 1529 1530 memset(timings, 0, sizeof(struct v4l2_dv_timings)); 1531 1532 /* SDP block */ 1533 if (state->mode == ADV7842_MODE_SDP) 1534 return -ENODATA; 1535 1536 /* read STDI */ 1537 if (read_stdi(sd, &stdi)) { 1538 state->restart_stdi_once = true; 1539 v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__); 1540 return -ENOLINK; 1541 } 1542 bt->interlaced = stdi.interlaced ? 1543 V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE; 1544 bt->standards = V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | 1545 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT; 1546 1547 if (is_digital_input(sd)) { 1548 u32 freq; 1549 1550 timings->type = V4L2_DV_BT_656_1120; 1551 1552 bt->width = (hdmi_read(sd, 0x07) & 0x0f) * 256 + hdmi_read(sd, 0x08); 1553 bt->height = (hdmi_read(sd, 0x09) & 0x0f) * 256 + hdmi_read(sd, 0x0a); 1554 freq = ((hdmi_read(sd, 0x51) << 1) + (hdmi_read(sd, 0x52) >> 7)) * 1000000; 1555 freq += ((hdmi_read(sd, 0x52) & 0x7f) * 7813); 1556 if (is_hdmi(sd)) { 1557 /* adjust for deep color mode */ 1558 freq = freq * 8 / (((hdmi_read(sd, 0x0b) & 0xc0) >> 6) * 2 + 8); 1559 } 1560 bt->pixelclock = freq; 1561 bt->hfrontporch = (hdmi_read(sd, 0x20) & 0x03) * 256 + 1562 hdmi_read(sd, 0x21); 1563 bt->hsync = (hdmi_read(sd, 0x22) & 0x03) * 256 + 1564 hdmi_read(sd, 0x23); 1565 bt->hbackporch = (hdmi_read(sd, 0x24) & 0x03) * 256 + 1566 hdmi_read(sd, 0x25); 1567 bt->vfrontporch = ((hdmi_read(sd, 0x2a) & 0x1f) * 256 + 1568 hdmi_read(sd, 0x2b)) / 2; 1569 bt->vsync = ((hdmi_read(sd, 0x2e) & 0x1f) * 256 + 1570 hdmi_read(sd, 0x2f)) / 2; 1571 bt->vbackporch = ((hdmi_read(sd, 0x32) & 0x1f) * 256 + 1572 hdmi_read(sd, 0x33)) / 2; 1573 bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) | 1574 ((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0); 1575 if (bt->interlaced == V4L2_DV_INTERLACED) { 1576 bt->height += (hdmi_read(sd, 0x0b) & 0x0f) * 256 + 1577 hdmi_read(sd, 0x0c); 1578 bt->il_vfrontporch = ((hdmi_read(sd, 0x2c) & 0x1f) * 256 + 1579 hdmi_read(sd, 0x2d)) / 2; 1580 bt->il_vsync = ((hdmi_read(sd, 0x30) & 0x1f) * 256 + 1581 hdmi_read(sd, 0x31)) / 2; 1582 bt->il_vbackporch = ((hdmi_read(sd, 0x34) & 0x1f) * 256 + 1583 hdmi_read(sd, 0x35)) / 2; 1584 } else { 1585 bt->il_vfrontporch = 0; 1586 bt->il_vsync = 0; 1587 bt->il_vbackporch = 0; 1588 } 1589 adv7842_fill_optional_dv_timings_fields(sd, timings); 1590 if ((timings->bt.flags & V4L2_DV_FL_CAN_REDUCE_FPS) && 1591 freq < bt->pixelclock) { 1592 u32 reduced_freq = ((u32)bt->pixelclock / 1001) * 1000; 1593 u32 delta_freq = abs(freq - reduced_freq); 1594 1595 if (delta_freq < ((u32)bt->pixelclock - reduced_freq) / 2) 1596 timings->bt.flags |= V4L2_DV_FL_REDUCED_FPS; 1597 } 1598 } else { 1599 /* find format 1600 * Since LCVS values are inaccurate [REF_03, p. 339-340], 1601 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails. 1602 */ 1603 if (!stdi2dv_timings(sd, &stdi, timings)) 1604 goto found; 1605 stdi.lcvs += 1; 1606 v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs); 1607 if (!stdi2dv_timings(sd, &stdi, timings)) 1608 goto found; 1609 stdi.lcvs -= 2; 1610 v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs); 1611 if (stdi2dv_timings(sd, &stdi, timings)) { 1612 /* 1613 * The STDI block may measure wrong values, especially 1614 * for lcvs and lcf. If the driver can not find any 1615 * valid timing, the STDI block is restarted to measure 1616 * the video timings again. The function will return an 1617 * error, but the restart of STDI will generate a new 1618 * STDI interrupt and the format detection process will 1619 * restart. 1620 */ 1621 if (state->restart_stdi_once) { 1622 v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__); 1623 /* TODO restart STDI for Sync Channel 2 */ 1624 /* enter one-shot mode */ 1625 cp_write_and_or(sd, 0x86, 0xf9, 0x00); 1626 /* trigger STDI restart */ 1627 cp_write_and_or(sd, 0x86, 0xf9, 0x04); 1628 /* reset to continuous mode */ 1629 cp_write_and_or(sd, 0x86, 0xf9, 0x02); 1630 state->restart_stdi_once = false; 1631 return -ENOLINK; 1632 } 1633 v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__); 1634 return -ERANGE; 1635 } 1636 state->restart_stdi_once = true; 1637 } 1638 found: 1639 1640 if (debug > 1) 1641 v4l2_print_dv_timings(sd->name, "adv7842_query_dv_timings:", 1642 timings, true); 1643 return 0; 1644 } 1645 1646 static int adv7842_s_dv_timings(struct v4l2_subdev *sd, 1647 struct v4l2_dv_timings *timings) 1648 { 1649 struct adv7842_state *state = to_state(sd); 1650 struct v4l2_bt_timings *bt; 1651 int err; 1652 1653 v4l2_dbg(1, debug, sd, "%s:\n", __func__); 1654 1655 if (state->mode == ADV7842_MODE_SDP) 1656 return -ENODATA; 1657 1658 if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) { 1659 v4l2_dbg(1, debug, sd, "%s: no change\n", __func__); 1660 return 0; 1661 } 1662 1663 bt = &timings->bt; 1664 1665 if (!v4l2_valid_dv_timings(timings, adv7842_get_dv_timings_cap(sd), 1666 adv7842_check_dv_timings, NULL)) 1667 return -ERANGE; 1668 1669 adv7842_fill_optional_dv_timings_fields(sd, timings); 1670 1671 state->timings = *timings; 1672 1673 cp_write(sd, 0x91, bt->interlaced ? 0x40 : 0x00); 1674 1675 /* Use prim_mode and vid_std when available */ 1676 err = configure_predefined_video_timings(sd, timings); 1677 if (err) { 1678 /* custom settings when the video format 1679 does not have prim_mode/vid_std */ 1680 configure_custom_video_timings(sd, bt); 1681 } 1682 1683 set_rgb_quantization_range(sd); 1684 1685 1686 if (debug > 1) 1687 v4l2_print_dv_timings(sd->name, "adv7842_s_dv_timings: ", 1688 timings, true); 1689 return 0; 1690 } 1691 1692 static int adv7842_g_dv_timings(struct v4l2_subdev *sd, 1693 struct v4l2_dv_timings *timings) 1694 { 1695 struct adv7842_state *state = to_state(sd); 1696 1697 if (state->mode == ADV7842_MODE_SDP) 1698 return -ENODATA; 1699 *timings = state->timings; 1700 return 0; 1701 } 1702 1703 static void enable_input(struct v4l2_subdev *sd) 1704 { 1705 struct adv7842_state *state = to_state(sd); 1706 1707 set_rgb_quantization_range(sd); 1708 switch (state->mode) { 1709 case ADV7842_MODE_SDP: 1710 case ADV7842_MODE_COMP: 1711 case ADV7842_MODE_RGB: 1712 io_write(sd, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */ 1713 break; 1714 case ADV7842_MODE_HDMI: 1715 hdmi_write(sd, 0x01, 0x00); /* Enable HDMI clock terminators */ 1716 io_write(sd, 0x15, 0xa0); /* Disable Tristate of Pins */ 1717 hdmi_write_and_or(sd, 0x1a, 0xef, 0x00); /* Unmute audio */ 1718 break; 1719 default: 1720 v4l2_dbg(2, debug, sd, "%s: Unknown mode %d\n", 1721 __func__, state->mode); 1722 break; 1723 } 1724 } 1725 1726 static void disable_input(struct v4l2_subdev *sd) 1727 { 1728 hdmi_write_and_or(sd, 0x1a, 0xef, 0x10); /* Mute audio [REF_01, c. 2.2.2] */ 1729 msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 8.29] */ 1730 io_write(sd, 0x15, 0xbe); /* Tristate all outputs from video core */ 1731 hdmi_write(sd, 0x01, 0x78); /* Disable HDMI clock terminators */ 1732 } 1733 1734 static void sdp_csc_coeff(struct v4l2_subdev *sd, 1735 const struct adv7842_sdp_csc_coeff *c) 1736 { 1737 /* csc auto/manual */ 1738 sdp_io_write_and_or(sd, 0xe0, 0xbf, c->manual ? 0x00 : 0x40); 1739 1740 if (!c->manual) 1741 return; 1742 1743 /* csc scaling */ 1744 sdp_io_write_and_or(sd, 0xe0, 0x7f, c->scaling == 2 ? 0x80 : 0x00); 1745 1746 /* A coeff */ 1747 sdp_io_write_and_or(sd, 0xe0, 0xe0, c->A1 >> 8); 1748 sdp_io_write(sd, 0xe1, c->A1); 1749 sdp_io_write_and_or(sd, 0xe2, 0xe0, c->A2 >> 8); 1750 sdp_io_write(sd, 0xe3, c->A2); 1751 sdp_io_write_and_or(sd, 0xe4, 0xe0, c->A3 >> 8); 1752 sdp_io_write(sd, 0xe5, c->A3); 1753 1754 /* A scale */ 1755 sdp_io_write_and_or(sd, 0xe6, 0x80, c->A4 >> 8); 1756 sdp_io_write(sd, 0xe7, c->A4); 1757 1758 /* B coeff */ 1759 sdp_io_write_and_or(sd, 0xe8, 0xe0, c->B1 >> 8); 1760 sdp_io_write(sd, 0xe9, c->B1); 1761 sdp_io_write_and_or(sd, 0xea, 0xe0, c->B2 >> 8); 1762 sdp_io_write(sd, 0xeb, c->B2); 1763 sdp_io_write_and_or(sd, 0xec, 0xe0, c->B3 >> 8); 1764 sdp_io_write(sd, 0xed, c->B3); 1765 1766 /* B scale */ 1767 sdp_io_write_and_or(sd, 0xee, 0x80, c->B4 >> 8); 1768 sdp_io_write(sd, 0xef, c->B4); 1769 1770 /* C coeff */ 1771 sdp_io_write_and_or(sd, 0xf0, 0xe0, c->C1 >> 8); 1772 sdp_io_write(sd, 0xf1, c->C1); 1773 sdp_io_write_and_or(sd, 0xf2, 0xe0, c->C2 >> 8); 1774 sdp_io_write(sd, 0xf3, c->C2); 1775 sdp_io_write_and_or(sd, 0xf4, 0xe0, c->C3 >> 8); 1776 sdp_io_write(sd, 0xf5, c->C3); 1777 1778 /* C scale */ 1779 sdp_io_write_and_or(sd, 0xf6, 0x80, c->C4 >> 8); 1780 sdp_io_write(sd, 0xf7, c->C4); 1781 } 1782 1783 static void select_input(struct v4l2_subdev *sd, 1784 enum adv7842_vid_std_select vid_std_select) 1785 { 1786 struct adv7842_state *state = to_state(sd); 1787 1788 switch (state->mode) { 1789 case ADV7842_MODE_SDP: 1790 io_write(sd, 0x00, vid_std_select); /* video std: CVBS or YC mode */ 1791 io_write(sd, 0x01, 0); /* prim mode */ 1792 /* enable embedded syncs for auto graphics mode */ 1793 cp_write_and_or(sd, 0x81, 0xef, 0x10); 1794 1795 afe_write(sd, 0x00, 0x00); /* power up ADC */ 1796 afe_write(sd, 0xc8, 0x00); /* phase control */ 1797 1798 io_write(sd, 0xdd, 0x90); /* Manual 2x output clock */ 1799 /* script says register 0xde, which don't exist in manual */ 1800 1801 /* Manual analog input muxing mode, CVBS (6.4)*/ 1802 afe_write_and_or(sd, 0x02, 0x7f, 0x80); 1803 if (vid_std_select == ADV7842_SDP_VID_STD_CVBS_SD_4x1) { 1804 afe_write(sd, 0x03, 0xa0); /* ADC0 to AIN10 (CVBS), ADC1 N/C*/ 1805 afe_write(sd, 0x04, 0x00); /* ADC2 N/C,ADC3 N/C*/ 1806 } else { 1807 afe_write(sd, 0x03, 0xa0); /* ADC0 to AIN10 (CVBS), ADC1 N/C*/ 1808 afe_write(sd, 0x04, 0xc0); /* ADC2 to AIN12, ADC3 N/C*/ 1809 } 1810 afe_write(sd, 0x0c, 0x1f); /* ADI recommend write */ 1811 afe_write(sd, 0x12, 0x63); /* ADI recommend write */ 1812 1813 sdp_io_write(sd, 0xb2, 0x60); /* Disable AV codes */ 1814 sdp_io_write(sd, 0xc8, 0xe3); /* Disable Ancillary data */ 1815 1816 /* SDP recommended settings */ 1817 sdp_write(sd, 0x00, 0x3F); /* Autodetect PAL NTSC (not SECAM) */ 1818 sdp_write(sd, 0x01, 0x00); /* Pedestal Off */ 1819 1820 sdp_write(sd, 0x03, 0xE4); /* Manual VCR Gain Luma 0x40B */ 1821 sdp_write(sd, 0x04, 0x0B); /* Manual Luma setting */ 1822 sdp_write(sd, 0x05, 0xC3); /* Manual Chroma setting 0x3FE */ 1823 sdp_write(sd, 0x06, 0xFE); /* Manual Chroma setting */ 1824 sdp_write(sd, 0x12, 0x0D); /* Frame TBC,I_P, 3D comb enabled */ 1825 sdp_write(sd, 0xA7, 0x00); /* ADI Recommended Write */ 1826 sdp_io_write(sd, 0xB0, 0x00); /* Disable H and v blanking */ 1827 1828 /* deinterlacer enabled and 3D comb */ 1829 sdp_write_and_or(sd, 0x12, 0xf6, 0x09); 1830 1831 break; 1832 1833 case ADV7842_MODE_COMP: 1834 case ADV7842_MODE_RGB: 1835 /* Automatic analog input muxing mode */ 1836 afe_write_and_or(sd, 0x02, 0x7f, 0x00); 1837 /* set mode and select free run resolution */ 1838 io_write(sd, 0x00, vid_std_select); /* video std */ 1839 io_write(sd, 0x01, 0x02); /* prim mode */ 1840 cp_write_and_or(sd, 0x81, 0xef, 0x10); /* enable embedded syncs 1841 for auto graphics mode */ 1842 1843 afe_write(sd, 0x00, 0x00); /* power up ADC */ 1844 afe_write(sd, 0xc8, 0x00); /* phase control */ 1845 if (state->mode == ADV7842_MODE_COMP) { 1846 /* force to YCrCb */ 1847 io_write_and_or(sd, 0x02, 0x0f, 0x60); 1848 } else { 1849 /* force to RGB */ 1850 io_write_and_or(sd, 0x02, 0x0f, 0x10); 1851 } 1852 1853 /* set ADI recommended settings for digitizer */ 1854 /* "ADV7842 Register Settings Recommendations 1855 * (rev. 1.8, November 2010)" p. 9. */ 1856 afe_write(sd, 0x0c, 0x1f); /* ADC Range improvement */ 1857 afe_write(sd, 0x12, 0x63); /* ADC Range improvement */ 1858 1859 /* set to default gain for RGB */ 1860 cp_write(sd, 0x73, 0x10); 1861 cp_write(sd, 0x74, 0x04); 1862 cp_write(sd, 0x75, 0x01); 1863 cp_write(sd, 0x76, 0x00); 1864 1865 cp_write(sd, 0x3e, 0x04); /* CP core pre-gain control */ 1866 cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */ 1867 cp_write(sd, 0x40, 0x5c); /* CP core pre-gain control. Graphics mode */ 1868 break; 1869 1870 case ADV7842_MODE_HDMI: 1871 /* Automatic analog input muxing mode */ 1872 afe_write_and_or(sd, 0x02, 0x7f, 0x00); 1873 /* set mode and select free run resolution */ 1874 if (state->hdmi_port_a) 1875 hdmi_write(sd, 0x00, 0x02); /* select port A */ 1876 else 1877 hdmi_write(sd, 0x00, 0x03); /* select port B */ 1878 io_write(sd, 0x00, vid_std_select); /* video std */ 1879 io_write(sd, 0x01, 5); /* prim mode */ 1880 cp_write_and_or(sd, 0x81, 0xef, 0x00); /* disable embedded syncs 1881 for auto graphics mode */ 1882 1883 /* set ADI recommended settings for HDMI: */ 1884 /* "ADV7842 Register Settings Recommendations 1885 * (rev. 1.8, November 2010)" p. 3. */ 1886 hdmi_write(sd, 0xc0, 0x00); 1887 hdmi_write(sd, 0x0d, 0x34); /* ADI recommended write */ 1888 hdmi_write(sd, 0x3d, 0x10); /* ADI recommended write */ 1889 hdmi_write(sd, 0x44, 0x85); /* TMDS PLL optimization */ 1890 hdmi_write(sd, 0x46, 0x1f); /* ADI recommended write */ 1891 hdmi_write(sd, 0x57, 0xb6); /* TMDS PLL optimization */ 1892 hdmi_write(sd, 0x58, 0x03); /* TMDS PLL optimization */ 1893 hdmi_write(sd, 0x60, 0x88); /* TMDS PLL optimization */ 1894 hdmi_write(sd, 0x61, 0x88); /* TMDS PLL optimization */ 1895 hdmi_write(sd, 0x6c, 0x18); /* Disable ISRC clearing bit, 1896 Improve robustness */ 1897 hdmi_write(sd, 0x75, 0x10); /* DDC drive strength */ 1898 hdmi_write(sd, 0x85, 0x1f); /* equaliser */ 1899 hdmi_write(sd, 0x87, 0x70); /* ADI recommended write */ 1900 hdmi_write(sd, 0x89, 0x04); /* equaliser */ 1901 hdmi_write(sd, 0x8a, 0x1e); /* equaliser */ 1902 hdmi_write(sd, 0x93, 0x04); /* equaliser */ 1903 hdmi_write(sd, 0x94, 0x1e); /* equaliser */ 1904 hdmi_write(sd, 0x99, 0xa1); /* ADI recommended write */ 1905 hdmi_write(sd, 0x9b, 0x09); /* ADI recommended write */ 1906 hdmi_write(sd, 0x9d, 0x02); /* equaliser */ 1907 1908 afe_write(sd, 0x00, 0xff); /* power down ADC */ 1909 afe_write(sd, 0xc8, 0x40); /* phase control */ 1910 1911 /* set to default gain for HDMI */ 1912 cp_write(sd, 0x73, 0x10); 1913 cp_write(sd, 0x74, 0x04); 1914 cp_write(sd, 0x75, 0x01); 1915 cp_write(sd, 0x76, 0x00); 1916 1917 /* reset ADI recommended settings for digitizer */ 1918 /* "ADV7842 Register Settings Recommendations 1919 * (rev. 2.5, June 2010)" p. 17. */ 1920 afe_write(sd, 0x12, 0xfb); /* ADC noise shaping filter controls */ 1921 afe_write(sd, 0x0c, 0x0d); /* CP core gain controls */ 1922 cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */ 1923 1924 /* CP coast control */ 1925 cp_write(sd, 0xc3, 0x33); /* Component mode */ 1926 1927 /* color space conversion, autodetect color space */ 1928 io_write_and_or(sd, 0x02, 0x0f, 0xf0); 1929 break; 1930 1931 default: 1932 v4l2_dbg(2, debug, sd, "%s: Unknown mode %d\n", 1933 __func__, state->mode); 1934 break; 1935 } 1936 } 1937 1938 static int adv7842_s_routing(struct v4l2_subdev *sd, 1939 u32 input, u32 output, u32 config) 1940 { 1941 struct adv7842_state *state = to_state(sd); 1942 1943 v4l2_dbg(2, debug, sd, "%s: input %d\n", __func__, input); 1944 1945 switch (input) { 1946 case ADV7842_SELECT_HDMI_PORT_A: 1947 state->mode = ADV7842_MODE_HDMI; 1948 state->vid_std_select = ADV7842_HDMI_COMP_VID_STD_HD_1250P; 1949 state->hdmi_port_a = true; 1950 break; 1951 case ADV7842_SELECT_HDMI_PORT_B: 1952 state->mode = ADV7842_MODE_HDMI; 1953 state->vid_std_select = ADV7842_HDMI_COMP_VID_STD_HD_1250P; 1954 state->hdmi_port_a = false; 1955 break; 1956 case ADV7842_SELECT_VGA_COMP: 1957 state->mode = ADV7842_MODE_COMP; 1958 state->vid_std_select = ADV7842_RGB_VID_STD_AUTO_GRAPH_MODE; 1959 break; 1960 case ADV7842_SELECT_VGA_RGB: 1961 state->mode = ADV7842_MODE_RGB; 1962 state->vid_std_select = ADV7842_RGB_VID_STD_AUTO_GRAPH_MODE; 1963 break; 1964 case ADV7842_SELECT_SDP_CVBS: 1965 state->mode = ADV7842_MODE_SDP; 1966 state->vid_std_select = ADV7842_SDP_VID_STD_CVBS_SD_4x1; 1967 break; 1968 case ADV7842_SELECT_SDP_YC: 1969 state->mode = ADV7842_MODE_SDP; 1970 state->vid_std_select = ADV7842_SDP_VID_STD_YC_SD4_x1; 1971 break; 1972 default: 1973 return -EINVAL; 1974 } 1975 1976 disable_input(sd); 1977 select_input(sd, state->vid_std_select); 1978 enable_input(sd); 1979 1980 v4l2_subdev_notify_event(sd, &adv7842_ev_fmt); 1981 1982 return 0; 1983 } 1984 1985 static int adv7842_enum_mbus_code(struct v4l2_subdev *sd, 1986 struct v4l2_subdev_state *sd_state, 1987 struct v4l2_subdev_mbus_code_enum *code) 1988 { 1989 if (code->index >= ARRAY_SIZE(adv7842_formats)) 1990 return -EINVAL; 1991 code->code = adv7842_formats[code->index].code; 1992 return 0; 1993 } 1994 1995 static void adv7842_fill_format(struct adv7842_state *state, 1996 struct v4l2_mbus_framefmt *format) 1997 { 1998 memset(format, 0, sizeof(*format)); 1999 2000 format->width = state->timings.bt.width; 2001 format->height = state->timings.bt.height; 2002 format->field = V4L2_FIELD_NONE; 2003 format->colorspace = V4L2_COLORSPACE_SRGB; 2004 2005 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) 2006 format->colorspace = (state->timings.bt.height <= 576) ? 2007 V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709; 2008 } 2009 2010 /* 2011 * Compute the op_ch_sel value required to obtain on the bus the component order 2012 * corresponding to the selected format taking into account bus reordering 2013 * applied by the board at the output of the device. 2014 * 2015 * The following table gives the op_ch_value from the format component order 2016 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as 2017 * adv7842_bus_order value in row). 2018 * 2019 * | GBR(0) GRB(1) BGR(2) RGB(3) BRG(4) RBG(5) 2020 * ----------+------------------------------------------------- 2021 * RGB (NOP) | GBR GRB BGR RGB BRG RBG 2022 * GRB (1-2) | BGR RGB GBR GRB RBG BRG 2023 * RBG (2-3) | GRB GBR BRG RBG BGR RGB 2024 * BGR (1-3) | RBG BRG RGB BGR GRB GBR 2025 * BRG (ROR) | BRG RBG GRB GBR RGB BGR 2026 * GBR (ROL) | RGB BGR RBG BRG GBR GRB 2027 */ 2028 static unsigned int adv7842_op_ch_sel(struct adv7842_state *state) 2029 { 2030 #define _SEL(a, b, c, d, e, f) { \ 2031 ADV7842_OP_CH_SEL_##a, ADV7842_OP_CH_SEL_##b, ADV7842_OP_CH_SEL_##c, \ 2032 ADV7842_OP_CH_SEL_##d, ADV7842_OP_CH_SEL_##e, ADV7842_OP_CH_SEL_##f } 2033 #define _BUS(x) [ADV7842_BUS_ORDER_##x] 2034 2035 static const unsigned int op_ch_sel[6][6] = { 2036 _BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG), 2037 _BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG), 2038 _BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB), 2039 _BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR), 2040 _BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR), 2041 _BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB), 2042 }; 2043 2044 return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5]; 2045 } 2046 2047 static void adv7842_setup_format(struct adv7842_state *state) 2048 { 2049 struct v4l2_subdev *sd = &state->sd; 2050 2051 io_write_clr_set(sd, 0x02, 0x02, 2052 state->format->rgb_out ? ADV7842_RGB_OUT : 0); 2053 io_write(sd, 0x03, state->format->op_format_sel | 2054 state->pdata.op_format_mode_sel); 2055 io_write_clr_set(sd, 0x04, 0xe0, adv7842_op_ch_sel(state)); 2056 io_write_clr_set(sd, 0x05, 0x01, 2057 state->format->swap_cb_cr ? ADV7842_OP_SWAP_CB_CR : 0); 2058 set_rgb_quantization_range(sd); 2059 } 2060 2061 static int adv7842_get_format(struct v4l2_subdev *sd, 2062 struct v4l2_subdev_state *sd_state, 2063 struct v4l2_subdev_format *format) 2064 { 2065 struct adv7842_state *state = to_state(sd); 2066 2067 if (format->pad != ADV7842_PAD_SOURCE) 2068 return -EINVAL; 2069 2070 if (state->mode == ADV7842_MODE_SDP) { 2071 /* SPD block */ 2072 if (!(sdp_read(sd, 0x5a) & 0x01)) 2073 return -EINVAL; 2074 format->format.code = MEDIA_BUS_FMT_YUYV8_2X8; 2075 format->format.width = 720; 2076 /* valid signal */ 2077 if (state->norm & V4L2_STD_525_60) 2078 format->format.height = 480; 2079 else 2080 format->format.height = 576; 2081 format->format.colorspace = V4L2_COLORSPACE_SMPTE170M; 2082 return 0; 2083 } 2084 2085 adv7842_fill_format(state, &format->format); 2086 2087 if (format->which == V4L2_SUBDEV_FORMAT_TRY) { 2088 struct v4l2_mbus_framefmt *fmt; 2089 2090 fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad); 2091 format->format.code = fmt->code; 2092 } else { 2093 format->format.code = state->format->code; 2094 } 2095 2096 return 0; 2097 } 2098 2099 static int adv7842_set_format(struct v4l2_subdev *sd, 2100 struct v4l2_subdev_state *sd_state, 2101 struct v4l2_subdev_format *format) 2102 { 2103 struct adv7842_state *state = to_state(sd); 2104 const struct adv7842_format_info *info; 2105 2106 if (format->pad != ADV7842_PAD_SOURCE) 2107 return -EINVAL; 2108 2109 if (state->mode == ADV7842_MODE_SDP) 2110 return adv7842_get_format(sd, sd_state, format); 2111 2112 info = adv7842_format_info(state, format->format.code); 2113 if (info == NULL) 2114 info = adv7842_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8); 2115 2116 adv7842_fill_format(state, &format->format); 2117 format->format.code = info->code; 2118 2119 if (format->which == V4L2_SUBDEV_FORMAT_TRY) { 2120 struct v4l2_mbus_framefmt *fmt; 2121 2122 fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad); 2123 fmt->code = format->format.code; 2124 } else { 2125 state->format = info; 2126 adv7842_setup_format(state); 2127 } 2128 2129 return 0; 2130 } 2131 2132 static void adv7842_irq_enable(struct v4l2_subdev *sd, bool enable) 2133 { 2134 if (enable) { 2135 /* Enable SSPD, STDI and CP locked/unlocked interrupts */ 2136 io_write(sd, 0x46, 0x9c); 2137 /* ESDP_50HZ_DET interrupt */ 2138 io_write(sd, 0x5a, 0x10); 2139 /* Enable CABLE_DET_A/B_ST (+5v) interrupt */ 2140 io_write(sd, 0x73, 0x03); 2141 /* Enable V_LOCKED and DE_REGEN_LCK interrupts */ 2142 io_write(sd, 0x78, 0x03); 2143 /* Enable SDP Standard Detection Change and SDP Video Detected */ 2144 io_write(sd, 0xa0, 0x09); 2145 /* Enable HDMI_MODE interrupt */ 2146 io_write(sd, 0x69, 0x08); 2147 } else { 2148 io_write(sd, 0x46, 0x0); 2149 io_write(sd, 0x5a, 0x0); 2150 io_write(sd, 0x73, 0x0); 2151 io_write(sd, 0x78, 0x0); 2152 io_write(sd, 0xa0, 0x0); 2153 io_write(sd, 0x69, 0x0); 2154 } 2155 } 2156 2157 #if IS_ENABLED(CONFIG_VIDEO_ADV7842_CEC) 2158 static void adv7842_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status) 2159 { 2160 struct adv7842_state *state = to_state(sd); 2161 2162 if ((cec_read(sd, 0x11) & 0x01) == 0) { 2163 v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__); 2164 return; 2165 } 2166 2167 if (tx_raw_status & 0x02) { 2168 v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n", 2169 __func__); 2170 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST, 2171 1, 0, 0, 0); 2172 return; 2173 } 2174 if (tx_raw_status & 0x04) { 2175 u8 status; 2176 u8 nack_cnt; 2177 u8 low_drive_cnt; 2178 2179 v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__); 2180 /* 2181 * We set this status bit since this hardware performs 2182 * retransmissions. 2183 */ 2184 status = CEC_TX_STATUS_MAX_RETRIES; 2185 nack_cnt = cec_read(sd, 0x14) & 0xf; 2186 if (nack_cnt) 2187 status |= CEC_TX_STATUS_NACK; 2188 low_drive_cnt = cec_read(sd, 0x14) >> 4; 2189 if (low_drive_cnt) 2190 status |= CEC_TX_STATUS_LOW_DRIVE; 2191 cec_transmit_done(state->cec_adap, status, 2192 0, nack_cnt, low_drive_cnt, 0); 2193 return; 2194 } 2195 if (tx_raw_status & 0x01) { 2196 v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__); 2197 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0); 2198 return; 2199 } 2200 } 2201 2202 static void adv7842_cec_isr(struct v4l2_subdev *sd, bool *handled) 2203 { 2204 u8 cec_irq; 2205 2206 /* cec controller */ 2207 cec_irq = io_read(sd, 0x93) & 0x0f; 2208 if (!cec_irq) 2209 return; 2210 2211 v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq); 2212 adv7842_cec_tx_raw_status(sd, cec_irq); 2213 if (cec_irq & 0x08) { 2214 struct adv7842_state *state = to_state(sd); 2215 struct cec_msg msg; 2216 2217 msg.len = cec_read(sd, 0x25) & 0x1f; 2218 if (msg.len > CEC_MAX_MSG_SIZE) 2219 msg.len = CEC_MAX_MSG_SIZE; 2220 2221 if (msg.len) { 2222 u8 i; 2223 2224 for (i = 0; i < msg.len; i++) 2225 msg.msg[i] = cec_read(sd, i + 0x15); 2226 cec_write(sd, 0x26, 0x01); /* re-enable rx */ 2227 cec_received_msg(state->cec_adap, &msg); 2228 } 2229 } 2230 2231 io_write(sd, 0x94, cec_irq); 2232 2233 if (handled) 2234 *handled = true; 2235 } 2236 2237 static int adv7842_cec_adap_enable(struct cec_adapter *adap, bool enable) 2238 { 2239 struct adv7842_state *state = cec_get_drvdata(adap); 2240 struct v4l2_subdev *sd = &state->sd; 2241 2242 if (!state->cec_enabled_adap && enable) { 2243 cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */ 2244 cec_write(sd, 0x2c, 0x01); /* cec soft reset */ 2245 cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */ 2246 /* enabled irqs: */ 2247 /* tx: ready */ 2248 /* tx: arbitration lost */ 2249 /* tx: retry timeout */ 2250 /* rx: ready */ 2251 io_write_clr_set(sd, 0x96, 0x0f, 0x0f); 2252 cec_write(sd, 0x26, 0x01); /* enable rx */ 2253 } else if (state->cec_enabled_adap && !enable) { 2254 /* disable cec interrupts */ 2255 io_write_clr_set(sd, 0x96, 0x0f, 0x00); 2256 /* disable address mask 1-3 */ 2257 cec_write_clr_set(sd, 0x27, 0x70, 0x00); 2258 /* power down cec section */ 2259 cec_write_clr_set(sd, 0x2a, 0x01, 0x00); 2260 state->cec_valid_addrs = 0; 2261 } 2262 state->cec_enabled_adap = enable; 2263 return 0; 2264 } 2265 2266 static int adv7842_cec_adap_log_addr(struct cec_adapter *adap, u8 addr) 2267 { 2268 struct adv7842_state *state = cec_get_drvdata(adap); 2269 struct v4l2_subdev *sd = &state->sd; 2270 unsigned int i, free_idx = ADV7842_MAX_ADDRS; 2271 2272 if (!state->cec_enabled_adap) 2273 return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO; 2274 2275 if (addr == CEC_LOG_ADDR_INVALID) { 2276 cec_write_clr_set(sd, 0x27, 0x70, 0); 2277 state->cec_valid_addrs = 0; 2278 return 0; 2279 } 2280 2281 for (i = 0; i < ADV7842_MAX_ADDRS; i++) { 2282 bool is_valid = state->cec_valid_addrs & (1 << i); 2283 2284 if (free_idx == ADV7842_MAX_ADDRS && !is_valid) 2285 free_idx = i; 2286 if (is_valid && state->cec_addr[i] == addr) 2287 return 0; 2288 } 2289 if (i == ADV7842_MAX_ADDRS) { 2290 i = free_idx; 2291 if (i == ADV7842_MAX_ADDRS) 2292 return -ENXIO; 2293 } 2294 state->cec_addr[i] = addr; 2295 state->cec_valid_addrs |= 1 << i; 2296 2297 switch (i) { 2298 case 0: 2299 /* enable address mask 0 */ 2300 cec_write_clr_set(sd, 0x27, 0x10, 0x10); 2301 /* set address for mask 0 */ 2302 cec_write_clr_set(sd, 0x28, 0x0f, addr); 2303 break; 2304 case 1: 2305 /* enable address mask 1 */ 2306 cec_write_clr_set(sd, 0x27, 0x20, 0x20); 2307 /* set address for mask 1 */ 2308 cec_write_clr_set(sd, 0x28, 0xf0, addr << 4); 2309 break; 2310 case 2: 2311 /* enable address mask 2 */ 2312 cec_write_clr_set(sd, 0x27, 0x40, 0x40); 2313 /* set address for mask 1 */ 2314 cec_write_clr_set(sd, 0x29, 0x0f, addr); 2315 break; 2316 } 2317 return 0; 2318 } 2319 2320 static int adv7842_cec_adap_transmit(struct cec_adapter *adap, u8 attempts, 2321 u32 signal_free_time, struct cec_msg *msg) 2322 { 2323 struct adv7842_state *state = cec_get_drvdata(adap); 2324 struct v4l2_subdev *sd = &state->sd; 2325 u8 len = msg->len; 2326 unsigned int i; 2327 2328 /* 2329 * The number of retries is the number of attempts - 1, but retry 2330 * at least once. It's not clear if a value of 0 is allowed, so 2331 * let's do at least one retry. 2332 */ 2333 cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4); 2334 2335 if (len > 16) { 2336 v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len); 2337 return -EINVAL; 2338 } 2339 2340 /* write data */ 2341 for (i = 0; i < len; i++) 2342 cec_write(sd, i, msg->msg[i]); 2343 2344 /* set length (data + header) */ 2345 cec_write(sd, 0x10, len); 2346 /* start transmit, enable tx */ 2347 cec_write(sd, 0x11, 0x01); 2348 return 0; 2349 } 2350 2351 static const struct cec_adap_ops adv7842_cec_adap_ops = { 2352 .adap_enable = adv7842_cec_adap_enable, 2353 .adap_log_addr = adv7842_cec_adap_log_addr, 2354 .adap_transmit = adv7842_cec_adap_transmit, 2355 }; 2356 #endif 2357 2358 static int adv7842_isr(struct v4l2_subdev *sd, u32 status, bool *handled) 2359 { 2360 struct adv7842_state *state = to_state(sd); 2361 u8 fmt_change_cp, fmt_change_digital, fmt_change_sdp; 2362 u8 irq_status[6]; 2363 2364 adv7842_irq_enable(sd, false); 2365 2366 /* read status */ 2367 irq_status[0] = io_read(sd, 0x43); 2368 irq_status[1] = io_read(sd, 0x57); 2369 irq_status[2] = io_read(sd, 0x70); 2370 irq_status[3] = io_read(sd, 0x75); 2371 irq_status[4] = io_read(sd, 0x9d); 2372 irq_status[5] = io_read(sd, 0x66); 2373 2374 /* and clear */ 2375 if (irq_status[0]) 2376 io_write(sd, 0x44, irq_status[0]); 2377 if (irq_status[1]) 2378 io_write(sd, 0x58, irq_status[1]); 2379 if (irq_status[2]) 2380 io_write(sd, 0x71, irq_status[2]); 2381 if (irq_status[3]) 2382 io_write(sd, 0x76, irq_status[3]); 2383 if (irq_status[4]) 2384 io_write(sd, 0x9e, irq_status[4]); 2385 if (irq_status[5]) 2386 io_write(sd, 0x67, irq_status[5]); 2387 2388 adv7842_irq_enable(sd, true); 2389 2390 v4l2_dbg(1, debug, sd, "%s: irq %x, %x, %x, %x, %x, %x\n", __func__, 2391 irq_status[0], irq_status[1], irq_status[2], 2392 irq_status[3], irq_status[4], irq_status[5]); 2393 2394 /* format change CP */ 2395 fmt_change_cp = irq_status[0] & 0x9c; 2396 2397 /* format change SDP */ 2398 if (state->mode == ADV7842_MODE_SDP) 2399 fmt_change_sdp = (irq_status[1] & 0x30) | (irq_status[4] & 0x09); 2400 else 2401 fmt_change_sdp = 0; 2402 2403 /* digital format CP */ 2404 if (is_digital_input(sd)) 2405 fmt_change_digital = irq_status[3] & 0x03; 2406 else 2407 fmt_change_digital = 0; 2408 2409 /* format change */ 2410 if (fmt_change_cp || fmt_change_digital || fmt_change_sdp) { 2411 v4l2_dbg(1, debug, sd, 2412 "%s: fmt_change_cp = 0x%x, fmt_change_digital = 0x%x, fmt_change_sdp = 0x%x\n", 2413 __func__, fmt_change_cp, fmt_change_digital, 2414 fmt_change_sdp); 2415 v4l2_subdev_notify_event(sd, &adv7842_ev_fmt); 2416 if (handled) 2417 *handled = true; 2418 } 2419 2420 /* HDMI/DVI mode */ 2421 if (irq_status[5] & 0x08) { 2422 v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__, 2423 (io_read(sd, 0x65) & 0x08) ? "HDMI" : "DVI"); 2424 set_rgb_quantization_range(sd); 2425 if (handled) 2426 *handled = true; 2427 } 2428 2429 #if IS_ENABLED(CONFIG_VIDEO_ADV7842_CEC) 2430 /* cec */ 2431 adv7842_cec_isr(sd, handled); 2432 #endif 2433 2434 /* tx 5v detect */ 2435 if (irq_status[2] & 0x3) { 2436 v4l2_dbg(1, debug, sd, "%s: irq tx_5v\n", __func__); 2437 adv7842_s_detect_tx_5v_ctrl(sd); 2438 if (handled) 2439 *handled = true; 2440 } 2441 return 0; 2442 } 2443 2444 static int adv7842_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid) 2445 { 2446 struct adv7842_state *state = to_state(sd); 2447 u32 blocks = 0; 2448 u8 *data = NULL; 2449 2450 memset(edid->reserved, 0, sizeof(edid->reserved)); 2451 2452 switch (edid->pad) { 2453 case ADV7842_EDID_PORT_A: 2454 case ADV7842_EDID_PORT_B: 2455 if (state->hdmi_edid.present & (0x04 << edid->pad)) { 2456 data = state->hdmi_edid.edid; 2457 blocks = state->hdmi_edid.blocks; 2458 } 2459 break; 2460 case ADV7842_EDID_PORT_VGA: 2461 if (state->vga_edid.present) { 2462 data = state->vga_edid.edid; 2463 blocks = state->vga_edid.blocks; 2464 } 2465 break; 2466 default: 2467 return -EINVAL; 2468 } 2469 2470 if (edid->start_block == 0 && edid->blocks == 0) { 2471 edid->blocks = blocks; 2472 return 0; 2473 } 2474 2475 if (!data) 2476 return -ENODATA; 2477 2478 if (edid->start_block >= blocks) 2479 return -EINVAL; 2480 2481 if (edid->start_block + edid->blocks > blocks) 2482 edid->blocks = blocks - edid->start_block; 2483 2484 memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128); 2485 2486 return 0; 2487 } 2488 2489 /* 2490 * If the VGA_EDID_ENABLE bit is set (Repeater Map 0x7f, bit 7), then 2491 * the first two blocks of the EDID are for the HDMI, and the first block 2492 * of segment 1 (i.e. the third block of the EDID) is for VGA. 2493 * So if a VGA EDID is installed, then the maximum size of the HDMI EDID 2494 * is 2 blocks. 2495 */ 2496 static int adv7842_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *e) 2497 { 2498 struct adv7842_state *state = to_state(sd); 2499 unsigned int max_blocks = e->pad == ADV7842_EDID_PORT_VGA ? 1 : 4; 2500 int err = 0; 2501 2502 memset(e->reserved, 0, sizeof(e->reserved)); 2503 2504 if (e->pad > ADV7842_EDID_PORT_VGA) 2505 return -EINVAL; 2506 if (e->start_block != 0) 2507 return -EINVAL; 2508 if (e->pad < ADV7842_EDID_PORT_VGA && state->vga_edid.blocks) 2509 max_blocks = 2; 2510 if (e->pad == ADV7842_EDID_PORT_VGA && state->hdmi_edid.blocks > 2) 2511 return -EBUSY; 2512 if (e->blocks > max_blocks) { 2513 e->blocks = max_blocks; 2514 return -E2BIG; 2515 } 2516 2517 /* todo, per edid */ 2518 if (e->blocks) 2519 state->aspect_ratio = v4l2_calc_aspect_ratio(e->edid[0x15], 2520 e->edid[0x16]); 2521 2522 switch (e->pad) { 2523 case ADV7842_EDID_PORT_VGA: 2524 memset(state->vga_edid.edid, 0, sizeof(state->vga_edid.edid)); 2525 state->vga_edid.blocks = e->blocks; 2526 state->vga_edid.present = e->blocks ? 0x1 : 0x0; 2527 if (e->blocks) 2528 memcpy(state->vga_edid.edid, e->edid, 128); 2529 err = edid_write_vga_segment(sd); 2530 break; 2531 case ADV7842_EDID_PORT_A: 2532 case ADV7842_EDID_PORT_B: 2533 memset(state->hdmi_edid.edid, 0, sizeof(state->hdmi_edid.edid)); 2534 state->hdmi_edid.blocks = e->blocks; 2535 if (e->blocks) { 2536 state->hdmi_edid.present |= 0x04 << e->pad; 2537 memcpy(state->hdmi_edid.edid, e->edid, 128 * e->blocks); 2538 } else { 2539 state->hdmi_edid.present &= ~(0x04 << e->pad); 2540 adv7842_s_detect_tx_5v_ctrl(sd); 2541 } 2542 err = edid_write_hdmi_segment(sd, e->pad); 2543 break; 2544 default: 2545 return -EINVAL; 2546 } 2547 if (err < 0) 2548 v4l2_err(sd, "error %d writing edid on port %d\n", err, e->pad); 2549 return err; 2550 } 2551 2552 struct adv7842_cfg_read_infoframe { 2553 const char *desc; 2554 u8 present_mask; 2555 u8 head_addr; 2556 u8 payload_addr; 2557 }; 2558 2559 static void log_infoframe(struct v4l2_subdev *sd, const struct adv7842_cfg_read_infoframe *cri) 2560 { 2561 int i; 2562 u8 buffer[32]; 2563 union hdmi_infoframe frame; 2564 u8 len; 2565 struct i2c_client *client = v4l2_get_subdevdata(sd); 2566 struct device *dev = &client->dev; 2567 2568 if (!(io_read(sd, 0x60) & cri->present_mask)) { 2569 v4l2_info(sd, "%s infoframe not received\n", cri->desc); 2570 return; 2571 } 2572 2573 for (i = 0; i < 3; i++) 2574 buffer[i] = infoframe_read(sd, cri->head_addr + i); 2575 2576 len = buffer[2] + 1; 2577 2578 if (len + 3 > sizeof(buffer)) { 2579 v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__, cri->desc, len); 2580 return; 2581 } 2582 2583 for (i = 0; i < len; i++) 2584 buffer[i + 3] = infoframe_read(sd, cri->payload_addr + i); 2585 2586 if (hdmi_infoframe_unpack(&frame, buffer, len + 3) < 0) { 2587 v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__, cri->desc); 2588 return; 2589 } 2590 2591 hdmi_infoframe_log(KERN_INFO, dev, &frame); 2592 } 2593 2594 static void adv7842_log_infoframes(struct v4l2_subdev *sd) 2595 { 2596 int i; 2597 static const struct adv7842_cfg_read_infoframe cri[] = { 2598 { "AVI", 0x01, 0xe0, 0x00 }, 2599 { "Audio", 0x02, 0xe3, 0x1c }, 2600 { "SDP", 0x04, 0xe6, 0x2a }, 2601 { "Vendor", 0x10, 0xec, 0x54 } 2602 }; 2603 2604 if (!(hdmi_read(sd, 0x05) & 0x80)) { 2605 v4l2_info(sd, "receive DVI-D signal, no infoframes\n"); 2606 return; 2607 } 2608 2609 for (i = 0; i < ARRAY_SIZE(cri); i++) 2610 log_infoframe(sd, &cri[i]); 2611 } 2612 2613 #if 0 2614 /* Let's keep it here for now, as it could be useful for debug */ 2615 static const char * const prim_mode_txt[] = { 2616 "SDP", 2617 "Component", 2618 "Graphics", 2619 "Reserved", 2620 "CVBS & HDMI AUDIO", 2621 "HDMI-Comp", 2622 "HDMI-GR", 2623 "Reserved", 2624 "Reserved", 2625 "Reserved", 2626 "Reserved", 2627 "Reserved", 2628 "Reserved", 2629 "Reserved", 2630 "Reserved", 2631 "Reserved", 2632 }; 2633 #endif 2634 2635 static int adv7842_sdp_log_status(struct v4l2_subdev *sd) 2636 { 2637 /* SDP (Standard definition processor) block */ 2638 u8 sdp_signal_detected = sdp_read(sd, 0x5A) & 0x01; 2639 2640 v4l2_info(sd, "Chip powered %s\n", no_power(sd) ? "off" : "on"); 2641 v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x\n", 2642 io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f); 2643 2644 v4l2_info(sd, "SDP: free run: %s\n", 2645 (sdp_read(sd, 0x56) & 0x01) ? "on" : "off"); 2646 v4l2_info(sd, "SDP: %s\n", sdp_signal_detected ? 2647 "valid SD/PR signal detected" : "invalid/no signal"); 2648 if (sdp_signal_detected) { 2649 static const char * const sdp_std_txt[] = { 2650 "NTSC-M/J", 2651 "1?", 2652 "NTSC-443", 2653 "60HzSECAM", 2654 "PAL-M", 2655 "5?", 2656 "PAL-60", 2657 "7?", "8?", "9?", "a?", "b?", 2658 "PAL-CombN", 2659 "d?", 2660 "PAL-BGHID", 2661 "SECAM" 2662 }; 2663 v4l2_info(sd, "SDP: standard %s\n", 2664 sdp_std_txt[sdp_read(sd, 0x52) & 0x0f]); 2665 v4l2_info(sd, "SDP: %s\n", 2666 (sdp_read(sd, 0x59) & 0x08) ? "50Hz" : "60Hz"); 2667 v4l2_info(sd, "SDP: %s\n", 2668 (sdp_read(sd, 0x57) & 0x08) ? "Interlaced" : "Progressive"); 2669 v4l2_info(sd, "SDP: deinterlacer %s\n", 2670 (sdp_read(sd, 0x12) & 0x08) ? "enabled" : "disabled"); 2671 v4l2_info(sd, "SDP: csc %s mode\n", 2672 (sdp_io_read(sd, 0xe0) & 0x40) ? "auto" : "manual"); 2673 } 2674 return 0; 2675 } 2676 2677 static int adv7842_cp_log_status(struct v4l2_subdev *sd) 2678 { 2679 /* CP block */ 2680 struct adv7842_state *state = to_state(sd); 2681 struct v4l2_dv_timings timings; 2682 u8 reg_io_0x02 = io_read(sd, 0x02); 2683 u8 reg_io_0x21 = io_read(sd, 0x21); 2684 u8 reg_rep_0x77 = rep_read(sd, 0x77); 2685 u8 reg_rep_0x7d = rep_read(sd, 0x7d); 2686 bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01; 2687 bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01; 2688 bool audio_mute = io_read(sd, 0x65) & 0x40; 2689 2690 static const char * const csc_coeff_sel_rb[16] = { 2691 "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB", 2692 "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709", 2693 "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709", 2694 "reserved", "reserved", "reserved", "reserved", "manual" 2695 }; 2696 static const char * const input_color_space_txt[16] = { 2697 "RGB limited range (16-235)", "RGB full range (0-255)", 2698 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)", 2699 "xvYCC Bt.601", "xvYCC Bt.709", 2700 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)", 2701 "invalid", "invalid", "invalid", "invalid", "invalid", 2702 "invalid", "invalid", "automatic" 2703 }; 2704 static const char * const rgb_quantization_range_txt[] = { 2705 "Automatic", 2706 "RGB limited range (16-235)", 2707 "RGB full range (0-255)", 2708 }; 2709 static const char * const deep_color_mode_txt[4] = { 2710 "8-bits per channel", 2711 "10-bits per channel", 2712 "12-bits per channel", 2713 "16-bits per channel (not supported)" 2714 }; 2715 2716 v4l2_info(sd, "-----Chip status-----\n"); 2717 v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on"); 2718 v4l2_info(sd, "HDMI/DVI-D port selected: %s\n", 2719 state->hdmi_port_a ? "A" : "B"); 2720 v4l2_info(sd, "EDID A %s, B %s\n", 2721 ((reg_rep_0x7d & 0x04) && (reg_rep_0x77 & 0x04)) ? 2722 "enabled" : "disabled", 2723 ((reg_rep_0x7d & 0x08) && (reg_rep_0x77 & 0x08)) ? 2724 "enabled" : "disabled"); 2725 v4l2_info(sd, "HPD A %s, B %s\n", 2726 reg_io_0x21 & 0x02 ? "enabled" : "disabled", 2727 reg_io_0x21 & 0x01 ? "enabled" : "disabled"); 2728 v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ? 2729 "enabled" : "disabled"); 2730 if (state->cec_enabled_adap) { 2731 int i; 2732 2733 for (i = 0; i < ADV7842_MAX_ADDRS; i++) { 2734 bool is_valid = state->cec_valid_addrs & (1 << i); 2735 2736 if (is_valid) 2737 v4l2_info(sd, "CEC Logical Address: 0x%x\n", 2738 state->cec_addr[i]); 2739 } 2740 } 2741 2742 v4l2_info(sd, "-----Signal status-----\n"); 2743 if (state->hdmi_port_a) { 2744 v4l2_info(sd, "Cable detected (+5V power): %s\n", 2745 io_read(sd, 0x6f) & 0x02 ? "true" : "false"); 2746 v4l2_info(sd, "TMDS signal detected: %s\n", 2747 (io_read(sd, 0x6a) & 0x02) ? "true" : "false"); 2748 v4l2_info(sd, "TMDS signal locked: %s\n", 2749 (io_read(sd, 0x6a) & 0x20) ? "true" : "false"); 2750 } else { 2751 v4l2_info(sd, "Cable detected (+5V power):%s\n", 2752 io_read(sd, 0x6f) & 0x01 ? "true" : "false"); 2753 v4l2_info(sd, "TMDS signal detected: %s\n", 2754 (io_read(sd, 0x6a) & 0x01) ? "true" : "false"); 2755 v4l2_info(sd, "TMDS signal locked: %s\n", 2756 (io_read(sd, 0x6a) & 0x10) ? "true" : "false"); 2757 } 2758 v4l2_info(sd, "CP free run: %s\n", 2759 (!!(cp_read(sd, 0xff) & 0x10) ? "on" : "off")); 2760 v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n", 2761 io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f, 2762 (io_read(sd, 0x01) & 0x70) >> 4); 2763 2764 v4l2_info(sd, "-----Video Timings-----\n"); 2765 if (no_cp_signal(sd)) { 2766 v4l2_info(sd, "STDI: not locked\n"); 2767 } else { 2768 u32 bl = ((cp_read(sd, 0xb1) & 0x3f) << 8) | cp_read(sd, 0xb2); 2769 u32 lcf = ((cp_read(sd, 0xb3) & 0x7) << 8) | cp_read(sd, 0xb4); 2770 u32 lcvs = cp_read(sd, 0xb3) >> 3; 2771 u32 fcl = ((cp_read(sd, 0xb8) & 0x1f) << 8) | cp_read(sd, 0xb9); 2772 char hs_pol = ((cp_read(sd, 0xb5) & 0x10) ? 2773 ((cp_read(sd, 0xb5) & 0x08) ? '+' : '-') : 'x'); 2774 char vs_pol = ((cp_read(sd, 0xb5) & 0x40) ? 2775 ((cp_read(sd, 0xb5) & 0x20) ? '+' : '-') : 'x'); 2776 v4l2_info(sd, 2777 "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, fcl = %d, %s, %chsync, %cvsync\n", 2778 lcf, bl, lcvs, fcl, 2779 (cp_read(sd, 0xb1) & 0x40) ? 2780 "interlaced" : "progressive", 2781 hs_pol, vs_pol); 2782 } 2783 if (adv7842_query_dv_timings(sd, &timings)) 2784 v4l2_info(sd, "No video detected\n"); 2785 else 2786 v4l2_print_dv_timings(sd->name, "Detected format: ", 2787 &timings, true); 2788 v4l2_print_dv_timings(sd->name, "Configured format: ", 2789 &state->timings, true); 2790 2791 if (no_cp_signal(sd)) 2792 return 0; 2793 2794 v4l2_info(sd, "-----Color space-----\n"); 2795 v4l2_info(sd, "RGB quantization range ctrl: %s\n", 2796 rgb_quantization_range_txt[state->rgb_quantization_range]); 2797 v4l2_info(sd, "Input color space: %s\n", 2798 input_color_space_txt[reg_io_0x02 >> 4]); 2799 v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n", 2800 (reg_io_0x02 & 0x02) ? "RGB" : "YCbCr", 2801 (((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ? 2802 "(16-235)" : "(0-255)", 2803 (reg_io_0x02 & 0x08) ? "enabled" : "disabled"); 2804 v4l2_info(sd, "Color space conversion: %s\n", 2805 csc_coeff_sel_rb[cp_read(sd, 0xf4) >> 4]); 2806 2807 if (!is_digital_input(sd)) 2808 return 0; 2809 2810 v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D"); 2811 v4l2_info(sd, "HDCP encrypted content: %s\n", 2812 (hdmi_read(sd, 0x05) & 0x40) ? "true" : "false"); 2813 v4l2_info(sd, "HDCP keys read: %s%s\n", 2814 (hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no", 2815 (hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : ""); 2816 if (!is_hdmi(sd)) 2817 return 0; 2818 2819 v4l2_info(sd, "Audio: pll %s, samples %s, %s\n", 2820 audio_pll_locked ? "locked" : "not locked", 2821 audio_sample_packet_detect ? "detected" : "not detected", 2822 audio_mute ? "muted" : "enabled"); 2823 if (audio_pll_locked && audio_sample_packet_detect) { 2824 v4l2_info(sd, "Audio format: %s\n", 2825 (hdmi_read(sd, 0x07) & 0x40) ? "multi-channel" : "stereo"); 2826 } 2827 v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) + 2828 (hdmi_read(sd, 0x5c) << 8) + 2829 (hdmi_read(sd, 0x5d) & 0xf0)); 2830 v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) + 2831 (hdmi_read(sd, 0x5e) << 8) + 2832 hdmi_read(sd, 0x5f)); 2833 v4l2_info(sd, "AV Mute: %s\n", 2834 (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off"); 2835 v4l2_info(sd, "Deep color mode: %s\n", 2836 deep_color_mode_txt[hdmi_read(sd, 0x0b) >> 6]); 2837 2838 adv7842_log_infoframes(sd); 2839 2840 return 0; 2841 } 2842 2843 static int adv7842_log_status(struct v4l2_subdev *sd) 2844 { 2845 struct adv7842_state *state = to_state(sd); 2846 2847 if (state->mode == ADV7842_MODE_SDP) 2848 return adv7842_sdp_log_status(sd); 2849 return adv7842_cp_log_status(sd); 2850 } 2851 2852 static int adv7842_querystd(struct v4l2_subdev *sd, v4l2_std_id *std) 2853 { 2854 struct adv7842_state *state = to_state(sd); 2855 2856 v4l2_dbg(1, debug, sd, "%s:\n", __func__); 2857 2858 if (state->mode != ADV7842_MODE_SDP) 2859 return -ENODATA; 2860 2861 if (!(sdp_read(sd, 0x5A) & 0x01)) { 2862 *std = 0; 2863 v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__); 2864 return 0; 2865 } 2866 2867 switch (sdp_read(sd, 0x52) & 0x0f) { 2868 case 0: 2869 /* NTSC-M/J */ 2870 *std &= V4L2_STD_NTSC; 2871 break; 2872 case 2: 2873 /* NTSC-443 */ 2874 *std &= V4L2_STD_NTSC_443; 2875 break; 2876 case 3: 2877 /* 60HzSECAM */ 2878 *std &= V4L2_STD_SECAM; 2879 break; 2880 case 4: 2881 /* PAL-M */ 2882 *std &= V4L2_STD_PAL_M; 2883 break; 2884 case 6: 2885 /* PAL-60 */ 2886 *std &= V4L2_STD_PAL_60; 2887 break; 2888 case 0xc: 2889 /* PAL-CombN */ 2890 *std &= V4L2_STD_PAL_Nc; 2891 break; 2892 case 0xe: 2893 /* PAL-BGHID */ 2894 *std &= V4L2_STD_PAL; 2895 break; 2896 case 0xf: 2897 /* SECAM */ 2898 *std &= V4L2_STD_SECAM; 2899 break; 2900 default: 2901 *std &= V4L2_STD_ALL; 2902 break; 2903 } 2904 return 0; 2905 } 2906 2907 static void adv7842_s_sdp_io(struct v4l2_subdev *sd, struct adv7842_sdp_io_sync_adjustment *s) 2908 { 2909 if (s && s->adjust) { 2910 sdp_io_write(sd, 0x94, (s->hs_beg >> 8) & 0xf); 2911 sdp_io_write(sd, 0x95, s->hs_beg & 0xff); 2912 sdp_io_write(sd, 0x96, (s->hs_width >> 8) & 0xf); 2913 sdp_io_write(sd, 0x97, s->hs_width & 0xff); 2914 sdp_io_write(sd, 0x98, (s->de_beg >> 8) & 0xf); 2915 sdp_io_write(sd, 0x99, s->de_beg & 0xff); 2916 sdp_io_write(sd, 0x9a, (s->de_end >> 8) & 0xf); 2917 sdp_io_write(sd, 0x9b, s->de_end & 0xff); 2918 sdp_io_write(sd, 0xa8, s->vs_beg_o); 2919 sdp_io_write(sd, 0xa9, s->vs_beg_e); 2920 sdp_io_write(sd, 0xaa, s->vs_end_o); 2921 sdp_io_write(sd, 0xab, s->vs_end_e); 2922 sdp_io_write(sd, 0xac, s->de_v_beg_o); 2923 sdp_io_write(sd, 0xad, s->de_v_beg_e); 2924 sdp_io_write(sd, 0xae, s->de_v_end_o); 2925 sdp_io_write(sd, 0xaf, s->de_v_end_e); 2926 } else { 2927 /* set to default */ 2928 sdp_io_write(sd, 0x94, 0x00); 2929 sdp_io_write(sd, 0x95, 0x00); 2930 sdp_io_write(sd, 0x96, 0x00); 2931 sdp_io_write(sd, 0x97, 0x20); 2932 sdp_io_write(sd, 0x98, 0x00); 2933 sdp_io_write(sd, 0x99, 0x00); 2934 sdp_io_write(sd, 0x9a, 0x00); 2935 sdp_io_write(sd, 0x9b, 0x00); 2936 sdp_io_write(sd, 0xa8, 0x04); 2937 sdp_io_write(sd, 0xa9, 0x04); 2938 sdp_io_write(sd, 0xaa, 0x04); 2939 sdp_io_write(sd, 0xab, 0x04); 2940 sdp_io_write(sd, 0xac, 0x04); 2941 sdp_io_write(sd, 0xad, 0x04); 2942 sdp_io_write(sd, 0xae, 0x04); 2943 sdp_io_write(sd, 0xaf, 0x04); 2944 } 2945 } 2946 2947 static int adv7842_s_std(struct v4l2_subdev *sd, v4l2_std_id norm) 2948 { 2949 struct adv7842_state *state = to_state(sd); 2950 struct adv7842_platform_data *pdata = &state->pdata; 2951 2952 v4l2_dbg(1, debug, sd, "%s:\n", __func__); 2953 2954 if (state->mode != ADV7842_MODE_SDP) 2955 return -ENODATA; 2956 2957 if (norm & V4L2_STD_625_50) 2958 adv7842_s_sdp_io(sd, &pdata->sdp_io_sync_625); 2959 else if (norm & V4L2_STD_525_60) 2960 adv7842_s_sdp_io(sd, &pdata->sdp_io_sync_525); 2961 else 2962 adv7842_s_sdp_io(sd, NULL); 2963 2964 if (norm & V4L2_STD_ALL) { 2965 state->norm = norm; 2966 return 0; 2967 } 2968 return -EINVAL; 2969 } 2970 2971 static int adv7842_g_std(struct v4l2_subdev *sd, v4l2_std_id *norm) 2972 { 2973 struct adv7842_state *state = to_state(sd); 2974 2975 v4l2_dbg(1, debug, sd, "%s:\n", __func__); 2976 2977 if (state->mode != ADV7842_MODE_SDP) 2978 return -ENODATA; 2979 2980 *norm = state->norm; 2981 return 0; 2982 } 2983 2984 /* ----------------------------------------------------------------------- */ 2985 2986 static int adv7842_core_init(struct v4l2_subdev *sd) 2987 { 2988 struct adv7842_state *state = to_state(sd); 2989 struct adv7842_platform_data *pdata = &state->pdata; 2990 hdmi_write(sd, 0x48, 2991 (pdata->disable_pwrdnb ? 0x80 : 0) | 2992 (pdata->disable_cable_det_rst ? 0x40 : 0)); 2993 2994 disable_input(sd); 2995 2996 /* 2997 * Disable I2C access to internal EDID ram from HDMI DDC ports 2998 * Disable auto edid enable when leaving powerdown mode 2999 */ 3000 rep_write_and_or(sd, 0x77, 0xd3, 0x20); 3001 3002 /* power */ 3003 io_write(sd, 0x0c, 0x42); /* Power up part and power down VDP */ 3004 io_write(sd, 0x15, 0x80); /* Power up pads */ 3005 3006 /* video format */ 3007 io_write(sd, 0x02, 0xf0 | pdata->alt_gamma << 3); 3008 io_write_and_or(sd, 0x05, 0xf0, pdata->blank_data << 3 | 3009 pdata->insert_av_codes << 2 | 3010 pdata->replicate_av_codes << 1); 3011 adv7842_setup_format(state); 3012 3013 /* HDMI audio */ 3014 hdmi_write_and_or(sd, 0x1a, 0xf1, 0x08); /* Wait 1 s before unmute */ 3015 3016 /* Drive strength */ 3017 io_write_and_or(sd, 0x14, 0xc0, 3018 pdata->dr_str_data << 4 | 3019 pdata->dr_str_clk << 2 | 3020 pdata->dr_str_sync); 3021 3022 /* HDMI free run */ 3023 cp_write_and_or(sd, 0xba, 0xfc, pdata->hdmi_free_run_enable | 3024 (pdata->hdmi_free_run_mode << 1)); 3025 3026 /* SPD free run */ 3027 sdp_write_and_or(sd, 0xdd, 0xf0, pdata->sdp_free_run_force | 3028 (pdata->sdp_free_run_cbar_en << 1) | 3029 (pdata->sdp_free_run_man_col_en << 2) | 3030 (pdata->sdp_free_run_auto << 3)); 3031 3032 /* TODO from platform data */ 3033 cp_write(sd, 0x69, 0x14); /* Enable CP CSC */ 3034 io_write(sd, 0x06, 0xa6); /* positive VS and HS and DE */ 3035 cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */ 3036 afe_write(sd, 0xb5, 0x01); /* Setting MCLK to 256Fs */ 3037 3038 afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */ 3039 io_write_and_or(sd, 0x30, ~(1 << 4), pdata->output_bus_lsb_to_msb << 4); 3040 3041 sdp_csc_coeff(sd, &pdata->sdp_csc_coeff); 3042 3043 /* todo, improve settings for sdram */ 3044 if (pdata->sd_ram_size >= 128) { 3045 sdp_write(sd, 0x12, 0x0d); /* Frame TBC,3D comb enabled */ 3046 if (pdata->sd_ram_ddr) { 3047 /* SDP setup for the AD eval board */ 3048 sdp_io_write(sd, 0x6f, 0x00); /* DDR mode */ 3049 sdp_io_write(sd, 0x75, 0x0a); /* 128 MB memory size */ 3050 sdp_io_write(sd, 0x7a, 0xa5); /* Timing Adjustment */ 3051 sdp_io_write(sd, 0x7b, 0x8f); /* Timing Adjustment */ 3052 sdp_io_write(sd, 0x60, 0x01); /* SDRAM reset */ 3053 } else { 3054 sdp_io_write(sd, 0x75, 0x0a); /* 64 MB memory size ?*/ 3055 sdp_io_write(sd, 0x74, 0x00); /* must be zero for sdr sdram */ 3056 sdp_io_write(sd, 0x79, 0x33); /* CAS latency to 3, 3057 depends on memory */ 3058 sdp_io_write(sd, 0x6f, 0x01); /* SDR mode */ 3059 sdp_io_write(sd, 0x7a, 0xa5); /* Timing Adjustment */ 3060 sdp_io_write(sd, 0x7b, 0x8f); /* Timing Adjustment */ 3061 sdp_io_write(sd, 0x60, 0x01); /* SDRAM reset */ 3062 } 3063 } else { 3064 /* 3065 * Manual UG-214, rev 0 is bit confusing on this bit 3066 * but a '1' disables any signal if the Ram is active. 3067 */ 3068 sdp_io_write(sd, 0x29, 0x10); /* Tristate memory interface */ 3069 } 3070 3071 select_input(sd, pdata->vid_std_select); 3072 3073 enable_input(sd); 3074 3075 if (pdata->hpa_auto) { 3076 /* HPA auto, HPA 0.5s after Edid set and Cable detect */ 3077 hdmi_write(sd, 0x69, 0x5c); 3078 } else { 3079 /* HPA manual */ 3080 hdmi_write(sd, 0x69, 0xa3); 3081 /* HPA disable on port A and B */ 3082 io_write_and_or(sd, 0x20, 0xcf, 0x00); 3083 } 3084 3085 /* LLC */ 3086 io_write(sd, 0x19, 0x80 | pdata->llc_dll_phase); 3087 io_write(sd, 0x33, 0x40); 3088 3089 /* interrupts */ 3090 io_write(sd, 0x40, 0xf2); /* Configure INT1 */ 3091 3092 adv7842_irq_enable(sd, true); 3093 3094 return v4l2_ctrl_handler_setup(sd->ctrl_handler); 3095 } 3096 3097 /* ----------------------------------------------------------------------- */ 3098 3099 static int adv7842_ddr_ram_test(struct v4l2_subdev *sd) 3100 { 3101 /* 3102 * From ADV784x external Memory test.pdf 3103 * 3104 * Reset must just been performed before running test. 3105 * Recommended to reset after test. 3106 */ 3107 int i; 3108 int pass = 0; 3109 int fail = 0; 3110 int complete = 0; 3111 3112 io_write(sd, 0x00, 0x01); /* Program SDP 4x1 */ 3113 io_write(sd, 0x01, 0x00); /* Program SDP mode */ 3114 afe_write(sd, 0x80, 0x92); /* SDP Recommended Write */ 3115 afe_write(sd, 0x9B, 0x01); /* SDP Recommended Write ADV7844ES1 */ 3116 afe_write(sd, 0x9C, 0x60); /* SDP Recommended Write ADV7844ES1 */ 3117 afe_write(sd, 0x9E, 0x02); /* SDP Recommended Write ADV7844ES1 */ 3118 afe_write(sd, 0xA0, 0x0B); /* SDP Recommended Write ADV7844ES1 */ 3119 afe_write(sd, 0xC3, 0x02); /* Memory BIST Initialisation */ 3120 io_write(sd, 0x0C, 0x40); /* Power up ADV7844 */ 3121 io_write(sd, 0x15, 0xBA); /* Enable outputs */ 3122 sdp_write(sd, 0x12, 0x00); /* Disable 3D comb, Frame TBC & 3DNR */ 3123 io_write(sd, 0xFF, 0x04); /* Reset memory controller */ 3124 3125 usleep_range(5000, 6000); 3126 3127 sdp_write(sd, 0x12, 0x00); /* Disable 3D Comb, Frame TBC & 3DNR */ 3128 sdp_io_write(sd, 0x2A, 0x01); /* Memory BIST Initialisation */ 3129 sdp_io_write(sd, 0x7c, 0x19); /* Memory BIST Initialisation */ 3130 sdp_io_write(sd, 0x80, 0x87); /* Memory BIST Initialisation */ 3131 sdp_io_write(sd, 0x81, 0x4a); /* Memory BIST Initialisation */ 3132 sdp_io_write(sd, 0x82, 0x2c); /* Memory BIST Initialisation */ 3133 sdp_io_write(sd, 0x83, 0x0e); /* Memory BIST Initialisation */ 3134 sdp_io_write(sd, 0x84, 0x94); /* Memory BIST Initialisation */ 3135 sdp_io_write(sd, 0x85, 0x62); /* Memory BIST Initialisation */ 3136 sdp_io_write(sd, 0x7d, 0x00); /* Memory BIST Initialisation */ 3137 sdp_io_write(sd, 0x7e, 0x1a); /* Memory BIST Initialisation */ 3138 3139 usleep_range(5000, 6000); 3140 3141 sdp_io_write(sd, 0xd9, 0xd5); /* Enable BIST Test */ 3142 sdp_write(sd, 0x12, 0x05); /* Enable FRAME TBC & 3D COMB */ 3143 3144 msleep(20); 3145 3146 for (i = 0; i < 10; i++) { 3147 u8 result = sdp_io_read(sd, 0xdb); 3148 if (result & 0x10) { 3149 complete++; 3150 if (result & 0x20) 3151 fail++; 3152 else 3153 pass++; 3154 } 3155 msleep(20); 3156 } 3157 3158 v4l2_dbg(1, debug, sd, 3159 "Ram Test: completed %d of %d: pass %d, fail %d\n", 3160 complete, i, pass, fail); 3161 3162 if (!complete || fail) 3163 return -EIO; 3164 return 0; 3165 } 3166 3167 static void adv7842_rewrite_i2c_addresses(struct v4l2_subdev *sd, 3168 struct adv7842_platform_data *pdata) 3169 { 3170 io_write(sd, 0xf1, pdata->i2c_sdp << 1); 3171 io_write(sd, 0xf2, pdata->i2c_sdp_io << 1); 3172 io_write(sd, 0xf3, pdata->i2c_avlink << 1); 3173 io_write(sd, 0xf4, pdata->i2c_cec << 1); 3174 io_write(sd, 0xf5, pdata->i2c_infoframe << 1); 3175 3176 io_write(sd, 0xf8, pdata->i2c_afe << 1); 3177 io_write(sd, 0xf9, pdata->i2c_repeater << 1); 3178 io_write(sd, 0xfa, pdata->i2c_edid << 1); 3179 io_write(sd, 0xfb, pdata->i2c_hdmi << 1); 3180 3181 io_write(sd, 0xfd, pdata->i2c_cp << 1); 3182 io_write(sd, 0xfe, pdata->i2c_vdp << 1); 3183 } 3184 3185 static int adv7842_command_ram_test(struct v4l2_subdev *sd) 3186 { 3187 struct i2c_client *client = v4l2_get_subdevdata(sd); 3188 struct adv7842_state *state = to_state(sd); 3189 struct adv7842_platform_data *pdata = client->dev.platform_data; 3190 struct v4l2_dv_timings timings; 3191 int ret = 0; 3192 3193 if (!pdata) 3194 return -ENODEV; 3195 3196 if (!pdata->sd_ram_size || !pdata->sd_ram_ddr) { 3197 v4l2_info(sd, "no sdram or no ddr sdram\n"); 3198 return -EINVAL; 3199 } 3200 3201 main_reset(sd); 3202 3203 adv7842_rewrite_i2c_addresses(sd, pdata); 3204 3205 /* run ram test */ 3206 ret = adv7842_ddr_ram_test(sd); 3207 3208 main_reset(sd); 3209 3210 adv7842_rewrite_i2c_addresses(sd, pdata); 3211 3212 /* and re-init chip and state */ 3213 adv7842_core_init(sd); 3214 3215 disable_input(sd); 3216 3217 select_input(sd, state->vid_std_select); 3218 3219 enable_input(sd); 3220 3221 edid_write_vga_segment(sd); 3222 edid_write_hdmi_segment(sd, ADV7842_EDID_PORT_A); 3223 edid_write_hdmi_segment(sd, ADV7842_EDID_PORT_B); 3224 3225 timings = state->timings; 3226 3227 memset(&state->timings, 0, sizeof(struct v4l2_dv_timings)); 3228 3229 adv7842_s_dv_timings(sd, &timings); 3230 3231 return ret; 3232 } 3233 3234 static long adv7842_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) 3235 { 3236 switch (cmd) { 3237 case ADV7842_CMD_RAM_TEST: 3238 return adv7842_command_ram_test(sd); 3239 } 3240 return -ENOTTY; 3241 } 3242 3243 static int adv7842_subscribe_event(struct v4l2_subdev *sd, 3244 struct v4l2_fh *fh, 3245 struct v4l2_event_subscription *sub) 3246 { 3247 switch (sub->type) { 3248 case V4L2_EVENT_SOURCE_CHANGE: 3249 return v4l2_src_change_event_subdev_subscribe(sd, fh, sub); 3250 case V4L2_EVENT_CTRL: 3251 return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub); 3252 default: 3253 return -EINVAL; 3254 } 3255 } 3256 3257 static int adv7842_registered(struct v4l2_subdev *sd) 3258 { 3259 struct adv7842_state *state = to_state(sd); 3260 struct i2c_client *client = v4l2_get_subdevdata(sd); 3261 int err; 3262 3263 err = cec_register_adapter(state->cec_adap, &client->dev); 3264 if (err) 3265 cec_delete_adapter(state->cec_adap); 3266 return err; 3267 } 3268 3269 static void adv7842_unregistered(struct v4l2_subdev *sd) 3270 { 3271 struct adv7842_state *state = to_state(sd); 3272 3273 cec_unregister_adapter(state->cec_adap); 3274 } 3275 3276 /* ----------------------------------------------------------------------- */ 3277 3278 static const struct v4l2_ctrl_ops adv7842_ctrl_ops = { 3279 .s_ctrl = adv7842_s_ctrl, 3280 .g_volatile_ctrl = adv7842_g_volatile_ctrl, 3281 }; 3282 3283 static const struct v4l2_subdev_core_ops adv7842_core_ops = { 3284 .log_status = adv7842_log_status, 3285 .ioctl = adv7842_ioctl, 3286 .interrupt_service_routine = adv7842_isr, 3287 .subscribe_event = adv7842_subscribe_event, 3288 .unsubscribe_event = v4l2_event_subdev_unsubscribe, 3289 #ifdef CONFIG_VIDEO_ADV_DEBUG 3290 .g_register = adv7842_g_register, 3291 .s_register = adv7842_s_register, 3292 #endif 3293 }; 3294 3295 static const struct v4l2_subdev_video_ops adv7842_video_ops = { 3296 .g_std = adv7842_g_std, 3297 .s_std = adv7842_s_std, 3298 .s_routing = adv7842_s_routing, 3299 .querystd = adv7842_querystd, 3300 .g_input_status = adv7842_g_input_status, 3301 .s_dv_timings = adv7842_s_dv_timings, 3302 .g_dv_timings = adv7842_g_dv_timings, 3303 .query_dv_timings = adv7842_query_dv_timings, 3304 }; 3305 3306 static const struct v4l2_subdev_pad_ops adv7842_pad_ops = { 3307 .enum_mbus_code = adv7842_enum_mbus_code, 3308 .get_fmt = adv7842_get_format, 3309 .set_fmt = adv7842_set_format, 3310 .get_edid = adv7842_get_edid, 3311 .set_edid = adv7842_set_edid, 3312 .enum_dv_timings = adv7842_enum_dv_timings, 3313 .dv_timings_cap = adv7842_dv_timings_cap, 3314 }; 3315 3316 static const struct v4l2_subdev_ops adv7842_ops = { 3317 .core = &adv7842_core_ops, 3318 .video = &adv7842_video_ops, 3319 .pad = &adv7842_pad_ops, 3320 }; 3321 3322 static const struct v4l2_subdev_internal_ops adv7842_int_ops = { 3323 .registered = adv7842_registered, 3324 .unregistered = adv7842_unregistered, 3325 }; 3326 3327 /* -------------------------- custom ctrls ---------------------------------- */ 3328 3329 static const struct v4l2_ctrl_config adv7842_ctrl_analog_sampling_phase = { 3330 .ops = &adv7842_ctrl_ops, 3331 .id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE, 3332 .name = "Analog Sampling Phase", 3333 .type = V4L2_CTRL_TYPE_INTEGER, 3334 .min = 0, 3335 .max = 0x1f, 3336 .step = 1, 3337 .def = 0, 3338 }; 3339 3340 static const struct v4l2_ctrl_config adv7842_ctrl_free_run_color_manual = { 3341 .ops = &adv7842_ctrl_ops, 3342 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL, 3343 .name = "Free Running Color, Manual", 3344 .type = V4L2_CTRL_TYPE_BOOLEAN, 3345 .max = 1, 3346 .step = 1, 3347 .def = 1, 3348 }; 3349 3350 static const struct v4l2_ctrl_config adv7842_ctrl_free_run_color = { 3351 .ops = &adv7842_ctrl_ops, 3352 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR, 3353 .name = "Free Running Color", 3354 .type = V4L2_CTRL_TYPE_INTEGER, 3355 .max = 0xffffff, 3356 .step = 0x1, 3357 }; 3358 3359 3360 static void adv7842_unregister_clients(struct v4l2_subdev *sd) 3361 { 3362 struct adv7842_state *state = to_state(sd); 3363 i2c_unregister_device(state->i2c_avlink); 3364 i2c_unregister_device(state->i2c_cec); 3365 i2c_unregister_device(state->i2c_infoframe); 3366 i2c_unregister_device(state->i2c_sdp_io); 3367 i2c_unregister_device(state->i2c_sdp); 3368 i2c_unregister_device(state->i2c_afe); 3369 i2c_unregister_device(state->i2c_repeater); 3370 i2c_unregister_device(state->i2c_edid); 3371 i2c_unregister_device(state->i2c_hdmi); 3372 i2c_unregister_device(state->i2c_cp); 3373 i2c_unregister_device(state->i2c_vdp); 3374 3375 state->i2c_avlink = NULL; 3376 state->i2c_cec = NULL; 3377 state->i2c_infoframe = NULL; 3378 state->i2c_sdp_io = NULL; 3379 state->i2c_sdp = NULL; 3380 state->i2c_afe = NULL; 3381 state->i2c_repeater = NULL; 3382 state->i2c_edid = NULL; 3383 state->i2c_hdmi = NULL; 3384 state->i2c_cp = NULL; 3385 state->i2c_vdp = NULL; 3386 } 3387 3388 static struct i2c_client *adv7842_dummy_client(struct v4l2_subdev *sd, const char *desc, 3389 u8 addr, u8 io_reg) 3390 { 3391 struct i2c_client *client = v4l2_get_subdevdata(sd); 3392 struct i2c_client *cp; 3393 3394 io_write(sd, io_reg, addr << 1); 3395 3396 if (addr == 0) { 3397 v4l2_err(sd, "no %s i2c addr configured\n", desc); 3398 return NULL; 3399 } 3400 3401 cp = i2c_new_dummy_device(client->adapter, io_read(sd, io_reg) >> 1); 3402 if (IS_ERR(cp)) { 3403 v4l2_err(sd, "register %s on i2c addr 0x%x failed with %ld\n", 3404 desc, addr, PTR_ERR(cp)); 3405 cp = NULL; 3406 } 3407 3408 return cp; 3409 } 3410 3411 static int adv7842_register_clients(struct v4l2_subdev *sd) 3412 { 3413 struct adv7842_state *state = to_state(sd); 3414 struct adv7842_platform_data *pdata = &state->pdata; 3415 3416 state->i2c_avlink = adv7842_dummy_client(sd, "avlink", pdata->i2c_avlink, 0xf3); 3417 state->i2c_cec = adv7842_dummy_client(sd, "cec", pdata->i2c_cec, 0xf4); 3418 state->i2c_infoframe = adv7842_dummy_client(sd, "infoframe", pdata->i2c_infoframe, 0xf5); 3419 state->i2c_sdp_io = adv7842_dummy_client(sd, "sdp_io", pdata->i2c_sdp_io, 0xf2); 3420 state->i2c_sdp = adv7842_dummy_client(sd, "sdp", pdata->i2c_sdp, 0xf1); 3421 state->i2c_afe = adv7842_dummy_client(sd, "afe", pdata->i2c_afe, 0xf8); 3422 state->i2c_repeater = adv7842_dummy_client(sd, "repeater", pdata->i2c_repeater, 0xf9); 3423 state->i2c_edid = adv7842_dummy_client(sd, "edid", pdata->i2c_edid, 0xfa); 3424 state->i2c_hdmi = adv7842_dummy_client(sd, "hdmi", pdata->i2c_hdmi, 0xfb); 3425 state->i2c_cp = adv7842_dummy_client(sd, "cp", pdata->i2c_cp, 0xfd); 3426 state->i2c_vdp = adv7842_dummy_client(sd, "vdp", pdata->i2c_vdp, 0xfe); 3427 3428 if (!state->i2c_avlink || 3429 !state->i2c_cec || 3430 !state->i2c_infoframe || 3431 !state->i2c_sdp_io || 3432 !state->i2c_sdp || 3433 !state->i2c_afe || 3434 !state->i2c_repeater || 3435 !state->i2c_edid || 3436 !state->i2c_hdmi || 3437 !state->i2c_cp || 3438 !state->i2c_vdp) 3439 return -1; 3440 3441 return 0; 3442 } 3443 3444 static int adv7842_probe(struct i2c_client *client, 3445 const struct i2c_device_id *id) 3446 { 3447 struct adv7842_state *state; 3448 static const struct v4l2_dv_timings cea640x480 = 3449 V4L2_DV_BT_CEA_640X480P59_94; 3450 struct adv7842_platform_data *pdata = client->dev.platform_data; 3451 struct v4l2_ctrl_handler *hdl; 3452 struct v4l2_ctrl *ctrl; 3453 struct v4l2_subdev *sd; 3454 unsigned int i; 3455 u16 rev; 3456 int err; 3457 3458 /* Check if the adapter supports the needed features */ 3459 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 3460 return -EIO; 3461 3462 v4l_dbg(1, debug, client, "detecting adv7842 client on address 0x%x\n", 3463 client->addr << 1); 3464 3465 if (!pdata) { 3466 v4l_err(client, "No platform data!\n"); 3467 return -ENODEV; 3468 } 3469 3470 state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL); 3471 if (!state) 3472 return -ENOMEM; 3473 3474 /* platform data */ 3475 state->pdata = *pdata; 3476 state->timings = cea640x480; 3477 state->format = adv7842_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8); 3478 3479 sd = &state->sd; 3480 v4l2_i2c_subdev_init(sd, client, &adv7842_ops); 3481 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS; 3482 sd->internal_ops = &adv7842_int_ops; 3483 state->mode = pdata->mode; 3484 3485 state->hdmi_port_a = pdata->input == ADV7842_SELECT_HDMI_PORT_A; 3486 state->restart_stdi_once = true; 3487 3488 /* i2c access to adv7842? */ 3489 rev = adv_smbus_read_byte_data_check(client, 0xea, false) << 8 | 3490 adv_smbus_read_byte_data_check(client, 0xeb, false); 3491 if (rev != 0x2012) { 3492 v4l2_info(sd, "got rev=0x%04x on first read attempt\n", rev); 3493 rev = adv_smbus_read_byte_data_check(client, 0xea, false) << 8 | 3494 adv_smbus_read_byte_data_check(client, 0xeb, false); 3495 } 3496 if (rev != 0x2012) { 3497 v4l2_info(sd, "not an adv7842 on address 0x%x (rev=0x%04x)\n", 3498 client->addr << 1, rev); 3499 return -ENODEV; 3500 } 3501 3502 if (pdata->chip_reset) 3503 main_reset(sd); 3504 3505 /* control handlers */ 3506 hdl = &state->hdl; 3507 v4l2_ctrl_handler_init(hdl, 6); 3508 3509 /* add in ascending ID order */ 3510 v4l2_ctrl_new_std(hdl, &adv7842_ctrl_ops, 3511 V4L2_CID_BRIGHTNESS, -128, 127, 1, 0); 3512 v4l2_ctrl_new_std(hdl, &adv7842_ctrl_ops, 3513 V4L2_CID_CONTRAST, 0, 255, 1, 128); 3514 v4l2_ctrl_new_std(hdl, &adv7842_ctrl_ops, 3515 V4L2_CID_SATURATION, 0, 255, 1, 128); 3516 v4l2_ctrl_new_std(hdl, &adv7842_ctrl_ops, 3517 V4L2_CID_HUE, 0, 128, 1, 0); 3518 ctrl = v4l2_ctrl_new_std_menu(hdl, &adv7842_ctrl_ops, 3519 V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC, 3520 0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC); 3521 if (ctrl) 3522 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE; 3523 3524 /* custom controls */ 3525 state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL, 3526 V4L2_CID_DV_RX_POWER_PRESENT, 0, 3, 0, 0); 3527 state->analog_sampling_phase_ctrl = v4l2_ctrl_new_custom(hdl, 3528 &adv7842_ctrl_analog_sampling_phase, NULL); 3529 state->free_run_color_ctrl_manual = v4l2_ctrl_new_custom(hdl, 3530 &adv7842_ctrl_free_run_color_manual, NULL); 3531 state->free_run_color_ctrl = v4l2_ctrl_new_custom(hdl, 3532 &adv7842_ctrl_free_run_color, NULL); 3533 state->rgb_quantization_range_ctrl = 3534 v4l2_ctrl_new_std_menu(hdl, &adv7842_ctrl_ops, 3535 V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 3536 0, V4L2_DV_RGB_RANGE_AUTO); 3537 sd->ctrl_handler = hdl; 3538 if (hdl->error) { 3539 err = hdl->error; 3540 goto err_hdl; 3541 } 3542 if (adv7842_s_detect_tx_5v_ctrl(sd)) { 3543 err = -ENODEV; 3544 goto err_hdl; 3545 } 3546 3547 if (adv7842_register_clients(sd) < 0) { 3548 err = -ENOMEM; 3549 v4l2_err(sd, "failed to create all i2c clients\n"); 3550 goto err_i2c; 3551 } 3552 3553 3554 INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug, 3555 adv7842_delayed_work_enable_hotplug); 3556 3557 sd->entity.function = MEDIA_ENT_F_DV_DECODER; 3558 for (i = 0; i < ADV7842_PAD_SOURCE; ++i) 3559 state->pads[i].flags = MEDIA_PAD_FL_SINK; 3560 state->pads[ADV7842_PAD_SOURCE].flags = MEDIA_PAD_FL_SOURCE; 3561 err = media_entity_pads_init(&sd->entity, ADV7842_PAD_SOURCE + 1, 3562 state->pads); 3563 if (err) 3564 goto err_work_queues; 3565 3566 err = adv7842_core_init(sd); 3567 if (err) 3568 goto err_entity; 3569 3570 #if IS_ENABLED(CONFIG_VIDEO_ADV7842_CEC) 3571 state->cec_adap = cec_allocate_adapter(&adv7842_cec_adap_ops, 3572 state, dev_name(&client->dev), 3573 CEC_CAP_DEFAULTS, ADV7842_MAX_ADDRS); 3574 err = PTR_ERR_OR_ZERO(state->cec_adap); 3575 if (err) 3576 goto err_entity; 3577 #endif 3578 3579 v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name, 3580 client->addr << 1, client->adapter->name); 3581 return 0; 3582 3583 err_entity: 3584 media_entity_cleanup(&sd->entity); 3585 err_work_queues: 3586 cancel_delayed_work(&state->delayed_work_enable_hotplug); 3587 err_i2c: 3588 adv7842_unregister_clients(sd); 3589 err_hdl: 3590 v4l2_ctrl_handler_free(hdl); 3591 return err; 3592 } 3593 3594 /* ----------------------------------------------------------------------- */ 3595 3596 static void adv7842_remove(struct i2c_client *client) 3597 { 3598 struct v4l2_subdev *sd = i2c_get_clientdata(client); 3599 struct adv7842_state *state = to_state(sd); 3600 3601 adv7842_irq_enable(sd, false); 3602 cancel_delayed_work_sync(&state->delayed_work_enable_hotplug); 3603 v4l2_device_unregister_subdev(sd); 3604 media_entity_cleanup(&sd->entity); 3605 adv7842_unregister_clients(sd); 3606 v4l2_ctrl_handler_free(sd->ctrl_handler); 3607 } 3608 3609 /* ----------------------------------------------------------------------- */ 3610 3611 static const struct i2c_device_id adv7842_id[] = { 3612 { "adv7842", 0 }, 3613 { } 3614 }; 3615 MODULE_DEVICE_TABLE(i2c, adv7842_id); 3616 3617 /* ----------------------------------------------------------------------- */ 3618 3619 static struct i2c_driver adv7842_driver = { 3620 .driver = { 3621 .name = "adv7842", 3622 }, 3623 .probe = adv7842_probe, 3624 .remove = adv7842_remove, 3625 .id_table = adv7842_id, 3626 }; 3627 3628 module_i2c_driver(adv7842_driver); 3629