xref: /openbmc/linux/drivers/media/i2c/adv7604.c (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /*
2  * adv7604 - Analog Devices ADV7604 video decoder driver
3  *
4  * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
5  *
6  * This program is free software; you may redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17  * SOFTWARE.
18  *
19  */
20 
21 /*
22  * References (c = chapter, p = page):
23  * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
24  *		Revision 2.5, June 2010
25  * REF_02 - Analog devices, Register map documentation, Documentation of
26  *		the register maps, Software manual, Rev. F, June 2010
27  * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
28  */
29 
30 #include <linux/delay.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/i2c.h>
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/slab.h>
36 #include <linux/v4l2-dv-timings.h>
37 #include <linux/videodev2.h>
38 #include <linux/workqueue.h>
39 
40 #include <media/adv7604.h>
41 #include <media/v4l2-ctrls.h>
42 #include <media/v4l2-device.h>
43 #include <media/v4l2-dv-timings.h>
44 #include <media/v4l2-of.h>
45 
46 static int debug;
47 module_param(debug, int, 0644);
48 MODULE_PARM_DESC(debug, "debug level (0-2)");
49 
50 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
51 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
52 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
53 MODULE_LICENSE("GPL");
54 
55 /* ADV7604 system clock frequency */
56 #define ADV76XX_FSC (28636360)
57 
58 #define ADV76XX_RGB_OUT					(1 << 1)
59 
60 #define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
61 #define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
62 #define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
63 
64 #define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
65 #define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
66 #define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
67 #define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
68 #define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
69 #define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)
70 
71 #define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
72 #define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
73 #define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
74 #define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
75 #define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
76 #define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
77 
78 #define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
79 
80 enum adv76xx_type {
81 	ADV7604,
82 	ADV7611,
83 };
84 
85 struct adv76xx_reg_seq {
86 	unsigned int reg;
87 	u8 val;
88 };
89 
90 struct adv76xx_format_info {
91 	u32 code;
92 	u8 op_ch_sel;
93 	bool rgb_out;
94 	bool swap_cb_cr;
95 	u8 op_format_sel;
96 };
97 
98 struct adv76xx_chip_info {
99 	enum adv76xx_type type;
100 
101 	bool has_afe;
102 	unsigned int max_port;
103 	unsigned int num_dv_ports;
104 
105 	unsigned int edid_enable_reg;
106 	unsigned int edid_status_reg;
107 	unsigned int lcf_reg;
108 
109 	unsigned int cable_det_mask;
110 	unsigned int tdms_lock_mask;
111 	unsigned int fmt_change_digital_mask;
112 	unsigned int cp_csc;
113 
114 	const struct adv76xx_format_info *formats;
115 	unsigned int nformats;
116 
117 	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
118 	void (*setup_irqs)(struct v4l2_subdev *sd);
119 	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
120 	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
121 
122 	/* 0 = AFE, 1 = HDMI */
123 	const struct adv76xx_reg_seq *recommended_settings[2];
124 	unsigned int num_recommended_settings[2];
125 
126 	unsigned long page_mask;
127 };
128 
129 /*
130  **********************************************************************
131  *
132  *  Arrays with configuration parameters for the ADV7604
133  *
134  **********************************************************************
135  */
136 
137 struct adv76xx_state {
138 	const struct adv76xx_chip_info *info;
139 	struct adv76xx_platform_data pdata;
140 
141 	struct gpio_desc *hpd_gpio[4];
142 
143 	struct v4l2_subdev sd;
144 	struct media_pad pads[ADV76XX_PAD_MAX];
145 	unsigned int source_pad;
146 
147 	struct v4l2_ctrl_handler hdl;
148 
149 	enum adv76xx_pad selected_input;
150 
151 	struct v4l2_dv_timings timings;
152 	const struct adv76xx_format_info *format;
153 
154 	struct {
155 		u8 edid[256];
156 		u32 present;
157 		unsigned blocks;
158 	} edid;
159 	u16 spa_port_a[2];
160 	struct v4l2_fract aspect_ratio;
161 	u32 rgb_quantization_range;
162 	struct workqueue_struct *work_queues;
163 	struct delayed_work delayed_work_enable_hotplug;
164 	bool restart_stdi_once;
165 
166 	/* i2c clients */
167 	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
168 
169 	/* controls */
170 	struct v4l2_ctrl *detect_tx_5v_ctrl;
171 	struct v4l2_ctrl *analog_sampling_phase_ctrl;
172 	struct v4l2_ctrl *free_run_color_manual_ctrl;
173 	struct v4l2_ctrl *free_run_color_ctrl;
174 	struct v4l2_ctrl *rgb_quantization_range_ctrl;
175 };
176 
177 static bool adv76xx_has_afe(struct adv76xx_state *state)
178 {
179 	return state->info->has_afe;
180 }
181 
182 /* Supported CEA and DMT timings */
183 static const struct v4l2_dv_timings adv76xx_timings[] = {
184 	V4L2_DV_BT_CEA_720X480P59_94,
185 	V4L2_DV_BT_CEA_720X576P50,
186 	V4L2_DV_BT_CEA_1280X720P24,
187 	V4L2_DV_BT_CEA_1280X720P25,
188 	V4L2_DV_BT_CEA_1280X720P50,
189 	V4L2_DV_BT_CEA_1280X720P60,
190 	V4L2_DV_BT_CEA_1920X1080P24,
191 	V4L2_DV_BT_CEA_1920X1080P25,
192 	V4L2_DV_BT_CEA_1920X1080P30,
193 	V4L2_DV_BT_CEA_1920X1080P50,
194 	V4L2_DV_BT_CEA_1920X1080P60,
195 
196 	/* sorted by DMT ID */
197 	V4L2_DV_BT_DMT_640X350P85,
198 	V4L2_DV_BT_DMT_640X400P85,
199 	V4L2_DV_BT_DMT_720X400P85,
200 	V4L2_DV_BT_DMT_640X480P60,
201 	V4L2_DV_BT_DMT_640X480P72,
202 	V4L2_DV_BT_DMT_640X480P75,
203 	V4L2_DV_BT_DMT_640X480P85,
204 	V4L2_DV_BT_DMT_800X600P56,
205 	V4L2_DV_BT_DMT_800X600P60,
206 	V4L2_DV_BT_DMT_800X600P72,
207 	V4L2_DV_BT_DMT_800X600P75,
208 	V4L2_DV_BT_DMT_800X600P85,
209 	V4L2_DV_BT_DMT_848X480P60,
210 	V4L2_DV_BT_DMT_1024X768P60,
211 	V4L2_DV_BT_DMT_1024X768P70,
212 	V4L2_DV_BT_DMT_1024X768P75,
213 	V4L2_DV_BT_DMT_1024X768P85,
214 	V4L2_DV_BT_DMT_1152X864P75,
215 	V4L2_DV_BT_DMT_1280X768P60_RB,
216 	V4L2_DV_BT_DMT_1280X768P60,
217 	V4L2_DV_BT_DMT_1280X768P75,
218 	V4L2_DV_BT_DMT_1280X768P85,
219 	V4L2_DV_BT_DMT_1280X800P60_RB,
220 	V4L2_DV_BT_DMT_1280X800P60,
221 	V4L2_DV_BT_DMT_1280X800P75,
222 	V4L2_DV_BT_DMT_1280X800P85,
223 	V4L2_DV_BT_DMT_1280X960P60,
224 	V4L2_DV_BT_DMT_1280X960P85,
225 	V4L2_DV_BT_DMT_1280X1024P60,
226 	V4L2_DV_BT_DMT_1280X1024P75,
227 	V4L2_DV_BT_DMT_1280X1024P85,
228 	V4L2_DV_BT_DMT_1360X768P60,
229 	V4L2_DV_BT_DMT_1400X1050P60_RB,
230 	V4L2_DV_BT_DMT_1400X1050P60,
231 	V4L2_DV_BT_DMT_1400X1050P75,
232 	V4L2_DV_BT_DMT_1400X1050P85,
233 	V4L2_DV_BT_DMT_1440X900P60_RB,
234 	V4L2_DV_BT_DMT_1440X900P60,
235 	V4L2_DV_BT_DMT_1600X1200P60,
236 	V4L2_DV_BT_DMT_1680X1050P60_RB,
237 	V4L2_DV_BT_DMT_1680X1050P60,
238 	V4L2_DV_BT_DMT_1792X1344P60,
239 	V4L2_DV_BT_DMT_1856X1392P60,
240 	V4L2_DV_BT_DMT_1920X1200P60_RB,
241 	V4L2_DV_BT_DMT_1366X768P60_RB,
242 	V4L2_DV_BT_DMT_1366X768P60,
243 	V4L2_DV_BT_DMT_1920X1080P60,
244 	{ },
245 };
246 
247 struct adv76xx_video_standards {
248 	struct v4l2_dv_timings timings;
249 	u8 vid_std;
250 	u8 v_freq;
251 };
252 
253 /* sorted by number of lines */
254 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
255 	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
256 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
257 	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
258 	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
259 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
260 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
261 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
262 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
263 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
264 	/* TODO add 1920x1080P60_RB (CVT timing) */
265 	{ },
266 };
267 
268 /* sorted by number of lines */
269 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
270 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
271 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
272 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
273 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
274 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
275 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
276 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
277 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
278 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
279 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
280 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
281 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
282 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
283 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
284 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
285 	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
286 	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
287 	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
288 	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
289 	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
290 	/* TODO add 1600X1200P60_RB (not a DMT timing) */
291 	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
292 	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
293 	{ },
294 };
295 
296 /* sorted by number of lines */
297 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
298 	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
299 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
300 	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
301 	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
302 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
303 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
304 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
305 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
306 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
307 	{ },
308 };
309 
310 /* sorted by number of lines */
311 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
312 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
313 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
314 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
315 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
316 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
317 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
318 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
319 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
320 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
321 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
322 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
323 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
324 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
325 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
326 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
327 	{ },
328 };
329 
330 /* ----------------------------------------------------------------------- */
331 
332 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
333 {
334 	return container_of(sd, struct adv76xx_state, sd);
335 }
336 
337 static inline unsigned htotal(const struct v4l2_bt_timings *t)
338 {
339 	return V4L2_DV_BT_FRAME_WIDTH(t);
340 }
341 
342 static inline unsigned vtotal(const struct v4l2_bt_timings *t)
343 {
344 	return V4L2_DV_BT_FRAME_HEIGHT(t);
345 }
346 
347 /* ----------------------------------------------------------------------- */
348 
349 static s32 adv_smbus_read_byte_data_check(struct i2c_client *client,
350 		u8 command, bool check)
351 {
352 	union i2c_smbus_data data;
353 
354 	if (!i2c_smbus_xfer(client->adapter, client->addr, client->flags,
355 			I2C_SMBUS_READ, command,
356 			I2C_SMBUS_BYTE_DATA, &data))
357 		return data.byte;
358 	if (check)
359 		v4l_err(client, "error reading %02x, %02x\n",
360 				client->addr, command);
361 	return -EIO;
362 }
363 
364 static s32 adv_smbus_read_byte_data(struct adv76xx_state *state,
365 				    enum adv76xx_page page, u8 command)
366 {
367 	return adv_smbus_read_byte_data_check(state->i2c_clients[page],
368 					      command, true);
369 }
370 
371 static s32 adv_smbus_write_byte_data(struct adv76xx_state *state,
372 				     enum adv76xx_page page, u8 command,
373 				     u8 value)
374 {
375 	struct i2c_client *client = state->i2c_clients[page];
376 	union i2c_smbus_data data;
377 	int err;
378 	int i;
379 
380 	data.byte = value;
381 	for (i = 0; i < 3; i++) {
382 		err = i2c_smbus_xfer(client->adapter, client->addr,
383 				client->flags,
384 				I2C_SMBUS_WRITE, command,
385 				I2C_SMBUS_BYTE_DATA, &data);
386 		if (!err)
387 			break;
388 	}
389 	if (err < 0)
390 		v4l_err(client, "error writing %02x, %02x, %02x\n",
391 				client->addr, command, value);
392 	return err;
393 }
394 
395 static s32 adv_smbus_write_i2c_block_data(struct adv76xx_state *state,
396 					  enum adv76xx_page page, u8 command,
397 					  unsigned length, const u8 *values)
398 {
399 	struct i2c_client *client = state->i2c_clients[page];
400 	union i2c_smbus_data data;
401 
402 	if (length > I2C_SMBUS_BLOCK_MAX)
403 		length = I2C_SMBUS_BLOCK_MAX;
404 	data.block[0] = length;
405 	memcpy(data.block + 1, values, length);
406 	return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
407 			      I2C_SMBUS_WRITE, command,
408 			      I2C_SMBUS_I2C_BLOCK_DATA, &data);
409 }
410 
411 /* ----------------------------------------------------------------------- */
412 
413 static inline int io_read(struct v4l2_subdev *sd, u8 reg)
414 {
415 	struct adv76xx_state *state = to_state(sd);
416 
417 	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_IO, reg);
418 }
419 
420 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
421 {
422 	struct adv76xx_state *state = to_state(sd);
423 
424 	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_IO, reg, val);
425 }
426 
427 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
428 {
429 	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
430 }
431 
432 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
433 {
434 	struct adv76xx_state *state = to_state(sd);
435 
436 	return adv_smbus_read_byte_data(state, ADV7604_PAGE_AVLINK, reg);
437 }
438 
439 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
440 {
441 	struct adv76xx_state *state = to_state(sd);
442 
443 	return adv_smbus_write_byte_data(state, ADV7604_PAGE_AVLINK, reg, val);
444 }
445 
446 static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
447 {
448 	struct adv76xx_state *state = to_state(sd);
449 
450 	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_CEC, reg);
451 }
452 
453 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
454 {
455 	struct adv76xx_state *state = to_state(sd);
456 
457 	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_CEC, reg, val);
458 }
459 
460 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
461 {
462 	struct adv76xx_state *state = to_state(sd);
463 
464 	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_INFOFRAME, reg);
465 }
466 
467 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
468 {
469 	struct adv76xx_state *state = to_state(sd);
470 
471 	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_INFOFRAME,
472 					 reg, val);
473 }
474 
475 static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
476 {
477 	struct adv76xx_state *state = to_state(sd);
478 
479 	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_AFE, reg);
480 }
481 
482 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
483 {
484 	struct adv76xx_state *state = to_state(sd);
485 
486 	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_AFE, reg, val);
487 }
488 
489 static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
490 {
491 	struct adv76xx_state *state = to_state(sd);
492 
493 	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_REP, reg);
494 }
495 
496 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
497 {
498 	struct adv76xx_state *state = to_state(sd);
499 
500 	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_REP, reg, val);
501 }
502 
503 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
504 {
505 	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
506 }
507 
508 static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
509 {
510 	struct adv76xx_state *state = to_state(sd);
511 
512 	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_EDID, reg);
513 }
514 
515 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
516 {
517 	struct adv76xx_state *state = to_state(sd);
518 
519 	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_EDID, reg, val);
520 }
521 
522 static inline int edid_write_block(struct v4l2_subdev *sd,
523 					unsigned len, const u8 *val)
524 {
525 	struct adv76xx_state *state = to_state(sd);
526 	int err = 0;
527 	int i;
528 
529 	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n", __func__, len);
530 
531 	for (i = 0; !err && i < len; i += I2C_SMBUS_BLOCK_MAX)
532 		err = adv_smbus_write_i2c_block_data(state, ADV76XX_PAGE_EDID,
533 				i, I2C_SMBUS_BLOCK_MAX, val + i);
534 	return err;
535 }
536 
537 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
538 {
539 	unsigned int i;
540 
541 	for (i = 0; i < state->info->num_dv_ports; ++i)
542 		gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
543 
544 	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
545 }
546 
547 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
548 {
549 	struct delayed_work *dwork = to_delayed_work(work);
550 	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
551 						delayed_work_enable_hotplug);
552 	struct v4l2_subdev *sd = &state->sd;
553 
554 	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
555 
556 	adv76xx_set_hpd(state, state->edid.present);
557 }
558 
559 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
560 {
561 	struct adv76xx_state *state = to_state(sd);
562 
563 	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_HDMI, reg);
564 }
565 
566 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
567 {
568 	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
569 }
570 
571 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
572 {
573 	struct adv76xx_state *state = to_state(sd);
574 
575 	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_HDMI, reg, val);
576 }
577 
578 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
579 {
580 	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
581 }
582 
583 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
584 {
585 	struct adv76xx_state *state = to_state(sd);
586 
587 	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_TEST, reg, val);
588 }
589 
590 static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
591 {
592 	struct adv76xx_state *state = to_state(sd);
593 
594 	return adv_smbus_read_byte_data(state, ADV76XX_PAGE_CP, reg);
595 }
596 
597 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
598 {
599 	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
600 }
601 
602 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
603 {
604 	struct adv76xx_state *state = to_state(sd);
605 
606 	return adv_smbus_write_byte_data(state, ADV76XX_PAGE_CP, reg, val);
607 }
608 
609 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
610 {
611 	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
612 }
613 
614 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
615 {
616 	struct adv76xx_state *state = to_state(sd);
617 
618 	return adv_smbus_read_byte_data(state, ADV7604_PAGE_VDP, reg);
619 }
620 
621 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
622 {
623 	struct adv76xx_state *state = to_state(sd);
624 
625 	return adv_smbus_write_byte_data(state, ADV7604_PAGE_VDP, reg, val);
626 }
627 
628 #define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
629 #define ADV76XX_REG_SEQ_TERM		0xffff
630 
631 #ifdef CONFIG_VIDEO_ADV_DEBUG
632 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
633 {
634 	struct adv76xx_state *state = to_state(sd);
635 	unsigned int page = reg >> 8;
636 
637 	if (!(BIT(page) & state->info->page_mask))
638 		return -EINVAL;
639 
640 	reg &= 0xff;
641 
642 	return adv_smbus_read_byte_data(state, page, reg);
643 }
644 #endif
645 
646 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
647 {
648 	struct adv76xx_state *state = to_state(sd);
649 	unsigned int page = reg >> 8;
650 
651 	if (!(BIT(page) & state->info->page_mask))
652 		return -EINVAL;
653 
654 	reg &= 0xff;
655 
656 	return adv_smbus_write_byte_data(state, page, reg, val);
657 }
658 
659 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
660 				  const struct adv76xx_reg_seq *reg_seq)
661 {
662 	unsigned int i;
663 
664 	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
665 		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
666 }
667 
668 /* -----------------------------------------------------------------------------
669  * Format helpers
670  */
671 
672 static const struct adv76xx_format_info adv7604_formats[] = {
673 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
674 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
675 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
676 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
677 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
678 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
679 	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
680 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
681 	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
682 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
683 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
684 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
685 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
686 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
687 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
688 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
689 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
690 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
691 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
692 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
693 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
694 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
695 	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
696 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
697 	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
698 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
699 	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
700 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
701 	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
702 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
703 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
704 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
705 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
706 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
707 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
708 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
709 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
710 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
711 };
712 
713 static const struct adv76xx_format_info adv7611_formats[] = {
714 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
715 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
716 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
717 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
718 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
719 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
720 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
721 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
722 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
723 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
724 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
725 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
726 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
727 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
728 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
729 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
730 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
731 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
732 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
733 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
734 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
735 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
736 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
737 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
738 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
739 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
740 };
741 
742 static const struct adv76xx_format_info *
743 adv76xx_format_info(struct adv76xx_state *state, u32 code)
744 {
745 	unsigned int i;
746 
747 	for (i = 0; i < state->info->nformats; ++i) {
748 		if (state->info->formats[i].code == code)
749 			return &state->info->formats[i];
750 	}
751 
752 	return NULL;
753 }
754 
755 /* ----------------------------------------------------------------------- */
756 
757 static inline bool is_analog_input(struct v4l2_subdev *sd)
758 {
759 	struct adv76xx_state *state = to_state(sd);
760 
761 	return state->selected_input == ADV7604_PAD_VGA_RGB ||
762 	       state->selected_input == ADV7604_PAD_VGA_COMP;
763 }
764 
765 static inline bool is_digital_input(struct v4l2_subdev *sd)
766 {
767 	struct adv76xx_state *state = to_state(sd);
768 
769 	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
770 	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
771 	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
772 	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
773 }
774 
775 /* ----------------------------------------------------------------------- */
776 
777 #ifdef CONFIG_VIDEO_ADV_DEBUG
778 static void adv76xx_inv_register(struct v4l2_subdev *sd)
779 {
780 	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
781 	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
782 	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
783 	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
784 	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
785 	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
786 	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
787 	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
788 	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
789 	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
790 	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
791 	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
792 	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
793 }
794 
795 static int adv76xx_g_register(struct v4l2_subdev *sd,
796 					struct v4l2_dbg_register *reg)
797 {
798 	int ret;
799 
800 	ret = adv76xx_read_reg(sd, reg->reg);
801 	if (ret < 0) {
802 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
803 		adv76xx_inv_register(sd);
804 		return ret;
805 	}
806 
807 	reg->size = 1;
808 	reg->val = ret;
809 
810 	return 0;
811 }
812 
813 static int adv76xx_s_register(struct v4l2_subdev *sd,
814 					const struct v4l2_dbg_register *reg)
815 {
816 	int ret;
817 
818 	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
819 	if (ret < 0) {
820 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
821 		adv76xx_inv_register(sd);
822 		return ret;
823 	}
824 
825 	return 0;
826 }
827 #endif
828 
829 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
830 {
831 	u8 value = io_read(sd, 0x6f);
832 
833 	return ((value & 0x10) >> 4)
834 	     | ((value & 0x08) >> 2)
835 	     | ((value & 0x04) << 0)
836 	     | ((value & 0x02) << 2);
837 }
838 
839 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
840 {
841 	u8 value = io_read(sd, 0x6f);
842 
843 	return value & 1;
844 }
845 
846 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
847 {
848 	struct adv76xx_state *state = to_state(sd);
849 	const struct adv76xx_chip_info *info = state->info;
850 
851 	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
852 				info->read_cable_det(sd));
853 }
854 
855 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
856 		u8 prim_mode,
857 		const struct adv76xx_video_standards *predef_vid_timings,
858 		const struct v4l2_dv_timings *timings)
859 {
860 	int i;
861 
862 	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
863 		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
864 					is_digital_input(sd) ? 250000 : 1000000))
865 			continue;
866 		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
867 		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
868 				prim_mode); /* v_freq and prim mode */
869 		return 0;
870 	}
871 
872 	return -1;
873 }
874 
875 static int configure_predefined_video_timings(struct v4l2_subdev *sd,
876 		struct v4l2_dv_timings *timings)
877 {
878 	struct adv76xx_state *state = to_state(sd);
879 	int err;
880 
881 	v4l2_dbg(1, debug, sd, "%s", __func__);
882 
883 	if (adv76xx_has_afe(state)) {
884 		/* reset to default values */
885 		io_write(sd, 0x16, 0x43);
886 		io_write(sd, 0x17, 0x5a);
887 	}
888 	/* disable embedded syncs for auto graphics mode */
889 	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
890 	cp_write(sd, 0x8f, 0x00);
891 	cp_write(sd, 0x90, 0x00);
892 	cp_write(sd, 0xa2, 0x00);
893 	cp_write(sd, 0xa3, 0x00);
894 	cp_write(sd, 0xa4, 0x00);
895 	cp_write(sd, 0xa5, 0x00);
896 	cp_write(sd, 0xa6, 0x00);
897 	cp_write(sd, 0xa7, 0x00);
898 	cp_write(sd, 0xab, 0x00);
899 	cp_write(sd, 0xac, 0x00);
900 
901 	if (is_analog_input(sd)) {
902 		err = find_and_set_predefined_video_timings(sd,
903 				0x01, adv7604_prim_mode_comp, timings);
904 		if (err)
905 			err = find_and_set_predefined_video_timings(sd,
906 					0x02, adv7604_prim_mode_gr, timings);
907 	} else if (is_digital_input(sd)) {
908 		err = find_and_set_predefined_video_timings(sd,
909 				0x05, adv76xx_prim_mode_hdmi_comp, timings);
910 		if (err)
911 			err = find_and_set_predefined_video_timings(sd,
912 					0x06, adv76xx_prim_mode_hdmi_gr, timings);
913 	} else {
914 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
915 				__func__, state->selected_input);
916 		err = -1;
917 	}
918 
919 
920 	return err;
921 }
922 
923 static void configure_custom_video_timings(struct v4l2_subdev *sd,
924 		const struct v4l2_bt_timings *bt)
925 {
926 	struct adv76xx_state *state = to_state(sd);
927 	u32 width = htotal(bt);
928 	u32 height = vtotal(bt);
929 	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
930 	u16 cp_start_eav = width - bt->hfrontporch;
931 	u16 cp_start_vbi = height - bt->vfrontporch;
932 	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
933 	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
934 		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
935 	const u8 pll[2] = {
936 		0xc0 | ((width >> 8) & 0x1f),
937 		width & 0xff
938 	};
939 
940 	v4l2_dbg(2, debug, sd, "%s\n", __func__);
941 
942 	if (is_analog_input(sd)) {
943 		/* auto graphics */
944 		io_write(sd, 0x00, 0x07); /* video std */
945 		io_write(sd, 0x01, 0x02); /* prim mode */
946 		/* enable embedded syncs for auto graphics mode */
947 		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
948 
949 		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
950 		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
951 		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
952 		if (adv_smbus_write_i2c_block_data(state, ADV76XX_PAGE_IO,
953 						   0x16, 2, pll))
954 			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
955 
956 		/* active video - horizontal timing */
957 		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
958 		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
959 				   ((cp_start_eav >> 8) & 0x0f));
960 		cp_write(sd, 0xa4, cp_start_eav & 0xff);
961 
962 		/* active video - vertical timing */
963 		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
964 		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
965 				   ((cp_end_vbi >> 8) & 0xf));
966 		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
967 	} else if (is_digital_input(sd)) {
968 		/* set default prim_mode/vid_std for HDMI
969 		   according to [REF_03, c. 4.2] */
970 		io_write(sd, 0x00, 0x02); /* video std */
971 		io_write(sd, 0x01, 0x06); /* prim mode */
972 	} else {
973 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
974 				__func__, state->selected_input);
975 	}
976 
977 	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
978 	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
979 	cp_write(sd, 0xab, (height >> 4) & 0xff);
980 	cp_write(sd, 0xac, (height & 0x0f) << 4);
981 }
982 
983 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
984 {
985 	struct adv76xx_state *state = to_state(sd);
986 	u8 offset_buf[4];
987 
988 	if (auto_offset) {
989 		offset_a = 0x3ff;
990 		offset_b = 0x3ff;
991 		offset_c = 0x3ff;
992 	}
993 
994 	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
995 			__func__, auto_offset ? "Auto" : "Manual",
996 			offset_a, offset_b, offset_c);
997 
998 	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
999 	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1000 	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1001 	offset_buf[3] = offset_c & 0x0ff;
1002 
1003 	/* Registers must be written in this order with no i2c access in between */
1004 	if (adv_smbus_write_i2c_block_data(state, ADV76XX_PAGE_CP,
1005 					   0x77, 4, offset_buf))
1006 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1007 }
1008 
1009 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1010 {
1011 	struct adv76xx_state *state = to_state(sd);
1012 	u8 gain_buf[4];
1013 	u8 gain_man = 1;
1014 	u8 agc_mode_man = 1;
1015 
1016 	if (auto_gain) {
1017 		gain_man = 0;
1018 		agc_mode_man = 0;
1019 		gain_a = 0x100;
1020 		gain_b = 0x100;
1021 		gain_c = 0x100;
1022 	}
1023 
1024 	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1025 			__func__, auto_gain ? "Auto" : "Manual",
1026 			gain_a, gain_b, gain_c);
1027 
1028 	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1029 	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1030 	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1031 	gain_buf[3] = ((gain_c & 0x0ff));
1032 
1033 	/* Registers must be written in this order with no i2c access in between */
1034 	if (adv_smbus_write_i2c_block_data(state, ADV76XX_PAGE_CP,
1035 					   0x73, 4, gain_buf))
1036 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1037 }
1038 
1039 static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1040 {
1041 	struct adv76xx_state *state = to_state(sd);
1042 	bool rgb_output = io_read(sd, 0x02) & 0x02;
1043 	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1044 
1045 	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1046 			__func__, state->rgb_quantization_range,
1047 			rgb_output, hdmi_signal);
1048 
1049 	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1050 	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1051 
1052 	switch (state->rgb_quantization_range) {
1053 	case V4L2_DV_RGB_RANGE_AUTO:
1054 		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1055 			/* Receiving analog RGB signal
1056 			 * Set RGB full range (0-255) */
1057 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1058 			break;
1059 		}
1060 
1061 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1062 			/* Receiving analog YPbPr signal
1063 			 * Set automode */
1064 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1065 			break;
1066 		}
1067 
1068 		if (hdmi_signal) {
1069 			/* Receiving HDMI signal
1070 			 * Set automode */
1071 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1072 			break;
1073 		}
1074 
1075 		/* Receiving DVI-D signal
1076 		 * ADV7604 selects RGB limited range regardless of
1077 		 * input format (CE/IT) in automatic mode */
1078 		if (state->timings.bt.standards & V4L2_DV_BT_STD_CEA861) {
1079 			/* RGB limited range (16-235) */
1080 			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1081 		} else {
1082 			/* RGB full range (0-255) */
1083 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1084 
1085 			if (is_digital_input(sd) && rgb_output) {
1086 				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1087 			} else {
1088 				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1089 				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1090 			}
1091 		}
1092 		break;
1093 	case V4L2_DV_RGB_RANGE_LIMITED:
1094 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1095 			/* YCrCb limited range (16-235) */
1096 			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1097 			break;
1098 		}
1099 
1100 		/* RGB limited range (16-235) */
1101 		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1102 
1103 		break;
1104 	case V4L2_DV_RGB_RANGE_FULL:
1105 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1106 			/* YCrCb full range (0-255) */
1107 			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1108 			break;
1109 		}
1110 
1111 		/* RGB full range (0-255) */
1112 		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1113 
1114 		if (is_analog_input(sd) || hdmi_signal)
1115 			break;
1116 
1117 		/* Adjust gain/offset for DVI-D signals only */
1118 		if (rgb_output) {
1119 			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1120 		} else {
1121 			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1122 			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1123 		}
1124 		break;
1125 	}
1126 }
1127 
1128 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1129 {
1130 	struct v4l2_subdev *sd =
1131 		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1132 
1133 	struct adv76xx_state *state = to_state(sd);
1134 
1135 	switch (ctrl->id) {
1136 	case V4L2_CID_BRIGHTNESS:
1137 		cp_write(sd, 0x3c, ctrl->val);
1138 		return 0;
1139 	case V4L2_CID_CONTRAST:
1140 		cp_write(sd, 0x3a, ctrl->val);
1141 		return 0;
1142 	case V4L2_CID_SATURATION:
1143 		cp_write(sd, 0x3b, ctrl->val);
1144 		return 0;
1145 	case V4L2_CID_HUE:
1146 		cp_write(sd, 0x3d, ctrl->val);
1147 		return 0;
1148 	case  V4L2_CID_DV_RX_RGB_RANGE:
1149 		state->rgb_quantization_range = ctrl->val;
1150 		set_rgb_quantization_range(sd);
1151 		return 0;
1152 	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1153 		if (!adv76xx_has_afe(state))
1154 			return -EINVAL;
1155 		/* Set the analog sampling phase. This is needed to find the
1156 		   best sampling phase for analog video: an application or
1157 		   driver has to try a number of phases and analyze the picture
1158 		   quality before settling on the best performing phase. */
1159 		afe_write(sd, 0xc8, ctrl->val);
1160 		return 0;
1161 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1162 		/* Use the default blue color for free running mode,
1163 		   or supply your own. */
1164 		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1165 		return 0;
1166 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1167 		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1168 		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1169 		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1170 		return 0;
1171 	}
1172 	return -EINVAL;
1173 }
1174 
1175 /* ----------------------------------------------------------------------- */
1176 
1177 static inline bool no_power(struct v4l2_subdev *sd)
1178 {
1179 	/* Entire chip or CP powered off */
1180 	return io_read(sd, 0x0c) & 0x24;
1181 }
1182 
1183 static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1184 {
1185 	struct adv76xx_state *state = to_state(sd);
1186 
1187 	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1188 }
1189 
1190 static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1191 {
1192 	struct adv76xx_state *state = to_state(sd);
1193 	const struct adv76xx_chip_info *info = state->info;
1194 
1195 	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1196 }
1197 
1198 static inline bool is_hdmi(struct v4l2_subdev *sd)
1199 {
1200 	return hdmi_read(sd, 0x05) & 0x80;
1201 }
1202 
1203 static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1204 {
1205 	struct adv76xx_state *state = to_state(sd);
1206 
1207 	/*
1208 	 * Chips without a AFE don't expose registers for the SSPD, so just assume
1209 	 * that we have a lock.
1210 	 */
1211 	if (adv76xx_has_afe(state))
1212 		return false;
1213 
1214 	/* TODO channel 2 */
1215 	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1216 }
1217 
1218 static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1219 {
1220 	/* TODO channel 2 */
1221 	return !(cp_read(sd, 0xb1) & 0x80);
1222 }
1223 
1224 static inline bool no_signal(struct v4l2_subdev *sd)
1225 {
1226 	bool ret;
1227 
1228 	ret = no_power(sd);
1229 
1230 	ret |= no_lock_stdi(sd);
1231 	ret |= no_lock_sspd(sd);
1232 
1233 	if (is_digital_input(sd)) {
1234 		ret |= no_lock_tmds(sd);
1235 		ret |= no_signal_tmds(sd);
1236 	}
1237 
1238 	return ret;
1239 }
1240 
1241 static inline bool no_lock_cp(struct v4l2_subdev *sd)
1242 {
1243 	struct adv76xx_state *state = to_state(sd);
1244 
1245 	if (!adv76xx_has_afe(state))
1246 		return false;
1247 
1248 	/* CP has detected a non standard number of lines on the incoming
1249 	   video compared to what it is configured to receive by s_dv_timings */
1250 	return io_read(sd, 0x12) & 0x01;
1251 }
1252 
1253 static inline bool in_free_run(struct v4l2_subdev *sd)
1254 {
1255 	return cp_read(sd, 0xff) & 0x10;
1256 }
1257 
1258 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1259 {
1260 	*status = 0;
1261 	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1262 	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1263 	if (!in_free_run(sd) && no_lock_cp(sd))
1264 		*status |= is_digital_input(sd) ?
1265 			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1266 
1267 	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1268 
1269 	return 0;
1270 }
1271 
1272 /* ----------------------------------------------------------------------- */
1273 
1274 struct stdi_readback {
1275 	u16 bl, lcf, lcvs;
1276 	u8 hs_pol, vs_pol;
1277 	bool interlaced;
1278 };
1279 
1280 static int stdi2dv_timings(struct v4l2_subdev *sd,
1281 		struct stdi_readback *stdi,
1282 		struct v4l2_dv_timings *timings)
1283 {
1284 	struct adv76xx_state *state = to_state(sd);
1285 	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1286 	u32 pix_clk;
1287 	int i;
1288 
1289 	for (i = 0; adv76xx_timings[i].bt.height; i++) {
1290 		if (vtotal(&adv76xx_timings[i].bt) != stdi->lcf + 1)
1291 			continue;
1292 		if (adv76xx_timings[i].bt.vsync != stdi->lcvs)
1293 			continue;
1294 
1295 		pix_clk = hfreq * htotal(&adv76xx_timings[i].bt);
1296 
1297 		if ((pix_clk < adv76xx_timings[i].bt.pixelclock + 1000000) &&
1298 		    (pix_clk > adv76xx_timings[i].bt.pixelclock - 1000000)) {
1299 			*timings = adv76xx_timings[i];
1300 			return 0;
1301 		}
1302 	}
1303 
1304 	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs,
1305 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1306 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1307 			timings))
1308 		return 0;
1309 	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1310 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1311 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1312 			state->aspect_ratio, timings))
1313 		return 0;
1314 
1315 	v4l2_dbg(2, debug, sd,
1316 		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1317 		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
1318 		stdi->hs_pol, stdi->vs_pol);
1319 	return -1;
1320 }
1321 
1322 
1323 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1324 {
1325 	struct adv76xx_state *state = to_state(sd);
1326 	const struct adv76xx_chip_info *info = state->info;
1327 	u8 polarity;
1328 
1329 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1330 		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1331 		return -1;
1332 	}
1333 
1334 	/* read STDI */
1335 	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1336 	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1337 	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1338 	stdi->interlaced = io_read(sd, 0x12) & 0x10;
1339 
1340 	if (adv76xx_has_afe(state)) {
1341 		/* read SSPD */
1342 		polarity = cp_read(sd, 0xb5);
1343 		if ((polarity & 0x03) == 0x01) {
1344 			stdi->hs_pol = polarity & 0x10
1345 				     ? (polarity & 0x08 ? '+' : '-') : 'x';
1346 			stdi->vs_pol = polarity & 0x40
1347 				     ? (polarity & 0x20 ? '+' : '-') : 'x';
1348 		} else {
1349 			stdi->hs_pol = 'x';
1350 			stdi->vs_pol = 'x';
1351 		}
1352 	} else {
1353 		polarity = hdmi_read(sd, 0x05);
1354 		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1355 		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1356 	}
1357 
1358 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1359 		v4l2_dbg(2, debug, sd,
1360 			"%s: signal lost during readout of STDI/SSPD\n", __func__);
1361 		return -1;
1362 	}
1363 
1364 	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1365 		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1366 		memset(stdi, 0, sizeof(struct stdi_readback));
1367 		return -1;
1368 	}
1369 
1370 	v4l2_dbg(2, debug, sd,
1371 		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1372 		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
1373 		stdi->hs_pol, stdi->vs_pol,
1374 		stdi->interlaced ? "interlaced" : "progressive");
1375 
1376 	return 0;
1377 }
1378 
1379 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1380 			struct v4l2_enum_dv_timings *timings)
1381 {
1382 	struct adv76xx_state *state = to_state(sd);
1383 
1384 	if (timings->index >= ARRAY_SIZE(adv76xx_timings) - 1)
1385 		return -EINVAL;
1386 
1387 	if (timings->pad >= state->source_pad)
1388 		return -EINVAL;
1389 
1390 	memset(timings->reserved, 0, sizeof(timings->reserved));
1391 	timings->timings = adv76xx_timings[timings->index];
1392 	return 0;
1393 }
1394 
1395 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1396 			struct v4l2_dv_timings_cap *cap)
1397 {
1398 	struct adv76xx_state *state = to_state(sd);
1399 
1400 	if (cap->pad >= state->source_pad)
1401 		return -EINVAL;
1402 
1403 	cap->type = V4L2_DV_BT_656_1120;
1404 	cap->bt.max_width = 1920;
1405 	cap->bt.max_height = 1200;
1406 	cap->bt.min_pixelclock = 25000000;
1407 
1408 	switch (cap->pad) {
1409 	case ADV76XX_PAD_HDMI_PORT_A:
1410 	case ADV7604_PAD_HDMI_PORT_B:
1411 	case ADV7604_PAD_HDMI_PORT_C:
1412 	case ADV7604_PAD_HDMI_PORT_D:
1413 		cap->bt.max_pixelclock = 225000000;
1414 		break;
1415 	case ADV7604_PAD_VGA_RGB:
1416 	case ADV7604_PAD_VGA_COMP:
1417 	default:
1418 		cap->bt.max_pixelclock = 170000000;
1419 		break;
1420 	}
1421 
1422 	cap->bt.standards = V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
1423 			 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT;
1424 	cap->bt.capabilities = V4L2_DV_BT_CAP_PROGRESSIVE |
1425 		V4L2_DV_BT_CAP_REDUCED_BLANKING | V4L2_DV_BT_CAP_CUSTOM;
1426 	return 0;
1427 }
1428 
1429 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1430    if the format is listed in adv76xx_timings[] */
1431 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1432 		struct v4l2_dv_timings *timings)
1433 {
1434 	int i;
1435 
1436 	for (i = 0; adv76xx_timings[i].bt.width; i++) {
1437 		if (v4l2_match_dv_timings(timings, &adv76xx_timings[i],
1438 					is_digital_input(sd) ? 250000 : 1000000)) {
1439 			*timings = adv76xx_timings[i];
1440 			break;
1441 		}
1442 	}
1443 }
1444 
1445 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1446 {
1447 	unsigned int freq;
1448 	int a, b;
1449 
1450 	a = hdmi_read(sd, 0x06);
1451 	b = hdmi_read(sd, 0x3b);
1452 	if (a < 0 || b < 0)
1453 		return 0;
1454 	freq =  a * 1000000 + ((b & 0x30) >> 4) * 250000;
1455 
1456 	if (is_hdmi(sd)) {
1457 		/* adjust for deep color mode */
1458 		unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1459 
1460 		freq = freq * 8 / bits_per_channel;
1461 	}
1462 
1463 	return freq;
1464 }
1465 
1466 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1467 {
1468 	int a, b;
1469 
1470 	a = hdmi_read(sd, 0x51);
1471 	b = hdmi_read(sd, 0x52);
1472 	if (a < 0 || b < 0)
1473 		return 0;
1474 	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1475 }
1476 
1477 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1478 			struct v4l2_dv_timings *timings)
1479 {
1480 	struct adv76xx_state *state = to_state(sd);
1481 	const struct adv76xx_chip_info *info = state->info;
1482 	struct v4l2_bt_timings *bt = &timings->bt;
1483 	struct stdi_readback stdi;
1484 
1485 	if (!timings)
1486 		return -EINVAL;
1487 
1488 	memset(timings, 0, sizeof(struct v4l2_dv_timings));
1489 
1490 	if (no_signal(sd)) {
1491 		state->restart_stdi_once = true;
1492 		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1493 		return -ENOLINK;
1494 	}
1495 
1496 	/* read STDI */
1497 	if (read_stdi(sd, &stdi)) {
1498 		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1499 		return -ENOLINK;
1500 	}
1501 	bt->interlaced = stdi.interlaced ?
1502 		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1503 
1504 	if (is_digital_input(sd)) {
1505 		timings->type = V4L2_DV_BT_656_1120;
1506 
1507 		/* FIXME: All masks are incorrect for ADV7611 */
1508 		bt->width = hdmi_read16(sd, 0x07, 0xfff);
1509 		bt->height = hdmi_read16(sd, 0x09, 0xfff);
1510 		bt->pixelclock = info->read_hdmi_pixelclock(sd);
1511 		bt->hfrontporch = hdmi_read16(sd, 0x20, 0x3ff);
1512 		bt->hsync = hdmi_read16(sd, 0x22, 0x3ff);
1513 		bt->hbackporch = hdmi_read16(sd, 0x24, 0x3ff);
1514 		bt->vfrontporch = hdmi_read16(sd, 0x2a, 0x1fff) / 2;
1515 		bt->vsync = hdmi_read16(sd, 0x2e, 0x1fff) / 2;
1516 		bt->vbackporch = hdmi_read16(sd, 0x32, 0x1fff) / 2;
1517 		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1518 			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1519 		if (bt->interlaced == V4L2_DV_INTERLACED) {
1520 			bt->height += hdmi_read16(sd, 0x0b, 0xfff);
1521 			bt->il_vfrontporch = hdmi_read16(sd, 0x2c, 0x1fff) / 2;
1522 			bt->il_vsync = hdmi_read16(sd, 0x30, 0x1fff) / 2;
1523 			bt->il_vbackporch = hdmi_read16(sd, 0x34, 0x1fff) / 2;
1524 		}
1525 		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1526 	} else {
1527 		/* find format
1528 		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1529 		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1530 		 */
1531 		if (!stdi2dv_timings(sd, &stdi, timings))
1532 			goto found;
1533 		stdi.lcvs += 1;
1534 		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1535 		if (!stdi2dv_timings(sd, &stdi, timings))
1536 			goto found;
1537 		stdi.lcvs -= 2;
1538 		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1539 		if (stdi2dv_timings(sd, &stdi, timings)) {
1540 			/*
1541 			 * The STDI block may measure wrong values, especially
1542 			 * for lcvs and lcf. If the driver can not find any
1543 			 * valid timing, the STDI block is restarted to measure
1544 			 * the video timings again. The function will return an
1545 			 * error, but the restart of STDI will generate a new
1546 			 * STDI interrupt and the format detection process will
1547 			 * restart.
1548 			 */
1549 			if (state->restart_stdi_once) {
1550 				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1551 				/* TODO restart STDI for Sync Channel 2 */
1552 				/* enter one-shot mode */
1553 				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1554 				/* trigger STDI restart */
1555 				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1556 				/* reset to continuous mode */
1557 				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1558 				state->restart_stdi_once = false;
1559 				return -ENOLINK;
1560 			}
1561 			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1562 			return -ERANGE;
1563 		}
1564 		state->restart_stdi_once = true;
1565 	}
1566 found:
1567 
1568 	if (no_signal(sd)) {
1569 		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1570 		memset(timings, 0, sizeof(struct v4l2_dv_timings));
1571 		return -ENOLINK;
1572 	}
1573 
1574 	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1575 			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1576 		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1577 				__func__, (u32)bt->pixelclock);
1578 		return -ERANGE;
1579 	}
1580 
1581 	if (debug > 1)
1582 		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1583 				      timings, true);
1584 
1585 	return 0;
1586 }
1587 
1588 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1589 		struct v4l2_dv_timings *timings)
1590 {
1591 	struct adv76xx_state *state = to_state(sd);
1592 	struct v4l2_bt_timings *bt;
1593 	int err;
1594 
1595 	if (!timings)
1596 		return -EINVAL;
1597 
1598 	if (v4l2_match_dv_timings(&state->timings, timings, 0)) {
1599 		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1600 		return 0;
1601 	}
1602 
1603 	bt = &timings->bt;
1604 
1605 	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1606 			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1607 		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1608 				__func__, (u32)bt->pixelclock);
1609 		return -ERANGE;
1610 	}
1611 
1612 	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1613 
1614 	state->timings = *timings;
1615 
1616 	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1617 
1618 	/* Use prim_mode and vid_std when available */
1619 	err = configure_predefined_video_timings(sd, timings);
1620 	if (err) {
1621 		/* custom settings when the video format
1622 		 does not have prim_mode/vid_std */
1623 		configure_custom_video_timings(sd, bt);
1624 	}
1625 
1626 	set_rgb_quantization_range(sd);
1627 
1628 	if (debug > 1)
1629 		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1630 				      timings, true);
1631 	return 0;
1632 }
1633 
1634 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1635 		struct v4l2_dv_timings *timings)
1636 {
1637 	struct adv76xx_state *state = to_state(sd);
1638 
1639 	*timings = state->timings;
1640 	return 0;
1641 }
1642 
1643 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1644 {
1645 	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1646 }
1647 
1648 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1649 {
1650 	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1651 }
1652 
1653 static void enable_input(struct v4l2_subdev *sd)
1654 {
1655 	struct adv76xx_state *state = to_state(sd);
1656 
1657 	if (is_analog_input(sd)) {
1658 		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1659 	} else if (is_digital_input(sd)) {
1660 		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1661 		state->info->set_termination(sd, true);
1662 		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1663 		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1664 	} else {
1665 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1666 				__func__, state->selected_input);
1667 	}
1668 }
1669 
1670 static void disable_input(struct v4l2_subdev *sd)
1671 {
1672 	struct adv76xx_state *state = to_state(sd);
1673 
1674 	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1675 	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1676 	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1677 	state->info->set_termination(sd, false);
1678 }
1679 
1680 static void select_input(struct v4l2_subdev *sd)
1681 {
1682 	struct adv76xx_state *state = to_state(sd);
1683 	const struct adv76xx_chip_info *info = state->info;
1684 
1685 	if (is_analog_input(sd)) {
1686 		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1687 
1688 		afe_write(sd, 0x00, 0x08); /* power up ADC */
1689 		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1690 		afe_write(sd, 0xc8, 0x00); /* phase control */
1691 	} else if (is_digital_input(sd)) {
1692 		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1693 
1694 		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1695 
1696 		if (adv76xx_has_afe(state)) {
1697 			afe_write(sd, 0x00, 0xff); /* power down ADC */
1698 			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1699 			afe_write(sd, 0xc8, 0x40); /* phase control */
1700 		}
1701 
1702 		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1703 		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1704 		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1705 	} else {
1706 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1707 				__func__, state->selected_input);
1708 	}
1709 }
1710 
1711 static int adv76xx_s_routing(struct v4l2_subdev *sd,
1712 		u32 input, u32 output, u32 config)
1713 {
1714 	struct adv76xx_state *state = to_state(sd);
1715 
1716 	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1717 			__func__, input, state->selected_input);
1718 
1719 	if (input == state->selected_input)
1720 		return 0;
1721 
1722 	if (input > state->info->max_port)
1723 		return -EINVAL;
1724 
1725 	state->selected_input = input;
1726 
1727 	disable_input(sd);
1728 
1729 	select_input(sd);
1730 
1731 	enable_input(sd);
1732 
1733 	return 0;
1734 }
1735 
1736 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1737 				  struct v4l2_subdev_pad_config *cfg,
1738 				  struct v4l2_subdev_mbus_code_enum *code)
1739 {
1740 	struct adv76xx_state *state = to_state(sd);
1741 
1742 	if (code->index >= state->info->nformats)
1743 		return -EINVAL;
1744 
1745 	code->code = state->info->formats[code->index].code;
1746 
1747 	return 0;
1748 }
1749 
1750 static void adv76xx_fill_format(struct adv76xx_state *state,
1751 				struct v4l2_mbus_framefmt *format)
1752 {
1753 	memset(format, 0, sizeof(*format));
1754 
1755 	format->width = state->timings.bt.width;
1756 	format->height = state->timings.bt.height;
1757 	format->field = V4L2_FIELD_NONE;
1758 
1759 	if (state->timings.bt.standards & V4L2_DV_BT_STD_CEA861)
1760 		format->colorspace = (state->timings.bt.height <= 576) ?
1761 			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1762 }
1763 
1764 /*
1765  * Compute the op_ch_sel value required to obtain on the bus the component order
1766  * corresponding to the selected format taking into account bus reordering
1767  * applied by the board at the output of the device.
1768  *
1769  * The following table gives the op_ch_value from the format component order
1770  * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1771  * adv76xx_bus_order value in row).
1772  *
1773  *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
1774  * ----------+-------------------------------------------------
1775  * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
1776  * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
1777  * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
1778  * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
1779  * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
1780  * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
1781  */
1782 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1783 {
1784 #define _SEL(a,b,c,d,e,f)	{ \
1785 	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1786 	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1787 #define _BUS(x)			[ADV7604_BUS_ORDER_##x]
1788 
1789 	static const unsigned int op_ch_sel[6][6] = {
1790 		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1791 		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1792 		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1793 		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1794 		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1795 		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1796 	};
1797 
1798 	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1799 }
1800 
1801 static void adv76xx_setup_format(struct adv76xx_state *state)
1802 {
1803 	struct v4l2_subdev *sd = &state->sd;
1804 
1805 	io_write_clr_set(sd, 0x02, 0x02,
1806 			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1807 	io_write(sd, 0x03, state->format->op_format_sel |
1808 		 state->pdata.op_format_mode_sel);
1809 	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1810 	io_write_clr_set(sd, 0x05, 0x01,
1811 			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1812 }
1813 
1814 static int adv76xx_get_format(struct v4l2_subdev *sd,
1815 			      struct v4l2_subdev_pad_config *cfg,
1816 			      struct v4l2_subdev_format *format)
1817 {
1818 	struct adv76xx_state *state = to_state(sd);
1819 
1820 	if (format->pad != state->source_pad)
1821 		return -EINVAL;
1822 
1823 	adv76xx_fill_format(state, &format->format);
1824 
1825 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1826 		struct v4l2_mbus_framefmt *fmt;
1827 
1828 		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1829 		format->format.code = fmt->code;
1830 	} else {
1831 		format->format.code = state->format->code;
1832 	}
1833 
1834 	return 0;
1835 }
1836 
1837 static int adv76xx_set_format(struct v4l2_subdev *sd,
1838 			      struct v4l2_subdev_pad_config *cfg,
1839 			      struct v4l2_subdev_format *format)
1840 {
1841 	struct adv76xx_state *state = to_state(sd);
1842 	const struct adv76xx_format_info *info;
1843 
1844 	if (format->pad != state->source_pad)
1845 		return -EINVAL;
1846 
1847 	info = adv76xx_format_info(state, format->format.code);
1848 	if (info == NULL)
1849 		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1850 
1851 	adv76xx_fill_format(state, &format->format);
1852 	format->format.code = info->code;
1853 
1854 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1855 		struct v4l2_mbus_framefmt *fmt;
1856 
1857 		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1858 		fmt->code = format->format.code;
1859 	} else {
1860 		state->format = info;
1861 		adv76xx_setup_format(state);
1862 	}
1863 
1864 	return 0;
1865 }
1866 
1867 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
1868 {
1869 	struct adv76xx_state *state = to_state(sd);
1870 	const struct adv76xx_chip_info *info = state->info;
1871 	const u8 irq_reg_0x43 = io_read(sd, 0x43);
1872 	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
1873 	const u8 irq_reg_0x70 = io_read(sd, 0x70);
1874 	u8 fmt_change_digital;
1875 	u8 fmt_change;
1876 	u8 tx_5v;
1877 
1878 	if (irq_reg_0x43)
1879 		io_write(sd, 0x44, irq_reg_0x43);
1880 	if (irq_reg_0x70)
1881 		io_write(sd, 0x71, irq_reg_0x70);
1882 	if (irq_reg_0x6b)
1883 		io_write(sd, 0x6c, irq_reg_0x6b);
1884 
1885 	v4l2_dbg(2, debug, sd, "%s: ", __func__);
1886 
1887 	/* format change */
1888 	fmt_change = irq_reg_0x43 & 0x98;
1889 	fmt_change_digital = is_digital_input(sd)
1890 			   ? irq_reg_0x6b & info->fmt_change_digital_mask
1891 			   : 0;
1892 
1893 	if (fmt_change || fmt_change_digital) {
1894 		v4l2_dbg(1, debug, sd,
1895 			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
1896 			__func__, fmt_change, fmt_change_digital);
1897 
1898 		v4l2_subdev_notify(sd, ADV76XX_FMT_CHANGE, NULL);
1899 
1900 		if (handled)
1901 			*handled = true;
1902 	}
1903 	/* HDMI/DVI mode */
1904 	if (irq_reg_0x6b & 0x01) {
1905 		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
1906 			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
1907 		set_rgb_quantization_range(sd);
1908 		if (handled)
1909 			*handled = true;
1910 	}
1911 
1912 	/* tx 5v detect */
1913 	tx_5v = io_read(sd, 0x70) & info->cable_det_mask;
1914 	if (tx_5v) {
1915 		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
1916 		io_write(sd, 0x71, tx_5v);
1917 		adv76xx_s_detect_tx_5v_ctrl(sd);
1918 		if (handled)
1919 			*handled = true;
1920 	}
1921 	return 0;
1922 }
1923 
1924 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1925 {
1926 	struct adv76xx_state *state = to_state(sd);
1927 	u8 *data = NULL;
1928 
1929 	memset(edid->reserved, 0, sizeof(edid->reserved));
1930 
1931 	switch (edid->pad) {
1932 	case ADV76XX_PAD_HDMI_PORT_A:
1933 	case ADV7604_PAD_HDMI_PORT_B:
1934 	case ADV7604_PAD_HDMI_PORT_C:
1935 	case ADV7604_PAD_HDMI_PORT_D:
1936 		if (state->edid.present & (1 << edid->pad))
1937 			data = state->edid.edid;
1938 		break;
1939 	default:
1940 		return -EINVAL;
1941 	}
1942 
1943 	if (edid->start_block == 0 && edid->blocks == 0) {
1944 		edid->blocks = data ? state->edid.blocks : 0;
1945 		return 0;
1946 	}
1947 
1948 	if (data == NULL)
1949 		return -ENODATA;
1950 
1951 	if (edid->start_block >= state->edid.blocks)
1952 		return -EINVAL;
1953 
1954 	if (edid->start_block + edid->blocks > state->edid.blocks)
1955 		edid->blocks = state->edid.blocks - edid->start_block;
1956 
1957 	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
1958 
1959 	return 0;
1960 }
1961 
1962 static int get_edid_spa_location(const u8 *edid)
1963 {
1964 	u8 d;
1965 
1966 	if ((edid[0x7e] != 1) ||
1967 	    (edid[0x80] != 0x02) ||
1968 	    (edid[0x81] != 0x03)) {
1969 		return -1;
1970 	}
1971 
1972 	/* search Vendor Specific Data Block (tag 3) */
1973 	d = edid[0x82] & 0x7f;
1974 	if (d > 4) {
1975 		int i = 0x84;
1976 		int end = 0x80 + d;
1977 
1978 		do {
1979 			u8 tag = edid[i] >> 5;
1980 			u8 len = edid[i] & 0x1f;
1981 
1982 			if ((tag == 3) && (len >= 5))
1983 				return i + 4;
1984 			i += len + 1;
1985 		} while (i < end);
1986 	}
1987 	return -1;
1988 }
1989 
1990 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1991 {
1992 	struct adv76xx_state *state = to_state(sd);
1993 	const struct adv76xx_chip_info *info = state->info;
1994 	int spa_loc;
1995 	int err;
1996 	int i;
1997 
1998 	memset(edid->reserved, 0, sizeof(edid->reserved));
1999 
2000 	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2001 		return -EINVAL;
2002 	if (edid->start_block != 0)
2003 		return -EINVAL;
2004 	if (edid->blocks == 0) {
2005 		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2006 		state->edid.present &= ~(1 << edid->pad);
2007 		adv76xx_set_hpd(state, state->edid.present);
2008 		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2009 
2010 		/* Fall back to a 16:9 aspect ratio */
2011 		state->aspect_ratio.numerator = 16;
2012 		state->aspect_ratio.denominator = 9;
2013 
2014 		if (!state->edid.present)
2015 			state->edid.blocks = 0;
2016 
2017 		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2018 				__func__, edid->pad, state->edid.present);
2019 		return 0;
2020 	}
2021 	if (edid->blocks > 2) {
2022 		edid->blocks = 2;
2023 		return -E2BIG;
2024 	}
2025 
2026 	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2027 			__func__, edid->pad, state->edid.present);
2028 
2029 	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2030 	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2031 	adv76xx_set_hpd(state, 0);
2032 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2033 
2034 	spa_loc = get_edid_spa_location(edid->edid);
2035 	if (spa_loc < 0)
2036 		spa_loc = 0xc0; /* Default value [REF_02, p. 116] */
2037 
2038 	switch (edid->pad) {
2039 	case ADV76XX_PAD_HDMI_PORT_A:
2040 		state->spa_port_a[0] = edid->edid[spa_loc];
2041 		state->spa_port_a[1] = edid->edid[spa_loc + 1];
2042 		break;
2043 	case ADV7604_PAD_HDMI_PORT_B:
2044 		rep_write(sd, 0x70, edid->edid[spa_loc]);
2045 		rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2046 		break;
2047 	case ADV7604_PAD_HDMI_PORT_C:
2048 		rep_write(sd, 0x72, edid->edid[spa_loc]);
2049 		rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2050 		break;
2051 	case ADV7604_PAD_HDMI_PORT_D:
2052 		rep_write(sd, 0x74, edid->edid[spa_loc]);
2053 		rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2054 		break;
2055 	default:
2056 		return -EINVAL;
2057 	}
2058 
2059 	if (info->type == ADV7604) {
2060 		rep_write(sd, 0x76, spa_loc & 0xff);
2061 		rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2062 	} else {
2063 		/* FIXME: Where is the SPA location LSB register ? */
2064 		rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2065 	}
2066 
2067 	edid->edid[spa_loc] = state->spa_port_a[0];
2068 	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2069 
2070 	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2071 	state->edid.blocks = edid->blocks;
2072 	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2073 			edid->edid[0x16]);
2074 	state->edid.present |= 1 << edid->pad;
2075 
2076 	err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
2077 	if (err < 0) {
2078 		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2079 		return err;
2080 	}
2081 
2082 	/* adv76xx calculates the checksums and enables I2C access to internal
2083 	   EDID RAM from DDC port. */
2084 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2085 
2086 	for (i = 0; i < 1000; i++) {
2087 		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2088 			break;
2089 		mdelay(1);
2090 	}
2091 	if (i == 1000) {
2092 		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2093 		return -EIO;
2094 	}
2095 
2096 	/* enable hotplug after 100 ms */
2097 	queue_delayed_work(state->work_queues,
2098 			&state->delayed_work_enable_hotplug, HZ / 10);
2099 	return 0;
2100 }
2101 
2102 /*********** avi info frame CEA-861-E **************/
2103 
2104 static void print_avi_infoframe(struct v4l2_subdev *sd)
2105 {
2106 	int i;
2107 	u8 buf[14];
2108 	u8 avi_len;
2109 	u8 avi_ver;
2110 
2111 	if (!is_hdmi(sd)) {
2112 		v4l2_info(sd, "receive DVI-D signal (AVI infoframe not supported)\n");
2113 		return;
2114 	}
2115 	if (!(io_read(sd, 0x60) & 0x01)) {
2116 		v4l2_info(sd, "AVI infoframe not received\n");
2117 		return;
2118 	}
2119 
2120 	if (io_read(sd, 0x83) & 0x01) {
2121 		v4l2_info(sd, "AVI infoframe checksum error has occurred earlier\n");
2122 		io_write(sd, 0x85, 0x01); /* clear AVI_INF_CKS_ERR_RAW */
2123 		if (io_read(sd, 0x83) & 0x01) {
2124 			v4l2_info(sd, "AVI infoframe checksum error still present\n");
2125 			io_write(sd, 0x85, 0x01); /* clear AVI_INF_CKS_ERR_RAW */
2126 		}
2127 	}
2128 
2129 	avi_len = infoframe_read(sd, 0xe2);
2130 	avi_ver = infoframe_read(sd, 0xe1);
2131 	v4l2_info(sd, "AVI infoframe version %d (%d byte)\n",
2132 			avi_ver, avi_len);
2133 
2134 	if (avi_ver != 0x02)
2135 		return;
2136 
2137 	for (i = 0; i < 14; i++)
2138 		buf[i] = infoframe_read(sd, i);
2139 
2140 	v4l2_info(sd,
2141 		"\t%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
2142 		buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7],
2143 		buf[8], buf[9], buf[10], buf[11], buf[12], buf[13]);
2144 }
2145 
2146 static int adv76xx_log_status(struct v4l2_subdev *sd)
2147 {
2148 	struct adv76xx_state *state = to_state(sd);
2149 	const struct adv76xx_chip_info *info = state->info;
2150 	struct v4l2_dv_timings timings;
2151 	struct stdi_readback stdi;
2152 	u8 reg_io_0x02 = io_read(sd, 0x02);
2153 	u8 edid_enabled;
2154 	u8 cable_det;
2155 
2156 	static const char * const csc_coeff_sel_rb[16] = {
2157 		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2158 		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2159 		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2160 		"reserved", "reserved", "reserved", "reserved", "manual"
2161 	};
2162 	static const char * const input_color_space_txt[16] = {
2163 		"RGB limited range (16-235)", "RGB full range (0-255)",
2164 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2165 		"xvYCC Bt.601", "xvYCC Bt.709",
2166 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2167 		"invalid", "invalid", "invalid", "invalid", "invalid",
2168 		"invalid", "invalid", "automatic"
2169 	};
2170 	static const char * const rgb_quantization_range_txt[] = {
2171 		"Automatic",
2172 		"RGB limited range (16-235)",
2173 		"RGB full range (0-255)",
2174 	};
2175 	static const char * const deep_color_mode_txt[4] = {
2176 		"8-bits per channel",
2177 		"10-bits per channel",
2178 		"12-bits per channel",
2179 		"16-bits per channel (not supported)"
2180 	};
2181 
2182 	v4l2_info(sd, "-----Chip status-----\n");
2183 	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2184 	edid_enabled = rep_read(sd, info->edid_status_reg);
2185 	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2186 			((edid_enabled & 0x01) ? "Yes" : "No"),
2187 			((edid_enabled & 0x02) ? "Yes" : "No"),
2188 			((edid_enabled & 0x04) ? "Yes" : "No"),
2189 			((edid_enabled & 0x08) ? "Yes" : "No"));
2190 	v4l2_info(sd, "CEC: %s\n", !!(cec_read(sd, 0x2a) & 0x01) ?
2191 			"enabled" : "disabled");
2192 
2193 	v4l2_info(sd, "-----Signal status-----\n");
2194 	cable_det = info->read_cable_det(sd);
2195 	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2196 			((cable_det & 0x01) ? "Yes" : "No"),
2197 			((cable_det & 0x02) ? "Yes" : "No"),
2198 			((cable_det & 0x04) ? "Yes" : "No"),
2199 			((cable_det & 0x08) ? "Yes" : "No"));
2200 	v4l2_info(sd, "TMDS signal detected: %s\n",
2201 			no_signal_tmds(sd) ? "false" : "true");
2202 	v4l2_info(sd, "TMDS signal locked: %s\n",
2203 			no_lock_tmds(sd) ? "false" : "true");
2204 	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2205 	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2206 	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2207 	v4l2_info(sd, "CP free run: %s\n",
2208 			(in_free_run(sd)) ? "on" : "off");
2209 	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2210 			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2211 			(io_read(sd, 0x01) & 0x70) >> 4);
2212 
2213 	v4l2_info(sd, "-----Video Timings-----\n");
2214 	if (read_stdi(sd, &stdi))
2215 		v4l2_info(sd, "STDI: not locked\n");
2216 	else
2217 		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2218 				stdi.lcf, stdi.bl, stdi.lcvs,
2219 				stdi.interlaced ? "interlaced" : "progressive",
2220 				stdi.hs_pol, stdi.vs_pol);
2221 	if (adv76xx_query_dv_timings(sd, &timings))
2222 		v4l2_info(sd, "No video detected\n");
2223 	else
2224 		v4l2_print_dv_timings(sd->name, "Detected format: ",
2225 				      &timings, true);
2226 	v4l2_print_dv_timings(sd->name, "Configured format: ",
2227 			      &state->timings, true);
2228 
2229 	if (no_signal(sd))
2230 		return 0;
2231 
2232 	v4l2_info(sd, "-----Color space-----\n");
2233 	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2234 			rgb_quantization_range_txt[state->rgb_quantization_range]);
2235 	v4l2_info(sd, "Input color space: %s\n",
2236 			input_color_space_txt[reg_io_0x02 >> 4]);
2237 	v4l2_info(sd, "Output color space: %s %s, saturator %s\n",
2238 			(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2239 			(reg_io_0x02 & 0x04) ? "(16-235)" : "(0-255)",
2240 			((reg_io_0x02 & 0x04) ^ (reg_io_0x02 & 0x01)) ?
2241 				"enabled" : "disabled");
2242 	v4l2_info(sd, "Color space conversion: %s\n",
2243 			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2244 
2245 	if (!is_digital_input(sd))
2246 		return 0;
2247 
2248 	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2249 	v4l2_info(sd, "Digital video port selected: %c\n",
2250 			(hdmi_read(sd, 0x00) & 0x03) + 'A');
2251 	v4l2_info(sd, "HDCP encrypted content: %s\n",
2252 			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2253 	v4l2_info(sd, "HDCP keys read: %s%s\n",
2254 			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2255 			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2256 	if (is_hdmi(sd)) {
2257 		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2258 		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2259 		bool audio_mute = io_read(sd, 0x65) & 0x40;
2260 
2261 		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2262 				audio_pll_locked ? "locked" : "not locked",
2263 				audio_sample_packet_detect ? "detected" : "not detected",
2264 				audio_mute ? "muted" : "enabled");
2265 		if (audio_pll_locked && audio_sample_packet_detect) {
2266 			v4l2_info(sd, "Audio format: %s\n",
2267 					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2268 		}
2269 		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2270 				(hdmi_read(sd, 0x5c) << 8) +
2271 				(hdmi_read(sd, 0x5d) & 0xf0));
2272 		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2273 				(hdmi_read(sd, 0x5e) << 8) +
2274 				hdmi_read(sd, 0x5f));
2275 		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2276 
2277 		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2278 
2279 		print_avi_infoframe(sd);
2280 	}
2281 
2282 	return 0;
2283 }
2284 
2285 /* ----------------------------------------------------------------------- */
2286 
2287 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2288 	.s_ctrl = adv76xx_s_ctrl,
2289 };
2290 
2291 static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2292 	.log_status = adv76xx_log_status,
2293 	.interrupt_service_routine = adv76xx_isr,
2294 #ifdef CONFIG_VIDEO_ADV_DEBUG
2295 	.g_register = adv76xx_g_register,
2296 	.s_register = adv76xx_s_register,
2297 #endif
2298 };
2299 
2300 static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2301 	.s_routing = adv76xx_s_routing,
2302 	.g_input_status = adv76xx_g_input_status,
2303 	.s_dv_timings = adv76xx_s_dv_timings,
2304 	.g_dv_timings = adv76xx_g_dv_timings,
2305 	.query_dv_timings = adv76xx_query_dv_timings,
2306 };
2307 
2308 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2309 	.enum_mbus_code = adv76xx_enum_mbus_code,
2310 	.get_fmt = adv76xx_get_format,
2311 	.set_fmt = adv76xx_set_format,
2312 	.get_edid = adv76xx_get_edid,
2313 	.set_edid = adv76xx_set_edid,
2314 	.dv_timings_cap = adv76xx_dv_timings_cap,
2315 	.enum_dv_timings = adv76xx_enum_dv_timings,
2316 };
2317 
2318 static const struct v4l2_subdev_ops adv76xx_ops = {
2319 	.core = &adv76xx_core_ops,
2320 	.video = &adv76xx_video_ops,
2321 	.pad = &adv76xx_pad_ops,
2322 };
2323 
2324 /* -------------------------- custom ctrls ---------------------------------- */
2325 
2326 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2327 	.ops = &adv76xx_ctrl_ops,
2328 	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2329 	.name = "Analog Sampling Phase",
2330 	.type = V4L2_CTRL_TYPE_INTEGER,
2331 	.min = 0,
2332 	.max = 0x1f,
2333 	.step = 1,
2334 	.def = 0,
2335 };
2336 
2337 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2338 	.ops = &adv76xx_ctrl_ops,
2339 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2340 	.name = "Free Running Color, Manual",
2341 	.type = V4L2_CTRL_TYPE_BOOLEAN,
2342 	.min = false,
2343 	.max = true,
2344 	.step = 1,
2345 	.def = false,
2346 };
2347 
2348 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2349 	.ops = &adv76xx_ctrl_ops,
2350 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2351 	.name = "Free Running Color",
2352 	.type = V4L2_CTRL_TYPE_INTEGER,
2353 	.min = 0x0,
2354 	.max = 0xffffff,
2355 	.step = 0x1,
2356 	.def = 0x0,
2357 };
2358 
2359 /* ----------------------------------------------------------------------- */
2360 
2361 static int adv76xx_core_init(struct v4l2_subdev *sd)
2362 {
2363 	struct adv76xx_state *state = to_state(sd);
2364 	const struct adv76xx_chip_info *info = state->info;
2365 	struct adv76xx_platform_data *pdata = &state->pdata;
2366 
2367 	hdmi_write(sd, 0x48,
2368 		(pdata->disable_pwrdnb ? 0x80 : 0) |
2369 		(pdata->disable_cable_det_rst ? 0x40 : 0));
2370 
2371 	disable_input(sd);
2372 
2373 	if (pdata->default_input >= 0 &&
2374 	    pdata->default_input < state->source_pad) {
2375 		state->selected_input = pdata->default_input;
2376 		select_input(sd);
2377 		enable_input(sd);
2378 	}
2379 
2380 	/* power */
2381 	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
2382 	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
2383 	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */
2384 
2385 	/* video format */
2386 	io_write_clr_set(sd, 0x02, 0x0f,
2387 			pdata->alt_gamma << 3 |
2388 			pdata->op_656_range << 2 |
2389 			pdata->alt_data_sat << 0);
2390 	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2391 			pdata->insert_av_codes << 2 |
2392 			pdata->replicate_av_codes << 1);
2393 	adv76xx_setup_format(state);
2394 
2395 	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2396 
2397 	/* VS, HS polarities */
2398 	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2399 		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2400 
2401 	/* Adjust drive strength */
2402 	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2403 				pdata->dr_str_clk << 2 |
2404 				pdata->dr_str_sync);
2405 
2406 	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2407 	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2408 	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
2409 				      ADI recommended setting [REF_01, c. 2.3.3] */
2410 	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
2411 				      ADI recommended setting [REF_01, c. 2.3.3] */
2412 	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2413 				     for digital formats */
2414 
2415 	/* HDMI audio */
2416 	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2417 	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2418 	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2419 
2420 	/* TODO from platform data */
2421 	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */
2422 
2423 	if (adv76xx_has_afe(state)) {
2424 		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2425 		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2426 	}
2427 
2428 	/* interrupts */
2429 	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2430 	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2431 	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2432 	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2433 	info->setup_irqs(sd);
2434 
2435 	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2436 }
2437 
2438 static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2439 {
2440 	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2441 }
2442 
2443 static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2444 {
2445 	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2446 }
2447 
2448 static void adv76xx_unregister_clients(struct adv76xx_state *state)
2449 {
2450 	unsigned int i;
2451 
2452 	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) {
2453 		if (state->i2c_clients[i])
2454 			i2c_unregister_device(state->i2c_clients[i]);
2455 	}
2456 }
2457 
2458 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2459 							u8 addr, u8 io_reg)
2460 {
2461 	struct i2c_client *client = v4l2_get_subdevdata(sd);
2462 
2463 	if (addr)
2464 		io_write(sd, io_reg, addr << 1);
2465 	return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1);
2466 }
2467 
2468 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2469 	/* reset ADI recommended settings for HDMI: */
2470 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2471 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2472 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2473 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2474 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2475 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2476 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2477 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2478 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2479 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2480 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2481 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2482 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2483 
2484 	/* set ADI recommended settings for digitizer */
2485 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2486 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2487 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2488 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2489 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2490 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2491 
2492 	{ ADV76XX_REG_SEQ_TERM, 0 },
2493 };
2494 
2495 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2496 	/* set ADI recommended settings for HDMI: */
2497 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2498 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2499 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2500 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2501 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2502 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2503 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2504 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2505 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2506 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2507 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2508 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2509 
2510 	/* reset ADI recommended settings for digitizer */
2511 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2512 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2513 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2514 
2515 	{ ADV76XX_REG_SEQ_TERM, 0 },
2516 };
2517 
2518 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2519 	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2520 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2521 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2522 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2523 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2524 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2525 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2526 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2527 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2528 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2529 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
2530 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
2531 
2532 	{ ADV76XX_REG_SEQ_TERM, 0 },
2533 };
2534 
2535 static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2536 	[ADV7604] = {
2537 		.type = ADV7604,
2538 		.has_afe = true,
2539 		.max_port = ADV7604_PAD_VGA_COMP,
2540 		.num_dv_ports = 4,
2541 		.edid_enable_reg = 0x77,
2542 		.edid_status_reg = 0x7d,
2543 		.lcf_reg = 0xb3,
2544 		.tdms_lock_mask = 0xe0,
2545 		.cable_det_mask = 0x1e,
2546 		.fmt_change_digital_mask = 0xc1,
2547 		.cp_csc = 0xfc,
2548 		.formats = adv7604_formats,
2549 		.nformats = ARRAY_SIZE(adv7604_formats),
2550 		.set_termination = adv7604_set_termination,
2551 		.setup_irqs = adv7604_setup_irqs,
2552 		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
2553 		.read_cable_det = adv7604_read_cable_det,
2554 		.recommended_settings = {
2555 		    [0] = adv7604_recommended_settings_afe,
2556 		    [1] = adv7604_recommended_settings_hdmi,
2557 		},
2558 		.num_recommended_settings = {
2559 		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
2560 		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
2561 		},
2562 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
2563 			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
2564 			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
2565 			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
2566 			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
2567 			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
2568 			BIT(ADV7604_PAGE_VDP),
2569 	},
2570 	[ADV7611] = {
2571 		.type = ADV7611,
2572 		.has_afe = false,
2573 		.max_port = ADV76XX_PAD_HDMI_PORT_A,
2574 		.num_dv_ports = 1,
2575 		.edid_enable_reg = 0x74,
2576 		.edid_status_reg = 0x76,
2577 		.lcf_reg = 0xa3,
2578 		.tdms_lock_mask = 0x43,
2579 		.cable_det_mask = 0x01,
2580 		.fmt_change_digital_mask = 0x03,
2581 		.cp_csc = 0xf4,
2582 		.formats = adv7611_formats,
2583 		.nformats = ARRAY_SIZE(adv7611_formats),
2584 		.set_termination = adv7611_set_termination,
2585 		.setup_irqs = adv7611_setup_irqs,
2586 		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
2587 		.read_cable_det = adv7611_read_cable_det,
2588 		.recommended_settings = {
2589 		    [1] = adv7611_recommended_settings_hdmi,
2590 		},
2591 		.num_recommended_settings = {
2592 		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
2593 		},
2594 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
2595 			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
2596 			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
2597 			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
2598 	},
2599 };
2600 
2601 static struct i2c_device_id adv76xx_i2c_id[] = {
2602 	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
2603 	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
2604 	{ }
2605 };
2606 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
2607 
2608 static struct of_device_id adv76xx_of_id[] __maybe_unused = {
2609 	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
2610 	{ }
2611 };
2612 MODULE_DEVICE_TABLE(of, adv76xx_of_id);
2613 
2614 static int adv76xx_parse_dt(struct adv76xx_state *state)
2615 {
2616 	struct v4l2_of_endpoint bus_cfg;
2617 	struct device_node *endpoint;
2618 	struct device_node *np;
2619 	unsigned int flags;
2620 
2621 	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
2622 
2623 	/* Parse the endpoint. */
2624 	endpoint = of_graph_get_next_endpoint(np, NULL);
2625 	if (!endpoint)
2626 		return -EINVAL;
2627 
2628 	v4l2_of_parse_endpoint(endpoint, &bus_cfg);
2629 	of_node_put(endpoint);
2630 
2631 	flags = bus_cfg.bus.parallel.flags;
2632 
2633 	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
2634 		state->pdata.inv_hs_pol = 1;
2635 
2636 	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
2637 		state->pdata.inv_vs_pol = 1;
2638 
2639 	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
2640 		state->pdata.inv_llc_pol = 1;
2641 
2642 	if (bus_cfg.bus_type == V4L2_MBUS_BT656) {
2643 		state->pdata.insert_av_codes = 1;
2644 		state->pdata.op_656_range = 1;
2645 	}
2646 
2647 	/* Disable the interrupt for now as no DT-based board uses it. */
2648 	state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED;
2649 
2650 	/* Use the default I2C addresses. */
2651 	state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42;
2652 	state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40;
2653 	state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e;
2654 	state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38;
2655 	state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c;
2656 	state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26;
2657 	state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32;
2658 	state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36;
2659 	state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34;
2660 	state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30;
2661 	state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22;
2662 	state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24;
2663 
2664 	/* Hardcode the remaining platform data fields. */
2665 	state->pdata.disable_pwrdnb = 0;
2666 	state->pdata.disable_cable_det_rst = 0;
2667 	state->pdata.default_input = -1;
2668 	state->pdata.blank_data = 1;
2669 	state->pdata.alt_data_sat = 1;
2670 	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
2671 	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
2672 
2673 	return 0;
2674 }
2675 
2676 static int adv76xx_probe(struct i2c_client *client,
2677 			 const struct i2c_device_id *id)
2678 {
2679 	static const struct v4l2_dv_timings cea640x480 =
2680 		V4L2_DV_BT_CEA_640X480P59_94;
2681 	struct adv76xx_state *state;
2682 	struct v4l2_ctrl_handler *hdl;
2683 	struct v4l2_subdev *sd;
2684 	unsigned int i;
2685 	u16 val;
2686 	int err;
2687 
2688 	/* Check if the adapter supports the needed features */
2689 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
2690 		return -EIO;
2691 	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
2692 			client->addr << 1);
2693 
2694 	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
2695 	if (!state) {
2696 		v4l_err(client, "Could not allocate adv76xx_state memory!\n");
2697 		return -ENOMEM;
2698 	}
2699 
2700 	state->i2c_clients[ADV76XX_PAGE_IO] = client;
2701 
2702 	/* initialize variables */
2703 	state->restart_stdi_once = true;
2704 	state->selected_input = ~0;
2705 
2706 	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
2707 		const struct of_device_id *oid;
2708 
2709 		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
2710 		state->info = oid->data;
2711 
2712 		err = adv76xx_parse_dt(state);
2713 		if (err < 0) {
2714 			v4l_err(client, "DT parsing error\n");
2715 			return err;
2716 		}
2717 	} else if (client->dev.platform_data) {
2718 		struct adv76xx_platform_data *pdata = client->dev.platform_data;
2719 
2720 		state->info = (const struct adv76xx_chip_info *)id->driver_data;
2721 		state->pdata = *pdata;
2722 	} else {
2723 		v4l_err(client, "No platform data!\n");
2724 		return -ENODEV;
2725 	}
2726 
2727 	/* Request GPIOs. */
2728 	for (i = 0; i < state->info->num_dv_ports; ++i) {
2729 		state->hpd_gpio[i] =
2730 			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
2731 						      GPIOD_OUT_LOW);
2732 		if (IS_ERR(state->hpd_gpio[i]))
2733 			return PTR_ERR(state->hpd_gpio[i]);
2734 
2735 		if (state->hpd_gpio[i])
2736 			v4l_info(client, "Handling HPD %u GPIO\n", i);
2737 	}
2738 
2739 	state->timings = cea640x480;
2740 	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
2741 
2742 	sd = &state->sd;
2743 	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
2744 	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
2745 		id->name, i2c_adapter_id(client->adapter),
2746 		client->addr);
2747 	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2748 
2749 	/*
2750 	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
2751 	 * identifies the revision, while on ADV7611 it identifies the model as
2752 	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
2753 	 */
2754 	if (state->info->type == ADV7604) {
2755 		val = adv_smbus_read_byte_data_check(client, 0xfb, false);
2756 		if (val != 0x68) {
2757 			v4l2_info(sd, "not an adv7604 on address 0x%x\n",
2758 					client->addr << 1);
2759 			return -ENODEV;
2760 		}
2761 	} else {
2762 		val = (adv_smbus_read_byte_data_check(client, 0xea, false) << 8)
2763 		    | (adv_smbus_read_byte_data_check(client, 0xeb, false) << 0);
2764 		if (val != 0x2051) {
2765 			v4l2_info(sd, "not an adv7611 on address 0x%x\n",
2766 					client->addr << 1);
2767 			return -ENODEV;
2768 		}
2769 	}
2770 
2771 	/* control handlers */
2772 	hdl = &state->hdl;
2773 	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
2774 
2775 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
2776 			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
2777 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
2778 			V4L2_CID_CONTRAST, 0, 255, 1, 128);
2779 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
2780 			V4L2_CID_SATURATION, 0, 255, 1, 128);
2781 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
2782 			V4L2_CID_HUE, 0, 128, 1, 0);
2783 
2784 	/* private controls */
2785 	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
2786 			V4L2_CID_DV_RX_POWER_PRESENT, 0,
2787 			(1 << state->info->num_dv_ports) - 1, 0, 0);
2788 	state->rgb_quantization_range_ctrl =
2789 		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
2790 			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
2791 			0, V4L2_DV_RGB_RANGE_AUTO);
2792 
2793 	/* custom controls */
2794 	if (adv76xx_has_afe(state))
2795 		state->analog_sampling_phase_ctrl =
2796 			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
2797 	state->free_run_color_manual_ctrl =
2798 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
2799 	state->free_run_color_ctrl =
2800 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
2801 
2802 	sd->ctrl_handler = hdl;
2803 	if (hdl->error) {
2804 		err = hdl->error;
2805 		goto err_hdl;
2806 	}
2807 	state->detect_tx_5v_ctrl->is_private = true;
2808 	state->rgb_quantization_range_ctrl->is_private = true;
2809 	if (adv76xx_has_afe(state))
2810 		state->analog_sampling_phase_ctrl->is_private = true;
2811 	state->free_run_color_manual_ctrl->is_private = true;
2812 	state->free_run_color_ctrl->is_private = true;
2813 
2814 	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
2815 		err = -ENODEV;
2816 		goto err_hdl;
2817 	}
2818 
2819 	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
2820 		if (!(BIT(i) & state->info->page_mask))
2821 			continue;
2822 
2823 		state->i2c_clients[i] =
2824 			adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i],
2825 					     0xf2 + i);
2826 		if (state->i2c_clients[i] == NULL) {
2827 			err = -ENOMEM;
2828 			v4l2_err(sd, "failed to create i2c client %u\n", i);
2829 			goto err_i2c;
2830 		}
2831 	}
2832 
2833 	/* work queues */
2834 	state->work_queues = create_singlethread_workqueue(client->name);
2835 	if (!state->work_queues) {
2836 		v4l2_err(sd, "Could not create work queue\n");
2837 		err = -ENOMEM;
2838 		goto err_i2c;
2839 	}
2840 
2841 	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
2842 			adv76xx_delayed_work_enable_hotplug);
2843 
2844 	state->source_pad = state->info->num_dv_ports
2845 			  + (state->info->has_afe ? 2 : 0);
2846 	for (i = 0; i < state->source_pad; ++i)
2847 		state->pads[i].flags = MEDIA_PAD_FL_SINK;
2848 	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2849 
2850 	err = media_entity_init(&sd->entity, state->source_pad + 1,
2851 				state->pads, 0);
2852 	if (err)
2853 		goto err_work_queues;
2854 
2855 	err = adv76xx_core_init(sd);
2856 	if (err)
2857 		goto err_entity;
2858 	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
2859 			client->addr << 1, client->adapter->name);
2860 
2861 	err = v4l2_async_register_subdev(sd);
2862 	if (err)
2863 		goto err_entity;
2864 
2865 	return 0;
2866 
2867 err_entity:
2868 	media_entity_cleanup(&sd->entity);
2869 err_work_queues:
2870 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
2871 	destroy_workqueue(state->work_queues);
2872 err_i2c:
2873 	adv76xx_unregister_clients(state);
2874 err_hdl:
2875 	v4l2_ctrl_handler_free(hdl);
2876 	return err;
2877 }
2878 
2879 /* ----------------------------------------------------------------------- */
2880 
2881 static int adv76xx_remove(struct i2c_client *client)
2882 {
2883 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
2884 	struct adv76xx_state *state = to_state(sd);
2885 
2886 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
2887 	destroy_workqueue(state->work_queues);
2888 	v4l2_async_unregister_subdev(sd);
2889 	media_entity_cleanup(&sd->entity);
2890 	adv76xx_unregister_clients(to_state(sd));
2891 	v4l2_ctrl_handler_free(sd->ctrl_handler);
2892 	return 0;
2893 }
2894 
2895 /* ----------------------------------------------------------------------- */
2896 
2897 static struct i2c_driver adv76xx_driver = {
2898 	.driver = {
2899 		.owner = THIS_MODULE,
2900 		.name = "adv7604",
2901 		.of_match_table = of_match_ptr(adv76xx_of_id),
2902 	},
2903 	.probe = adv76xx_probe,
2904 	.remove = adv76xx_remove,
2905 	.id_table = adv76xx_i2c_id,
2906 };
2907 
2908 module_i2c_driver(adv76xx_driver);
2909