1 /* 2 * adv7604 - Analog Devices ADV7604 video decoder driver 3 * 4 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved. 5 * 6 * This program is free software; you may redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; version 2 of the License. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 17 * SOFTWARE. 18 * 19 */ 20 21 /* 22 * References (c = chapter, p = page): 23 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations, 24 * Revision 2.5, June 2010 25 * REF_02 - Analog devices, Register map documentation, Documentation of 26 * the register maps, Software manual, Rev. F, June 2010 27 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010 28 */ 29 30 #include <linux/delay.h> 31 #include <linux/gpio/consumer.h> 32 #include <linux/i2c.h> 33 #include <linux/kernel.h> 34 #include <linux/module.h> 35 #include <linux/slab.h> 36 #include <linux/v4l2-dv-timings.h> 37 #include <linux/videodev2.h> 38 #include <linux/workqueue.h> 39 40 #include <media/adv7604.h> 41 #include <media/v4l2-ctrls.h> 42 #include <media/v4l2-device.h> 43 #include <media/v4l2-dv-timings.h> 44 #include <media/v4l2-of.h> 45 46 static int debug; 47 module_param(debug, int, 0644); 48 MODULE_PARM_DESC(debug, "debug level (0-2)"); 49 50 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver"); 51 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>"); 52 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>"); 53 MODULE_LICENSE("GPL"); 54 55 /* ADV7604 system clock frequency */ 56 #define ADV76XX_FSC (28636360) 57 58 #define ADV76XX_RGB_OUT (1 << 1) 59 60 #define ADV76XX_OP_FORMAT_SEL_8BIT (0 << 0) 61 #define ADV7604_OP_FORMAT_SEL_10BIT (1 << 0) 62 #define ADV76XX_OP_FORMAT_SEL_12BIT (2 << 0) 63 64 #define ADV76XX_OP_MODE_SEL_SDR_422 (0 << 5) 65 #define ADV7604_OP_MODE_SEL_DDR_422 (1 << 5) 66 #define ADV76XX_OP_MODE_SEL_SDR_444 (2 << 5) 67 #define ADV7604_OP_MODE_SEL_DDR_444 (3 << 5) 68 #define ADV76XX_OP_MODE_SEL_SDR_422_2X (4 << 5) 69 #define ADV7604_OP_MODE_SEL_ADI_CM (5 << 5) 70 71 #define ADV76XX_OP_CH_SEL_GBR (0 << 5) 72 #define ADV76XX_OP_CH_SEL_GRB (1 << 5) 73 #define ADV76XX_OP_CH_SEL_BGR (2 << 5) 74 #define ADV76XX_OP_CH_SEL_RGB (3 << 5) 75 #define ADV76XX_OP_CH_SEL_BRG (4 << 5) 76 #define ADV76XX_OP_CH_SEL_RBG (5 << 5) 77 78 #define ADV76XX_OP_SWAP_CB_CR (1 << 0) 79 80 enum adv76xx_type { 81 ADV7604, 82 ADV7611, 83 }; 84 85 struct adv76xx_reg_seq { 86 unsigned int reg; 87 u8 val; 88 }; 89 90 struct adv76xx_format_info { 91 u32 code; 92 u8 op_ch_sel; 93 bool rgb_out; 94 bool swap_cb_cr; 95 u8 op_format_sel; 96 }; 97 98 struct adv76xx_chip_info { 99 enum adv76xx_type type; 100 101 bool has_afe; 102 unsigned int max_port; 103 unsigned int num_dv_ports; 104 105 unsigned int edid_enable_reg; 106 unsigned int edid_status_reg; 107 unsigned int lcf_reg; 108 109 unsigned int cable_det_mask; 110 unsigned int tdms_lock_mask; 111 unsigned int fmt_change_digital_mask; 112 unsigned int cp_csc; 113 114 const struct adv76xx_format_info *formats; 115 unsigned int nformats; 116 117 void (*set_termination)(struct v4l2_subdev *sd, bool enable); 118 void (*setup_irqs)(struct v4l2_subdev *sd); 119 unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd); 120 unsigned int (*read_cable_det)(struct v4l2_subdev *sd); 121 122 /* 0 = AFE, 1 = HDMI */ 123 const struct adv76xx_reg_seq *recommended_settings[2]; 124 unsigned int num_recommended_settings[2]; 125 126 unsigned long page_mask; 127 }; 128 129 /* 130 ********************************************************************** 131 * 132 * Arrays with configuration parameters for the ADV7604 133 * 134 ********************************************************************** 135 */ 136 137 struct adv76xx_state { 138 const struct adv76xx_chip_info *info; 139 struct adv76xx_platform_data pdata; 140 141 struct gpio_desc *hpd_gpio[4]; 142 143 struct v4l2_subdev sd; 144 struct media_pad pads[ADV76XX_PAD_MAX]; 145 unsigned int source_pad; 146 147 struct v4l2_ctrl_handler hdl; 148 149 enum adv76xx_pad selected_input; 150 151 struct v4l2_dv_timings timings; 152 const struct adv76xx_format_info *format; 153 154 struct { 155 u8 edid[256]; 156 u32 present; 157 unsigned blocks; 158 } edid; 159 u16 spa_port_a[2]; 160 struct v4l2_fract aspect_ratio; 161 u32 rgb_quantization_range; 162 struct workqueue_struct *work_queues; 163 struct delayed_work delayed_work_enable_hotplug; 164 bool restart_stdi_once; 165 166 /* i2c clients */ 167 struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX]; 168 169 /* controls */ 170 struct v4l2_ctrl *detect_tx_5v_ctrl; 171 struct v4l2_ctrl *analog_sampling_phase_ctrl; 172 struct v4l2_ctrl *free_run_color_manual_ctrl; 173 struct v4l2_ctrl *free_run_color_ctrl; 174 struct v4l2_ctrl *rgb_quantization_range_ctrl; 175 }; 176 177 static bool adv76xx_has_afe(struct adv76xx_state *state) 178 { 179 return state->info->has_afe; 180 } 181 182 /* Supported CEA and DMT timings */ 183 static const struct v4l2_dv_timings adv76xx_timings[] = { 184 V4L2_DV_BT_CEA_720X480P59_94, 185 V4L2_DV_BT_CEA_720X576P50, 186 V4L2_DV_BT_CEA_1280X720P24, 187 V4L2_DV_BT_CEA_1280X720P25, 188 V4L2_DV_BT_CEA_1280X720P50, 189 V4L2_DV_BT_CEA_1280X720P60, 190 V4L2_DV_BT_CEA_1920X1080P24, 191 V4L2_DV_BT_CEA_1920X1080P25, 192 V4L2_DV_BT_CEA_1920X1080P30, 193 V4L2_DV_BT_CEA_1920X1080P50, 194 V4L2_DV_BT_CEA_1920X1080P60, 195 196 /* sorted by DMT ID */ 197 V4L2_DV_BT_DMT_640X350P85, 198 V4L2_DV_BT_DMT_640X400P85, 199 V4L2_DV_BT_DMT_720X400P85, 200 V4L2_DV_BT_DMT_640X480P60, 201 V4L2_DV_BT_DMT_640X480P72, 202 V4L2_DV_BT_DMT_640X480P75, 203 V4L2_DV_BT_DMT_640X480P85, 204 V4L2_DV_BT_DMT_800X600P56, 205 V4L2_DV_BT_DMT_800X600P60, 206 V4L2_DV_BT_DMT_800X600P72, 207 V4L2_DV_BT_DMT_800X600P75, 208 V4L2_DV_BT_DMT_800X600P85, 209 V4L2_DV_BT_DMT_848X480P60, 210 V4L2_DV_BT_DMT_1024X768P60, 211 V4L2_DV_BT_DMT_1024X768P70, 212 V4L2_DV_BT_DMT_1024X768P75, 213 V4L2_DV_BT_DMT_1024X768P85, 214 V4L2_DV_BT_DMT_1152X864P75, 215 V4L2_DV_BT_DMT_1280X768P60_RB, 216 V4L2_DV_BT_DMT_1280X768P60, 217 V4L2_DV_BT_DMT_1280X768P75, 218 V4L2_DV_BT_DMT_1280X768P85, 219 V4L2_DV_BT_DMT_1280X800P60_RB, 220 V4L2_DV_BT_DMT_1280X800P60, 221 V4L2_DV_BT_DMT_1280X800P75, 222 V4L2_DV_BT_DMT_1280X800P85, 223 V4L2_DV_BT_DMT_1280X960P60, 224 V4L2_DV_BT_DMT_1280X960P85, 225 V4L2_DV_BT_DMT_1280X1024P60, 226 V4L2_DV_BT_DMT_1280X1024P75, 227 V4L2_DV_BT_DMT_1280X1024P85, 228 V4L2_DV_BT_DMT_1360X768P60, 229 V4L2_DV_BT_DMT_1400X1050P60_RB, 230 V4L2_DV_BT_DMT_1400X1050P60, 231 V4L2_DV_BT_DMT_1400X1050P75, 232 V4L2_DV_BT_DMT_1400X1050P85, 233 V4L2_DV_BT_DMT_1440X900P60_RB, 234 V4L2_DV_BT_DMT_1440X900P60, 235 V4L2_DV_BT_DMT_1600X1200P60, 236 V4L2_DV_BT_DMT_1680X1050P60_RB, 237 V4L2_DV_BT_DMT_1680X1050P60, 238 V4L2_DV_BT_DMT_1792X1344P60, 239 V4L2_DV_BT_DMT_1856X1392P60, 240 V4L2_DV_BT_DMT_1920X1200P60_RB, 241 V4L2_DV_BT_DMT_1366X768P60_RB, 242 V4L2_DV_BT_DMT_1366X768P60, 243 V4L2_DV_BT_DMT_1920X1080P60, 244 { }, 245 }; 246 247 struct adv76xx_video_standards { 248 struct v4l2_dv_timings timings; 249 u8 vid_std; 250 u8 v_freq; 251 }; 252 253 /* sorted by number of lines */ 254 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = { 255 /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */ 256 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 }, 257 { V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 }, 258 { V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 }, 259 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 }, 260 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 }, 261 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 }, 262 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 }, 263 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 }, 264 /* TODO add 1920x1080P60_RB (CVT timing) */ 265 { }, 266 }; 267 268 /* sorted by number of lines */ 269 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = { 270 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 }, 271 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 }, 272 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 }, 273 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 }, 274 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 }, 275 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 }, 276 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 }, 277 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 }, 278 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 }, 279 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 }, 280 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 }, 281 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 }, 282 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 }, 283 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 }, 284 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 }, 285 { V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 }, 286 { V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 }, 287 { V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 }, 288 { V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 }, 289 { V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */ 290 /* TODO add 1600X1200P60_RB (not a DMT timing) */ 291 { V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 }, 292 { V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */ 293 { }, 294 }; 295 296 /* sorted by number of lines */ 297 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = { 298 { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, 299 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 }, 300 { V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 }, 301 { V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 }, 302 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 }, 303 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 }, 304 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 }, 305 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 }, 306 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 }, 307 { }, 308 }; 309 310 /* sorted by number of lines */ 311 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = { 312 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 }, 313 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 }, 314 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 }, 315 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 }, 316 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 }, 317 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 }, 318 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 }, 319 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 }, 320 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 }, 321 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 }, 322 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 }, 323 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 }, 324 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 }, 325 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 }, 326 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 }, 327 { }, 328 }; 329 330 /* ----------------------------------------------------------------------- */ 331 332 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd) 333 { 334 return container_of(sd, struct adv76xx_state, sd); 335 } 336 337 static inline unsigned htotal(const struct v4l2_bt_timings *t) 338 { 339 return V4L2_DV_BT_FRAME_WIDTH(t); 340 } 341 342 static inline unsigned vtotal(const struct v4l2_bt_timings *t) 343 { 344 return V4L2_DV_BT_FRAME_HEIGHT(t); 345 } 346 347 /* ----------------------------------------------------------------------- */ 348 349 static s32 adv_smbus_read_byte_data_check(struct i2c_client *client, 350 u8 command, bool check) 351 { 352 union i2c_smbus_data data; 353 354 if (!i2c_smbus_xfer(client->adapter, client->addr, client->flags, 355 I2C_SMBUS_READ, command, 356 I2C_SMBUS_BYTE_DATA, &data)) 357 return data.byte; 358 if (check) 359 v4l_err(client, "error reading %02x, %02x\n", 360 client->addr, command); 361 return -EIO; 362 } 363 364 static s32 adv_smbus_read_byte_data(struct adv76xx_state *state, 365 enum adv76xx_page page, u8 command) 366 { 367 return adv_smbus_read_byte_data_check(state->i2c_clients[page], 368 command, true); 369 } 370 371 static s32 adv_smbus_write_byte_data(struct adv76xx_state *state, 372 enum adv76xx_page page, u8 command, 373 u8 value) 374 { 375 struct i2c_client *client = state->i2c_clients[page]; 376 union i2c_smbus_data data; 377 int err; 378 int i; 379 380 data.byte = value; 381 for (i = 0; i < 3; i++) { 382 err = i2c_smbus_xfer(client->adapter, client->addr, 383 client->flags, 384 I2C_SMBUS_WRITE, command, 385 I2C_SMBUS_BYTE_DATA, &data); 386 if (!err) 387 break; 388 } 389 if (err < 0) 390 v4l_err(client, "error writing %02x, %02x, %02x\n", 391 client->addr, command, value); 392 return err; 393 } 394 395 static s32 adv_smbus_write_i2c_block_data(struct adv76xx_state *state, 396 enum adv76xx_page page, u8 command, 397 unsigned length, const u8 *values) 398 { 399 struct i2c_client *client = state->i2c_clients[page]; 400 union i2c_smbus_data data; 401 402 if (length > I2C_SMBUS_BLOCK_MAX) 403 length = I2C_SMBUS_BLOCK_MAX; 404 data.block[0] = length; 405 memcpy(data.block + 1, values, length); 406 return i2c_smbus_xfer(client->adapter, client->addr, client->flags, 407 I2C_SMBUS_WRITE, command, 408 I2C_SMBUS_I2C_BLOCK_DATA, &data); 409 } 410 411 /* ----------------------------------------------------------------------- */ 412 413 static inline int io_read(struct v4l2_subdev *sd, u8 reg) 414 { 415 struct adv76xx_state *state = to_state(sd); 416 417 return adv_smbus_read_byte_data(state, ADV76XX_PAGE_IO, reg); 418 } 419 420 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val) 421 { 422 struct adv76xx_state *state = to_state(sd); 423 424 return adv_smbus_write_byte_data(state, ADV76XX_PAGE_IO, reg, val); 425 } 426 427 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 428 { 429 return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val); 430 } 431 432 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg) 433 { 434 struct adv76xx_state *state = to_state(sd); 435 436 return adv_smbus_read_byte_data(state, ADV7604_PAGE_AVLINK, reg); 437 } 438 439 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val) 440 { 441 struct adv76xx_state *state = to_state(sd); 442 443 return adv_smbus_write_byte_data(state, ADV7604_PAGE_AVLINK, reg, val); 444 } 445 446 static inline int cec_read(struct v4l2_subdev *sd, u8 reg) 447 { 448 struct adv76xx_state *state = to_state(sd); 449 450 return adv_smbus_read_byte_data(state, ADV76XX_PAGE_CEC, reg); 451 } 452 453 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val) 454 { 455 struct adv76xx_state *state = to_state(sd); 456 457 return adv_smbus_write_byte_data(state, ADV76XX_PAGE_CEC, reg, val); 458 } 459 460 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg) 461 { 462 struct adv76xx_state *state = to_state(sd); 463 464 return adv_smbus_read_byte_data(state, ADV76XX_PAGE_INFOFRAME, reg); 465 } 466 467 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val) 468 { 469 struct adv76xx_state *state = to_state(sd); 470 471 return adv_smbus_write_byte_data(state, ADV76XX_PAGE_INFOFRAME, 472 reg, val); 473 } 474 475 static inline int afe_read(struct v4l2_subdev *sd, u8 reg) 476 { 477 struct adv76xx_state *state = to_state(sd); 478 479 return adv_smbus_read_byte_data(state, ADV76XX_PAGE_AFE, reg); 480 } 481 482 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val) 483 { 484 struct adv76xx_state *state = to_state(sd); 485 486 return adv_smbus_write_byte_data(state, ADV76XX_PAGE_AFE, reg, val); 487 } 488 489 static inline int rep_read(struct v4l2_subdev *sd, u8 reg) 490 { 491 struct adv76xx_state *state = to_state(sd); 492 493 return adv_smbus_read_byte_data(state, ADV76XX_PAGE_REP, reg); 494 } 495 496 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val) 497 { 498 struct adv76xx_state *state = to_state(sd); 499 500 return adv_smbus_write_byte_data(state, ADV76XX_PAGE_REP, reg, val); 501 } 502 503 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 504 { 505 return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val); 506 } 507 508 static inline int edid_read(struct v4l2_subdev *sd, u8 reg) 509 { 510 struct adv76xx_state *state = to_state(sd); 511 512 return adv_smbus_read_byte_data(state, ADV76XX_PAGE_EDID, reg); 513 } 514 515 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val) 516 { 517 struct adv76xx_state *state = to_state(sd); 518 519 return adv_smbus_write_byte_data(state, ADV76XX_PAGE_EDID, reg, val); 520 } 521 522 static inline int edid_write_block(struct v4l2_subdev *sd, 523 unsigned len, const u8 *val) 524 { 525 struct adv76xx_state *state = to_state(sd); 526 int err = 0; 527 int i; 528 529 v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n", __func__, len); 530 531 for (i = 0; !err && i < len; i += I2C_SMBUS_BLOCK_MAX) 532 err = adv_smbus_write_i2c_block_data(state, ADV76XX_PAGE_EDID, 533 i, I2C_SMBUS_BLOCK_MAX, val + i); 534 return err; 535 } 536 537 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd) 538 { 539 unsigned int i; 540 541 for (i = 0; i < state->info->num_dv_ports; ++i) 542 gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i)); 543 544 v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd); 545 } 546 547 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work) 548 { 549 struct delayed_work *dwork = to_delayed_work(work); 550 struct adv76xx_state *state = container_of(dwork, struct adv76xx_state, 551 delayed_work_enable_hotplug); 552 struct v4l2_subdev *sd = &state->sd; 553 554 v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__); 555 556 adv76xx_set_hpd(state, state->edid.present); 557 } 558 559 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg) 560 { 561 struct adv76xx_state *state = to_state(sd); 562 563 return adv_smbus_read_byte_data(state, ADV76XX_PAGE_HDMI, reg); 564 } 565 566 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask) 567 { 568 return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask; 569 } 570 571 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val) 572 { 573 struct adv76xx_state *state = to_state(sd); 574 575 return adv_smbus_write_byte_data(state, ADV76XX_PAGE_HDMI, reg, val); 576 } 577 578 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 579 { 580 return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val); 581 } 582 583 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val) 584 { 585 struct adv76xx_state *state = to_state(sd); 586 587 return adv_smbus_write_byte_data(state, ADV76XX_PAGE_TEST, reg, val); 588 } 589 590 static inline int cp_read(struct v4l2_subdev *sd, u8 reg) 591 { 592 struct adv76xx_state *state = to_state(sd); 593 594 return adv_smbus_read_byte_data(state, ADV76XX_PAGE_CP, reg); 595 } 596 597 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask) 598 { 599 return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask; 600 } 601 602 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val) 603 { 604 struct adv76xx_state *state = to_state(sd); 605 606 return adv_smbus_write_byte_data(state, ADV76XX_PAGE_CP, reg, val); 607 } 608 609 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 610 { 611 return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val); 612 } 613 614 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg) 615 { 616 struct adv76xx_state *state = to_state(sd); 617 618 return adv_smbus_read_byte_data(state, ADV7604_PAGE_VDP, reg); 619 } 620 621 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val) 622 { 623 struct adv76xx_state *state = to_state(sd); 624 625 return adv_smbus_write_byte_data(state, ADV7604_PAGE_VDP, reg, val); 626 } 627 628 #define ADV76XX_REG(page, offset) (((page) << 8) | (offset)) 629 #define ADV76XX_REG_SEQ_TERM 0xffff 630 631 #ifdef CONFIG_VIDEO_ADV_DEBUG 632 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg) 633 { 634 struct adv76xx_state *state = to_state(sd); 635 unsigned int page = reg >> 8; 636 637 if (!(BIT(page) & state->info->page_mask)) 638 return -EINVAL; 639 640 reg &= 0xff; 641 642 return adv_smbus_read_byte_data(state, page, reg); 643 } 644 #endif 645 646 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val) 647 { 648 struct adv76xx_state *state = to_state(sd); 649 unsigned int page = reg >> 8; 650 651 if (!(BIT(page) & state->info->page_mask)) 652 return -EINVAL; 653 654 reg &= 0xff; 655 656 return adv_smbus_write_byte_data(state, page, reg, val); 657 } 658 659 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd, 660 const struct adv76xx_reg_seq *reg_seq) 661 { 662 unsigned int i; 663 664 for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++) 665 adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val); 666 } 667 668 /* ----------------------------------------------------------------------------- 669 * Format helpers 670 */ 671 672 static const struct adv76xx_format_info adv7604_formats[] = { 673 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, 674 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, 675 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, 676 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 677 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, 678 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 679 { MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false, 680 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT }, 681 { MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true, 682 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT }, 683 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false, 684 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 685 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true, 686 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 687 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, 688 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 689 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, 690 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 691 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, 692 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 693 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, 694 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 695 { MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false, 696 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 697 { MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true, 698 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 699 { MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false, 700 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 701 { MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true, 702 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 703 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false, 704 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 705 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true, 706 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 707 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false, 708 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 709 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true, 710 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 711 }; 712 713 static const struct adv76xx_format_info adv7611_formats[] = { 714 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, 715 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, 716 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, 717 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 718 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, 719 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 720 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false, 721 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 722 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true, 723 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 724 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, 725 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 726 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, 727 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 728 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, 729 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 730 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, 731 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 732 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false, 733 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 734 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true, 735 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 736 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false, 737 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 738 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true, 739 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 740 }; 741 742 static const struct adv76xx_format_info * 743 adv76xx_format_info(struct adv76xx_state *state, u32 code) 744 { 745 unsigned int i; 746 747 for (i = 0; i < state->info->nformats; ++i) { 748 if (state->info->formats[i].code == code) 749 return &state->info->formats[i]; 750 } 751 752 return NULL; 753 } 754 755 /* ----------------------------------------------------------------------- */ 756 757 static inline bool is_analog_input(struct v4l2_subdev *sd) 758 { 759 struct adv76xx_state *state = to_state(sd); 760 761 return state->selected_input == ADV7604_PAD_VGA_RGB || 762 state->selected_input == ADV7604_PAD_VGA_COMP; 763 } 764 765 static inline bool is_digital_input(struct v4l2_subdev *sd) 766 { 767 struct adv76xx_state *state = to_state(sd); 768 769 return state->selected_input == ADV76XX_PAD_HDMI_PORT_A || 770 state->selected_input == ADV7604_PAD_HDMI_PORT_B || 771 state->selected_input == ADV7604_PAD_HDMI_PORT_C || 772 state->selected_input == ADV7604_PAD_HDMI_PORT_D; 773 } 774 775 /* ----------------------------------------------------------------------- */ 776 777 #ifdef CONFIG_VIDEO_ADV_DEBUG 778 static void adv76xx_inv_register(struct v4l2_subdev *sd) 779 { 780 v4l2_info(sd, "0x000-0x0ff: IO Map\n"); 781 v4l2_info(sd, "0x100-0x1ff: AVLink Map\n"); 782 v4l2_info(sd, "0x200-0x2ff: CEC Map\n"); 783 v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n"); 784 v4l2_info(sd, "0x400-0x4ff: ESDP Map\n"); 785 v4l2_info(sd, "0x500-0x5ff: DPP Map\n"); 786 v4l2_info(sd, "0x600-0x6ff: AFE Map\n"); 787 v4l2_info(sd, "0x700-0x7ff: Repeater Map\n"); 788 v4l2_info(sd, "0x800-0x8ff: EDID Map\n"); 789 v4l2_info(sd, "0x900-0x9ff: HDMI Map\n"); 790 v4l2_info(sd, "0xa00-0xaff: Test Map\n"); 791 v4l2_info(sd, "0xb00-0xbff: CP Map\n"); 792 v4l2_info(sd, "0xc00-0xcff: VDP Map\n"); 793 } 794 795 static int adv76xx_g_register(struct v4l2_subdev *sd, 796 struct v4l2_dbg_register *reg) 797 { 798 int ret; 799 800 ret = adv76xx_read_reg(sd, reg->reg); 801 if (ret < 0) { 802 v4l2_info(sd, "Register %03llx not supported\n", reg->reg); 803 adv76xx_inv_register(sd); 804 return ret; 805 } 806 807 reg->size = 1; 808 reg->val = ret; 809 810 return 0; 811 } 812 813 static int adv76xx_s_register(struct v4l2_subdev *sd, 814 const struct v4l2_dbg_register *reg) 815 { 816 int ret; 817 818 ret = adv76xx_write_reg(sd, reg->reg, reg->val); 819 if (ret < 0) { 820 v4l2_info(sd, "Register %03llx not supported\n", reg->reg); 821 adv76xx_inv_register(sd); 822 return ret; 823 } 824 825 return 0; 826 } 827 #endif 828 829 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd) 830 { 831 u8 value = io_read(sd, 0x6f); 832 833 return ((value & 0x10) >> 4) 834 | ((value & 0x08) >> 2) 835 | ((value & 0x04) << 0) 836 | ((value & 0x02) << 2); 837 } 838 839 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd) 840 { 841 u8 value = io_read(sd, 0x6f); 842 843 return value & 1; 844 } 845 846 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd) 847 { 848 struct adv76xx_state *state = to_state(sd); 849 const struct adv76xx_chip_info *info = state->info; 850 851 return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, 852 info->read_cable_det(sd)); 853 } 854 855 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd, 856 u8 prim_mode, 857 const struct adv76xx_video_standards *predef_vid_timings, 858 const struct v4l2_dv_timings *timings) 859 { 860 int i; 861 862 for (i = 0; predef_vid_timings[i].timings.bt.width; i++) { 863 if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings, 864 is_digital_input(sd) ? 250000 : 1000000)) 865 continue; 866 io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */ 867 io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) + 868 prim_mode); /* v_freq and prim mode */ 869 return 0; 870 } 871 872 return -1; 873 } 874 875 static int configure_predefined_video_timings(struct v4l2_subdev *sd, 876 struct v4l2_dv_timings *timings) 877 { 878 struct adv76xx_state *state = to_state(sd); 879 int err; 880 881 v4l2_dbg(1, debug, sd, "%s", __func__); 882 883 if (adv76xx_has_afe(state)) { 884 /* reset to default values */ 885 io_write(sd, 0x16, 0x43); 886 io_write(sd, 0x17, 0x5a); 887 } 888 /* disable embedded syncs for auto graphics mode */ 889 cp_write_clr_set(sd, 0x81, 0x10, 0x00); 890 cp_write(sd, 0x8f, 0x00); 891 cp_write(sd, 0x90, 0x00); 892 cp_write(sd, 0xa2, 0x00); 893 cp_write(sd, 0xa3, 0x00); 894 cp_write(sd, 0xa4, 0x00); 895 cp_write(sd, 0xa5, 0x00); 896 cp_write(sd, 0xa6, 0x00); 897 cp_write(sd, 0xa7, 0x00); 898 cp_write(sd, 0xab, 0x00); 899 cp_write(sd, 0xac, 0x00); 900 901 if (is_analog_input(sd)) { 902 err = find_and_set_predefined_video_timings(sd, 903 0x01, adv7604_prim_mode_comp, timings); 904 if (err) 905 err = find_and_set_predefined_video_timings(sd, 906 0x02, adv7604_prim_mode_gr, timings); 907 } else if (is_digital_input(sd)) { 908 err = find_and_set_predefined_video_timings(sd, 909 0x05, adv76xx_prim_mode_hdmi_comp, timings); 910 if (err) 911 err = find_and_set_predefined_video_timings(sd, 912 0x06, adv76xx_prim_mode_hdmi_gr, timings); 913 } else { 914 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 915 __func__, state->selected_input); 916 err = -1; 917 } 918 919 920 return err; 921 } 922 923 static void configure_custom_video_timings(struct v4l2_subdev *sd, 924 const struct v4l2_bt_timings *bt) 925 { 926 struct adv76xx_state *state = to_state(sd); 927 u32 width = htotal(bt); 928 u32 height = vtotal(bt); 929 u16 cp_start_sav = bt->hsync + bt->hbackporch - 4; 930 u16 cp_start_eav = width - bt->hfrontporch; 931 u16 cp_start_vbi = height - bt->vfrontporch; 932 u16 cp_end_vbi = bt->vsync + bt->vbackporch; 933 u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ? 934 ((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0; 935 const u8 pll[2] = { 936 0xc0 | ((width >> 8) & 0x1f), 937 width & 0xff 938 }; 939 940 v4l2_dbg(2, debug, sd, "%s\n", __func__); 941 942 if (is_analog_input(sd)) { 943 /* auto graphics */ 944 io_write(sd, 0x00, 0x07); /* video std */ 945 io_write(sd, 0x01, 0x02); /* prim mode */ 946 /* enable embedded syncs for auto graphics mode */ 947 cp_write_clr_set(sd, 0x81, 0x10, 0x10); 948 949 /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */ 950 /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */ 951 /* IO-map reg. 0x16 and 0x17 should be written in sequence */ 952 if (adv_smbus_write_i2c_block_data(state, ADV76XX_PAGE_IO, 953 0x16, 2, pll)) 954 v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n"); 955 956 /* active video - horizontal timing */ 957 cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff); 958 cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) | 959 ((cp_start_eav >> 8) & 0x0f)); 960 cp_write(sd, 0xa4, cp_start_eav & 0xff); 961 962 /* active video - vertical timing */ 963 cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff); 964 cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) | 965 ((cp_end_vbi >> 8) & 0xf)); 966 cp_write(sd, 0xa7, cp_end_vbi & 0xff); 967 } else if (is_digital_input(sd)) { 968 /* set default prim_mode/vid_std for HDMI 969 according to [REF_03, c. 4.2] */ 970 io_write(sd, 0x00, 0x02); /* video std */ 971 io_write(sd, 0x01, 0x06); /* prim mode */ 972 } else { 973 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 974 __func__, state->selected_input); 975 } 976 977 cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7); 978 cp_write(sd, 0x90, ch1_fr_ll & 0xff); 979 cp_write(sd, 0xab, (height >> 4) & 0xff); 980 cp_write(sd, 0xac, (height & 0x0f) << 4); 981 } 982 983 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c) 984 { 985 struct adv76xx_state *state = to_state(sd); 986 u8 offset_buf[4]; 987 988 if (auto_offset) { 989 offset_a = 0x3ff; 990 offset_b = 0x3ff; 991 offset_c = 0x3ff; 992 } 993 994 v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n", 995 __func__, auto_offset ? "Auto" : "Manual", 996 offset_a, offset_b, offset_c); 997 998 offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4); 999 offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6); 1000 offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8); 1001 offset_buf[3] = offset_c & 0x0ff; 1002 1003 /* Registers must be written in this order with no i2c access in between */ 1004 if (adv_smbus_write_i2c_block_data(state, ADV76XX_PAGE_CP, 1005 0x77, 4, offset_buf)) 1006 v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__); 1007 } 1008 1009 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c) 1010 { 1011 struct adv76xx_state *state = to_state(sd); 1012 u8 gain_buf[4]; 1013 u8 gain_man = 1; 1014 u8 agc_mode_man = 1; 1015 1016 if (auto_gain) { 1017 gain_man = 0; 1018 agc_mode_man = 0; 1019 gain_a = 0x100; 1020 gain_b = 0x100; 1021 gain_c = 0x100; 1022 } 1023 1024 v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n", 1025 __func__, auto_gain ? "Auto" : "Manual", 1026 gain_a, gain_b, gain_c); 1027 1028 gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4)); 1029 gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6)); 1030 gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8)); 1031 gain_buf[3] = ((gain_c & 0x0ff)); 1032 1033 /* Registers must be written in this order with no i2c access in between */ 1034 if (adv_smbus_write_i2c_block_data(state, ADV76XX_PAGE_CP, 1035 0x73, 4, gain_buf)) 1036 v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__); 1037 } 1038 1039 static void set_rgb_quantization_range(struct v4l2_subdev *sd) 1040 { 1041 struct adv76xx_state *state = to_state(sd); 1042 bool rgb_output = io_read(sd, 0x02) & 0x02; 1043 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80; 1044 1045 v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n", 1046 __func__, state->rgb_quantization_range, 1047 rgb_output, hdmi_signal); 1048 1049 adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0); 1050 adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0); 1051 1052 switch (state->rgb_quantization_range) { 1053 case V4L2_DV_RGB_RANGE_AUTO: 1054 if (state->selected_input == ADV7604_PAD_VGA_RGB) { 1055 /* Receiving analog RGB signal 1056 * Set RGB full range (0-255) */ 1057 io_write_clr_set(sd, 0x02, 0xf0, 0x10); 1058 break; 1059 } 1060 1061 if (state->selected_input == ADV7604_PAD_VGA_COMP) { 1062 /* Receiving analog YPbPr signal 1063 * Set automode */ 1064 io_write_clr_set(sd, 0x02, 0xf0, 0xf0); 1065 break; 1066 } 1067 1068 if (hdmi_signal) { 1069 /* Receiving HDMI signal 1070 * Set automode */ 1071 io_write_clr_set(sd, 0x02, 0xf0, 0xf0); 1072 break; 1073 } 1074 1075 /* Receiving DVI-D signal 1076 * ADV7604 selects RGB limited range regardless of 1077 * input format (CE/IT) in automatic mode */ 1078 if (state->timings.bt.standards & V4L2_DV_BT_STD_CEA861) { 1079 /* RGB limited range (16-235) */ 1080 io_write_clr_set(sd, 0x02, 0xf0, 0x00); 1081 } else { 1082 /* RGB full range (0-255) */ 1083 io_write_clr_set(sd, 0x02, 0xf0, 0x10); 1084 1085 if (is_digital_input(sd) && rgb_output) { 1086 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40); 1087 } else { 1088 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0); 1089 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70); 1090 } 1091 } 1092 break; 1093 case V4L2_DV_RGB_RANGE_LIMITED: 1094 if (state->selected_input == ADV7604_PAD_VGA_COMP) { 1095 /* YCrCb limited range (16-235) */ 1096 io_write_clr_set(sd, 0x02, 0xf0, 0x20); 1097 break; 1098 } 1099 1100 /* RGB limited range (16-235) */ 1101 io_write_clr_set(sd, 0x02, 0xf0, 0x00); 1102 1103 break; 1104 case V4L2_DV_RGB_RANGE_FULL: 1105 if (state->selected_input == ADV7604_PAD_VGA_COMP) { 1106 /* YCrCb full range (0-255) */ 1107 io_write_clr_set(sd, 0x02, 0xf0, 0x60); 1108 break; 1109 } 1110 1111 /* RGB full range (0-255) */ 1112 io_write_clr_set(sd, 0x02, 0xf0, 0x10); 1113 1114 if (is_analog_input(sd) || hdmi_signal) 1115 break; 1116 1117 /* Adjust gain/offset for DVI-D signals only */ 1118 if (rgb_output) { 1119 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40); 1120 } else { 1121 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0); 1122 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70); 1123 } 1124 break; 1125 } 1126 } 1127 1128 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl) 1129 { 1130 struct v4l2_subdev *sd = 1131 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd; 1132 1133 struct adv76xx_state *state = to_state(sd); 1134 1135 switch (ctrl->id) { 1136 case V4L2_CID_BRIGHTNESS: 1137 cp_write(sd, 0x3c, ctrl->val); 1138 return 0; 1139 case V4L2_CID_CONTRAST: 1140 cp_write(sd, 0x3a, ctrl->val); 1141 return 0; 1142 case V4L2_CID_SATURATION: 1143 cp_write(sd, 0x3b, ctrl->val); 1144 return 0; 1145 case V4L2_CID_HUE: 1146 cp_write(sd, 0x3d, ctrl->val); 1147 return 0; 1148 case V4L2_CID_DV_RX_RGB_RANGE: 1149 state->rgb_quantization_range = ctrl->val; 1150 set_rgb_quantization_range(sd); 1151 return 0; 1152 case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE: 1153 if (!adv76xx_has_afe(state)) 1154 return -EINVAL; 1155 /* Set the analog sampling phase. This is needed to find the 1156 best sampling phase for analog video: an application or 1157 driver has to try a number of phases and analyze the picture 1158 quality before settling on the best performing phase. */ 1159 afe_write(sd, 0xc8, ctrl->val); 1160 return 0; 1161 case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL: 1162 /* Use the default blue color for free running mode, 1163 or supply your own. */ 1164 cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2); 1165 return 0; 1166 case V4L2_CID_ADV_RX_FREE_RUN_COLOR: 1167 cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16); 1168 cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8); 1169 cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff)); 1170 return 0; 1171 } 1172 return -EINVAL; 1173 } 1174 1175 /* ----------------------------------------------------------------------- */ 1176 1177 static inline bool no_power(struct v4l2_subdev *sd) 1178 { 1179 /* Entire chip or CP powered off */ 1180 return io_read(sd, 0x0c) & 0x24; 1181 } 1182 1183 static inline bool no_signal_tmds(struct v4l2_subdev *sd) 1184 { 1185 struct adv76xx_state *state = to_state(sd); 1186 1187 return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input)); 1188 } 1189 1190 static inline bool no_lock_tmds(struct v4l2_subdev *sd) 1191 { 1192 struct adv76xx_state *state = to_state(sd); 1193 const struct adv76xx_chip_info *info = state->info; 1194 1195 return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask; 1196 } 1197 1198 static inline bool is_hdmi(struct v4l2_subdev *sd) 1199 { 1200 return hdmi_read(sd, 0x05) & 0x80; 1201 } 1202 1203 static inline bool no_lock_sspd(struct v4l2_subdev *sd) 1204 { 1205 struct adv76xx_state *state = to_state(sd); 1206 1207 /* 1208 * Chips without a AFE don't expose registers for the SSPD, so just assume 1209 * that we have a lock. 1210 */ 1211 if (adv76xx_has_afe(state)) 1212 return false; 1213 1214 /* TODO channel 2 */ 1215 return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0); 1216 } 1217 1218 static inline bool no_lock_stdi(struct v4l2_subdev *sd) 1219 { 1220 /* TODO channel 2 */ 1221 return !(cp_read(sd, 0xb1) & 0x80); 1222 } 1223 1224 static inline bool no_signal(struct v4l2_subdev *sd) 1225 { 1226 bool ret; 1227 1228 ret = no_power(sd); 1229 1230 ret |= no_lock_stdi(sd); 1231 ret |= no_lock_sspd(sd); 1232 1233 if (is_digital_input(sd)) { 1234 ret |= no_lock_tmds(sd); 1235 ret |= no_signal_tmds(sd); 1236 } 1237 1238 return ret; 1239 } 1240 1241 static inline bool no_lock_cp(struct v4l2_subdev *sd) 1242 { 1243 struct adv76xx_state *state = to_state(sd); 1244 1245 if (!adv76xx_has_afe(state)) 1246 return false; 1247 1248 /* CP has detected a non standard number of lines on the incoming 1249 video compared to what it is configured to receive by s_dv_timings */ 1250 return io_read(sd, 0x12) & 0x01; 1251 } 1252 1253 static inline bool in_free_run(struct v4l2_subdev *sd) 1254 { 1255 return cp_read(sd, 0xff) & 0x10; 1256 } 1257 1258 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status) 1259 { 1260 *status = 0; 1261 *status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0; 1262 *status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0; 1263 if (!in_free_run(sd) && no_lock_cp(sd)) 1264 *status |= is_digital_input(sd) ? 1265 V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK; 1266 1267 v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status); 1268 1269 return 0; 1270 } 1271 1272 /* ----------------------------------------------------------------------- */ 1273 1274 struct stdi_readback { 1275 u16 bl, lcf, lcvs; 1276 u8 hs_pol, vs_pol; 1277 bool interlaced; 1278 }; 1279 1280 static int stdi2dv_timings(struct v4l2_subdev *sd, 1281 struct stdi_readback *stdi, 1282 struct v4l2_dv_timings *timings) 1283 { 1284 struct adv76xx_state *state = to_state(sd); 1285 u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl; 1286 u32 pix_clk; 1287 int i; 1288 1289 for (i = 0; adv76xx_timings[i].bt.height; i++) { 1290 if (vtotal(&adv76xx_timings[i].bt) != stdi->lcf + 1) 1291 continue; 1292 if (adv76xx_timings[i].bt.vsync != stdi->lcvs) 1293 continue; 1294 1295 pix_clk = hfreq * htotal(&adv76xx_timings[i].bt); 1296 1297 if ((pix_clk < adv76xx_timings[i].bt.pixelclock + 1000000) && 1298 (pix_clk > adv76xx_timings[i].bt.pixelclock - 1000000)) { 1299 *timings = adv76xx_timings[i]; 1300 return 0; 1301 } 1302 } 1303 1304 if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 1305 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) | 1306 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0), 1307 timings)) 1308 return 0; 1309 if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs, 1310 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) | 1311 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0), 1312 state->aspect_ratio, timings)) 1313 return 0; 1314 1315 v4l2_dbg(2, debug, sd, 1316 "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n", 1317 __func__, stdi->lcvs, stdi->lcf, stdi->bl, 1318 stdi->hs_pol, stdi->vs_pol); 1319 return -1; 1320 } 1321 1322 1323 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi) 1324 { 1325 struct adv76xx_state *state = to_state(sd); 1326 const struct adv76xx_chip_info *info = state->info; 1327 u8 polarity; 1328 1329 if (no_lock_stdi(sd) || no_lock_sspd(sd)) { 1330 v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__); 1331 return -1; 1332 } 1333 1334 /* read STDI */ 1335 stdi->bl = cp_read16(sd, 0xb1, 0x3fff); 1336 stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff); 1337 stdi->lcvs = cp_read(sd, 0xb3) >> 3; 1338 stdi->interlaced = io_read(sd, 0x12) & 0x10; 1339 1340 if (adv76xx_has_afe(state)) { 1341 /* read SSPD */ 1342 polarity = cp_read(sd, 0xb5); 1343 if ((polarity & 0x03) == 0x01) { 1344 stdi->hs_pol = polarity & 0x10 1345 ? (polarity & 0x08 ? '+' : '-') : 'x'; 1346 stdi->vs_pol = polarity & 0x40 1347 ? (polarity & 0x20 ? '+' : '-') : 'x'; 1348 } else { 1349 stdi->hs_pol = 'x'; 1350 stdi->vs_pol = 'x'; 1351 } 1352 } else { 1353 polarity = hdmi_read(sd, 0x05); 1354 stdi->hs_pol = polarity & 0x20 ? '+' : '-'; 1355 stdi->vs_pol = polarity & 0x10 ? '+' : '-'; 1356 } 1357 1358 if (no_lock_stdi(sd) || no_lock_sspd(sd)) { 1359 v4l2_dbg(2, debug, sd, 1360 "%s: signal lost during readout of STDI/SSPD\n", __func__); 1361 return -1; 1362 } 1363 1364 if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) { 1365 v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__); 1366 memset(stdi, 0, sizeof(struct stdi_readback)); 1367 return -1; 1368 } 1369 1370 v4l2_dbg(2, debug, sd, 1371 "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n", 1372 __func__, stdi->lcf, stdi->bl, stdi->lcvs, 1373 stdi->hs_pol, stdi->vs_pol, 1374 stdi->interlaced ? "interlaced" : "progressive"); 1375 1376 return 0; 1377 } 1378 1379 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd, 1380 struct v4l2_enum_dv_timings *timings) 1381 { 1382 struct adv76xx_state *state = to_state(sd); 1383 1384 if (timings->index >= ARRAY_SIZE(adv76xx_timings) - 1) 1385 return -EINVAL; 1386 1387 if (timings->pad >= state->source_pad) 1388 return -EINVAL; 1389 1390 memset(timings->reserved, 0, sizeof(timings->reserved)); 1391 timings->timings = adv76xx_timings[timings->index]; 1392 return 0; 1393 } 1394 1395 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd, 1396 struct v4l2_dv_timings_cap *cap) 1397 { 1398 struct adv76xx_state *state = to_state(sd); 1399 1400 if (cap->pad >= state->source_pad) 1401 return -EINVAL; 1402 1403 cap->type = V4L2_DV_BT_656_1120; 1404 cap->bt.max_width = 1920; 1405 cap->bt.max_height = 1200; 1406 cap->bt.min_pixelclock = 25000000; 1407 1408 switch (cap->pad) { 1409 case ADV76XX_PAD_HDMI_PORT_A: 1410 case ADV7604_PAD_HDMI_PORT_B: 1411 case ADV7604_PAD_HDMI_PORT_C: 1412 case ADV7604_PAD_HDMI_PORT_D: 1413 cap->bt.max_pixelclock = 225000000; 1414 break; 1415 case ADV7604_PAD_VGA_RGB: 1416 case ADV7604_PAD_VGA_COMP: 1417 default: 1418 cap->bt.max_pixelclock = 170000000; 1419 break; 1420 } 1421 1422 cap->bt.standards = V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | 1423 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT; 1424 cap->bt.capabilities = V4L2_DV_BT_CAP_PROGRESSIVE | 1425 V4L2_DV_BT_CAP_REDUCED_BLANKING | V4L2_DV_BT_CAP_CUSTOM; 1426 return 0; 1427 } 1428 1429 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings 1430 if the format is listed in adv76xx_timings[] */ 1431 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd, 1432 struct v4l2_dv_timings *timings) 1433 { 1434 int i; 1435 1436 for (i = 0; adv76xx_timings[i].bt.width; i++) { 1437 if (v4l2_match_dv_timings(timings, &adv76xx_timings[i], 1438 is_digital_input(sd) ? 250000 : 1000000)) { 1439 *timings = adv76xx_timings[i]; 1440 break; 1441 } 1442 } 1443 } 1444 1445 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd) 1446 { 1447 unsigned int freq; 1448 int a, b; 1449 1450 a = hdmi_read(sd, 0x06); 1451 b = hdmi_read(sd, 0x3b); 1452 if (a < 0 || b < 0) 1453 return 0; 1454 freq = a * 1000000 + ((b & 0x30) >> 4) * 250000; 1455 1456 if (is_hdmi(sd)) { 1457 /* adjust for deep color mode */ 1458 unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8; 1459 1460 freq = freq * 8 / bits_per_channel; 1461 } 1462 1463 return freq; 1464 } 1465 1466 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd) 1467 { 1468 int a, b; 1469 1470 a = hdmi_read(sd, 0x51); 1471 b = hdmi_read(sd, 0x52); 1472 if (a < 0 || b < 0) 1473 return 0; 1474 return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128; 1475 } 1476 1477 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd, 1478 struct v4l2_dv_timings *timings) 1479 { 1480 struct adv76xx_state *state = to_state(sd); 1481 const struct adv76xx_chip_info *info = state->info; 1482 struct v4l2_bt_timings *bt = &timings->bt; 1483 struct stdi_readback stdi; 1484 1485 if (!timings) 1486 return -EINVAL; 1487 1488 memset(timings, 0, sizeof(struct v4l2_dv_timings)); 1489 1490 if (no_signal(sd)) { 1491 state->restart_stdi_once = true; 1492 v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__); 1493 return -ENOLINK; 1494 } 1495 1496 /* read STDI */ 1497 if (read_stdi(sd, &stdi)) { 1498 v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__); 1499 return -ENOLINK; 1500 } 1501 bt->interlaced = stdi.interlaced ? 1502 V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE; 1503 1504 if (is_digital_input(sd)) { 1505 timings->type = V4L2_DV_BT_656_1120; 1506 1507 /* FIXME: All masks are incorrect for ADV7611 */ 1508 bt->width = hdmi_read16(sd, 0x07, 0xfff); 1509 bt->height = hdmi_read16(sd, 0x09, 0xfff); 1510 bt->pixelclock = info->read_hdmi_pixelclock(sd); 1511 bt->hfrontporch = hdmi_read16(sd, 0x20, 0x3ff); 1512 bt->hsync = hdmi_read16(sd, 0x22, 0x3ff); 1513 bt->hbackporch = hdmi_read16(sd, 0x24, 0x3ff); 1514 bt->vfrontporch = hdmi_read16(sd, 0x2a, 0x1fff) / 2; 1515 bt->vsync = hdmi_read16(sd, 0x2e, 0x1fff) / 2; 1516 bt->vbackporch = hdmi_read16(sd, 0x32, 0x1fff) / 2; 1517 bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) | 1518 ((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0); 1519 if (bt->interlaced == V4L2_DV_INTERLACED) { 1520 bt->height += hdmi_read16(sd, 0x0b, 0xfff); 1521 bt->il_vfrontporch = hdmi_read16(sd, 0x2c, 0x1fff) / 2; 1522 bt->il_vsync = hdmi_read16(sd, 0x30, 0x1fff) / 2; 1523 bt->il_vbackporch = hdmi_read16(sd, 0x34, 0x1fff) / 2; 1524 } 1525 adv76xx_fill_optional_dv_timings_fields(sd, timings); 1526 } else { 1527 /* find format 1528 * Since LCVS values are inaccurate [REF_03, p. 275-276], 1529 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails. 1530 */ 1531 if (!stdi2dv_timings(sd, &stdi, timings)) 1532 goto found; 1533 stdi.lcvs += 1; 1534 v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs); 1535 if (!stdi2dv_timings(sd, &stdi, timings)) 1536 goto found; 1537 stdi.lcvs -= 2; 1538 v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs); 1539 if (stdi2dv_timings(sd, &stdi, timings)) { 1540 /* 1541 * The STDI block may measure wrong values, especially 1542 * for lcvs and lcf. If the driver can not find any 1543 * valid timing, the STDI block is restarted to measure 1544 * the video timings again. The function will return an 1545 * error, but the restart of STDI will generate a new 1546 * STDI interrupt and the format detection process will 1547 * restart. 1548 */ 1549 if (state->restart_stdi_once) { 1550 v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__); 1551 /* TODO restart STDI for Sync Channel 2 */ 1552 /* enter one-shot mode */ 1553 cp_write_clr_set(sd, 0x86, 0x06, 0x00); 1554 /* trigger STDI restart */ 1555 cp_write_clr_set(sd, 0x86, 0x06, 0x04); 1556 /* reset to continuous mode */ 1557 cp_write_clr_set(sd, 0x86, 0x06, 0x02); 1558 state->restart_stdi_once = false; 1559 return -ENOLINK; 1560 } 1561 v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__); 1562 return -ERANGE; 1563 } 1564 state->restart_stdi_once = true; 1565 } 1566 found: 1567 1568 if (no_signal(sd)) { 1569 v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__); 1570 memset(timings, 0, sizeof(struct v4l2_dv_timings)); 1571 return -ENOLINK; 1572 } 1573 1574 if ((is_analog_input(sd) && bt->pixelclock > 170000000) || 1575 (is_digital_input(sd) && bt->pixelclock > 225000000)) { 1576 v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n", 1577 __func__, (u32)bt->pixelclock); 1578 return -ERANGE; 1579 } 1580 1581 if (debug > 1) 1582 v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ", 1583 timings, true); 1584 1585 return 0; 1586 } 1587 1588 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd, 1589 struct v4l2_dv_timings *timings) 1590 { 1591 struct adv76xx_state *state = to_state(sd); 1592 struct v4l2_bt_timings *bt; 1593 int err; 1594 1595 if (!timings) 1596 return -EINVAL; 1597 1598 if (v4l2_match_dv_timings(&state->timings, timings, 0)) { 1599 v4l2_dbg(1, debug, sd, "%s: no change\n", __func__); 1600 return 0; 1601 } 1602 1603 bt = &timings->bt; 1604 1605 if ((is_analog_input(sd) && bt->pixelclock > 170000000) || 1606 (is_digital_input(sd) && bt->pixelclock > 225000000)) { 1607 v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n", 1608 __func__, (u32)bt->pixelclock); 1609 return -ERANGE; 1610 } 1611 1612 adv76xx_fill_optional_dv_timings_fields(sd, timings); 1613 1614 state->timings = *timings; 1615 1616 cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00); 1617 1618 /* Use prim_mode and vid_std when available */ 1619 err = configure_predefined_video_timings(sd, timings); 1620 if (err) { 1621 /* custom settings when the video format 1622 does not have prim_mode/vid_std */ 1623 configure_custom_video_timings(sd, bt); 1624 } 1625 1626 set_rgb_quantization_range(sd); 1627 1628 if (debug > 1) 1629 v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ", 1630 timings, true); 1631 return 0; 1632 } 1633 1634 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd, 1635 struct v4l2_dv_timings *timings) 1636 { 1637 struct adv76xx_state *state = to_state(sd); 1638 1639 *timings = state->timings; 1640 return 0; 1641 } 1642 1643 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable) 1644 { 1645 hdmi_write(sd, 0x01, enable ? 0x00 : 0x78); 1646 } 1647 1648 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable) 1649 { 1650 hdmi_write(sd, 0x83, enable ? 0xfe : 0xff); 1651 } 1652 1653 static void enable_input(struct v4l2_subdev *sd) 1654 { 1655 struct adv76xx_state *state = to_state(sd); 1656 1657 if (is_analog_input(sd)) { 1658 io_write(sd, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */ 1659 } else if (is_digital_input(sd)) { 1660 hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input); 1661 state->info->set_termination(sd, true); 1662 io_write(sd, 0x15, 0xa0); /* Disable Tristate of Pins */ 1663 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */ 1664 } else { 1665 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 1666 __func__, state->selected_input); 1667 } 1668 } 1669 1670 static void disable_input(struct v4l2_subdev *sd) 1671 { 1672 struct adv76xx_state *state = to_state(sd); 1673 1674 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */ 1675 msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */ 1676 io_write(sd, 0x15, 0xbe); /* Tristate all outputs from video core */ 1677 state->info->set_termination(sd, false); 1678 } 1679 1680 static void select_input(struct v4l2_subdev *sd) 1681 { 1682 struct adv76xx_state *state = to_state(sd); 1683 const struct adv76xx_chip_info *info = state->info; 1684 1685 if (is_analog_input(sd)) { 1686 adv76xx_write_reg_seq(sd, info->recommended_settings[0]); 1687 1688 afe_write(sd, 0x00, 0x08); /* power up ADC */ 1689 afe_write(sd, 0x01, 0x06); /* power up Analog Front End */ 1690 afe_write(sd, 0xc8, 0x00); /* phase control */ 1691 } else if (is_digital_input(sd)) { 1692 hdmi_write(sd, 0x00, state->selected_input & 0x03); 1693 1694 adv76xx_write_reg_seq(sd, info->recommended_settings[1]); 1695 1696 if (adv76xx_has_afe(state)) { 1697 afe_write(sd, 0x00, 0xff); /* power down ADC */ 1698 afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */ 1699 afe_write(sd, 0xc8, 0x40); /* phase control */ 1700 } 1701 1702 cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */ 1703 cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */ 1704 cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */ 1705 } else { 1706 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 1707 __func__, state->selected_input); 1708 } 1709 } 1710 1711 static int adv76xx_s_routing(struct v4l2_subdev *sd, 1712 u32 input, u32 output, u32 config) 1713 { 1714 struct adv76xx_state *state = to_state(sd); 1715 1716 v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d", 1717 __func__, input, state->selected_input); 1718 1719 if (input == state->selected_input) 1720 return 0; 1721 1722 if (input > state->info->max_port) 1723 return -EINVAL; 1724 1725 state->selected_input = input; 1726 1727 disable_input(sd); 1728 1729 select_input(sd); 1730 1731 enable_input(sd); 1732 1733 return 0; 1734 } 1735 1736 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd, 1737 struct v4l2_subdev_pad_config *cfg, 1738 struct v4l2_subdev_mbus_code_enum *code) 1739 { 1740 struct adv76xx_state *state = to_state(sd); 1741 1742 if (code->index >= state->info->nformats) 1743 return -EINVAL; 1744 1745 code->code = state->info->formats[code->index].code; 1746 1747 return 0; 1748 } 1749 1750 static void adv76xx_fill_format(struct adv76xx_state *state, 1751 struct v4l2_mbus_framefmt *format) 1752 { 1753 memset(format, 0, sizeof(*format)); 1754 1755 format->width = state->timings.bt.width; 1756 format->height = state->timings.bt.height; 1757 format->field = V4L2_FIELD_NONE; 1758 1759 if (state->timings.bt.standards & V4L2_DV_BT_STD_CEA861) 1760 format->colorspace = (state->timings.bt.height <= 576) ? 1761 V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709; 1762 } 1763 1764 /* 1765 * Compute the op_ch_sel value required to obtain on the bus the component order 1766 * corresponding to the selected format taking into account bus reordering 1767 * applied by the board at the output of the device. 1768 * 1769 * The following table gives the op_ch_value from the format component order 1770 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as 1771 * adv76xx_bus_order value in row). 1772 * 1773 * | GBR(0) GRB(1) BGR(2) RGB(3) BRG(4) RBG(5) 1774 * ----------+------------------------------------------------- 1775 * RGB (NOP) | GBR GRB BGR RGB BRG RBG 1776 * GRB (1-2) | BGR RGB GBR GRB RBG BRG 1777 * RBG (2-3) | GRB GBR BRG RBG BGR RGB 1778 * BGR (1-3) | RBG BRG RGB BGR GRB GBR 1779 * BRG (ROR) | BRG RBG GRB GBR RGB BGR 1780 * GBR (ROL) | RGB BGR RBG BRG GBR GRB 1781 */ 1782 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state) 1783 { 1784 #define _SEL(a,b,c,d,e,f) { \ 1785 ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \ 1786 ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f } 1787 #define _BUS(x) [ADV7604_BUS_ORDER_##x] 1788 1789 static const unsigned int op_ch_sel[6][6] = { 1790 _BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG), 1791 _BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG), 1792 _BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB), 1793 _BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR), 1794 _BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR), 1795 _BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB), 1796 }; 1797 1798 return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5]; 1799 } 1800 1801 static void adv76xx_setup_format(struct adv76xx_state *state) 1802 { 1803 struct v4l2_subdev *sd = &state->sd; 1804 1805 io_write_clr_set(sd, 0x02, 0x02, 1806 state->format->rgb_out ? ADV76XX_RGB_OUT : 0); 1807 io_write(sd, 0x03, state->format->op_format_sel | 1808 state->pdata.op_format_mode_sel); 1809 io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state)); 1810 io_write_clr_set(sd, 0x05, 0x01, 1811 state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0); 1812 } 1813 1814 static int adv76xx_get_format(struct v4l2_subdev *sd, 1815 struct v4l2_subdev_pad_config *cfg, 1816 struct v4l2_subdev_format *format) 1817 { 1818 struct adv76xx_state *state = to_state(sd); 1819 1820 if (format->pad != state->source_pad) 1821 return -EINVAL; 1822 1823 adv76xx_fill_format(state, &format->format); 1824 1825 if (format->which == V4L2_SUBDEV_FORMAT_TRY) { 1826 struct v4l2_mbus_framefmt *fmt; 1827 1828 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad); 1829 format->format.code = fmt->code; 1830 } else { 1831 format->format.code = state->format->code; 1832 } 1833 1834 return 0; 1835 } 1836 1837 static int adv76xx_set_format(struct v4l2_subdev *sd, 1838 struct v4l2_subdev_pad_config *cfg, 1839 struct v4l2_subdev_format *format) 1840 { 1841 struct adv76xx_state *state = to_state(sd); 1842 const struct adv76xx_format_info *info; 1843 1844 if (format->pad != state->source_pad) 1845 return -EINVAL; 1846 1847 info = adv76xx_format_info(state, format->format.code); 1848 if (info == NULL) 1849 info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8); 1850 1851 adv76xx_fill_format(state, &format->format); 1852 format->format.code = info->code; 1853 1854 if (format->which == V4L2_SUBDEV_FORMAT_TRY) { 1855 struct v4l2_mbus_framefmt *fmt; 1856 1857 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad); 1858 fmt->code = format->format.code; 1859 } else { 1860 state->format = info; 1861 adv76xx_setup_format(state); 1862 } 1863 1864 return 0; 1865 } 1866 1867 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled) 1868 { 1869 struct adv76xx_state *state = to_state(sd); 1870 const struct adv76xx_chip_info *info = state->info; 1871 const u8 irq_reg_0x43 = io_read(sd, 0x43); 1872 const u8 irq_reg_0x6b = io_read(sd, 0x6b); 1873 const u8 irq_reg_0x70 = io_read(sd, 0x70); 1874 u8 fmt_change_digital; 1875 u8 fmt_change; 1876 u8 tx_5v; 1877 1878 if (irq_reg_0x43) 1879 io_write(sd, 0x44, irq_reg_0x43); 1880 if (irq_reg_0x70) 1881 io_write(sd, 0x71, irq_reg_0x70); 1882 if (irq_reg_0x6b) 1883 io_write(sd, 0x6c, irq_reg_0x6b); 1884 1885 v4l2_dbg(2, debug, sd, "%s: ", __func__); 1886 1887 /* format change */ 1888 fmt_change = irq_reg_0x43 & 0x98; 1889 fmt_change_digital = is_digital_input(sd) 1890 ? irq_reg_0x6b & info->fmt_change_digital_mask 1891 : 0; 1892 1893 if (fmt_change || fmt_change_digital) { 1894 v4l2_dbg(1, debug, sd, 1895 "%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n", 1896 __func__, fmt_change, fmt_change_digital); 1897 1898 v4l2_subdev_notify(sd, ADV76XX_FMT_CHANGE, NULL); 1899 1900 if (handled) 1901 *handled = true; 1902 } 1903 /* HDMI/DVI mode */ 1904 if (irq_reg_0x6b & 0x01) { 1905 v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__, 1906 (io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI"); 1907 set_rgb_quantization_range(sd); 1908 if (handled) 1909 *handled = true; 1910 } 1911 1912 /* tx 5v detect */ 1913 tx_5v = io_read(sd, 0x70) & info->cable_det_mask; 1914 if (tx_5v) { 1915 v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v); 1916 io_write(sd, 0x71, tx_5v); 1917 adv76xx_s_detect_tx_5v_ctrl(sd); 1918 if (handled) 1919 *handled = true; 1920 } 1921 return 0; 1922 } 1923 1924 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid) 1925 { 1926 struct adv76xx_state *state = to_state(sd); 1927 u8 *data = NULL; 1928 1929 memset(edid->reserved, 0, sizeof(edid->reserved)); 1930 1931 switch (edid->pad) { 1932 case ADV76XX_PAD_HDMI_PORT_A: 1933 case ADV7604_PAD_HDMI_PORT_B: 1934 case ADV7604_PAD_HDMI_PORT_C: 1935 case ADV7604_PAD_HDMI_PORT_D: 1936 if (state->edid.present & (1 << edid->pad)) 1937 data = state->edid.edid; 1938 break; 1939 default: 1940 return -EINVAL; 1941 } 1942 1943 if (edid->start_block == 0 && edid->blocks == 0) { 1944 edid->blocks = data ? state->edid.blocks : 0; 1945 return 0; 1946 } 1947 1948 if (data == NULL) 1949 return -ENODATA; 1950 1951 if (edid->start_block >= state->edid.blocks) 1952 return -EINVAL; 1953 1954 if (edid->start_block + edid->blocks > state->edid.blocks) 1955 edid->blocks = state->edid.blocks - edid->start_block; 1956 1957 memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128); 1958 1959 return 0; 1960 } 1961 1962 static int get_edid_spa_location(const u8 *edid) 1963 { 1964 u8 d; 1965 1966 if ((edid[0x7e] != 1) || 1967 (edid[0x80] != 0x02) || 1968 (edid[0x81] != 0x03)) { 1969 return -1; 1970 } 1971 1972 /* search Vendor Specific Data Block (tag 3) */ 1973 d = edid[0x82] & 0x7f; 1974 if (d > 4) { 1975 int i = 0x84; 1976 int end = 0x80 + d; 1977 1978 do { 1979 u8 tag = edid[i] >> 5; 1980 u8 len = edid[i] & 0x1f; 1981 1982 if ((tag == 3) && (len >= 5)) 1983 return i + 4; 1984 i += len + 1; 1985 } while (i < end); 1986 } 1987 return -1; 1988 } 1989 1990 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid) 1991 { 1992 struct adv76xx_state *state = to_state(sd); 1993 const struct adv76xx_chip_info *info = state->info; 1994 int spa_loc; 1995 int err; 1996 int i; 1997 1998 memset(edid->reserved, 0, sizeof(edid->reserved)); 1999 2000 if (edid->pad > ADV7604_PAD_HDMI_PORT_D) 2001 return -EINVAL; 2002 if (edid->start_block != 0) 2003 return -EINVAL; 2004 if (edid->blocks == 0) { 2005 /* Disable hotplug and I2C access to EDID RAM from DDC port */ 2006 state->edid.present &= ~(1 << edid->pad); 2007 adv76xx_set_hpd(state, state->edid.present); 2008 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present); 2009 2010 /* Fall back to a 16:9 aspect ratio */ 2011 state->aspect_ratio.numerator = 16; 2012 state->aspect_ratio.denominator = 9; 2013 2014 if (!state->edid.present) 2015 state->edid.blocks = 0; 2016 2017 v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n", 2018 __func__, edid->pad, state->edid.present); 2019 return 0; 2020 } 2021 if (edid->blocks > 2) { 2022 edid->blocks = 2; 2023 return -E2BIG; 2024 } 2025 2026 v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n", 2027 __func__, edid->pad, state->edid.present); 2028 2029 /* Disable hotplug and I2C access to EDID RAM from DDC port */ 2030 cancel_delayed_work_sync(&state->delayed_work_enable_hotplug); 2031 adv76xx_set_hpd(state, 0); 2032 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00); 2033 2034 spa_loc = get_edid_spa_location(edid->edid); 2035 if (spa_loc < 0) 2036 spa_loc = 0xc0; /* Default value [REF_02, p. 116] */ 2037 2038 switch (edid->pad) { 2039 case ADV76XX_PAD_HDMI_PORT_A: 2040 state->spa_port_a[0] = edid->edid[spa_loc]; 2041 state->spa_port_a[1] = edid->edid[spa_loc + 1]; 2042 break; 2043 case ADV7604_PAD_HDMI_PORT_B: 2044 rep_write(sd, 0x70, edid->edid[spa_loc]); 2045 rep_write(sd, 0x71, edid->edid[spa_loc + 1]); 2046 break; 2047 case ADV7604_PAD_HDMI_PORT_C: 2048 rep_write(sd, 0x72, edid->edid[spa_loc]); 2049 rep_write(sd, 0x73, edid->edid[spa_loc + 1]); 2050 break; 2051 case ADV7604_PAD_HDMI_PORT_D: 2052 rep_write(sd, 0x74, edid->edid[spa_loc]); 2053 rep_write(sd, 0x75, edid->edid[spa_loc + 1]); 2054 break; 2055 default: 2056 return -EINVAL; 2057 } 2058 2059 if (info->type == ADV7604) { 2060 rep_write(sd, 0x76, spa_loc & 0xff); 2061 rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2); 2062 } else { 2063 /* FIXME: Where is the SPA location LSB register ? */ 2064 rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8); 2065 } 2066 2067 edid->edid[spa_loc] = state->spa_port_a[0]; 2068 edid->edid[spa_loc + 1] = state->spa_port_a[1]; 2069 2070 memcpy(state->edid.edid, edid->edid, 128 * edid->blocks); 2071 state->edid.blocks = edid->blocks; 2072 state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15], 2073 edid->edid[0x16]); 2074 state->edid.present |= 1 << edid->pad; 2075 2076 err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid); 2077 if (err < 0) { 2078 v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad); 2079 return err; 2080 } 2081 2082 /* adv76xx calculates the checksums and enables I2C access to internal 2083 EDID RAM from DDC port. */ 2084 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present); 2085 2086 for (i = 0; i < 1000; i++) { 2087 if (rep_read(sd, info->edid_status_reg) & state->edid.present) 2088 break; 2089 mdelay(1); 2090 } 2091 if (i == 1000) { 2092 v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present); 2093 return -EIO; 2094 } 2095 2096 /* enable hotplug after 100 ms */ 2097 queue_delayed_work(state->work_queues, 2098 &state->delayed_work_enable_hotplug, HZ / 10); 2099 return 0; 2100 } 2101 2102 /*********** avi info frame CEA-861-E **************/ 2103 2104 static void print_avi_infoframe(struct v4l2_subdev *sd) 2105 { 2106 int i; 2107 u8 buf[14]; 2108 u8 avi_len; 2109 u8 avi_ver; 2110 2111 if (!is_hdmi(sd)) { 2112 v4l2_info(sd, "receive DVI-D signal (AVI infoframe not supported)\n"); 2113 return; 2114 } 2115 if (!(io_read(sd, 0x60) & 0x01)) { 2116 v4l2_info(sd, "AVI infoframe not received\n"); 2117 return; 2118 } 2119 2120 if (io_read(sd, 0x83) & 0x01) { 2121 v4l2_info(sd, "AVI infoframe checksum error has occurred earlier\n"); 2122 io_write(sd, 0x85, 0x01); /* clear AVI_INF_CKS_ERR_RAW */ 2123 if (io_read(sd, 0x83) & 0x01) { 2124 v4l2_info(sd, "AVI infoframe checksum error still present\n"); 2125 io_write(sd, 0x85, 0x01); /* clear AVI_INF_CKS_ERR_RAW */ 2126 } 2127 } 2128 2129 avi_len = infoframe_read(sd, 0xe2); 2130 avi_ver = infoframe_read(sd, 0xe1); 2131 v4l2_info(sd, "AVI infoframe version %d (%d byte)\n", 2132 avi_ver, avi_len); 2133 2134 if (avi_ver != 0x02) 2135 return; 2136 2137 for (i = 0; i < 14; i++) 2138 buf[i] = infoframe_read(sd, i); 2139 2140 v4l2_info(sd, 2141 "\t%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", 2142 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], 2143 buf[8], buf[9], buf[10], buf[11], buf[12], buf[13]); 2144 } 2145 2146 static int adv76xx_log_status(struct v4l2_subdev *sd) 2147 { 2148 struct adv76xx_state *state = to_state(sd); 2149 const struct adv76xx_chip_info *info = state->info; 2150 struct v4l2_dv_timings timings; 2151 struct stdi_readback stdi; 2152 u8 reg_io_0x02 = io_read(sd, 0x02); 2153 u8 edid_enabled; 2154 u8 cable_det; 2155 2156 static const char * const csc_coeff_sel_rb[16] = { 2157 "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB", 2158 "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709", 2159 "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709", 2160 "reserved", "reserved", "reserved", "reserved", "manual" 2161 }; 2162 static const char * const input_color_space_txt[16] = { 2163 "RGB limited range (16-235)", "RGB full range (0-255)", 2164 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)", 2165 "xvYCC Bt.601", "xvYCC Bt.709", 2166 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)", 2167 "invalid", "invalid", "invalid", "invalid", "invalid", 2168 "invalid", "invalid", "automatic" 2169 }; 2170 static const char * const rgb_quantization_range_txt[] = { 2171 "Automatic", 2172 "RGB limited range (16-235)", 2173 "RGB full range (0-255)", 2174 }; 2175 static const char * const deep_color_mode_txt[4] = { 2176 "8-bits per channel", 2177 "10-bits per channel", 2178 "12-bits per channel", 2179 "16-bits per channel (not supported)" 2180 }; 2181 2182 v4l2_info(sd, "-----Chip status-----\n"); 2183 v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on"); 2184 edid_enabled = rep_read(sd, info->edid_status_reg); 2185 v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n", 2186 ((edid_enabled & 0x01) ? "Yes" : "No"), 2187 ((edid_enabled & 0x02) ? "Yes" : "No"), 2188 ((edid_enabled & 0x04) ? "Yes" : "No"), 2189 ((edid_enabled & 0x08) ? "Yes" : "No")); 2190 v4l2_info(sd, "CEC: %s\n", !!(cec_read(sd, 0x2a) & 0x01) ? 2191 "enabled" : "disabled"); 2192 2193 v4l2_info(sd, "-----Signal status-----\n"); 2194 cable_det = info->read_cable_det(sd); 2195 v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n", 2196 ((cable_det & 0x01) ? "Yes" : "No"), 2197 ((cable_det & 0x02) ? "Yes" : "No"), 2198 ((cable_det & 0x04) ? "Yes" : "No"), 2199 ((cable_det & 0x08) ? "Yes" : "No")); 2200 v4l2_info(sd, "TMDS signal detected: %s\n", 2201 no_signal_tmds(sd) ? "false" : "true"); 2202 v4l2_info(sd, "TMDS signal locked: %s\n", 2203 no_lock_tmds(sd) ? "false" : "true"); 2204 v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true"); 2205 v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true"); 2206 v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true"); 2207 v4l2_info(sd, "CP free run: %s\n", 2208 (in_free_run(sd)) ? "on" : "off"); 2209 v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n", 2210 io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f, 2211 (io_read(sd, 0x01) & 0x70) >> 4); 2212 2213 v4l2_info(sd, "-----Video Timings-----\n"); 2214 if (read_stdi(sd, &stdi)) 2215 v4l2_info(sd, "STDI: not locked\n"); 2216 else 2217 v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n", 2218 stdi.lcf, stdi.bl, stdi.lcvs, 2219 stdi.interlaced ? "interlaced" : "progressive", 2220 stdi.hs_pol, stdi.vs_pol); 2221 if (adv76xx_query_dv_timings(sd, &timings)) 2222 v4l2_info(sd, "No video detected\n"); 2223 else 2224 v4l2_print_dv_timings(sd->name, "Detected format: ", 2225 &timings, true); 2226 v4l2_print_dv_timings(sd->name, "Configured format: ", 2227 &state->timings, true); 2228 2229 if (no_signal(sd)) 2230 return 0; 2231 2232 v4l2_info(sd, "-----Color space-----\n"); 2233 v4l2_info(sd, "RGB quantization range ctrl: %s\n", 2234 rgb_quantization_range_txt[state->rgb_quantization_range]); 2235 v4l2_info(sd, "Input color space: %s\n", 2236 input_color_space_txt[reg_io_0x02 >> 4]); 2237 v4l2_info(sd, "Output color space: %s %s, saturator %s\n", 2238 (reg_io_0x02 & 0x02) ? "RGB" : "YCbCr", 2239 (reg_io_0x02 & 0x04) ? "(16-235)" : "(0-255)", 2240 ((reg_io_0x02 & 0x04) ^ (reg_io_0x02 & 0x01)) ? 2241 "enabled" : "disabled"); 2242 v4l2_info(sd, "Color space conversion: %s\n", 2243 csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]); 2244 2245 if (!is_digital_input(sd)) 2246 return 0; 2247 2248 v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D"); 2249 v4l2_info(sd, "Digital video port selected: %c\n", 2250 (hdmi_read(sd, 0x00) & 0x03) + 'A'); 2251 v4l2_info(sd, "HDCP encrypted content: %s\n", 2252 (hdmi_read(sd, 0x05) & 0x40) ? "true" : "false"); 2253 v4l2_info(sd, "HDCP keys read: %s%s\n", 2254 (hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no", 2255 (hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : ""); 2256 if (is_hdmi(sd)) { 2257 bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01; 2258 bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01; 2259 bool audio_mute = io_read(sd, 0x65) & 0x40; 2260 2261 v4l2_info(sd, "Audio: pll %s, samples %s, %s\n", 2262 audio_pll_locked ? "locked" : "not locked", 2263 audio_sample_packet_detect ? "detected" : "not detected", 2264 audio_mute ? "muted" : "enabled"); 2265 if (audio_pll_locked && audio_sample_packet_detect) { 2266 v4l2_info(sd, "Audio format: %s\n", 2267 (hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo"); 2268 } 2269 v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) + 2270 (hdmi_read(sd, 0x5c) << 8) + 2271 (hdmi_read(sd, 0x5d) & 0xf0)); 2272 v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) + 2273 (hdmi_read(sd, 0x5e) << 8) + 2274 hdmi_read(sd, 0x5f)); 2275 v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off"); 2276 2277 v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]); 2278 2279 print_avi_infoframe(sd); 2280 } 2281 2282 return 0; 2283 } 2284 2285 /* ----------------------------------------------------------------------- */ 2286 2287 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = { 2288 .s_ctrl = adv76xx_s_ctrl, 2289 }; 2290 2291 static const struct v4l2_subdev_core_ops adv76xx_core_ops = { 2292 .log_status = adv76xx_log_status, 2293 .interrupt_service_routine = adv76xx_isr, 2294 #ifdef CONFIG_VIDEO_ADV_DEBUG 2295 .g_register = adv76xx_g_register, 2296 .s_register = adv76xx_s_register, 2297 #endif 2298 }; 2299 2300 static const struct v4l2_subdev_video_ops adv76xx_video_ops = { 2301 .s_routing = adv76xx_s_routing, 2302 .g_input_status = adv76xx_g_input_status, 2303 .s_dv_timings = adv76xx_s_dv_timings, 2304 .g_dv_timings = adv76xx_g_dv_timings, 2305 .query_dv_timings = adv76xx_query_dv_timings, 2306 }; 2307 2308 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = { 2309 .enum_mbus_code = adv76xx_enum_mbus_code, 2310 .get_fmt = adv76xx_get_format, 2311 .set_fmt = adv76xx_set_format, 2312 .get_edid = adv76xx_get_edid, 2313 .set_edid = adv76xx_set_edid, 2314 .dv_timings_cap = adv76xx_dv_timings_cap, 2315 .enum_dv_timings = adv76xx_enum_dv_timings, 2316 }; 2317 2318 static const struct v4l2_subdev_ops adv76xx_ops = { 2319 .core = &adv76xx_core_ops, 2320 .video = &adv76xx_video_ops, 2321 .pad = &adv76xx_pad_ops, 2322 }; 2323 2324 /* -------------------------- custom ctrls ---------------------------------- */ 2325 2326 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = { 2327 .ops = &adv76xx_ctrl_ops, 2328 .id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE, 2329 .name = "Analog Sampling Phase", 2330 .type = V4L2_CTRL_TYPE_INTEGER, 2331 .min = 0, 2332 .max = 0x1f, 2333 .step = 1, 2334 .def = 0, 2335 }; 2336 2337 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = { 2338 .ops = &adv76xx_ctrl_ops, 2339 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL, 2340 .name = "Free Running Color, Manual", 2341 .type = V4L2_CTRL_TYPE_BOOLEAN, 2342 .min = false, 2343 .max = true, 2344 .step = 1, 2345 .def = false, 2346 }; 2347 2348 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = { 2349 .ops = &adv76xx_ctrl_ops, 2350 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR, 2351 .name = "Free Running Color", 2352 .type = V4L2_CTRL_TYPE_INTEGER, 2353 .min = 0x0, 2354 .max = 0xffffff, 2355 .step = 0x1, 2356 .def = 0x0, 2357 }; 2358 2359 /* ----------------------------------------------------------------------- */ 2360 2361 static int adv76xx_core_init(struct v4l2_subdev *sd) 2362 { 2363 struct adv76xx_state *state = to_state(sd); 2364 const struct adv76xx_chip_info *info = state->info; 2365 struct adv76xx_platform_data *pdata = &state->pdata; 2366 2367 hdmi_write(sd, 0x48, 2368 (pdata->disable_pwrdnb ? 0x80 : 0) | 2369 (pdata->disable_cable_det_rst ? 0x40 : 0)); 2370 2371 disable_input(sd); 2372 2373 if (pdata->default_input >= 0 && 2374 pdata->default_input < state->source_pad) { 2375 state->selected_input = pdata->default_input; 2376 select_input(sd); 2377 enable_input(sd); 2378 } 2379 2380 /* power */ 2381 io_write(sd, 0x0c, 0x42); /* Power up part and power down VDP */ 2382 io_write(sd, 0x0b, 0x44); /* Power down ESDP block */ 2383 cp_write(sd, 0xcf, 0x01); /* Power down macrovision */ 2384 2385 /* video format */ 2386 io_write_clr_set(sd, 0x02, 0x0f, 2387 pdata->alt_gamma << 3 | 2388 pdata->op_656_range << 2 | 2389 pdata->alt_data_sat << 0); 2390 io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 | 2391 pdata->insert_av_codes << 2 | 2392 pdata->replicate_av_codes << 1); 2393 adv76xx_setup_format(state); 2394 2395 cp_write(sd, 0x69, 0x30); /* Enable CP CSC */ 2396 2397 /* VS, HS polarities */ 2398 io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 | 2399 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol); 2400 2401 /* Adjust drive strength */ 2402 io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 | 2403 pdata->dr_str_clk << 2 | 2404 pdata->dr_str_sync); 2405 2406 cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */ 2407 cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */ 2408 cp_write(sd, 0xf9, 0x23); /* STDI ch. 1 - LCVS change threshold - 2409 ADI recommended setting [REF_01, c. 2.3.3] */ 2410 cp_write(sd, 0x45, 0x23); /* STDI ch. 2 - LCVS change threshold - 2411 ADI recommended setting [REF_01, c. 2.3.3] */ 2412 cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution 2413 for digital formats */ 2414 2415 /* HDMI audio */ 2416 hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */ 2417 hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */ 2418 hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */ 2419 2420 /* TODO from platform data */ 2421 afe_write(sd, 0xb5, 0x01); /* Setting MCLK to 256Fs */ 2422 2423 if (adv76xx_has_afe(state)) { 2424 afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */ 2425 io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4); 2426 } 2427 2428 /* interrupts */ 2429 io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */ 2430 io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */ 2431 io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */ 2432 io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */ 2433 info->setup_irqs(sd); 2434 2435 return v4l2_ctrl_handler_setup(sd->ctrl_handler); 2436 } 2437 2438 static void adv7604_setup_irqs(struct v4l2_subdev *sd) 2439 { 2440 io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */ 2441 } 2442 2443 static void adv7611_setup_irqs(struct v4l2_subdev *sd) 2444 { 2445 io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */ 2446 } 2447 2448 static void adv76xx_unregister_clients(struct adv76xx_state *state) 2449 { 2450 unsigned int i; 2451 2452 for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) { 2453 if (state->i2c_clients[i]) 2454 i2c_unregister_device(state->i2c_clients[i]); 2455 } 2456 } 2457 2458 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd, 2459 u8 addr, u8 io_reg) 2460 { 2461 struct i2c_client *client = v4l2_get_subdevdata(sd); 2462 2463 if (addr) 2464 io_write(sd, io_reg, addr << 1); 2465 return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1); 2466 } 2467 2468 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = { 2469 /* reset ADI recommended settings for HDMI: */ 2470 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */ 2471 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */ 2472 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */ 2473 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */ 2474 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */ 2475 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */ 2476 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */ 2477 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */ 2478 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */ 2479 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */ 2480 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */ 2481 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */ 2482 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */ 2483 2484 /* set ADI recommended settings for digitizer */ 2485 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */ 2486 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */ 2487 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */ 2488 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */ 2489 { ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */ 2490 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */ 2491 2492 { ADV76XX_REG_SEQ_TERM, 0 }, 2493 }; 2494 2495 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = { 2496 /* set ADI recommended settings for HDMI: */ 2497 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */ 2498 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */ 2499 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */ 2500 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */ 2501 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */ 2502 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */ 2503 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */ 2504 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */ 2505 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */ 2506 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */ 2507 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */ 2508 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */ 2509 2510 /* reset ADI recommended settings for digitizer */ 2511 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */ 2512 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */ 2513 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */ 2514 2515 { ADV76XX_REG_SEQ_TERM, 0 }, 2516 }; 2517 2518 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = { 2519 /* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */ 2520 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 }, 2521 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 }, 2522 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 }, 2523 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f }, 2524 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 }, 2525 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda }, 2526 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 }, 2527 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 }, 2528 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 }, 2529 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 }, 2530 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e }, 2531 2532 { ADV76XX_REG_SEQ_TERM, 0 }, 2533 }; 2534 2535 static const struct adv76xx_chip_info adv76xx_chip_info[] = { 2536 [ADV7604] = { 2537 .type = ADV7604, 2538 .has_afe = true, 2539 .max_port = ADV7604_PAD_VGA_COMP, 2540 .num_dv_ports = 4, 2541 .edid_enable_reg = 0x77, 2542 .edid_status_reg = 0x7d, 2543 .lcf_reg = 0xb3, 2544 .tdms_lock_mask = 0xe0, 2545 .cable_det_mask = 0x1e, 2546 .fmt_change_digital_mask = 0xc1, 2547 .cp_csc = 0xfc, 2548 .formats = adv7604_formats, 2549 .nformats = ARRAY_SIZE(adv7604_formats), 2550 .set_termination = adv7604_set_termination, 2551 .setup_irqs = adv7604_setup_irqs, 2552 .read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock, 2553 .read_cable_det = adv7604_read_cable_det, 2554 .recommended_settings = { 2555 [0] = adv7604_recommended_settings_afe, 2556 [1] = adv7604_recommended_settings_hdmi, 2557 }, 2558 .num_recommended_settings = { 2559 [0] = ARRAY_SIZE(adv7604_recommended_settings_afe), 2560 [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi), 2561 }, 2562 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) | 2563 BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) | 2564 BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) | 2565 BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) | 2566 BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) | 2567 BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) | 2568 BIT(ADV7604_PAGE_VDP), 2569 }, 2570 [ADV7611] = { 2571 .type = ADV7611, 2572 .has_afe = false, 2573 .max_port = ADV76XX_PAD_HDMI_PORT_A, 2574 .num_dv_ports = 1, 2575 .edid_enable_reg = 0x74, 2576 .edid_status_reg = 0x76, 2577 .lcf_reg = 0xa3, 2578 .tdms_lock_mask = 0x43, 2579 .cable_det_mask = 0x01, 2580 .fmt_change_digital_mask = 0x03, 2581 .cp_csc = 0xf4, 2582 .formats = adv7611_formats, 2583 .nformats = ARRAY_SIZE(adv7611_formats), 2584 .set_termination = adv7611_set_termination, 2585 .setup_irqs = adv7611_setup_irqs, 2586 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock, 2587 .read_cable_det = adv7611_read_cable_det, 2588 .recommended_settings = { 2589 [1] = adv7611_recommended_settings_hdmi, 2590 }, 2591 .num_recommended_settings = { 2592 [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi), 2593 }, 2594 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) | 2595 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) | 2596 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) | 2597 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP), 2598 }, 2599 }; 2600 2601 static struct i2c_device_id adv76xx_i2c_id[] = { 2602 { "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] }, 2603 { "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] }, 2604 { } 2605 }; 2606 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id); 2607 2608 static struct of_device_id adv76xx_of_id[] __maybe_unused = { 2609 { .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] }, 2610 { } 2611 }; 2612 MODULE_DEVICE_TABLE(of, adv76xx_of_id); 2613 2614 static int adv76xx_parse_dt(struct adv76xx_state *state) 2615 { 2616 struct v4l2_of_endpoint bus_cfg; 2617 struct device_node *endpoint; 2618 struct device_node *np; 2619 unsigned int flags; 2620 2621 np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node; 2622 2623 /* Parse the endpoint. */ 2624 endpoint = of_graph_get_next_endpoint(np, NULL); 2625 if (!endpoint) 2626 return -EINVAL; 2627 2628 v4l2_of_parse_endpoint(endpoint, &bus_cfg); 2629 of_node_put(endpoint); 2630 2631 flags = bus_cfg.bus.parallel.flags; 2632 2633 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH) 2634 state->pdata.inv_hs_pol = 1; 2635 2636 if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH) 2637 state->pdata.inv_vs_pol = 1; 2638 2639 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING) 2640 state->pdata.inv_llc_pol = 1; 2641 2642 if (bus_cfg.bus_type == V4L2_MBUS_BT656) { 2643 state->pdata.insert_av_codes = 1; 2644 state->pdata.op_656_range = 1; 2645 } 2646 2647 /* Disable the interrupt for now as no DT-based board uses it. */ 2648 state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED; 2649 2650 /* Use the default I2C addresses. */ 2651 state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42; 2652 state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40; 2653 state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e; 2654 state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38; 2655 state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c; 2656 state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26; 2657 state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32; 2658 state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36; 2659 state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34; 2660 state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30; 2661 state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22; 2662 state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24; 2663 2664 /* Hardcode the remaining platform data fields. */ 2665 state->pdata.disable_pwrdnb = 0; 2666 state->pdata.disable_cable_det_rst = 0; 2667 state->pdata.default_input = -1; 2668 state->pdata.blank_data = 1; 2669 state->pdata.alt_data_sat = 1; 2670 state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0; 2671 state->pdata.bus_order = ADV7604_BUS_ORDER_RGB; 2672 2673 return 0; 2674 } 2675 2676 static int adv76xx_probe(struct i2c_client *client, 2677 const struct i2c_device_id *id) 2678 { 2679 static const struct v4l2_dv_timings cea640x480 = 2680 V4L2_DV_BT_CEA_640X480P59_94; 2681 struct adv76xx_state *state; 2682 struct v4l2_ctrl_handler *hdl; 2683 struct v4l2_subdev *sd; 2684 unsigned int i; 2685 u16 val; 2686 int err; 2687 2688 /* Check if the adapter supports the needed features */ 2689 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 2690 return -EIO; 2691 v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n", 2692 client->addr << 1); 2693 2694 state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL); 2695 if (!state) { 2696 v4l_err(client, "Could not allocate adv76xx_state memory!\n"); 2697 return -ENOMEM; 2698 } 2699 2700 state->i2c_clients[ADV76XX_PAGE_IO] = client; 2701 2702 /* initialize variables */ 2703 state->restart_stdi_once = true; 2704 state->selected_input = ~0; 2705 2706 if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) { 2707 const struct of_device_id *oid; 2708 2709 oid = of_match_node(adv76xx_of_id, client->dev.of_node); 2710 state->info = oid->data; 2711 2712 err = adv76xx_parse_dt(state); 2713 if (err < 0) { 2714 v4l_err(client, "DT parsing error\n"); 2715 return err; 2716 } 2717 } else if (client->dev.platform_data) { 2718 struct adv76xx_platform_data *pdata = client->dev.platform_data; 2719 2720 state->info = (const struct adv76xx_chip_info *)id->driver_data; 2721 state->pdata = *pdata; 2722 } else { 2723 v4l_err(client, "No platform data!\n"); 2724 return -ENODEV; 2725 } 2726 2727 /* Request GPIOs. */ 2728 for (i = 0; i < state->info->num_dv_ports; ++i) { 2729 state->hpd_gpio[i] = 2730 devm_gpiod_get_index_optional(&client->dev, "hpd", i, 2731 GPIOD_OUT_LOW); 2732 if (IS_ERR(state->hpd_gpio[i])) 2733 return PTR_ERR(state->hpd_gpio[i]); 2734 2735 if (state->hpd_gpio[i]) 2736 v4l_info(client, "Handling HPD %u GPIO\n", i); 2737 } 2738 2739 state->timings = cea640x480; 2740 state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8); 2741 2742 sd = &state->sd; 2743 v4l2_i2c_subdev_init(sd, client, &adv76xx_ops); 2744 snprintf(sd->name, sizeof(sd->name), "%s %d-%04x", 2745 id->name, i2c_adapter_id(client->adapter), 2746 client->addr); 2747 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; 2748 2749 /* 2750 * Verify that the chip is present. On ADV7604 the RD_INFO register only 2751 * identifies the revision, while on ADV7611 it identifies the model as 2752 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611. 2753 */ 2754 if (state->info->type == ADV7604) { 2755 val = adv_smbus_read_byte_data_check(client, 0xfb, false); 2756 if (val != 0x68) { 2757 v4l2_info(sd, "not an adv7604 on address 0x%x\n", 2758 client->addr << 1); 2759 return -ENODEV; 2760 } 2761 } else { 2762 val = (adv_smbus_read_byte_data_check(client, 0xea, false) << 8) 2763 | (adv_smbus_read_byte_data_check(client, 0xeb, false) << 0); 2764 if (val != 0x2051) { 2765 v4l2_info(sd, "not an adv7611 on address 0x%x\n", 2766 client->addr << 1); 2767 return -ENODEV; 2768 } 2769 } 2770 2771 /* control handlers */ 2772 hdl = &state->hdl; 2773 v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8); 2774 2775 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 2776 V4L2_CID_BRIGHTNESS, -128, 127, 1, 0); 2777 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 2778 V4L2_CID_CONTRAST, 0, 255, 1, 128); 2779 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 2780 V4L2_CID_SATURATION, 0, 255, 1, 128); 2781 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 2782 V4L2_CID_HUE, 0, 128, 1, 0); 2783 2784 /* private controls */ 2785 state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL, 2786 V4L2_CID_DV_RX_POWER_PRESENT, 0, 2787 (1 << state->info->num_dv_ports) - 1, 0, 0); 2788 state->rgb_quantization_range_ctrl = 2789 v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops, 2790 V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 2791 0, V4L2_DV_RGB_RANGE_AUTO); 2792 2793 /* custom controls */ 2794 if (adv76xx_has_afe(state)) 2795 state->analog_sampling_phase_ctrl = 2796 v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL); 2797 state->free_run_color_manual_ctrl = 2798 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL); 2799 state->free_run_color_ctrl = 2800 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL); 2801 2802 sd->ctrl_handler = hdl; 2803 if (hdl->error) { 2804 err = hdl->error; 2805 goto err_hdl; 2806 } 2807 state->detect_tx_5v_ctrl->is_private = true; 2808 state->rgb_quantization_range_ctrl->is_private = true; 2809 if (adv76xx_has_afe(state)) 2810 state->analog_sampling_phase_ctrl->is_private = true; 2811 state->free_run_color_manual_ctrl->is_private = true; 2812 state->free_run_color_ctrl->is_private = true; 2813 2814 if (adv76xx_s_detect_tx_5v_ctrl(sd)) { 2815 err = -ENODEV; 2816 goto err_hdl; 2817 } 2818 2819 for (i = 1; i < ADV76XX_PAGE_MAX; ++i) { 2820 if (!(BIT(i) & state->info->page_mask)) 2821 continue; 2822 2823 state->i2c_clients[i] = 2824 adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i], 2825 0xf2 + i); 2826 if (state->i2c_clients[i] == NULL) { 2827 err = -ENOMEM; 2828 v4l2_err(sd, "failed to create i2c client %u\n", i); 2829 goto err_i2c; 2830 } 2831 } 2832 2833 /* work queues */ 2834 state->work_queues = create_singlethread_workqueue(client->name); 2835 if (!state->work_queues) { 2836 v4l2_err(sd, "Could not create work queue\n"); 2837 err = -ENOMEM; 2838 goto err_i2c; 2839 } 2840 2841 INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug, 2842 adv76xx_delayed_work_enable_hotplug); 2843 2844 state->source_pad = state->info->num_dv_ports 2845 + (state->info->has_afe ? 2 : 0); 2846 for (i = 0; i < state->source_pad; ++i) 2847 state->pads[i].flags = MEDIA_PAD_FL_SINK; 2848 state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE; 2849 2850 err = media_entity_init(&sd->entity, state->source_pad + 1, 2851 state->pads, 0); 2852 if (err) 2853 goto err_work_queues; 2854 2855 err = adv76xx_core_init(sd); 2856 if (err) 2857 goto err_entity; 2858 v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name, 2859 client->addr << 1, client->adapter->name); 2860 2861 err = v4l2_async_register_subdev(sd); 2862 if (err) 2863 goto err_entity; 2864 2865 return 0; 2866 2867 err_entity: 2868 media_entity_cleanup(&sd->entity); 2869 err_work_queues: 2870 cancel_delayed_work(&state->delayed_work_enable_hotplug); 2871 destroy_workqueue(state->work_queues); 2872 err_i2c: 2873 adv76xx_unregister_clients(state); 2874 err_hdl: 2875 v4l2_ctrl_handler_free(hdl); 2876 return err; 2877 } 2878 2879 /* ----------------------------------------------------------------------- */ 2880 2881 static int adv76xx_remove(struct i2c_client *client) 2882 { 2883 struct v4l2_subdev *sd = i2c_get_clientdata(client); 2884 struct adv76xx_state *state = to_state(sd); 2885 2886 cancel_delayed_work(&state->delayed_work_enable_hotplug); 2887 destroy_workqueue(state->work_queues); 2888 v4l2_async_unregister_subdev(sd); 2889 media_entity_cleanup(&sd->entity); 2890 adv76xx_unregister_clients(to_state(sd)); 2891 v4l2_ctrl_handler_free(sd->ctrl_handler); 2892 return 0; 2893 } 2894 2895 /* ----------------------------------------------------------------------- */ 2896 2897 static struct i2c_driver adv76xx_driver = { 2898 .driver = { 2899 .owner = THIS_MODULE, 2900 .name = "adv7604", 2901 .of_match_table = of_match_ptr(adv76xx_of_id), 2902 }, 2903 .probe = adv76xx_probe, 2904 .remove = adv76xx_remove, 2905 .id_table = adv76xx_i2c_id, 2906 }; 2907 2908 module_i2c_driver(adv76xx_driver); 2909