1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * adv7604 - Analog Devices ADV7604 video decoder driver 4 * 5 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved. 6 * 7 */ 8 9 /* 10 * References (c = chapter, p = page): 11 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations, 12 * Revision 2.5, June 2010 13 * REF_02 - Analog devices, Register map documentation, Documentation of 14 * the register maps, Software manual, Rev. F, June 2010 15 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010 16 */ 17 18 #include <linux/delay.h> 19 #include <linux/gpio/consumer.h> 20 #include <linux/hdmi.h> 21 #include <linux/i2c.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/of_graph.h> 25 #include <linux/slab.h> 26 #include <linux/v4l2-dv-timings.h> 27 #include <linux/videodev2.h> 28 #include <linux/workqueue.h> 29 #include <linux/regmap.h> 30 #include <linux/interrupt.h> 31 32 #include <media/i2c/adv7604.h> 33 #include <media/cec.h> 34 #include <media/v4l2-ctrls.h> 35 #include <media/v4l2-device.h> 36 #include <media/v4l2-event.h> 37 #include <media/v4l2-dv-timings.h> 38 #include <media/v4l2-fwnode.h> 39 40 static int debug; 41 module_param(debug, int, 0644); 42 MODULE_PARM_DESC(debug, "debug level (0-2)"); 43 44 MODULE_DESCRIPTION("Analog Devices ADV7604/10/11/12 video decoder driver"); 45 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>"); 46 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>"); 47 MODULE_LICENSE("GPL"); 48 49 /* ADV7604 system clock frequency */ 50 #define ADV76XX_FSC (28636360) 51 52 #define ADV76XX_RGB_OUT (1 << 1) 53 54 #define ADV76XX_OP_FORMAT_SEL_8BIT (0 << 0) 55 #define ADV7604_OP_FORMAT_SEL_10BIT (1 << 0) 56 #define ADV76XX_OP_FORMAT_SEL_12BIT (2 << 0) 57 58 #define ADV76XX_OP_MODE_SEL_SDR_422 (0 << 5) 59 #define ADV7604_OP_MODE_SEL_DDR_422 (1 << 5) 60 #define ADV76XX_OP_MODE_SEL_SDR_444 (2 << 5) 61 #define ADV7604_OP_MODE_SEL_DDR_444 (3 << 5) 62 #define ADV76XX_OP_MODE_SEL_SDR_422_2X (4 << 5) 63 #define ADV7604_OP_MODE_SEL_ADI_CM (5 << 5) 64 65 #define ADV76XX_OP_CH_SEL_GBR (0 << 5) 66 #define ADV76XX_OP_CH_SEL_GRB (1 << 5) 67 #define ADV76XX_OP_CH_SEL_BGR (2 << 5) 68 #define ADV76XX_OP_CH_SEL_RGB (3 << 5) 69 #define ADV76XX_OP_CH_SEL_BRG (4 << 5) 70 #define ADV76XX_OP_CH_SEL_RBG (5 << 5) 71 72 #define ADV76XX_OP_SWAP_CB_CR (1 << 0) 73 74 #define ADV76XX_MAX_ADDRS (3) 75 76 #define ADV76XX_MAX_EDID_BLOCKS 4 77 78 enum adv76xx_type { 79 ADV7604, 80 ADV7611, // including ADV7610 81 ADV7612, 82 }; 83 84 struct adv76xx_reg_seq { 85 unsigned int reg; 86 u8 val; 87 }; 88 89 struct adv76xx_format_info { 90 u32 code; 91 u8 op_ch_sel; 92 bool rgb_out; 93 bool swap_cb_cr; 94 u8 op_format_sel; 95 }; 96 97 struct adv76xx_cfg_read_infoframe { 98 const char *desc; 99 u8 present_mask; 100 u8 head_addr; 101 u8 payload_addr; 102 }; 103 104 struct adv76xx_chip_info { 105 enum adv76xx_type type; 106 107 bool has_afe; 108 unsigned int max_port; 109 unsigned int num_dv_ports; 110 111 unsigned int edid_enable_reg; 112 unsigned int edid_status_reg; 113 unsigned int edid_segment_reg; 114 unsigned int edid_segment_mask; 115 unsigned int edid_spa_loc_reg; 116 unsigned int edid_spa_loc_msb_mask; 117 unsigned int edid_spa_port_b_reg; 118 unsigned int lcf_reg; 119 120 unsigned int cable_det_mask; 121 unsigned int tdms_lock_mask; 122 unsigned int fmt_change_digital_mask; 123 unsigned int cp_csc; 124 125 unsigned int cec_irq_status; 126 unsigned int cec_rx_enable; 127 unsigned int cec_rx_enable_mask; 128 bool cec_irq_swap; 129 130 const struct adv76xx_format_info *formats; 131 unsigned int nformats; 132 133 void (*set_termination)(struct v4l2_subdev *sd, bool enable); 134 void (*setup_irqs)(struct v4l2_subdev *sd); 135 unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd); 136 unsigned int (*read_cable_det)(struct v4l2_subdev *sd); 137 138 /* 0 = AFE, 1 = HDMI */ 139 const struct adv76xx_reg_seq *recommended_settings[2]; 140 unsigned int num_recommended_settings[2]; 141 142 unsigned long page_mask; 143 144 /* Masks for timings */ 145 unsigned int linewidth_mask; 146 unsigned int field0_height_mask; 147 unsigned int field1_height_mask; 148 unsigned int hfrontporch_mask; 149 unsigned int hsync_mask; 150 unsigned int hbackporch_mask; 151 unsigned int field0_vfrontporch_mask; 152 unsigned int field1_vfrontporch_mask; 153 unsigned int field0_vsync_mask; 154 unsigned int field1_vsync_mask; 155 unsigned int field0_vbackporch_mask; 156 unsigned int field1_vbackporch_mask; 157 }; 158 159 /* 160 ********************************************************************** 161 * 162 * Arrays with configuration parameters for the ADV7604 163 * 164 ********************************************************************** 165 */ 166 167 struct adv76xx_state { 168 const struct adv76xx_chip_info *info; 169 struct adv76xx_platform_data pdata; 170 171 struct gpio_desc *hpd_gpio[4]; 172 struct gpio_desc *reset_gpio; 173 174 struct v4l2_subdev sd; 175 struct media_pad pads[ADV76XX_PAD_MAX]; 176 unsigned int source_pad; 177 178 struct v4l2_ctrl_handler hdl; 179 180 enum adv76xx_pad selected_input; 181 182 struct v4l2_dv_timings timings; 183 const struct adv76xx_format_info *format; 184 185 struct { 186 u8 edid[ADV76XX_MAX_EDID_BLOCKS * 128]; 187 u32 present; 188 unsigned blocks; 189 } edid; 190 u16 spa_port_a[2]; 191 struct v4l2_fract aspect_ratio; 192 u32 rgb_quantization_range; 193 struct delayed_work delayed_work_enable_hotplug; 194 bool restart_stdi_once; 195 196 /* CEC */ 197 struct cec_adapter *cec_adap; 198 u8 cec_addr[ADV76XX_MAX_ADDRS]; 199 u8 cec_valid_addrs; 200 bool cec_enabled_adap; 201 202 /* i2c clients */ 203 struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX]; 204 205 /* Regmaps */ 206 struct regmap *regmap[ADV76XX_PAGE_MAX]; 207 208 /* controls */ 209 struct v4l2_ctrl *detect_tx_5v_ctrl; 210 struct v4l2_ctrl *analog_sampling_phase_ctrl; 211 struct v4l2_ctrl *free_run_color_manual_ctrl; 212 struct v4l2_ctrl *free_run_color_ctrl; 213 struct v4l2_ctrl *rgb_quantization_range_ctrl; 214 }; 215 216 static bool adv76xx_has_afe(struct adv76xx_state *state) 217 { 218 return state->info->has_afe; 219 } 220 221 /* Unsupported timings. This device cannot support 720p30. */ 222 static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = { 223 V4L2_DV_BT_CEA_1280X720P30, 224 { } 225 }; 226 227 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl) 228 { 229 int i; 230 231 for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++) 232 if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false)) 233 return false; 234 return true; 235 } 236 237 struct adv76xx_video_standards { 238 struct v4l2_dv_timings timings; 239 u8 vid_std; 240 u8 v_freq; 241 }; 242 243 /* sorted by number of lines */ 244 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = { 245 /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */ 246 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 }, 247 { V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 }, 248 { V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 }, 249 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 }, 250 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 }, 251 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 }, 252 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 }, 253 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 }, 254 /* TODO add 1920x1080P60_RB (CVT timing) */ 255 { }, 256 }; 257 258 /* sorted by number of lines */ 259 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = { 260 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 }, 261 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 }, 262 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 }, 263 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 }, 264 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 }, 265 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 }, 266 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 }, 267 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 }, 268 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 }, 269 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 }, 270 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 }, 271 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 }, 272 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 }, 273 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 }, 274 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 }, 275 { V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 }, 276 { V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 }, 277 { V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 }, 278 { V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 }, 279 { V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */ 280 /* TODO add 1600X1200P60_RB (not a DMT timing) */ 281 { V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 }, 282 { V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */ 283 { }, 284 }; 285 286 /* sorted by number of lines */ 287 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = { 288 { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, 289 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 }, 290 { V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 }, 291 { V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 }, 292 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 }, 293 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 }, 294 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 }, 295 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 }, 296 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 }, 297 { }, 298 }; 299 300 /* sorted by number of lines */ 301 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = { 302 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 }, 303 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 }, 304 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 }, 305 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 }, 306 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 }, 307 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 }, 308 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 }, 309 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 }, 310 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 }, 311 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 }, 312 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 }, 313 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 }, 314 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 }, 315 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 }, 316 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 }, 317 { }, 318 }; 319 320 static const struct v4l2_event adv76xx_ev_fmt = { 321 .type = V4L2_EVENT_SOURCE_CHANGE, 322 .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION, 323 }; 324 325 /* ----------------------------------------------------------------------- */ 326 327 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd) 328 { 329 return container_of(sd, struct adv76xx_state, sd); 330 } 331 332 static inline unsigned htotal(const struct v4l2_bt_timings *t) 333 { 334 return V4L2_DV_BT_FRAME_WIDTH(t); 335 } 336 337 static inline unsigned vtotal(const struct v4l2_bt_timings *t) 338 { 339 return V4L2_DV_BT_FRAME_HEIGHT(t); 340 } 341 342 /* ----------------------------------------------------------------------- */ 343 344 static int adv76xx_read_check(struct adv76xx_state *state, 345 int client_page, u8 reg) 346 { 347 struct i2c_client *client = state->i2c_clients[client_page]; 348 int err; 349 unsigned int val; 350 351 err = regmap_read(state->regmap[client_page], reg, &val); 352 353 if (err) { 354 v4l_err(client, "error reading %02x, %02x\n", 355 client->addr, reg); 356 return err; 357 } 358 return val; 359 } 360 361 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX 362 * size to one or more registers. 363 * 364 * A value of zero will be returned on success, a negative errno will 365 * be returned in error cases. 366 */ 367 static int adv76xx_write_block(struct adv76xx_state *state, int client_page, 368 unsigned int init_reg, const void *val, 369 size_t val_len) 370 { 371 struct regmap *regmap = state->regmap[client_page]; 372 373 if (val_len > I2C_SMBUS_BLOCK_MAX) 374 val_len = I2C_SMBUS_BLOCK_MAX; 375 376 return regmap_raw_write(regmap, init_reg, val, val_len); 377 } 378 379 /* ----------------------------------------------------------------------- */ 380 381 static inline int io_read(struct v4l2_subdev *sd, u8 reg) 382 { 383 struct adv76xx_state *state = to_state(sd); 384 385 return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg); 386 } 387 388 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val) 389 { 390 struct adv76xx_state *state = to_state(sd); 391 392 return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val); 393 } 394 395 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, 396 u8 val) 397 { 398 return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val); 399 } 400 401 static inline int __always_unused avlink_read(struct v4l2_subdev *sd, u8 reg) 402 { 403 struct adv76xx_state *state = to_state(sd); 404 405 return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg); 406 } 407 408 static inline int __always_unused avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val) 409 { 410 struct adv76xx_state *state = to_state(sd); 411 412 return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val); 413 } 414 415 static inline int cec_read(struct v4l2_subdev *sd, u8 reg) 416 { 417 struct adv76xx_state *state = to_state(sd); 418 419 return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg); 420 } 421 422 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val) 423 { 424 struct adv76xx_state *state = to_state(sd); 425 426 return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val); 427 } 428 429 static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, 430 u8 val) 431 { 432 return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val); 433 } 434 435 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg) 436 { 437 struct adv76xx_state *state = to_state(sd); 438 439 return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg); 440 } 441 442 static inline int __always_unused infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val) 443 { 444 struct adv76xx_state *state = to_state(sd); 445 446 return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val); 447 } 448 449 static inline int __always_unused afe_read(struct v4l2_subdev *sd, u8 reg) 450 { 451 struct adv76xx_state *state = to_state(sd); 452 453 return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg); 454 } 455 456 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val) 457 { 458 struct adv76xx_state *state = to_state(sd); 459 460 return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val); 461 } 462 463 static inline int rep_read(struct v4l2_subdev *sd, u8 reg) 464 { 465 struct adv76xx_state *state = to_state(sd); 466 467 return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg); 468 } 469 470 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val) 471 { 472 struct adv76xx_state *state = to_state(sd); 473 474 return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val); 475 } 476 477 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 478 { 479 return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val); 480 } 481 482 static inline int __always_unused edid_read(struct v4l2_subdev *sd, u8 reg) 483 { 484 struct adv76xx_state *state = to_state(sd); 485 486 return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg); 487 } 488 489 static inline int __always_unused edid_write(struct v4l2_subdev *sd, u8 reg, u8 val) 490 { 491 struct adv76xx_state *state = to_state(sd); 492 493 return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val); 494 } 495 496 static inline int edid_write_block(struct v4l2_subdev *sd, 497 unsigned int total_len, const u8 *val) 498 { 499 struct adv76xx_state *state = to_state(sd); 500 int err = 0; 501 int i = 0; 502 int len = 0; 503 504 v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n", 505 __func__, total_len); 506 507 while (!err && i < total_len) { 508 len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ? 509 I2C_SMBUS_BLOCK_MAX : 510 (total_len - i); 511 512 err = adv76xx_write_block(state, ADV76XX_PAGE_EDID, 513 i, val + i, len); 514 i += len; 515 } 516 517 return err; 518 } 519 520 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd) 521 { 522 const struct adv76xx_chip_info *info = state->info; 523 unsigned int i; 524 525 if (info->type == ADV7604) { 526 for (i = 0; i < state->info->num_dv_ports; ++i) 527 gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i)); 528 } else { 529 for (i = 0; i < state->info->num_dv_ports; ++i) 530 io_write_clr_set(&state->sd, 0x20, 0x80 >> i, 531 (!!(hpd & BIT(i))) << (7 - i)); 532 } 533 534 v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd); 535 } 536 537 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work) 538 { 539 struct delayed_work *dwork = to_delayed_work(work); 540 struct adv76xx_state *state = container_of(dwork, struct adv76xx_state, 541 delayed_work_enable_hotplug); 542 struct v4l2_subdev *sd = &state->sd; 543 544 v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__); 545 546 adv76xx_set_hpd(state, state->edid.present); 547 } 548 549 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg) 550 { 551 struct adv76xx_state *state = to_state(sd); 552 553 return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg); 554 } 555 556 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask) 557 { 558 return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask; 559 } 560 561 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val) 562 { 563 struct adv76xx_state *state = to_state(sd); 564 565 return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val); 566 } 567 568 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 569 { 570 return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val); 571 } 572 573 static inline int __always_unused test_write(struct v4l2_subdev *sd, u8 reg, u8 val) 574 { 575 struct adv76xx_state *state = to_state(sd); 576 577 return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val); 578 } 579 580 static inline int cp_read(struct v4l2_subdev *sd, u8 reg) 581 { 582 struct adv76xx_state *state = to_state(sd); 583 584 return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg); 585 } 586 587 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask) 588 { 589 return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask; 590 } 591 592 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val) 593 { 594 struct adv76xx_state *state = to_state(sd); 595 596 return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val); 597 } 598 599 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 600 { 601 return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val); 602 } 603 604 static inline int __always_unused vdp_read(struct v4l2_subdev *sd, u8 reg) 605 { 606 struct adv76xx_state *state = to_state(sd); 607 608 return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg); 609 } 610 611 static inline int __always_unused vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val) 612 { 613 struct adv76xx_state *state = to_state(sd); 614 615 return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val); 616 } 617 618 #define ADV76XX_REG(page, offset) (((page) << 8) | (offset)) 619 #define ADV76XX_REG_SEQ_TERM 0xffff 620 621 #ifdef CONFIG_VIDEO_ADV_DEBUG 622 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg) 623 { 624 struct adv76xx_state *state = to_state(sd); 625 unsigned int page = reg >> 8; 626 unsigned int val; 627 int err; 628 629 if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask)) 630 return -EINVAL; 631 632 reg &= 0xff; 633 err = regmap_read(state->regmap[page], reg, &val); 634 635 return err ? err : val; 636 } 637 #endif 638 639 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val) 640 { 641 struct adv76xx_state *state = to_state(sd); 642 unsigned int page = reg >> 8; 643 644 if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask)) 645 return -EINVAL; 646 647 reg &= 0xff; 648 649 return regmap_write(state->regmap[page], reg, val); 650 } 651 652 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd, 653 const struct adv76xx_reg_seq *reg_seq) 654 { 655 unsigned int i; 656 657 for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++) 658 adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val); 659 } 660 661 /* ----------------------------------------------------------------------------- 662 * Format helpers 663 */ 664 665 static const struct adv76xx_format_info adv7604_formats[] = { 666 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, 667 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, 668 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, 669 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 670 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, 671 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 672 { MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false, 673 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT }, 674 { MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true, 675 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT }, 676 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false, 677 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 678 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true, 679 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 680 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, 681 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 682 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, 683 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 684 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, 685 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 686 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, 687 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 688 { MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false, 689 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 690 { MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true, 691 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 692 { MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false, 693 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 694 { MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true, 695 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 696 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false, 697 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 698 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true, 699 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 700 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false, 701 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 702 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true, 703 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 704 }; 705 706 static const struct adv76xx_format_info adv7611_formats[] = { 707 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, 708 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, 709 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, 710 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 711 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, 712 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 713 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false, 714 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 715 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true, 716 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 717 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, 718 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 719 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, 720 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 721 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, 722 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 723 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, 724 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 725 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false, 726 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 727 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true, 728 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 729 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false, 730 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 731 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true, 732 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 733 }; 734 735 static const struct adv76xx_format_info adv7612_formats[] = { 736 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, 737 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, 738 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, 739 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 740 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, 741 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 742 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, 743 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 744 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, 745 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 746 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, 747 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 748 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, 749 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 750 }; 751 752 static const struct adv76xx_format_info * 753 adv76xx_format_info(struct adv76xx_state *state, u32 code) 754 { 755 unsigned int i; 756 757 for (i = 0; i < state->info->nformats; ++i) { 758 if (state->info->formats[i].code == code) 759 return &state->info->formats[i]; 760 } 761 762 return NULL; 763 } 764 765 /* ----------------------------------------------------------------------- */ 766 767 static inline bool is_analog_input(struct v4l2_subdev *sd) 768 { 769 struct adv76xx_state *state = to_state(sd); 770 771 return state->selected_input == ADV7604_PAD_VGA_RGB || 772 state->selected_input == ADV7604_PAD_VGA_COMP; 773 } 774 775 static inline bool is_digital_input(struct v4l2_subdev *sd) 776 { 777 struct adv76xx_state *state = to_state(sd); 778 779 return state->selected_input == ADV76XX_PAD_HDMI_PORT_A || 780 state->selected_input == ADV7604_PAD_HDMI_PORT_B || 781 state->selected_input == ADV7604_PAD_HDMI_PORT_C || 782 state->selected_input == ADV7604_PAD_HDMI_PORT_D; 783 } 784 785 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = { 786 .type = V4L2_DV_BT_656_1120, 787 /* keep this initialization for compatibility with GCC < 4.4.6 */ 788 .reserved = { 0 }, 789 V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 170000000, 790 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | 791 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT, 792 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING | 793 V4L2_DV_BT_CAP_CUSTOM) 794 }; 795 796 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = { 797 .type = V4L2_DV_BT_656_1120, 798 /* keep this initialization for compatibility with GCC < 4.4.6 */ 799 .reserved = { 0 }, 800 V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 225000000, 801 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | 802 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT, 803 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING | 804 V4L2_DV_BT_CAP_CUSTOM) 805 }; 806 807 /* 808 * Return the DV timings capabilities for the requested sink pad. As a special 809 * case, pad value -1 returns the capabilities for the currently selected input. 810 */ 811 static const struct v4l2_dv_timings_cap * 812 adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad) 813 { 814 if (pad == -1) { 815 struct adv76xx_state *state = to_state(sd); 816 817 pad = state->selected_input; 818 } 819 820 switch (pad) { 821 case ADV76XX_PAD_HDMI_PORT_A: 822 case ADV7604_PAD_HDMI_PORT_B: 823 case ADV7604_PAD_HDMI_PORT_C: 824 case ADV7604_PAD_HDMI_PORT_D: 825 return &adv76xx_timings_cap_digital; 826 827 case ADV7604_PAD_VGA_RGB: 828 case ADV7604_PAD_VGA_COMP: 829 default: 830 return &adv7604_timings_cap_analog; 831 } 832 } 833 834 835 /* ----------------------------------------------------------------------- */ 836 837 #ifdef CONFIG_VIDEO_ADV_DEBUG 838 static void adv76xx_inv_register(struct v4l2_subdev *sd) 839 { 840 v4l2_info(sd, "0x000-0x0ff: IO Map\n"); 841 v4l2_info(sd, "0x100-0x1ff: AVLink Map\n"); 842 v4l2_info(sd, "0x200-0x2ff: CEC Map\n"); 843 v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n"); 844 v4l2_info(sd, "0x400-0x4ff: ESDP Map\n"); 845 v4l2_info(sd, "0x500-0x5ff: DPP Map\n"); 846 v4l2_info(sd, "0x600-0x6ff: AFE Map\n"); 847 v4l2_info(sd, "0x700-0x7ff: Repeater Map\n"); 848 v4l2_info(sd, "0x800-0x8ff: EDID Map\n"); 849 v4l2_info(sd, "0x900-0x9ff: HDMI Map\n"); 850 v4l2_info(sd, "0xa00-0xaff: Test Map\n"); 851 v4l2_info(sd, "0xb00-0xbff: CP Map\n"); 852 v4l2_info(sd, "0xc00-0xcff: VDP Map\n"); 853 } 854 855 static int adv76xx_g_register(struct v4l2_subdev *sd, 856 struct v4l2_dbg_register *reg) 857 { 858 int ret; 859 860 ret = adv76xx_read_reg(sd, reg->reg); 861 if (ret < 0) { 862 v4l2_info(sd, "Register %03llx not supported\n", reg->reg); 863 adv76xx_inv_register(sd); 864 return ret; 865 } 866 867 reg->size = 1; 868 reg->val = ret; 869 870 return 0; 871 } 872 873 static int adv76xx_s_register(struct v4l2_subdev *sd, 874 const struct v4l2_dbg_register *reg) 875 { 876 int ret; 877 878 ret = adv76xx_write_reg(sd, reg->reg, reg->val); 879 if (ret < 0) { 880 v4l2_info(sd, "Register %03llx not supported\n", reg->reg); 881 adv76xx_inv_register(sd); 882 return ret; 883 } 884 885 return 0; 886 } 887 #endif 888 889 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd) 890 { 891 u8 value = io_read(sd, 0x6f); 892 893 return ((value & 0x10) >> 4) 894 | ((value & 0x08) >> 2) 895 | ((value & 0x04) << 0) 896 | ((value & 0x02) << 2); 897 } 898 899 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd) 900 { 901 u8 value = io_read(sd, 0x6f); 902 903 return value & 1; 904 } 905 906 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd) 907 { 908 /* Reads CABLE_DET_A_RAW. For input B support, need to 909 * account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW) 910 */ 911 u8 value = io_read(sd, 0x6f); 912 913 return value & 1; 914 } 915 916 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd) 917 { 918 struct adv76xx_state *state = to_state(sd); 919 const struct adv76xx_chip_info *info = state->info; 920 u16 cable_det = info->read_cable_det(sd); 921 922 return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det); 923 } 924 925 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd, 926 u8 prim_mode, 927 const struct adv76xx_video_standards *predef_vid_timings, 928 const struct v4l2_dv_timings *timings) 929 { 930 int i; 931 932 for (i = 0; predef_vid_timings[i].timings.bt.width; i++) { 933 if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings, 934 is_digital_input(sd) ? 250000 : 1000000, false)) 935 continue; 936 io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */ 937 io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) + 938 prim_mode); /* v_freq and prim mode */ 939 return 0; 940 } 941 942 return -1; 943 } 944 945 static int configure_predefined_video_timings(struct v4l2_subdev *sd, 946 struct v4l2_dv_timings *timings) 947 { 948 struct adv76xx_state *state = to_state(sd); 949 int err; 950 951 v4l2_dbg(1, debug, sd, "%s", __func__); 952 953 if (adv76xx_has_afe(state)) { 954 /* reset to default values */ 955 io_write(sd, 0x16, 0x43); 956 io_write(sd, 0x17, 0x5a); 957 } 958 /* disable embedded syncs for auto graphics mode */ 959 cp_write_clr_set(sd, 0x81, 0x10, 0x00); 960 cp_write(sd, 0x8f, 0x00); 961 cp_write(sd, 0x90, 0x00); 962 cp_write(sd, 0xa2, 0x00); 963 cp_write(sd, 0xa3, 0x00); 964 cp_write(sd, 0xa4, 0x00); 965 cp_write(sd, 0xa5, 0x00); 966 cp_write(sd, 0xa6, 0x00); 967 cp_write(sd, 0xa7, 0x00); 968 cp_write(sd, 0xab, 0x00); 969 cp_write(sd, 0xac, 0x00); 970 971 if (is_analog_input(sd)) { 972 err = find_and_set_predefined_video_timings(sd, 973 0x01, adv7604_prim_mode_comp, timings); 974 if (err) 975 err = find_and_set_predefined_video_timings(sd, 976 0x02, adv7604_prim_mode_gr, timings); 977 } else if (is_digital_input(sd)) { 978 err = find_and_set_predefined_video_timings(sd, 979 0x05, adv76xx_prim_mode_hdmi_comp, timings); 980 if (err) 981 err = find_and_set_predefined_video_timings(sd, 982 0x06, adv76xx_prim_mode_hdmi_gr, timings); 983 } else { 984 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 985 __func__, state->selected_input); 986 err = -1; 987 } 988 989 990 return err; 991 } 992 993 static void configure_custom_video_timings(struct v4l2_subdev *sd, 994 const struct v4l2_bt_timings *bt) 995 { 996 struct adv76xx_state *state = to_state(sd); 997 u32 width = htotal(bt); 998 u32 height = vtotal(bt); 999 u16 cp_start_sav = bt->hsync + bt->hbackporch - 4; 1000 u16 cp_start_eav = width - bt->hfrontporch; 1001 u16 cp_start_vbi = height - bt->vfrontporch; 1002 u16 cp_end_vbi = bt->vsync + bt->vbackporch; 1003 u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ? 1004 ((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0; 1005 const u8 pll[2] = { 1006 0xc0 | ((width >> 8) & 0x1f), 1007 width & 0xff 1008 }; 1009 1010 v4l2_dbg(2, debug, sd, "%s\n", __func__); 1011 1012 if (is_analog_input(sd)) { 1013 /* auto graphics */ 1014 io_write(sd, 0x00, 0x07); /* video std */ 1015 io_write(sd, 0x01, 0x02); /* prim mode */ 1016 /* enable embedded syncs for auto graphics mode */ 1017 cp_write_clr_set(sd, 0x81, 0x10, 0x10); 1018 1019 /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */ 1020 /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */ 1021 /* IO-map reg. 0x16 and 0x17 should be written in sequence */ 1022 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO], 1023 0x16, pll, 2)) 1024 v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n"); 1025 1026 /* active video - horizontal timing */ 1027 cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff); 1028 cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) | 1029 ((cp_start_eav >> 8) & 0x0f)); 1030 cp_write(sd, 0xa4, cp_start_eav & 0xff); 1031 1032 /* active video - vertical timing */ 1033 cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff); 1034 cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) | 1035 ((cp_end_vbi >> 8) & 0xf)); 1036 cp_write(sd, 0xa7, cp_end_vbi & 0xff); 1037 } else if (is_digital_input(sd)) { 1038 /* set default prim_mode/vid_std for HDMI 1039 according to [REF_03, c. 4.2] */ 1040 io_write(sd, 0x00, 0x02); /* video std */ 1041 io_write(sd, 0x01, 0x06); /* prim mode */ 1042 } else { 1043 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 1044 __func__, state->selected_input); 1045 } 1046 1047 cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7); 1048 cp_write(sd, 0x90, ch1_fr_ll & 0xff); 1049 cp_write(sd, 0xab, (height >> 4) & 0xff); 1050 cp_write(sd, 0xac, (height & 0x0f) << 4); 1051 } 1052 1053 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c) 1054 { 1055 struct adv76xx_state *state = to_state(sd); 1056 u8 offset_buf[4]; 1057 1058 if (auto_offset) { 1059 offset_a = 0x3ff; 1060 offset_b = 0x3ff; 1061 offset_c = 0x3ff; 1062 } 1063 1064 v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n", 1065 __func__, auto_offset ? "Auto" : "Manual", 1066 offset_a, offset_b, offset_c); 1067 1068 offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4); 1069 offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6); 1070 offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8); 1071 offset_buf[3] = offset_c & 0x0ff; 1072 1073 /* Registers must be written in this order with no i2c access in between */ 1074 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP], 1075 0x77, offset_buf, 4)) 1076 v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__); 1077 } 1078 1079 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c) 1080 { 1081 struct adv76xx_state *state = to_state(sd); 1082 u8 gain_buf[4]; 1083 u8 gain_man = 1; 1084 u8 agc_mode_man = 1; 1085 1086 if (auto_gain) { 1087 gain_man = 0; 1088 agc_mode_man = 0; 1089 gain_a = 0x100; 1090 gain_b = 0x100; 1091 gain_c = 0x100; 1092 } 1093 1094 v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n", 1095 __func__, auto_gain ? "Auto" : "Manual", 1096 gain_a, gain_b, gain_c); 1097 1098 gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4)); 1099 gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6)); 1100 gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8)); 1101 gain_buf[3] = ((gain_c & 0x0ff)); 1102 1103 /* Registers must be written in this order with no i2c access in between */ 1104 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP], 1105 0x73, gain_buf, 4)) 1106 v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__); 1107 } 1108 1109 static void set_rgb_quantization_range(struct v4l2_subdev *sd) 1110 { 1111 struct adv76xx_state *state = to_state(sd); 1112 bool rgb_output = io_read(sd, 0x02) & 0x02; 1113 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80; 1114 u8 y = HDMI_COLORSPACE_RGB; 1115 1116 if (hdmi_signal && (io_read(sd, 0x60) & 1)) 1117 y = infoframe_read(sd, 0x01) >> 5; 1118 1119 v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n", 1120 __func__, state->rgb_quantization_range, 1121 rgb_output, hdmi_signal); 1122 1123 adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0); 1124 adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0); 1125 io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4); 1126 1127 switch (state->rgb_quantization_range) { 1128 case V4L2_DV_RGB_RANGE_AUTO: 1129 if (state->selected_input == ADV7604_PAD_VGA_RGB) { 1130 /* Receiving analog RGB signal 1131 * Set RGB full range (0-255) */ 1132 io_write_clr_set(sd, 0x02, 0xf0, 0x10); 1133 break; 1134 } 1135 1136 if (state->selected_input == ADV7604_PAD_VGA_COMP) { 1137 /* Receiving analog YPbPr signal 1138 * Set automode */ 1139 io_write_clr_set(sd, 0x02, 0xf0, 0xf0); 1140 break; 1141 } 1142 1143 if (hdmi_signal) { 1144 /* Receiving HDMI signal 1145 * Set automode */ 1146 io_write_clr_set(sd, 0x02, 0xf0, 0xf0); 1147 break; 1148 } 1149 1150 /* Receiving DVI-D signal 1151 * ADV7604 selects RGB limited range regardless of 1152 * input format (CE/IT) in automatic mode */ 1153 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) { 1154 /* RGB limited range (16-235) */ 1155 io_write_clr_set(sd, 0x02, 0xf0, 0x00); 1156 } else { 1157 /* RGB full range (0-255) */ 1158 io_write_clr_set(sd, 0x02, 0xf0, 0x10); 1159 1160 if (is_digital_input(sd) && rgb_output) { 1161 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40); 1162 } else { 1163 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0); 1164 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70); 1165 } 1166 } 1167 break; 1168 case V4L2_DV_RGB_RANGE_LIMITED: 1169 if (state->selected_input == ADV7604_PAD_VGA_COMP) { 1170 /* YCrCb limited range (16-235) */ 1171 io_write_clr_set(sd, 0x02, 0xf0, 0x20); 1172 break; 1173 } 1174 1175 if (y != HDMI_COLORSPACE_RGB) 1176 break; 1177 1178 /* RGB limited range (16-235) */ 1179 io_write_clr_set(sd, 0x02, 0xf0, 0x00); 1180 1181 break; 1182 case V4L2_DV_RGB_RANGE_FULL: 1183 if (state->selected_input == ADV7604_PAD_VGA_COMP) { 1184 /* YCrCb full range (0-255) */ 1185 io_write_clr_set(sd, 0x02, 0xf0, 0x60); 1186 break; 1187 } 1188 1189 if (y != HDMI_COLORSPACE_RGB) 1190 break; 1191 1192 /* RGB full range (0-255) */ 1193 io_write_clr_set(sd, 0x02, 0xf0, 0x10); 1194 1195 if (is_analog_input(sd) || hdmi_signal) 1196 break; 1197 1198 /* Adjust gain/offset for DVI-D signals only */ 1199 if (rgb_output) { 1200 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40); 1201 } else { 1202 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0); 1203 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70); 1204 } 1205 break; 1206 } 1207 } 1208 1209 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl) 1210 { 1211 struct v4l2_subdev *sd = 1212 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd; 1213 1214 struct adv76xx_state *state = to_state(sd); 1215 1216 switch (ctrl->id) { 1217 case V4L2_CID_BRIGHTNESS: 1218 cp_write(sd, 0x3c, ctrl->val); 1219 return 0; 1220 case V4L2_CID_CONTRAST: 1221 cp_write(sd, 0x3a, ctrl->val); 1222 return 0; 1223 case V4L2_CID_SATURATION: 1224 cp_write(sd, 0x3b, ctrl->val); 1225 return 0; 1226 case V4L2_CID_HUE: 1227 cp_write(sd, 0x3d, ctrl->val); 1228 return 0; 1229 case V4L2_CID_DV_RX_RGB_RANGE: 1230 state->rgb_quantization_range = ctrl->val; 1231 set_rgb_quantization_range(sd); 1232 return 0; 1233 case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE: 1234 if (!adv76xx_has_afe(state)) 1235 return -EINVAL; 1236 /* Set the analog sampling phase. This is needed to find the 1237 best sampling phase for analog video: an application or 1238 driver has to try a number of phases and analyze the picture 1239 quality before settling on the best performing phase. */ 1240 afe_write(sd, 0xc8, ctrl->val); 1241 return 0; 1242 case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL: 1243 /* Use the default blue color for free running mode, 1244 or supply your own. */ 1245 cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2); 1246 return 0; 1247 case V4L2_CID_ADV_RX_FREE_RUN_COLOR: 1248 cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16); 1249 cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8); 1250 cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff)); 1251 return 0; 1252 } 1253 return -EINVAL; 1254 } 1255 1256 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 1257 { 1258 struct v4l2_subdev *sd = 1259 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd; 1260 1261 if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) { 1262 ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC; 1263 if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80)) 1264 ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3; 1265 return 0; 1266 } 1267 return -EINVAL; 1268 } 1269 1270 /* ----------------------------------------------------------------------- */ 1271 1272 static inline bool no_power(struct v4l2_subdev *sd) 1273 { 1274 /* Entire chip or CP powered off */ 1275 return io_read(sd, 0x0c) & 0x24; 1276 } 1277 1278 static inline bool no_signal_tmds(struct v4l2_subdev *sd) 1279 { 1280 struct adv76xx_state *state = to_state(sd); 1281 1282 return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input)); 1283 } 1284 1285 static inline bool no_lock_tmds(struct v4l2_subdev *sd) 1286 { 1287 struct adv76xx_state *state = to_state(sd); 1288 const struct adv76xx_chip_info *info = state->info; 1289 1290 return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask; 1291 } 1292 1293 static inline bool is_hdmi(struct v4l2_subdev *sd) 1294 { 1295 return hdmi_read(sd, 0x05) & 0x80; 1296 } 1297 1298 static inline bool no_lock_sspd(struct v4l2_subdev *sd) 1299 { 1300 struct adv76xx_state *state = to_state(sd); 1301 1302 /* 1303 * Chips without a AFE don't expose registers for the SSPD, so just assume 1304 * that we have a lock. 1305 */ 1306 if (adv76xx_has_afe(state)) 1307 return false; 1308 1309 /* TODO channel 2 */ 1310 return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0); 1311 } 1312 1313 static inline bool no_lock_stdi(struct v4l2_subdev *sd) 1314 { 1315 /* TODO channel 2 */ 1316 return !(cp_read(sd, 0xb1) & 0x80); 1317 } 1318 1319 static inline bool no_signal(struct v4l2_subdev *sd) 1320 { 1321 bool ret; 1322 1323 ret = no_power(sd); 1324 1325 ret |= no_lock_stdi(sd); 1326 ret |= no_lock_sspd(sd); 1327 1328 if (is_digital_input(sd)) { 1329 ret |= no_lock_tmds(sd); 1330 ret |= no_signal_tmds(sd); 1331 } 1332 1333 return ret; 1334 } 1335 1336 static inline bool no_lock_cp(struct v4l2_subdev *sd) 1337 { 1338 struct adv76xx_state *state = to_state(sd); 1339 1340 if (!adv76xx_has_afe(state)) 1341 return false; 1342 1343 /* CP has detected a non standard number of lines on the incoming 1344 video compared to what it is configured to receive by s_dv_timings */ 1345 return io_read(sd, 0x12) & 0x01; 1346 } 1347 1348 static inline bool in_free_run(struct v4l2_subdev *sd) 1349 { 1350 return cp_read(sd, 0xff) & 0x10; 1351 } 1352 1353 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status) 1354 { 1355 *status = 0; 1356 *status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0; 1357 *status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0; 1358 if (!in_free_run(sd) && no_lock_cp(sd)) 1359 *status |= is_digital_input(sd) ? 1360 V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK; 1361 1362 v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status); 1363 1364 return 0; 1365 } 1366 1367 /* ----------------------------------------------------------------------- */ 1368 1369 struct stdi_readback { 1370 u16 bl, lcf, lcvs; 1371 u8 hs_pol, vs_pol; 1372 bool interlaced; 1373 }; 1374 1375 static int stdi2dv_timings(struct v4l2_subdev *sd, 1376 struct stdi_readback *stdi, 1377 struct v4l2_dv_timings *timings) 1378 { 1379 struct adv76xx_state *state = to_state(sd); 1380 u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl; 1381 u32 pix_clk; 1382 int i; 1383 1384 for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) { 1385 const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt; 1386 1387 if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i], 1388 adv76xx_get_dv_timings_cap(sd, -1), 1389 adv76xx_check_dv_timings, NULL)) 1390 continue; 1391 if (vtotal(bt) != stdi->lcf + 1) 1392 continue; 1393 if (bt->vsync != stdi->lcvs) 1394 continue; 1395 1396 pix_clk = hfreq * htotal(bt); 1397 1398 if ((pix_clk < bt->pixelclock + 1000000) && 1399 (pix_clk > bt->pixelclock - 1000000)) { 1400 *timings = v4l2_dv_timings_presets[i]; 1401 return 0; 1402 } 1403 } 1404 1405 if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0, 1406 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) | 1407 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0), 1408 false, timings)) 1409 return 0; 1410 if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs, 1411 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) | 1412 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0), 1413 false, state->aspect_ratio, timings)) 1414 return 0; 1415 1416 v4l2_dbg(2, debug, sd, 1417 "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n", 1418 __func__, stdi->lcvs, stdi->lcf, stdi->bl, 1419 stdi->hs_pol, stdi->vs_pol); 1420 return -1; 1421 } 1422 1423 1424 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi) 1425 { 1426 struct adv76xx_state *state = to_state(sd); 1427 const struct adv76xx_chip_info *info = state->info; 1428 u8 polarity; 1429 1430 if (no_lock_stdi(sd) || no_lock_sspd(sd)) { 1431 v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__); 1432 return -1; 1433 } 1434 1435 /* read STDI */ 1436 stdi->bl = cp_read16(sd, 0xb1, 0x3fff); 1437 stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff); 1438 stdi->lcvs = cp_read(sd, 0xb3) >> 3; 1439 stdi->interlaced = io_read(sd, 0x12) & 0x10; 1440 1441 if (adv76xx_has_afe(state)) { 1442 /* read SSPD */ 1443 polarity = cp_read(sd, 0xb5); 1444 if ((polarity & 0x03) == 0x01) { 1445 stdi->hs_pol = polarity & 0x10 1446 ? (polarity & 0x08 ? '+' : '-') : 'x'; 1447 stdi->vs_pol = polarity & 0x40 1448 ? (polarity & 0x20 ? '+' : '-') : 'x'; 1449 } else { 1450 stdi->hs_pol = 'x'; 1451 stdi->vs_pol = 'x'; 1452 } 1453 } else { 1454 polarity = hdmi_read(sd, 0x05); 1455 stdi->hs_pol = polarity & 0x20 ? '+' : '-'; 1456 stdi->vs_pol = polarity & 0x10 ? '+' : '-'; 1457 } 1458 1459 if (no_lock_stdi(sd) || no_lock_sspd(sd)) { 1460 v4l2_dbg(2, debug, sd, 1461 "%s: signal lost during readout of STDI/SSPD\n", __func__); 1462 return -1; 1463 } 1464 1465 if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) { 1466 v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__); 1467 memset(stdi, 0, sizeof(struct stdi_readback)); 1468 return -1; 1469 } 1470 1471 v4l2_dbg(2, debug, sd, 1472 "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n", 1473 __func__, stdi->lcf, stdi->bl, stdi->lcvs, 1474 stdi->hs_pol, stdi->vs_pol, 1475 stdi->interlaced ? "interlaced" : "progressive"); 1476 1477 return 0; 1478 } 1479 1480 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd, 1481 struct v4l2_enum_dv_timings *timings) 1482 { 1483 struct adv76xx_state *state = to_state(sd); 1484 1485 if (timings->pad >= state->source_pad) 1486 return -EINVAL; 1487 1488 return v4l2_enum_dv_timings_cap(timings, 1489 adv76xx_get_dv_timings_cap(sd, timings->pad), 1490 adv76xx_check_dv_timings, NULL); 1491 } 1492 1493 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd, 1494 struct v4l2_dv_timings_cap *cap) 1495 { 1496 struct adv76xx_state *state = to_state(sd); 1497 unsigned int pad = cap->pad; 1498 1499 if (cap->pad >= state->source_pad) 1500 return -EINVAL; 1501 1502 *cap = *adv76xx_get_dv_timings_cap(sd, pad); 1503 cap->pad = pad; 1504 1505 return 0; 1506 } 1507 1508 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings 1509 if the format is listed in adv76xx_timings[] */ 1510 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd, 1511 struct v4l2_dv_timings *timings) 1512 { 1513 v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1), 1514 is_digital_input(sd) ? 250000 : 1000000, 1515 adv76xx_check_dv_timings, NULL); 1516 } 1517 1518 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd) 1519 { 1520 int a, b; 1521 1522 a = hdmi_read(sd, 0x06); 1523 b = hdmi_read(sd, 0x3b); 1524 if (a < 0 || b < 0) 1525 return 0; 1526 1527 return a * 1000000 + ((b & 0x30) >> 4) * 250000; 1528 } 1529 1530 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd) 1531 { 1532 int a, b; 1533 1534 a = hdmi_read(sd, 0x51); 1535 b = hdmi_read(sd, 0x52); 1536 if (a < 0 || b < 0) 1537 return 0; 1538 1539 return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128; 1540 } 1541 1542 static unsigned int adv76xx_read_hdmi_pixelclock(struct v4l2_subdev *sd) 1543 { 1544 struct adv76xx_state *state = to_state(sd); 1545 const struct adv76xx_chip_info *info = state->info; 1546 unsigned int freq, bits_per_channel, pixelrepetition; 1547 1548 freq = info->read_hdmi_pixelclock(sd); 1549 if (is_hdmi(sd)) { 1550 /* adjust for deep color mode and pixel repetition */ 1551 bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8; 1552 pixelrepetition = (hdmi_read(sd, 0x05) & 0x0f) + 1; 1553 1554 freq = freq * 8 / bits_per_channel / pixelrepetition; 1555 } 1556 1557 return freq; 1558 } 1559 1560 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd, 1561 struct v4l2_dv_timings *timings) 1562 { 1563 struct adv76xx_state *state = to_state(sd); 1564 const struct adv76xx_chip_info *info = state->info; 1565 struct v4l2_bt_timings *bt = &timings->bt; 1566 struct stdi_readback stdi; 1567 1568 if (!timings) 1569 return -EINVAL; 1570 1571 memset(timings, 0, sizeof(struct v4l2_dv_timings)); 1572 1573 if (no_signal(sd)) { 1574 state->restart_stdi_once = true; 1575 v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__); 1576 return -ENOLINK; 1577 } 1578 1579 /* read STDI */ 1580 if (read_stdi(sd, &stdi)) { 1581 v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__); 1582 return -ENOLINK; 1583 } 1584 bt->interlaced = stdi.interlaced ? 1585 V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE; 1586 1587 if (is_digital_input(sd)) { 1588 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80; 1589 u8 vic = 0; 1590 u32 w, h; 1591 1592 w = hdmi_read16(sd, 0x07, info->linewidth_mask); 1593 h = hdmi_read16(sd, 0x09, info->field0_height_mask); 1594 1595 if (hdmi_signal && (io_read(sd, 0x60) & 1)) 1596 vic = infoframe_read(sd, 0x04); 1597 1598 if (vic && v4l2_find_dv_timings_cea861_vic(timings, vic) && 1599 bt->width == w && bt->height == h) 1600 goto found; 1601 1602 timings->type = V4L2_DV_BT_656_1120; 1603 1604 bt->width = w; 1605 bt->height = h; 1606 bt->pixelclock = adv76xx_read_hdmi_pixelclock(sd); 1607 bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask); 1608 bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask); 1609 bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask); 1610 bt->vfrontporch = hdmi_read16(sd, 0x2a, 1611 info->field0_vfrontporch_mask) / 2; 1612 bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2; 1613 bt->vbackporch = hdmi_read16(sd, 0x32, 1614 info->field0_vbackporch_mask) / 2; 1615 bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) | 1616 ((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0); 1617 if (bt->interlaced == V4L2_DV_INTERLACED) { 1618 bt->height += hdmi_read16(sd, 0x0b, 1619 info->field1_height_mask); 1620 bt->il_vfrontporch = hdmi_read16(sd, 0x2c, 1621 info->field1_vfrontporch_mask) / 2; 1622 bt->il_vsync = hdmi_read16(sd, 0x30, 1623 info->field1_vsync_mask) / 2; 1624 bt->il_vbackporch = hdmi_read16(sd, 0x34, 1625 info->field1_vbackporch_mask) / 2; 1626 } 1627 adv76xx_fill_optional_dv_timings_fields(sd, timings); 1628 } else { 1629 /* find format 1630 * Since LCVS values are inaccurate [REF_03, p. 275-276], 1631 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails. 1632 */ 1633 if (!stdi2dv_timings(sd, &stdi, timings)) 1634 goto found; 1635 stdi.lcvs += 1; 1636 v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs); 1637 if (!stdi2dv_timings(sd, &stdi, timings)) 1638 goto found; 1639 stdi.lcvs -= 2; 1640 v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs); 1641 if (stdi2dv_timings(sd, &stdi, timings)) { 1642 /* 1643 * The STDI block may measure wrong values, especially 1644 * for lcvs and lcf. If the driver can not find any 1645 * valid timing, the STDI block is restarted to measure 1646 * the video timings again. The function will return an 1647 * error, but the restart of STDI will generate a new 1648 * STDI interrupt and the format detection process will 1649 * restart. 1650 */ 1651 if (state->restart_stdi_once) { 1652 v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__); 1653 /* TODO restart STDI for Sync Channel 2 */ 1654 /* enter one-shot mode */ 1655 cp_write_clr_set(sd, 0x86, 0x06, 0x00); 1656 /* trigger STDI restart */ 1657 cp_write_clr_set(sd, 0x86, 0x06, 0x04); 1658 /* reset to continuous mode */ 1659 cp_write_clr_set(sd, 0x86, 0x06, 0x02); 1660 state->restart_stdi_once = false; 1661 return -ENOLINK; 1662 } 1663 v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__); 1664 return -ERANGE; 1665 } 1666 state->restart_stdi_once = true; 1667 } 1668 found: 1669 1670 if (no_signal(sd)) { 1671 v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__); 1672 memset(timings, 0, sizeof(struct v4l2_dv_timings)); 1673 return -ENOLINK; 1674 } 1675 1676 if ((is_analog_input(sd) && bt->pixelclock > 170000000) || 1677 (is_digital_input(sd) && bt->pixelclock > 225000000)) { 1678 v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n", 1679 __func__, (u32)bt->pixelclock); 1680 return -ERANGE; 1681 } 1682 1683 if (debug > 1) 1684 v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ", 1685 timings, true); 1686 1687 return 0; 1688 } 1689 1690 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd, 1691 struct v4l2_dv_timings *timings) 1692 { 1693 struct adv76xx_state *state = to_state(sd); 1694 struct v4l2_bt_timings *bt; 1695 int err; 1696 1697 if (!timings) 1698 return -EINVAL; 1699 1700 if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) { 1701 v4l2_dbg(1, debug, sd, "%s: no change\n", __func__); 1702 return 0; 1703 } 1704 1705 bt = &timings->bt; 1706 1707 if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1), 1708 adv76xx_check_dv_timings, NULL)) 1709 return -ERANGE; 1710 1711 adv76xx_fill_optional_dv_timings_fields(sd, timings); 1712 1713 state->timings = *timings; 1714 1715 cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00); 1716 1717 /* Use prim_mode and vid_std when available */ 1718 err = configure_predefined_video_timings(sd, timings); 1719 if (err) { 1720 /* custom settings when the video format 1721 does not have prim_mode/vid_std */ 1722 configure_custom_video_timings(sd, bt); 1723 } 1724 1725 set_rgb_quantization_range(sd); 1726 1727 if (debug > 1) 1728 v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ", 1729 timings, true); 1730 return 0; 1731 } 1732 1733 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd, 1734 struct v4l2_dv_timings *timings) 1735 { 1736 struct adv76xx_state *state = to_state(sd); 1737 1738 *timings = state->timings; 1739 return 0; 1740 } 1741 1742 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable) 1743 { 1744 hdmi_write(sd, 0x01, enable ? 0x00 : 0x78); 1745 } 1746 1747 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable) 1748 { 1749 hdmi_write(sd, 0x83, enable ? 0xfe : 0xff); 1750 } 1751 1752 static void enable_input(struct v4l2_subdev *sd) 1753 { 1754 struct adv76xx_state *state = to_state(sd); 1755 1756 if (is_analog_input(sd)) { 1757 io_write(sd, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */ 1758 } else if (is_digital_input(sd)) { 1759 hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input); 1760 state->info->set_termination(sd, true); 1761 io_write(sd, 0x15, 0xa0); /* Disable Tristate of Pins */ 1762 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */ 1763 } else { 1764 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 1765 __func__, state->selected_input); 1766 } 1767 } 1768 1769 static void disable_input(struct v4l2_subdev *sd) 1770 { 1771 struct adv76xx_state *state = to_state(sd); 1772 1773 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */ 1774 msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */ 1775 io_write(sd, 0x15, 0xbe); /* Tristate all outputs from video core */ 1776 state->info->set_termination(sd, false); 1777 } 1778 1779 static void select_input(struct v4l2_subdev *sd) 1780 { 1781 struct adv76xx_state *state = to_state(sd); 1782 const struct adv76xx_chip_info *info = state->info; 1783 1784 if (is_analog_input(sd)) { 1785 adv76xx_write_reg_seq(sd, info->recommended_settings[0]); 1786 1787 afe_write(sd, 0x00, 0x08); /* power up ADC */ 1788 afe_write(sd, 0x01, 0x06); /* power up Analog Front End */ 1789 afe_write(sd, 0xc8, 0x00); /* phase control */ 1790 } else if (is_digital_input(sd)) { 1791 hdmi_write(sd, 0x00, state->selected_input & 0x03); 1792 1793 adv76xx_write_reg_seq(sd, info->recommended_settings[1]); 1794 1795 if (adv76xx_has_afe(state)) { 1796 afe_write(sd, 0x00, 0xff); /* power down ADC */ 1797 afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */ 1798 afe_write(sd, 0xc8, 0x40); /* phase control */ 1799 } 1800 1801 cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */ 1802 cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */ 1803 cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */ 1804 } else { 1805 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 1806 __func__, state->selected_input); 1807 } 1808 } 1809 1810 static int adv76xx_s_routing(struct v4l2_subdev *sd, 1811 u32 input, u32 output, u32 config) 1812 { 1813 struct adv76xx_state *state = to_state(sd); 1814 1815 v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d", 1816 __func__, input, state->selected_input); 1817 1818 if (input == state->selected_input) 1819 return 0; 1820 1821 if (input > state->info->max_port) 1822 return -EINVAL; 1823 1824 state->selected_input = input; 1825 1826 disable_input(sd); 1827 select_input(sd); 1828 enable_input(sd); 1829 1830 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt); 1831 1832 return 0; 1833 } 1834 1835 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd, 1836 struct v4l2_subdev_state *sd_state, 1837 struct v4l2_subdev_mbus_code_enum *code) 1838 { 1839 struct adv76xx_state *state = to_state(sd); 1840 1841 if (code->index >= state->info->nformats) 1842 return -EINVAL; 1843 1844 code->code = state->info->formats[code->index].code; 1845 1846 return 0; 1847 } 1848 1849 static void adv76xx_fill_format(struct adv76xx_state *state, 1850 struct v4l2_mbus_framefmt *format) 1851 { 1852 memset(format, 0, sizeof(*format)); 1853 1854 format->width = state->timings.bt.width; 1855 format->height = state->timings.bt.height; 1856 format->field = V4L2_FIELD_NONE; 1857 format->colorspace = V4L2_COLORSPACE_SRGB; 1858 1859 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) 1860 format->colorspace = (state->timings.bt.height <= 576) ? 1861 V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709; 1862 } 1863 1864 /* 1865 * Compute the op_ch_sel value required to obtain on the bus the component order 1866 * corresponding to the selected format taking into account bus reordering 1867 * applied by the board at the output of the device. 1868 * 1869 * The following table gives the op_ch_value from the format component order 1870 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as 1871 * adv76xx_bus_order value in row). 1872 * 1873 * | GBR(0) GRB(1) BGR(2) RGB(3) BRG(4) RBG(5) 1874 * ----------+------------------------------------------------- 1875 * RGB (NOP) | GBR GRB BGR RGB BRG RBG 1876 * GRB (1-2) | BGR RGB GBR GRB RBG BRG 1877 * RBG (2-3) | GRB GBR BRG RBG BGR RGB 1878 * BGR (1-3) | RBG BRG RGB BGR GRB GBR 1879 * BRG (ROR) | BRG RBG GRB GBR RGB BGR 1880 * GBR (ROL) | RGB BGR RBG BRG GBR GRB 1881 */ 1882 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state) 1883 { 1884 #define _SEL(a,b,c,d,e,f) { \ 1885 ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \ 1886 ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f } 1887 #define _BUS(x) [ADV7604_BUS_ORDER_##x] 1888 1889 static const unsigned int op_ch_sel[6][6] = { 1890 _BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG), 1891 _BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG), 1892 _BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB), 1893 _BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR), 1894 _BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR), 1895 _BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB), 1896 }; 1897 1898 return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5]; 1899 } 1900 1901 static void adv76xx_setup_format(struct adv76xx_state *state) 1902 { 1903 struct v4l2_subdev *sd = &state->sd; 1904 1905 io_write_clr_set(sd, 0x02, 0x02, 1906 state->format->rgb_out ? ADV76XX_RGB_OUT : 0); 1907 io_write(sd, 0x03, state->format->op_format_sel | 1908 state->pdata.op_format_mode_sel); 1909 io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state)); 1910 io_write_clr_set(sd, 0x05, 0x01, 1911 state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0); 1912 set_rgb_quantization_range(sd); 1913 } 1914 1915 static int adv76xx_get_format(struct v4l2_subdev *sd, 1916 struct v4l2_subdev_state *sd_state, 1917 struct v4l2_subdev_format *format) 1918 { 1919 struct adv76xx_state *state = to_state(sd); 1920 1921 if (format->pad != state->source_pad) 1922 return -EINVAL; 1923 1924 adv76xx_fill_format(state, &format->format); 1925 1926 if (format->which == V4L2_SUBDEV_FORMAT_TRY) { 1927 struct v4l2_mbus_framefmt *fmt; 1928 1929 fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad); 1930 format->format.code = fmt->code; 1931 } else { 1932 format->format.code = state->format->code; 1933 } 1934 1935 return 0; 1936 } 1937 1938 static int adv76xx_get_selection(struct v4l2_subdev *sd, 1939 struct v4l2_subdev_state *sd_state, 1940 struct v4l2_subdev_selection *sel) 1941 { 1942 struct adv76xx_state *state = to_state(sd); 1943 1944 if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE) 1945 return -EINVAL; 1946 /* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */ 1947 if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS) 1948 return -EINVAL; 1949 1950 sel->r.left = 0; 1951 sel->r.top = 0; 1952 sel->r.width = state->timings.bt.width; 1953 sel->r.height = state->timings.bt.height; 1954 1955 return 0; 1956 } 1957 1958 static int adv76xx_set_format(struct v4l2_subdev *sd, 1959 struct v4l2_subdev_state *sd_state, 1960 struct v4l2_subdev_format *format) 1961 { 1962 struct adv76xx_state *state = to_state(sd); 1963 const struct adv76xx_format_info *info; 1964 1965 if (format->pad != state->source_pad) 1966 return -EINVAL; 1967 1968 info = adv76xx_format_info(state, format->format.code); 1969 if (!info) 1970 info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8); 1971 1972 adv76xx_fill_format(state, &format->format); 1973 format->format.code = info->code; 1974 1975 if (format->which == V4L2_SUBDEV_FORMAT_TRY) { 1976 struct v4l2_mbus_framefmt *fmt; 1977 1978 fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad); 1979 fmt->code = format->format.code; 1980 } else { 1981 state->format = info; 1982 adv76xx_setup_format(state); 1983 } 1984 1985 return 0; 1986 } 1987 1988 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC) 1989 static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status) 1990 { 1991 struct adv76xx_state *state = to_state(sd); 1992 1993 if ((cec_read(sd, 0x11) & 0x01) == 0) { 1994 v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__); 1995 return; 1996 } 1997 1998 if (tx_raw_status & 0x02) { 1999 v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n", 2000 __func__); 2001 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST, 2002 1, 0, 0, 0); 2003 return; 2004 } 2005 if (tx_raw_status & 0x04) { 2006 u8 status; 2007 u8 nack_cnt; 2008 u8 low_drive_cnt; 2009 2010 v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__); 2011 /* 2012 * We set this status bit since this hardware performs 2013 * retransmissions. 2014 */ 2015 status = CEC_TX_STATUS_MAX_RETRIES; 2016 nack_cnt = cec_read(sd, 0x14) & 0xf; 2017 if (nack_cnt) 2018 status |= CEC_TX_STATUS_NACK; 2019 low_drive_cnt = cec_read(sd, 0x14) >> 4; 2020 if (low_drive_cnt) 2021 status |= CEC_TX_STATUS_LOW_DRIVE; 2022 cec_transmit_done(state->cec_adap, status, 2023 0, nack_cnt, low_drive_cnt, 0); 2024 return; 2025 } 2026 if (tx_raw_status & 0x01) { 2027 v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__); 2028 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0); 2029 return; 2030 } 2031 } 2032 2033 static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled) 2034 { 2035 struct adv76xx_state *state = to_state(sd); 2036 const struct adv76xx_chip_info *info = state->info; 2037 u8 cec_irq; 2038 2039 /* cec controller */ 2040 cec_irq = io_read(sd, info->cec_irq_status) & 0x0f; 2041 if (!cec_irq) 2042 return; 2043 2044 v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq); 2045 adv76xx_cec_tx_raw_status(sd, cec_irq); 2046 if (cec_irq & 0x08) { 2047 struct cec_msg msg; 2048 2049 msg.len = cec_read(sd, 0x25) & 0x1f; 2050 if (msg.len > 16) 2051 msg.len = 16; 2052 2053 if (msg.len) { 2054 u8 i; 2055 2056 for (i = 0; i < msg.len; i++) 2057 msg.msg[i] = cec_read(sd, i + 0x15); 2058 cec_write(sd, info->cec_rx_enable, 2059 info->cec_rx_enable_mask); /* re-enable rx */ 2060 cec_received_msg(state->cec_adap, &msg); 2061 } 2062 } 2063 2064 if (info->cec_irq_swap) { 2065 /* 2066 * Note: the bit order is swapped between 0x4d and 0x4e 2067 * on adv7604 2068 */ 2069 cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) | 2070 ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3); 2071 } 2072 io_write(sd, info->cec_irq_status + 1, cec_irq); 2073 2074 if (handled) 2075 *handled = true; 2076 } 2077 2078 static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable) 2079 { 2080 struct adv76xx_state *state = cec_get_drvdata(adap); 2081 const struct adv76xx_chip_info *info = state->info; 2082 struct v4l2_subdev *sd = &state->sd; 2083 2084 if (!state->cec_enabled_adap && enable) { 2085 cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */ 2086 cec_write(sd, 0x2c, 0x01); /* cec soft reset */ 2087 cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */ 2088 /* enabled irqs: */ 2089 /* tx: ready */ 2090 /* tx: arbitration lost */ 2091 /* tx: retry timeout */ 2092 /* rx: ready */ 2093 io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x0f); 2094 cec_write(sd, info->cec_rx_enable, info->cec_rx_enable_mask); 2095 } else if (state->cec_enabled_adap && !enable) { 2096 /* disable cec interrupts */ 2097 io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x00); 2098 /* disable address mask 1-3 */ 2099 cec_write_clr_set(sd, 0x27, 0x70, 0x00); 2100 /* power down cec section */ 2101 cec_write_clr_set(sd, 0x2a, 0x01, 0x00); 2102 state->cec_valid_addrs = 0; 2103 } 2104 state->cec_enabled_adap = enable; 2105 adv76xx_s_detect_tx_5v_ctrl(sd); 2106 return 0; 2107 } 2108 2109 static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr) 2110 { 2111 struct adv76xx_state *state = cec_get_drvdata(adap); 2112 struct v4l2_subdev *sd = &state->sd; 2113 unsigned int i, free_idx = ADV76XX_MAX_ADDRS; 2114 2115 if (!state->cec_enabled_adap) 2116 return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO; 2117 2118 if (addr == CEC_LOG_ADDR_INVALID) { 2119 cec_write_clr_set(sd, 0x27, 0x70, 0); 2120 state->cec_valid_addrs = 0; 2121 return 0; 2122 } 2123 2124 for (i = 0; i < ADV76XX_MAX_ADDRS; i++) { 2125 bool is_valid = state->cec_valid_addrs & (1 << i); 2126 2127 if (free_idx == ADV76XX_MAX_ADDRS && !is_valid) 2128 free_idx = i; 2129 if (is_valid && state->cec_addr[i] == addr) 2130 return 0; 2131 } 2132 if (i == ADV76XX_MAX_ADDRS) { 2133 i = free_idx; 2134 if (i == ADV76XX_MAX_ADDRS) 2135 return -ENXIO; 2136 } 2137 state->cec_addr[i] = addr; 2138 state->cec_valid_addrs |= 1 << i; 2139 2140 switch (i) { 2141 case 0: 2142 /* enable address mask 0 */ 2143 cec_write_clr_set(sd, 0x27, 0x10, 0x10); 2144 /* set address for mask 0 */ 2145 cec_write_clr_set(sd, 0x28, 0x0f, addr); 2146 break; 2147 case 1: 2148 /* enable address mask 1 */ 2149 cec_write_clr_set(sd, 0x27, 0x20, 0x20); 2150 /* set address for mask 1 */ 2151 cec_write_clr_set(sd, 0x28, 0xf0, addr << 4); 2152 break; 2153 case 2: 2154 /* enable address mask 2 */ 2155 cec_write_clr_set(sd, 0x27, 0x40, 0x40); 2156 /* set address for mask 1 */ 2157 cec_write_clr_set(sd, 0x29, 0x0f, addr); 2158 break; 2159 } 2160 return 0; 2161 } 2162 2163 static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts, 2164 u32 signal_free_time, struct cec_msg *msg) 2165 { 2166 struct adv76xx_state *state = cec_get_drvdata(adap); 2167 struct v4l2_subdev *sd = &state->sd; 2168 u8 len = msg->len; 2169 unsigned int i; 2170 2171 /* 2172 * The number of retries is the number of attempts - 1, but retry 2173 * at least once. It's not clear if a value of 0 is allowed, so 2174 * let's do at least one retry. 2175 */ 2176 cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4); 2177 2178 if (len > 16) { 2179 v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len); 2180 return -EINVAL; 2181 } 2182 2183 /* write data */ 2184 for (i = 0; i < len; i++) 2185 cec_write(sd, i, msg->msg[i]); 2186 2187 /* set length (data + header) */ 2188 cec_write(sd, 0x10, len); 2189 /* start transmit, enable tx */ 2190 cec_write(sd, 0x11, 0x01); 2191 return 0; 2192 } 2193 2194 static const struct cec_adap_ops adv76xx_cec_adap_ops = { 2195 .adap_enable = adv76xx_cec_adap_enable, 2196 .adap_log_addr = adv76xx_cec_adap_log_addr, 2197 .adap_transmit = adv76xx_cec_adap_transmit, 2198 }; 2199 #endif 2200 2201 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled) 2202 { 2203 struct adv76xx_state *state = to_state(sd); 2204 const struct adv76xx_chip_info *info = state->info; 2205 const u8 irq_reg_0x43 = io_read(sd, 0x43); 2206 const u8 irq_reg_0x6b = io_read(sd, 0x6b); 2207 const u8 irq_reg_0x70 = io_read(sd, 0x70); 2208 u8 fmt_change_digital; 2209 u8 fmt_change; 2210 u8 tx_5v; 2211 2212 if (irq_reg_0x43) 2213 io_write(sd, 0x44, irq_reg_0x43); 2214 if (irq_reg_0x70) 2215 io_write(sd, 0x71, irq_reg_0x70); 2216 if (irq_reg_0x6b) 2217 io_write(sd, 0x6c, irq_reg_0x6b); 2218 2219 v4l2_dbg(2, debug, sd, "%s: ", __func__); 2220 2221 /* format change */ 2222 fmt_change = irq_reg_0x43 & 0x98; 2223 fmt_change_digital = is_digital_input(sd) 2224 ? irq_reg_0x6b & info->fmt_change_digital_mask 2225 : 0; 2226 2227 if (fmt_change || fmt_change_digital) { 2228 v4l2_dbg(1, debug, sd, 2229 "%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n", 2230 __func__, fmt_change, fmt_change_digital); 2231 2232 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt); 2233 2234 if (handled) 2235 *handled = true; 2236 } 2237 /* HDMI/DVI mode */ 2238 if (irq_reg_0x6b & 0x01) { 2239 v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__, 2240 (io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI"); 2241 set_rgb_quantization_range(sd); 2242 if (handled) 2243 *handled = true; 2244 } 2245 2246 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC) 2247 /* cec */ 2248 adv76xx_cec_isr(sd, handled); 2249 #endif 2250 2251 /* tx 5v detect */ 2252 tx_5v = irq_reg_0x70 & info->cable_det_mask; 2253 if (tx_5v) { 2254 v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v); 2255 adv76xx_s_detect_tx_5v_ctrl(sd); 2256 if (handled) 2257 *handled = true; 2258 } 2259 return 0; 2260 } 2261 2262 static irqreturn_t adv76xx_irq_handler(int irq, void *dev_id) 2263 { 2264 struct adv76xx_state *state = dev_id; 2265 bool handled = false; 2266 2267 adv76xx_isr(&state->sd, 0, &handled); 2268 2269 return handled ? IRQ_HANDLED : IRQ_NONE; 2270 } 2271 2272 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid) 2273 { 2274 struct adv76xx_state *state = to_state(sd); 2275 u8 *data = NULL; 2276 2277 memset(edid->reserved, 0, sizeof(edid->reserved)); 2278 2279 switch (edid->pad) { 2280 case ADV76XX_PAD_HDMI_PORT_A: 2281 case ADV7604_PAD_HDMI_PORT_B: 2282 case ADV7604_PAD_HDMI_PORT_C: 2283 case ADV7604_PAD_HDMI_PORT_D: 2284 if (state->edid.present & (1 << edid->pad)) 2285 data = state->edid.edid; 2286 break; 2287 default: 2288 return -EINVAL; 2289 } 2290 2291 if (edid->start_block == 0 && edid->blocks == 0) { 2292 edid->blocks = data ? state->edid.blocks : 0; 2293 return 0; 2294 } 2295 2296 if (!data) 2297 return -ENODATA; 2298 2299 if (edid->start_block >= state->edid.blocks) 2300 return -EINVAL; 2301 2302 if (edid->start_block + edid->blocks > state->edid.blocks) 2303 edid->blocks = state->edid.blocks - edid->start_block; 2304 2305 memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128); 2306 2307 return 0; 2308 } 2309 2310 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid) 2311 { 2312 struct adv76xx_state *state = to_state(sd); 2313 const struct adv76xx_chip_info *info = state->info; 2314 unsigned int spa_loc; 2315 u16 pa, parent_pa; 2316 int err; 2317 int i; 2318 2319 memset(edid->reserved, 0, sizeof(edid->reserved)); 2320 2321 if (edid->pad > ADV7604_PAD_HDMI_PORT_D) 2322 return -EINVAL; 2323 if (edid->start_block != 0) 2324 return -EINVAL; 2325 if (edid->blocks == 0) { 2326 /* Disable hotplug and I2C access to EDID RAM from DDC port */ 2327 state->edid.present &= ~(1 << edid->pad); 2328 adv76xx_set_hpd(state, state->edid.present); 2329 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present); 2330 2331 /* Fall back to a 16:9 aspect ratio */ 2332 state->aspect_ratio.numerator = 16; 2333 state->aspect_ratio.denominator = 9; 2334 2335 if (!state->edid.present) { 2336 state->edid.blocks = 0; 2337 cec_phys_addr_invalidate(state->cec_adap); 2338 } 2339 2340 v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n", 2341 __func__, edid->pad, state->edid.present); 2342 return 0; 2343 } 2344 if (edid->blocks > ADV76XX_MAX_EDID_BLOCKS) { 2345 edid->blocks = ADV76XX_MAX_EDID_BLOCKS; 2346 return -E2BIG; 2347 } 2348 2349 pa = v4l2_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc); 2350 err = v4l2_phys_addr_validate(pa, &parent_pa, NULL); 2351 if (err) 2352 return err; 2353 2354 if (!spa_loc) { 2355 /* 2356 * There is no SPA, so just set spa_loc to 128 and pa to whatever 2357 * data is there. 2358 */ 2359 spa_loc = 128; 2360 pa = (edid->edid[spa_loc] << 8) | edid->edid[spa_loc + 1]; 2361 } 2362 2363 v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n", 2364 __func__, edid->pad, state->edid.present); 2365 2366 /* Disable hotplug and I2C access to EDID RAM from DDC port */ 2367 cancel_delayed_work_sync(&state->delayed_work_enable_hotplug); 2368 adv76xx_set_hpd(state, 0); 2369 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00); 2370 2371 switch (edid->pad) { 2372 case ADV76XX_PAD_HDMI_PORT_A: 2373 state->spa_port_a[0] = pa >> 8; 2374 state->spa_port_a[1] = pa & 0xff; 2375 break; 2376 case ADV7604_PAD_HDMI_PORT_B: 2377 rep_write(sd, info->edid_spa_port_b_reg, pa >> 8); 2378 rep_write(sd, info->edid_spa_port_b_reg + 1, pa & 0xff); 2379 break; 2380 case ADV7604_PAD_HDMI_PORT_C: 2381 rep_write(sd, info->edid_spa_port_b_reg + 2, pa >> 8); 2382 rep_write(sd, info->edid_spa_port_b_reg + 3, pa & 0xff); 2383 break; 2384 case ADV7604_PAD_HDMI_PORT_D: 2385 rep_write(sd, info->edid_spa_port_b_reg + 4, pa >> 8); 2386 rep_write(sd, info->edid_spa_port_b_reg + 5, pa & 0xff); 2387 break; 2388 default: 2389 return -EINVAL; 2390 } 2391 2392 if (info->edid_spa_loc_reg) { 2393 u8 mask = info->edid_spa_loc_msb_mask; 2394 2395 rep_write(sd, info->edid_spa_loc_reg, spa_loc & 0xff); 2396 rep_write_clr_set(sd, info->edid_spa_loc_reg + 1, 2397 mask, (spa_loc & 0x100) ? mask : 0); 2398 } 2399 2400 edid->edid[spa_loc] = state->spa_port_a[0]; 2401 edid->edid[spa_loc + 1] = state->spa_port_a[1]; 2402 2403 memcpy(state->edid.edid, edid->edid, 128 * edid->blocks); 2404 state->edid.blocks = edid->blocks; 2405 state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15], 2406 edid->edid[0x16]); 2407 state->edid.present |= 1 << edid->pad; 2408 2409 rep_write_clr_set(sd, info->edid_segment_reg, 2410 info->edid_segment_mask, 0); 2411 err = edid_write_block(sd, 128 * min(edid->blocks, 2U), state->edid.edid); 2412 if (err < 0) { 2413 v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad); 2414 return err; 2415 } 2416 if (edid->blocks > 2) { 2417 rep_write_clr_set(sd, info->edid_segment_reg, 2418 info->edid_segment_mask, 2419 info->edid_segment_mask); 2420 err = edid_write_block(sd, 128 * (edid->blocks - 2), 2421 state->edid.edid + 256); 2422 if (err < 0) { 2423 v4l2_err(sd, "error %d writing edid pad %d\n", 2424 err, edid->pad); 2425 return err; 2426 } 2427 } 2428 2429 /* adv76xx calculates the checksums and enables I2C access to internal 2430 EDID RAM from DDC port. */ 2431 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present); 2432 2433 for (i = 0; i < 1000; i++) { 2434 if (rep_read(sd, info->edid_status_reg) & state->edid.present) 2435 break; 2436 mdelay(1); 2437 } 2438 if (i == 1000) { 2439 v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present); 2440 return -EIO; 2441 } 2442 cec_s_phys_addr(state->cec_adap, parent_pa, false); 2443 2444 /* enable hotplug after 100 ms */ 2445 schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10); 2446 return 0; 2447 } 2448 2449 /*********** avi info frame CEA-861-E **************/ 2450 2451 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = { 2452 { "AVI", 0x01, 0xe0, 0x00 }, 2453 { "Audio", 0x02, 0xe3, 0x1c }, 2454 { "SDP", 0x04, 0xe6, 0x2a }, 2455 { "Vendor", 0x10, 0xec, 0x54 } 2456 }; 2457 2458 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index, 2459 union hdmi_infoframe *frame) 2460 { 2461 uint8_t buffer[32]; 2462 u8 len; 2463 int i; 2464 2465 if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) { 2466 v4l2_info(sd, "%s infoframe not received\n", 2467 adv76xx_cri[index].desc); 2468 return -ENOENT; 2469 } 2470 2471 for (i = 0; i < 3; i++) 2472 buffer[i] = infoframe_read(sd, 2473 adv76xx_cri[index].head_addr + i); 2474 2475 len = buffer[2] + 1; 2476 2477 if (len + 3 > sizeof(buffer)) { 2478 v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__, 2479 adv76xx_cri[index].desc, len); 2480 return -ENOENT; 2481 } 2482 2483 for (i = 0; i < len; i++) 2484 buffer[i + 3] = infoframe_read(sd, 2485 adv76xx_cri[index].payload_addr + i); 2486 2487 if (hdmi_infoframe_unpack(frame, buffer, sizeof(buffer)) < 0) { 2488 v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__, 2489 adv76xx_cri[index].desc); 2490 return -ENOENT; 2491 } 2492 return 0; 2493 } 2494 2495 static void adv76xx_log_infoframes(struct v4l2_subdev *sd) 2496 { 2497 int i; 2498 2499 if (!is_hdmi(sd)) { 2500 v4l2_info(sd, "receive DVI-D signal, no infoframes\n"); 2501 return; 2502 } 2503 2504 for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) { 2505 union hdmi_infoframe frame; 2506 struct i2c_client *client = v4l2_get_subdevdata(sd); 2507 2508 if (adv76xx_read_infoframe(sd, i, &frame)) 2509 return; 2510 hdmi_infoframe_log(KERN_INFO, &client->dev, &frame); 2511 } 2512 } 2513 2514 static int adv76xx_log_status(struct v4l2_subdev *sd) 2515 { 2516 struct adv76xx_state *state = to_state(sd); 2517 const struct adv76xx_chip_info *info = state->info; 2518 struct v4l2_dv_timings timings; 2519 struct stdi_readback stdi; 2520 u8 reg_io_0x02 = io_read(sd, 0x02); 2521 u8 edid_enabled; 2522 u8 cable_det; 2523 2524 static const char * const csc_coeff_sel_rb[16] = { 2525 "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB", 2526 "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709", 2527 "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709", 2528 "reserved", "reserved", "reserved", "reserved", "manual" 2529 }; 2530 static const char * const input_color_space_txt[16] = { 2531 "RGB limited range (16-235)", "RGB full range (0-255)", 2532 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)", 2533 "xvYCC Bt.601", "xvYCC Bt.709", 2534 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)", 2535 "invalid", "invalid", "invalid", "invalid", "invalid", 2536 "invalid", "invalid", "automatic" 2537 }; 2538 static const char * const hdmi_color_space_txt[16] = { 2539 "RGB limited range (16-235)", "RGB full range (0-255)", 2540 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)", 2541 "xvYCC Bt.601", "xvYCC Bt.709", 2542 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)", 2543 "sYCC", "opYCC 601", "opRGB", "invalid", "invalid", 2544 "invalid", "invalid", "invalid" 2545 }; 2546 static const char * const rgb_quantization_range_txt[] = { 2547 "Automatic", 2548 "RGB limited range (16-235)", 2549 "RGB full range (0-255)", 2550 }; 2551 static const char * const deep_color_mode_txt[4] = { 2552 "8-bits per channel", 2553 "10-bits per channel", 2554 "12-bits per channel", 2555 "16-bits per channel (not supported)" 2556 }; 2557 2558 v4l2_info(sd, "-----Chip status-----\n"); 2559 v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on"); 2560 edid_enabled = rep_read(sd, info->edid_status_reg); 2561 v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n", 2562 ((edid_enabled & 0x01) ? "Yes" : "No"), 2563 ((edid_enabled & 0x02) ? "Yes" : "No"), 2564 ((edid_enabled & 0x04) ? "Yes" : "No"), 2565 ((edid_enabled & 0x08) ? "Yes" : "No")); 2566 v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ? 2567 "enabled" : "disabled"); 2568 if (state->cec_enabled_adap) { 2569 int i; 2570 2571 for (i = 0; i < ADV76XX_MAX_ADDRS; i++) { 2572 bool is_valid = state->cec_valid_addrs & (1 << i); 2573 2574 if (is_valid) 2575 v4l2_info(sd, "CEC Logical Address: 0x%x\n", 2576 state->cec_addr[i]); 2577 } 2578 } 2579 2580 v4l2_info(sd, "-----Signal status-----\n"); 2581 cable_det = info->read_cable_det(sd); 2582 v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n", 2583 ((cable_det & 0x01) ? "Yes" : "No"), 2584 ((cable_det & 0x02) ? "Yes" : "No"), 2585 ((cable_det & 0x04) ? "Yes" : "No"), 2586 ((cable_det & 0x08) ? "Yes" : "No")); 2587 v4l2_info(sd, "TMDS signal detected: %s\n", 2588 no_signal_tmds(sd) ? "false" : "true"); 2589 v4l2_info(sd, "TMDS signal locked: %s\n", 2590 no_lock_tmds(sd) ? "false" : "true"); 2591 v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true"); 2592 v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true"); 2593 v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true"); 2594 v4l2_info(sd, "CP free run: %s\n", 2595 (in_free_run(sd)) ? "on" : "off"); 2596 v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n", 2597 io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f, 2598 (io_read(sd, 0x01) & 0x70) >> 4); 2599 2600 v4l2_info(sd, "-----Video Timings-----\n"); 2601 if (read_stdi(sd, &stdi)) 2602 v4l2_info(sd, "STDI: not locked\n"); 2603 else 2604 v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n", 2605 stdi.lcf, stdi.bl, stdi.lcvs, 2606 stdi.interlaced ? "interlaced" : "progressive", 2607 stdi.hs_pol, stdi.vs_pol); 2608 if (adv76xx_query_dv_timings(sd, &timings)) 2609 v4l2_info(sd, "No video detected\n"); 2610 else 2611 v4l2_print_dv_timings(sd->name, "Detected format: ", 2612 &timings, true); 2613 v4l2_print_dv_timings(sd->name, "Configured format: ", 2614 &state->timings, true); 2615 2616 if (no_signal(sd)) 2617 return 0; 2618 2619 v4l2_info(sd, "-----Color space-----\n"); 2620 v4l2_info(sd, "RGB quantization range ctrl: %s\n", 2621 rgb_quantization_range_txt[state->rgb_quantization_range]); 2622 v4l2_info(sd, "Input color space: %s\n", 2623 input_color_space_txt[reg_io_0x02 >> 4]); 2624 v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n", 2625 (reg_io_0x02 & 0x02) ? "RGB" : "YCbCr", 2626 (((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ? 2627 "(16-235)" : "(0-255)", 2628 (reg_io_0x02 & 0x08) ? "enabled" : "disabled"); 2629 v4l2_info(sd, "Color space conversion: %s\n", 2630 csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]); 2631 2632 if (!is_digital_input(sd)) 2633 return 0; 2634 2635 v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D"); 2636 v4l2_info(sd, "Digital video port selected: %c\n", 2637 (hdmi_read(sd, 0x00) & 0x03) + 'A'); 2638 v4l2_info(sd, "HDCP encrypted content: %s\n", 2639 (hdmi_read(sd, 0x05) & 0x40) ? "true" : "false"); 2640 v4l2_info(sd, "HDCP keys read: %s%s\n", 2641 (hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no", 2642 (hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : ""); 2643 if (is_hdmi(sd)) { 2644 bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01; 2645 bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01; 2646 bool audio_mute = io_read(sd, 0x65) & 0x40; 2647 2648 v4l2_info(sd, "Audio: pll %s, samples %s, %s\n", 2649 audio_pll_locked ? "locked" : "not locked", 2650 audio_sample_packet_detect ? "detected" : "not detected", 2651 audio_mute ? "muted" : "enabled"); 2652 if (audio_pll_locked && audio_sample_packet_detect) { 2653 v4l2_info(sd, "Audio format: %s\n", 2654 (hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo"); 2655 } 2656 v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) + 2657 (hdmi_read(sd, 0x5c) << 8) + 2658 (hdmi_read(sd, 0x5d) & 0xf0)); 2659 v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) + 2660 (hdmi_read(sd, 0x5e) << 8) + 2661 hdmi_read(sd, 0x5f)); 2662 v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off"); 2663 2664 v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]); 2665 v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]); 2666 2667 adv76xx_log_infoframes(sd); 2668 } 2669 2670 return 0; 2671 } 2672 2673 static int adv76xx_subscribe_event(struct v4l2_subdev *sd, 2674 struct v4l2_fh *fh, 2675 struct v4l2_event_subscription *sub) 2676 { 2677 switch (sub->type) { 2678 case V4L2_EVENT_SOURCE_CHANGE: 2679 return v4l2_src_change_event_subdev_subscribe(sd, fh, sub); 2680 case V4L2_EVENT_CTRL: 2681 return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub); 2682 default: 2683 return -EINVAL; 2684 } 2685 } 2686 2687 static int adv76xx_registered(struct v4l2_subdev *sd) 2688 { 2689 struct adv76xx_state *state = to_state(sd); 2690 struct i2c_client *client = v4l2_get_subdevdata(sd); 2691 int err; 2692 2693 err = cec_register_adapter(state->cec_adap, &client->dev); 2694 if (err) 2695 cec_delete_adapter(state->cec_adap); 2696 return err; 2697 } 2698 2699 static void adv76xx_unregistered(struct v4l2_subdev *sd) 2700 { 2701 struct adv76xx_state *state = to_state(sd); 2702 2703 cec_unregister_adapter(state->cec_adap); 2704 } 2705 2706 /* ----------------------------------------------------------------------- */ 2707 2708 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = { 2709 .s_ctrl = adv76xx_s_ctrl, 2710 .g_volatile_ctrl = adv76xx_g_volatile_ctrl, 2711 }; 2712 2713 static const struct v4l2_subdev_core_ops adv76xx_core_ops = { 2714 .log_status = adv76xx_log_status, 2715 .interrupt_service_routine = adv76xx_isr, 2716 .subscribe_event = adv76xx_subscribe_event, 2717 .unsubscribe_event = v4l2_event_subdev_unsubscribe, 2718 #ifdef CONFIG_VIDEO_ADV_DEBUG 2719 .g_register = adv76xx_g_register, 2720 .s_register = adv76xx_s_register, 2721 #endif 2722 }; 2723 2724 static const struct v4l2_subdev_video_ops adv76xx_video_ops = { 2725 .s_routing = adv76xx_s_routing, 2726 .g_input_status = adv76xx_g_input_status, 2727 .s_dv_timings = adv76xx_s_dv_timings, 2728 .g_dv_timings = adv76xx_g_dv_timings, 2729 .query_dv_timings = adv76xx_query_dv_timings, 2730 }; 2731 2732 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = { 2733 .enum_mbus_code = adv76xx_enum_mbus_code, 2734 .get_selection = adv76xx_get_selection, 2735 .get_fmt = adv76xx_get_format, 2736 .set_fmt = adv76xx_set_format, 2737 .get_edid = adv76xx_get_edid, 2738 .set_edid = adv76xx_set_edid, 2739 .dv_timings_cap = adv76xx_dv_timings_cap, 2740 .enum_dv_timings = adv76xx_enum_dv_timings, 2741 }; 2742 2743 static const struct v4l2_subdev_ops adv76xx_ops = { 2744 .core = &adv76xx_core_ops, 2745 .video = &adv76xx_video_ops, 2746 .pad = &adv76xx_pad_ops, 2747 }; 2748 2749 static const struct v4l2_subdev_internal_ops adv76xx_int_ops = { 2750 .registered = adv76xx_registered, 2751 .unregistered = adv76xx_unregistered, 2752 }; 2753 2754 /* -------------------------- custom ctrls ---------------------------------- */ 2755 2756 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = { 2757 .ops = &adv76xx_ctrl_ops, 2758 .id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE, 2759 .name = "Analog Sampling Phase", 2760 .type = V4L2_CTRL_TYPE_INTEGER, 2761 .min = 0, 2762 .max = 0x1f, 2763 .step = 1, 2764 .def = 0, 2765 }; 2766 2767 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = { 2768 .ops = &adv76xx_ctrl_ops, 2769 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL, 2770 .name = "Free Running Color, Manual", 2771 .type = V4L2_CTRL_TYPE_BOOLEAN, 2772 .min = false, 2773 .max = true, 2774 .step = 1, 2775 .def = false, 2776 }; 2777 2778 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = { 2779 .ops = &adv76xx_ctrl_ops, 2780 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR, 2781 .name = "Free Running Color", 2782 .type = V4L2_CTRL_TYPE_INTEGER, 2783 .min = 0x0, 2784 .max = 0xffffff, 2785 .step = 0x1, 2786 .def = 0x0, 2787 }; 2788 2789 /* ----------------------------------------------------------------------- */ 2790 2791 struct adv76xx_register_map { 2792 const char *name; 2793 u8 default_addr; 2794 }; 2795 2796 static const struct adv76xx_register_map adv76xx_default_addresses[] = { 2797 [ADV76XX_PAGE_IO] = { "main", 0x4c }, 2798 [ADV7604_PAGE_AVLINK] = { "avlink", 0x42 }, 2799 [ADV76XX_PAGE_CEC] = { "cec", 0x40 }, 2800 [ADV76XX_PAGE_INFOFRAME] = { "infoframe", 0x3e }, 2801 [ADV7604_PAGE_ESDP] = { "esdp", 0x38 }, 2802 [ADV7604_PAGE_DPP] = { "dpp", 0x3c }, 2803 [ADV76XX_PAGE_AFE] = { "afe", 0x26 }, 2804 [ADV76XX_PAGE_REP] = { "rep", 0x32 }, 2805 [ADV76XX_PAGE_EDID] = { "edid", 0x36 }, 2806 [ADV76XX_PAGE_HDMI] = { "hdmi", 0x34 }, 2807 [ADV76XX_PAGE_TEST] = { "test", 0x30 }, 2808 [ADV76XX_PAGE_CP] = { "cp", 0x22 }, 2809 [ADV7604_PAGE_VDP] = { "vdp", 0x24 }, 2810 }; 2811 2812 static int adv76xx_core_init(struct v4l2_subdev *sd) 2813 { 2814 struct adv76xx_state *state = to_state(sd); 2815 const struct adv76xx_chip_info *info = state->info; 2816 struct adv76xx_platform_data *pdata = &state->pdata; 2817 2818 hdmi_write(sd, 0x48, 2819 (pdata->disable_pwrdnb ? 0x80 : 0) | 2820 (pdata->disable_cable_det_rst ? 0x40 : 0)); 2821 2822 disable_input(sd); 2823 2824 if (pdata->default_input >= 0 && 2825 pdata->default_input < state->source_pad) { 2826 state->selected_input = pdata->default_input; 2827 select_input(sd); 2828 enable_input(sd); 2829 } 2830 2831 /* power */ 2832 io_write(sd, 0x0c, 0x42); /* Power up part and power down VDP */ 2833 io_write(sd, 0x0b, 0x44); /* Power down ESDP block */ 2834 cp_write(sd, 0xcf, 0x01); /* Power down macrovision */ 2835 2836 /* HPD */ 2837 if (info->type != ADV7604) { 2838 /* Set manual HPD values to 0 */ 2839 io_write_clr_set(sd, 0x20, 0xc0, 0); 2840 /* 2841 * Set HPA_DELAY to 200 ms and set automatic HPD control 2842 * to: internal EDID is active AND a cable is detected 2843 * AND the manual HPD control is set to 1. 2844 */ 2845 hdmi_write_clr_set(sd, 0x6c, 0xf6, 0x26); 2846 } 2847 2848 /* video format */ 2849 io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3); 2850 io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 | 2851 pdata->insert_av_codes << 2 | 2852 pdata->replicate_av_codes << 1); 2853 adv76xx_setup_format(state); 2854 2855 cp_write(sd, 0x69, 0x30); /* Enable CP CSC */ 2856 2857 /* VS, HS polarities */ 2858 io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 | 2859 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol); 2860 2861 /* Adjust drive strength */ 2862 io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 | 2863 pdata->dr_str_clk << 2 | 2864 pdata->dr_str_sync); 2865 2866 cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */ 2867 cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */ 2868 cp_write(sd, 0xf9, 0x23); /* STDI ch. 1 - LCVS change threshold - 2869 ADI recommended setting [REF_01, c. 2.3.3] */ 2870 cp_write(sd, 0x45, 0x23); /* STDI ch. 2 - LCVS change threshold - 2871 ADI recommended setting [REF_01, c. 2.3.3] */ 2872 cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution 2873 for digital formats */ 2874 2875 /* HDMI audio */ 2876 hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */ 2877 hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */ 2878 hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */ 2879 2880 /* TODO from platform data */ 2881 afe_write(sd, 0xb5, 0x01); /* Setting MCLK to 256Fs */ 2882 2883 if (adv76xx_has_afe(state)) { 2884 afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */ 2885 io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4); 2886 } 2887 2888 /* interrupts */ 2889 io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */ 2890 io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */ 2891 io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */ 2892 io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */ 2893 info->setup_irqs(sd); 2894 2895 return v4l2_ctrl_handler_setup(sd->ctrl_handler); 2896 } 2897 2898 static void adv7604_setup_irqs(struct v4l2_subdev *sd) 2899 { 2900 io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */ 2901 } 2902 2903 static void adv7611_setup_irqs(struct v4l2_subdev *sd) 2904 { 2905 io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */ 2906 } 2907 2908 static void adv7612_setup_irqs(struct v4l2_subdev *sd) 2909 { 2910 io_write(sd, 0x41, 0xd0); /* disable INT2 */ 2911 } 2912 2913 static void adv76xx_unregister_clients(struct adv76xx_state *state) 2914 { 2915 unsigned int i; 2916 2917 for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) 2918 i2c_unregister_device(state->i2c_clients[i]); 2919 } 2920 2921 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd, 2922 unsigned int page) 2923 { 2924 struct i2c_client *client = v4l2_get_subdevdata(sd); 2925 struct adv76xx_state *state = to_state(sd); 2926 struct adv76xx_platform_data *pdata = &state->pdata; 2927 unsigned int io_reg = 0xf2 + page; 2928 struct i2c_client *new_client; 2929 2930 if (pdata && pdata->i2c_addresses[page]) 2931 new_client = i2c_new_dummy_device(client->adapter, 2932 pdata->i2c_addresses[page]); 2933 else 2934 new_client = i2c_new_ancillary_device(client, 2935 adv76xx_default_addresses[page].name, 2936 adv76xx_default_addresses[page].default_addr); 2937 2938 if (!IS_ERR(new_client)) 2939 io_write(sd, io_reg, new_client->addr << 1); 2940 2941 return new_client; 2942 } 2943 2944 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = { 2945 /* reset ADI recommended settings for HDMI: */ 2946 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */ 2947 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */ 2948 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */ 2949 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */ 2950 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */ 2951 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */ 2952 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */ 2953 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */ 2954 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */ 2955 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */ 2956 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */ 2957 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */ 2958 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */ 2959 2960 /* set ADI recommended settings for digitizer */ 2961 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */ 2962 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */ 2963 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */ 2964 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */ 2965 { ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */ 2966 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */ 2967 2968 { ADV76XX_REG_SEQ_TERM, 0 }, 2969 }; 2970 2971 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = { 2972 /* set ADI recommended settings for HDMI: */ 2973 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */ 2974 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */ 2975 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */ 2976 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */ 2977 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */ 2978 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */ 2979 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */ 2980 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */ 2981 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */ 2982 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */ 2983 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */ 2984 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */ 2985 2986 /* reset ADI recommended settings for digitizer */ 2987 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */ 2988 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */ 2989 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */ 2990 2991 { ADV76XX_REG_SEQ_TERM, 0 }, 2992 }; 2993 2994 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = { 2995 /* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */ 2996 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 }, 2997 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 }, 2998 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 }, 2999 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f }, 3000 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 }, 3001 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda }, 3002 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 }, 3003 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 }, 3004 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 }, 3005 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 }, 3006 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e }, 3007 3008 { ADV76XX_REG_SEQ_TERM, 0 }, 3009 }; 3010 3011 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = { 3012 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 }, 3013 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 }, 3014 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 }, 3015 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f }, 3016 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 }, 3017 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda }, 3018 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 }, 3019 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 }, 3020 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 }, 3021 { ADV76XX_REG_SEQ_TERM, 0 }, 3022 }; 3023 3024 static const struct adv76xx_chip_info adv76xx_chip_info[] = { 3025 [ADV7604] = { 3026 .type = ADV7604, 3027 .has_afe = true, 3028 .max_port = ADV7604_PAD_VGA_COMP, 3029 .num_dv_ports = 4, 3030 .edid_enable_reg = 0x77, 3031 .edid_status_reg = 0x7d, 3032 .edid_segment_reg = 0x77, 3033 .edid_segment_mask = 0x10, 3034 .edid_spa_loc_reg = 0x76, 3035 .edid_spa_loc_msb_mask = 0x40, 3036 .edid_spa_port_b_reg = 0x70, 3037 .lcf_reg = 0xb3, 3038 .tdms_lock_mask = 0xe0, 3039 .cable_det_mask = 0x1e, 3040 .fmt_change_digital_mask = 0xc1, 3041 .cp_csc = 0xfc, 3042 .cec_irq_status = 0x4d, 3043 .cec_rx_enable = 0x26, 3044 .cec_rx_enable_mask = 0x01, 3045 .cec_irq_swap = true, 3046 .formats = adv7604_formats, 3047 .nformats = ARRAY_SIZE(adv7604_formats), 3048 .set_termination = adv7604_set_termination, 3049 .setup_irqs = adv7604_setup_irqs, 3050 .read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock, 3051 .read_cable_det = adv7604_read_cable_det, 3052 .recommended_settings = { 3053 [0] = adv7604_recommended_settings_afe, 3054 [1] = adv7604_recommended_settings_hdmi, 3055 }, 3056 .num_recommended_settings = { 3057 [0] = ARRAY_SIZE(adv7604_recommended_settings_afe), 3058 [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi), 3059 }, 3060 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) | 3061 BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) | 3062 BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) | 3063 BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) | 3064 BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) | 3065 BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) | 3066 BIT(ADV7604_PAGE_VDP), 3067 .linewidth_mask = 0xfff, 3068 .field0_height_mask = 0xfff, 3069 .field1_height_mask = 0xfff, 3070 .hfrontporch_mask = 0x3ff, 3071 .hsync_mask = 0x3ff, 3072 .hbackporch_mask = 0x3ff, 3073 .field0_vfrontporch_mask = 0x1fff, 3074 .field0_vsync_mask = 0x1fff, 3075 .field0_vbackporch_mask = 0x1fff, 3076 .field1_vfrontporch_mask = 0x1fff, 3077 .field1_vsync_mask = 0x1fff, 3078 .field1_vbackporch_mask = 0x1fff, 3079 }, 3080 [ADV7611] = { 3081 .type = ADV7611, 3082 .has_afe = false, 3083 .max_port = ADV76XX_PAD_HDMI_PORT_A, 3084 .num_dv_ports = 1, 3085 .edid_enable_reg = 0x74, 3086 .edid_status_reg = 0x76, 3087 .edid_segment_reg = 0x7a, 3088 .edid_segment_mask = 0x01, 3089 .lcf_reg = 0xa3, 3090 .tdms_lock_mask = 0x43, 3091 .cable_det_mask = 0x01, 3092 .fmt_change_digital_mask = 0x03, 3093 .cp_csc = 0xf4, 3094 .cec_irq_status = 0x93, 3095 .cec_rx_enable = 0x2c, 3096 .cec_rx_enable_mask = 0x02, 3097 .formats = adv7611_formats, 3098 .nformats = ARRAY_SIZE(adv7611_formats), 3099 .set_termination = adv7611_set_termination, 3100 .setup_irqs = adv7611_setup_irqs, 3101 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock, 3102 .read_cable_det = adv7611_read_cable_det, 3103 .recommended_settings = { 3104 [1] = adv7611_recommended_settings_hdmi, 3105 }, 3106 .num_recommended_settings = { 3107 [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi), 3108 }, 3109 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) | 3110 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) | 3111 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) | 3112 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP), 3113 .linewidth_mask = 0x1fff, 3114 .field0_height_mask = 0x1fff, 3115 .field1_height_mask = 0x1fff, 3116 .hfrontporch_mask = 0x1fff, 3117 .hsync_mask = 0x1fff, 3118 .hbackporch_mask = 0x1fff, 3119 .field0_vfrontporch_mask = 0x3fff, 3120 .field0_vsync_mask = 0x3fff, 3121 .field0_vbackporch_mask = 0x3fff, 3122 .field1_vfrontporch_mask = 0x3fff, 3123 .field1_vsync_mask = 0x3fff, 3124 .field1_vbackporch_mask = 0x3fff, 3125 }, 3126 [ADV7612] = { 3127 .type = ADV7612, 3128 .has_afe = false, 3129 .max_port = ADV76XX_PAD_HDMI_PORT_A, /* B not supported */ 3130 .num_dv_ports = 1, /* normally 2 */ 3131 .edid_enable_reg = 0x74, 3132 .edid_status_reg = 0x76, 3133 .edid_segment_reg = 0x7a, 3134 .edid_segment_mask = 0x01, 3135 .edid_spa_loc_reg = 0x70, 3136 .edid_spa_loc_msb_mask = 0x01, 3137 .edid_spa_port_b_reg = 0x52, 3138 .lcf_reg = 0xa3, 3139 .tdms_lock_mask = 0x43, 3140 .cable_det_mask = 0x01, 3141 .fmt_change_digital_mask = 0x03, 3142 .cp_csc = 0xf4, 3143 .cec_irq_status = 0x93, 3144 .cec_rx_enable = 0x2c, 3145 .cec_rx_enable_mask = 0x02, 3146 .formats = adv7612_formats, 3147 .nformats = ARRAY_SIZE(adv7612_formats), 3148 .set_termination = adv7611_set_termination, 3149 .setup_irqs = adv7612_setup_irqs, 3150 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock, 3151 .read_cable_det = adv7612_read_cable_det, 3152 .recommended_settings = { 3153 [1] = adv7612_recommended_settings_hdmi, 3154 }, 3155 .num_recommended_settings = { 3156 [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi), 3157 }, 3158 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) | 3159 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) | 3160 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) | 3161 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP), 3162 .linewidth_mask = 0x1fff, 3163 .field0_height_mask = 0x1fff, 3164 .field1_height_mask = 0x1fff, 3165 .hfrontporch_mask = 0x1fff, 3166 .hsync_mask = 0x1fff, 3167 .hbackporch_mask = 0x1fff, 3168 .field0_vfrontporch_mask = 0x3fff, 3169 .field0_vsync_mask = 0x3fff, 3170 .field0_vbackporch_mask = 0x3fff, 3171 .field1_vfrontporch_mask = 0x3fff, 3172 .field1_vsync_mask = 0x3fff, 3173 .field1_vbackporch_mask = 0x3fff, 3174 }, 3175 }; 3176 3177 static const struct i2c_device_id adv76xx_i2c_id[] = { 3178 { "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] }, 3179 { "adv7610", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] }, 3180 { "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] }, 3181 { "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] }, 3182 { } 3183 }; 3184 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id); 3185 3186 static const struct of_device_id adv76xx_of_id[] __maybe_unused = { 3187 { .compatible = "adi,adv7610", .data = &adv76xx_chip_info[ADV7611] }, 3188 { .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] }, 3189 { .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] }, 3190 { } 3191 }; 3192 MODULE_DEVICE_TABLE(of, adv76xx_of_id); 3193 3194 static int adv76xx_parse_dt(struct adv76xx_state *state) 3195 { 3196 struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 }; 3197 struct device_node *endpoint; 3198 struct device_node *np; 3199 unsigned int flags; 3200 int ret; 3201 u32 v; 3202 3203 np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node; 3204 3205 /* Parse the endpoint. */ 3206 endpoint = of_graph_get_next_endpoint(np, NULL); 3207 if (!endpoint) 3208 return -EINVAL; 3209 3210 ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), &bus_cfg); 3211 of_node_put(endpoint); 3212 if (ret) 3213 return ret; 3214 3215 if (!of_property_read_u32(np, "default-input", &v)) 3216 state->pdata.default_input = v; 3217 else 3218 state->pdata.default_input = -1; 3219 3220 flags = bus_cfg.bus.parallel.flags; 3221 3222 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH) 3223 state->pdata.inv_hs_pol = 1; 3224 3225 if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH) 3226 state->pdata.inv_vs_pol = 1; 3227 3228 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING) 3229 state->pdata.inv_llc_pol = 1; 3230 3231 if (bus_cfg.bus_type == V4L2_MBUS_BT656) 3232 state->pdata.insert_av_codes = 1; 3233 3234 /* Disable the interrupt for now as no DT-based board uses it. */ 3235 state->pdata.int1_config = ADV76XX_INT1_CONFIG_ACTIVE_HIGH; 3236 3237 /* Hardcode the remaining platform data fields. */ 3238 state->pdata.disable_pwrdnb = 0; 3239 state->pdata.disable_cable_det_rst = 0; 3240 state->pdata.blank_data = 1; 3241 state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0; 3242 state->pdata.bus_order = ADV7604_BUS_ORDER_RGB; 3243 state->pdata.dr_str_data = ADV76XX_DR_STR_MEDIUM_HIGH; 3244 state->pdata.dr_str_clk = ADV76XX_DR_STR_MEDIUM_HIGH; 3245 state->pdata.dr_str_sync = ADV76XX_DR_STR_MEDIUM_HIGH; 3246 3247 return 0; 3248 } 3249 3250 static const struct regmap_config adv76xx_regmap_cnf[] = { 3251 { 3252 .name = "io", 3253 .reg_bits = 8, 3254 .val_bits = 8, 3255 3256 .max_register = 0xff, 3257 .cache_type = REGCACHE_NONE, 3258 }, 3259 { 3260 .name = "avlink", 3261 .reg_bits = 8, 3262 .val_bits = 8, 3263 3264 .max_register = 0xff, 3265 .cache_type = REGCACHE_NONE, 3266 }, 3267 { 3268 .name = "cec", 3269 .reg_bits = 8, 3270 .val_bits = 8, 3271 3272 .max_register = 0xff, 3273 .cache_type = REGCACHE_NONE, 3274 }, 3275 { 3276 .name = "infoframe", 3277 .reg_bits = 8, 3278 .val_bits = 8, 3279 3280 .max_register = 0xff, 3281 .cache_type = REGCACHE_NONE, 3282 }, 3283 { 3284 .name = "esdp", 3285 .reg_bits = 8, 3286 .val_bits = 8, 3287 3288 .max_register = 0xff, 3289 .cache_type = REGCACHE_NONE, 3290 }, 3291 { 3292 .name = "epp", 3293 .reg_bits = 8, 3294 .val_bits = 8, 3295 3296 .max_register = 0xff, 3297 .cache_type = REGCACHE_NONE, 3298 }, 3299 { 3300 .name = "afe", 3301 .reg_bits = 8, 3302 .val_bits = 8, 3303 3304 .max_register = 0xff, 3305 .cache_type = REGCACHE_NONE, 3306 }, 3307 { 3308 .name = "rep", 3309 .reg_bits = 8, 3310 .val_bits = 8, 3311 3312 .max_register = 0xff, 3313 .cache_type = REGCACHE_NONE, 3314 }, 3315 { 3316 .name = "edid", 3317 .reg_bits = 8, 3318 .val_bits = 8, 3319 3320 .max_register = 0xff, 3321 .cache_type = REGCACHE_NONE, 3322 }, 3323 3324 { 3325 .name = "hdmi", 3326 .reg_bits = 8, 3327 .val_bits = 8, 3328 3329 .max_register = 0xff, 3330 .cache_type = REGCACHE_NONE, 3331 }, 3332 { 3333 .name = "test", 3334 .reg_bits = 8, 3335 .val_bits = 8, 3336 3337 .max_register = 0xff, 3338 .cache_type = REGCACHE_NONE, 3339 }, 3340 { 3341 .name = "cp", 3342 .reg_bits = 8, 3343 .val_bits = 8, 3344 3345 .max_register = 0xff, 3346 .cache_type = REGCACHE_NONE, 3347 }, 3348 { 3349 .name = "vdp", 3350 .reg_bits = 8, 3351 .val_bits = 8, 3352 3353 .max_register = 0xff, 3354 .cache_type = REGCACHE_NONE, 3355 }, 3356 }; 3357 3358 static int configure_regmap(struct adv76xx_state *state, int region) 3359 { 3360 int err; 3361 3362 if (!state->i2c_clients[region]) 3363 return -ENODEV; 3364 3365 state->regmap[region] = 3366 devm_regmap_init_i2c(state->i2c_clients[region], 3367 &adv76xx_regmap_cnf[region]); 3368 3369 if (IS_ERR(state->regmap[region])) { 3370 err = PTR_ERR(state->regmap[region]); 3371 v4l_err(state->i2c_clients[region], 3372 "Error initializing regmap %d with error %d\n", 3373 region, err); 3374 return -EINVAL; 3375 } 3376 3377 return 0; 3378 } 3379 3380 static int configure_regmaps(struct adv76xx_state *state) 3381 { 3382 int i, err; 3383 3384 for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) { 3385 err = configure_regmap(state, i); 3386 if (err && (err != -ENODEV)) 3387 return err; 3388 } 3389 return 0; 3390 } 3391 3392 static void adv76xx_reset(struct adv76xx_state *state) 3393 { 3394 if (state->reset_gpio) { 3395 /* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */ 3396 gpiod_set_value_cansleep(state->reset_gpio, 0); 3397 usleep_range(5000, 10000); 3398 gpiod_set_value_cansleep(state->reset_gpio, 1); 3399 /* It is recommended to wait 5 ms after the low pulse before */ 3400 /* an I2C write is performed to the ADV76XX. */ 3401 usleep_range(5000, 10000); 3402 } 3403 } 3404 3405 static int adv76xx_probe(struct i2c_client *client, 3406 const struct i2c_device_id *id) 3407 { 3408 static const struct v4l2_dv_timings cea640x480 = 3409 V4L2_DV_BT_CEA_640X480P59_94; 3410 struct adv76xx_state *state; 3411 struct v4l2_ctrl_handler *hdl; 3412 struct v4l2_ctrl *ctrl; 3413 struct v4l2_subdev *sd; 3414 unsigned int i; 3415 unsigned int val, val2; 3416 int err; 3417 3418 /* Check if the adapter supports the needed features */ 3419 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 3420 return -EIO; 3421 v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n", 3422 client->addr << 1); 3423 3424 state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL); 3425 if (!state) 3426 return -ENOMEM; 3427 3428 state->i2c_clients[ADV76XX_PAGE_IO] = client; 3429 3430 /* initialize variables */ 3431 state->restart_stdi_once = true; 3432 state->selected_input = ~0; 3433 3434 if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) { 3435 const struct of_device_id *oid; 3436 3437 oid = of_match_node(adv76xx_of_id, client->dev.of_node); 3438 state->info = oid->data; 3439 3440 err = adv76xx_parse_dt(state); 3441 if (err < 0) { 3442 v4l_err(client, "DT parsing error\n"); 3443 return err; 3444 } 3445 } else if (client->dev.platform_data) { 3446 struct adv76xx_platform_data *pdata = client->dev.platform_data; 3447 3448 state->info = (const struct adv76xx_chip_info *)id->driver_data; 3449 state->pdata = *pdata; 3450 } else { 3451 v4l_err(client, "No platform data!\n"); 3452 return -ENODEV; 3453 } 3454 3455 /* Request GPIOs. */ 3456 for (i = 0; i < state->info->num_dv_ports; ++i) { 3457 state->hpd_gpio[i] = 3458 devm_gpiod_get_index_optional(&client->dev, "hpd", i, 3459 GPIOD_OUT_LOW); 3460 if (IS_ERR(state->hpd_gpio[i])) 3461 return PTR_ERR(state->hpd_gpio[i]); 3462 3463 if (state->hpd_gpio[i]) 3464 v4l_info(client, "Handling HPD %u GPIO\n", i); 3465 } 3466 state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset", 3467 GPIOD_OUT_HIGH); 3468 if (IS_ERR(state->reset_gpio)) 3469 return PTR_ERR(state->reset_gpio); 3470 3471 adv76xx_reset(state); 3472 3473 state->timings = cea640x480; 3474 state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8); 3475 3476 sd = &state->sd; 3477 v4l2_i2c_subdev_init(sd, client, &adv76xx_ops); 3478 snprintf(sd->name, sizeof(sd->name), "%s %d-%04x", 3479 id->name, i2c_adapter_id(client->adapter), 3480 client->addr); 3481 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS; 3482 sd->internal_ops = &adv76xx_int_ops; 3483 3484 /* Configure IO Regmap region */ 3485 err = configure_regmap(state, ADV76XX_PAGE_IO); 3486 3487 if (err) { 3488 v4l2_err(sd, "Error configuring IO regmap region\n"); 3489 return -ENODEV; 3490 } 3491 3492 /* 3493 * Verify that the chip is present. On ADV7604 the RD_INFO register only 3494 * identifies the revision, while on ADV7611 it identifies the model as 3495 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611. 3496 */ 3497 switch (state->info->type) { 3498 case ADV7604: 3499 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val); 3500 if (err) { 3501 v4l2_err(sd, "Error %d reading IO Regmap\n", err); 3502 return -ENODEV; 3503 } 3504 if (val != 0x68) { 3505 v4l2_err(sd, "not an ADV7604 on address 0x%x\n", 3506 client->addr << 1); 3507 return -ENODEV; 3508 } 3509 break; 3510 case ADV7611: 3511 case ADV7612: 3512 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 3513 0xea, 3514 &val); 3515 if (err) { 3516 v4l2_err(sd, "Error %d reading IO Regmap\n", err); 3517 return -ENODEV; 3518 } 3519 val2 = val << 8; 3520 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 3521 0xeb, 3522 &val); 3523 if (err) { 3524 v4l2_err(sd, "Error %d reading IO Regmap\n", err); 3525 return -ENODEV; 3526 } 3527 val |= val2; 3528 if ((state->info->type == ADV7611 && val != 0x2051) || 3529 (state->info->type == ADV7612 && val != 0x2041)) { 3530 v4l2_err(sd, "not an %s on address 0x%x\n", 3531 state->info->type == ADV7611 ? "ADV7610/11" : "ADV7612", 3532 client->addr << 1); 3533 return -ENODEV; 3534 } 3535 break; 3536 } 3537 3538 /* control handlers */ 3539 hdl = &state->hdl; 3540 v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8); 3541 3542 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3543 V4L2_CID_BRIGHTNESS, -128, 127, 1, 0); 3544 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3545 V4L2_CID_CONTRAST, 0, 255, 1, 128); 3546 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3547 V4L2_CID_SATURATION, 0, 255, 1, 128); 3548 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3549 V4L2_CID_HUE, 0, 128, 1, 0); 3550 ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops, 3551 V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC, 3552 0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC); 3553 if (ctrl) 3554 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE; 3555 3556 state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL, 3557 V4L2_CID_DV_RX_POWER_PRESENT, 0, 3558 (1 << state->info->num_dv_ports) - 1, 0, 0); 3559 state->rgb_quantization_range_ctrl = 3560 v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops, 3561 V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 3562 0, V4L2_DV_RGB_RANGE_AUTO); 3563 3564 /* custom controls */ 3565 if (adv76xx_has_afe(state)) 3566 state->analog_sampling_phase_ctrl = 3567 v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL); 3568 state->free_run_color_manual_ctrl = 3569 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL); 3570 state->free_run_color_ctrl = 3571 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL); 3572 3573 sd->ctrl_handler = hdl; 3574 if (hdl->error) { 3575 err = hdl->error; 3576 goto err_hdl; 3577 } 3578 if (adv76xx_s_detect_tx_5v_ctrl(sd)) { 3579 err = -ENODEV; 3580 goto err_hdl; 3581 } 3582 3583 for (i = 1; i < ADV76XX_PAGE_MAX; ++i) { 3584 struct i2c_client *dummy_client; 3585 3586 if (!(BIT(i) & state->info->page_mask)) 3587 continue; 3588 3589 dummy_client = adv76xx_dummy_client(sd, i); 3590 if (IS_ERR(dummy_client)) { 3591 err = PTR_ERR(dummy_client); 3592 v4l2_err(sd, "failed to create i2c client %u\n", i); 3593 goto err_i2c; 3594 } 3595 3596 state->i2c_clients[i] = dummy_client; 3597 } 3598 3599 INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug, 3600 adv76xx_delayed_work_enable_hotplug); 3601 3602 state->source_pad = state->info->num_dv_ports 3603 + (state->info->has_afe ? 2 : 0); 3604 for (i = 0; i < state->source_pad; ++i) 3605 state->pads[i].flags = MEDIA_PAD_FL_SINK; 3606 state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE; 3607 sd->entity.function = MEDIA_ENT_F_DV_DECODER; 3608 3609 err = media_entity_pads_init(&sd->entity, state->source_pad + 1, 3610 state->pads); 3611 if (err) 3612 goto err_work_queues; 3613 3614 /* Configure regmaps */ 3615 err = configure_regmaps(state); 3616 if (err) 3617 goto err_entity; 3618 3619 err = adv76xx_core_init(sd); 3620 if (err) 3621 goto err_entity; 3622 3623 if (client->irq) { 3624 err = devm_request_threaded_irq(&client->dev, 3625 client->irq, 3626 NULL, adv76xx_irq_handler, 3627 IRQF_TRIGGER_HIGH | IRQF_ONESHOT, 3628 client->name, state); 3629 if (err) 3630 goto err_entity; 3631 } 3632 3633 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC) 3634 state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops, 3635 state, dev_name(&client->dev), 3636 CEC_CAP_DEFAULTS, ADV76XX_MAX_ADDRS); 3637 err = PTR_ERR_OR_ZERO(state->cec_adap); 3638 if (err) 3639 goto err_entity; 3640 #endif 3641 3642 v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name, 3643 client->addr << 1, client->adapter->name); 3644 3645 err = v4l2_async_register_subdev(sd); 3646 if (err) 3647 goto err_entity; 3648 3649 return 0; 3650 3651 err_entity: 3652 media_entity_cleanup(&sd->entity); 3653 err_work_queues: 3654 cancel_delayed_work(&state->delayed_work_enable_hotplug); 3655 err_i2c: 3656 adv76xx_unregister_clients(state); 3657 err_hdl: 3658 v4l2_ctrl_handler_free(hdl); 3659 return err; 3660 } 3661 3662 /* ----------------------------------------------------------------------- */ 3663 3664 static int adv76xx_remove(struct i2c_client *client) 3665 { 3666 struct v4l2_subdev *sd = i2c_get_clientdata(client); 3667 struct adv76xx_state *state = to_state(sd); 3668 3669 /* disable interrupts */ 3670 io_write(sd, 0x40, 0); 3671 io_write(sd, 0x41, 0); 3672 io_write(sd, 0x46, 0); 3673 io_write(sd, 0x6e, 0); 3674 io_write(sd, 0x73, 0); 3675 3676 cancel_delayed_work_sync(&state->delayed_work_enable_hotplug); 3677 v4l2_async_unregister_subdev(sd); 3678 media_entity_cleanup(&sd->entity); 3679 adv76xx_unregister_clients(to_state(sd)); 3680 v4l2_ctrl_handler_free(sd->ctrl_handler); 3681 return 0; 3682 } 3683 3684 /* ----------------------------------------------------------------------- */ 3685 3686 static struct i2c_driver adv76xx_driver = { 3687 .driver = { 3688 .name = "adv7604", 3689 .of_match_table = of_match_ptr(adv76xx_of_id), 3690 }, 3691 .probe = adv76xx_probe, 3692 .remove = adv76xx_remove, 3693 .id_table = adv76xx_i2c_id, 3694 }; 3695 3696 module_i2c_driver(adv76xx_driver); 3697