1 /* 2 * adv7604 - Analog Devices ADV7604 video decoder driver 3 * 4 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved. 5 * 6 * This program is free software; you may redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; version 2 of the License. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 17 * SOFTWARE. 18 * 19 */ 20 21 /* 22 * References (c = chapter, p = page): 23 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations, 24 * Revision 2.5, June 2010 25 * REF_02 - Analog devices, Register map documentation, Documentation of 26 * the register maps, Software manual, Rev. F, June 2010 27 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010 28 */ 29 30 #include <linux/delay.h> 31 #include <linux/gpio/consumer.h> 32 #include <linux/hdmi.h> 33 #include <linux/i2c.h> 34 #include <linux/kernel.h> 35 #include <linux/module.h> 36 #include <linux/slab.h> 37 #include <linux/v4l2-dv-timings.h> 38 #include <linux/videodev2.h> 39 #include <linux/workqueue.h> 40 #include <linux/regmap.h> 41 42 #include <media/i2c/adv7604.h> 43 #include <media/cec.h> 44 #include <media/v4l2-ctrls.h> 45 #include <media/v4l2-device.h> 46 #include <media/v4l2-event.h> 47 #include <media/v4l2-dv-timings.h> 48 #include <media/v4l2-of.h> 49 50 static int debug; 51 module_param(debug, int, 0644); 52 MODULE_PARM_DESC(debug, "debug level (0-2)"); 53 54 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver"); 55 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>"); 56 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>"); 57 MODULE_LICENSE("GPL"); 58 59 /* ADV7604 system clock frequency */ 60 #define ADV76XX_FSC (28636360) 61 62 #define ADV76XX_RGB_OUT (1 << 1) 63 64 #define ADV76XX_OP_FORMAT_SEL_8BIT (0 << 0) 65 #define ADV7604_OP_FORMAT_SEL_10BIT (1 << 0) 66 #define ADV76XX_OP_FORMAT_SEL_12BIT (2 << 0) 67 68 #define ADV76XX_OP_MODE_SEL_SDR_422 (0 << 5) 69 #define ADV7604_OP_MODE_SEL_DDR_422 (1 << 5) 70 #define ADV76XX_OP_MODE_SEL_SDR_444 (2 << 5) 71 #define ADV7604_OP_MODE_SEL_DDR_444 (3 << 5) 72 #define ADV76XX_OP_MODE_SEL_SDR_422_2X (4 << 5) 73 #define ADV7604_OP_MODE_SEL_ADI_CM (5 << 5) 74 75 #define ADV76XX_OP_CH_SEL_GBR (0 << 5) 76 #define ADV76XX_OP_CH_SEL_GRB (1 << 5) 77 #define ADV76XX_OP_CH_SEL_BGR (2 << 5) 78 #define ADV76XX_OP_CH_SEL_RGB (3 << 5) 79 #define ADV76XX_OP_CH_SEL_BRG (4 << 5) 80 #define ADV76XX_OP_CH_SEL_RBG (5 << 5) 81 82 #define ADV76XX_OP_SWAP_CB_CR (1 << 0) 83 84 #define ADV76XX_MAX_ADDRS (3) 85 86 enum adv76xx_type { 87 ADV7604, 88 ADV7611, 89 ADV7612, 90 }; 91 92 struct adv76xx_reg_seq { 93 unsigned int reg; 94 u8 val; 95 }; 96 97 struct adv76xx_format_info { 98 u32 code; 99 u8 op_ch_sel; 100 bool rgb_out; 101 bool swap_cb_cr; 102 u8 op_format_sel; 103 }; 104 105 struct adv76xx_cfg_read_infoframe { 106 const char *desc; 107 u8 present_mask; 108 u8 head_addr; 109 u8 payload_addr; 110 }; 111 112 struct adv76xx_chip_info { 113 enum adv76xx_type type; 114 115 bool has_afe; 116 unsigned int max_port; 117 unsigned int num_dv_ports; 118 119 unsigned int edid_enable_reg; 120 unsigned int edid_status_reg; 121 unsigned int lcf_reg; 122 123 unsigned int cable_det_mask; 124 unsigned int tdms_lock_mask; 125 unsigned int fmt_change_digital_mask; 126 unsigned int cp_csc; 127 128 const struct adv76xx_format_info *formats; 129 unsigned int nformats; 130 131 void (*set_termination)(struct v4l2_subdev *sd, bool enable); 132 void (*setup_irqs)(struct v4l2_subdev *sd); 133 unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd); 134 unsigned int (*read_cable_det)(struct v4l2_subdev *sd); 135 136 /* 0 = AFE, 1 = HDMI */ 137 const struct adv76xx_reg_seq *recommended_settings[2]; 138 unsigned int num_recommended_settings[2]; 139 140 unsigned long page_mask; 141 142 /* Masks for timings */ 143 unsigned int linewidth_mask; 144 unsigned int field0_height_mask; 145 unsigned int field1_height_mask; 146 unsigned int hfrontporch_mask; 147 unsigned int hsync_mask; 148 unsigned int hbackporch_mask; 149 unsigned int field0_vfrontporch_mask; 150 unsigned int field1_vfrontporch_mask; 151 unsigned int field0_vsync_mask; 152 unsigned int field1_vsync_mask; 153 unsigned int field0_vbackporch_mask; 154 unsigned int field1_vbackporch_mask; 155 }; 156 157 /* 158 ********************************************************************** 159 * 160 * Arrays with configuration parameters for the ADV7604 161 * 162 ********************************************************************** 163 */ 164 165 struct adv76xx_state { 166 const struct adv76xx_chip_info *info; 167 struct adv76xx_platform_data pdata; 168 169 struct gpio_desc *hpd_gpio[4]; 170 struct gpio_desc *reset_gpio; 171 172 struct v4l2_subdev sd; 173 struct media_pad pads[ADV76XX_PAD_MAX]; 174 unsigned int source_pad; 175 176 struct v4l2_ctrl_handler hdl; 177 178 enum adv76xx_pad selected_input; 179 180 struct v4l2_dv_timings timings; 181 const struct adv76xx_format_info *format; 182 183 struct { 184 u8 edid[256]; 185 u32 present; 186 unsigned blocks; 187 } edid; 188 u16 spa_port_a[2]; 189 struct v4l2_fract aspect_ratio; 190 u32 rgb_quantization_range; 191 struct delayed_work delayed_work_enable_hotplug; 192 bool restart_stdi_once; 193 194 /* CEC */ 195 struct cec_adapter *cec_adap; 196 u8 cec_addr[ADV76XX_MAX_ADDRS]; 197 u8 cec_valid_addrs; 198 bool cec_enabled_adap; 199 200 /* i2c clients */ 201 struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX]; 202 203 /* Regmaps */ 204 struct regmap *regmap[ADV76XX_PAGE_MAX]; 205 206 /* controls */ 207 struct v4l2_ctrl *detect_tx_5v_ctrl; 208 struct v4l2_ctrl *analog_sampling_phase_ctrl; 209 struct v4l2_ctrl *free_run_color_manual_ctrl; 210 struct v4l2_ctrl *free_run_color_ctrl; 211 struct v4l2_ctrl *rgb_quantization_range_ctrl; 212 }; 213 214 static bool adv76xx_has_afe(struct adv76xx_state *state) 215 { 216 return state->info->has_afe; 217 } 218 219 /* Unsupported timings. This device cannot support 720p30. */ 220 static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = { 221 V4L2_DV_BT_CEA_1280X720P30, 222 { } 223 }; 224 225 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl) 226 { 227 int i; 228 229 for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++) 230 if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false)) 231 return false; 232 return true; 233 } 234 235 struct adv76xx_video_standards { 236 struct v4l2_dv_timings timings; 237 u8 vid_std; 238 u8 v_freq; 239 }; 240 241 /* sorted by number of lines */ 242 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = { 243 /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */ 244 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 }, 245 { V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 }, 246 { V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 }, 247 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 }, 248 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 }, 249 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 }, 250 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 }, 251 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 }, 252 /* TODO add 1920x1080P60_RB (CVT timing) */ 253 { }, 254 }; 255 256 /* sorted by number of lines */ 257 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = { 258 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 }, 259 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 }, 260 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 }, 261 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 }, 262 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 }, 263 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 }, 264 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 }, 265 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 }, 266 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 }, 267 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 }, 268 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 }, 269 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 }, 270 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 }, 271 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 }, 272 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 }, 273 { V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 }, 274 { V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 }, 275 { V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 }, 276 { V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 }, 277 { V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */ 278 /* TODO add 1600X1200P60_RB (not a DMT timing) */ 279 { V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 }, 280 { V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */ 281 { }, 282 }; 283 284 /* sorted by number of lines */ 285 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = { 286 { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, 287 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 }, 288 { V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 }, 289 { V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 }, 290 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 }, 291 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 }, 292 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 }, 293 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 }, 294 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 }, 295 { }, 296 }; 297 298 /* sorted by number of lines */ 299 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = { 300 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 }, 301 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 }, 302 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 }, 303 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 }, 304 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 }, 305 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 }, 306 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 }, 307 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 }, 308 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 }, 309 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 }, 310 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 }, 311 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 }, 312 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 }, 313 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 }, 314 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 }, 315 { }, 316 }; 317 318 static const struct v4l2_event adv76xx_ev_fmt = { 319 .type = V4L2_EVENT_SOURCE_CHANGE, 320 .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION, 321 }; 322 323 /* ----------------------------------------------------------------------- */ 324 325 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd) 326 { 327 return container_of(sd, struct adv76xx_state, sd); 328 } 329 330 static inline unsigned htotal(const struct v4l2_bt_timings *t) 331 { 332 return V4L2_DV_BT_FRAME_WIDTH(t); 333 } 334 335 static inline unsigned vtotal(const struct v4l2_bt_timings *t) 336 { 337 return V4L2_DV_BT_FRAME_HEIGHT(t); 338 } 339 340 /* ----------------------------------------------------------------------- */ 341 342 static int adv76xx_read_check(struct adv76xx_state *state, 343 int client_page, u8 reg) 344 { 345 struct i2c_client *client = state->i2c_clients[client_page]; 346 int err; 347 unsigned int val; 348 349 err = regmap_read(state->regmap[client_page], reg, &val); 350 351 if (err) { 352 v4l_err(client, "error reading %02x, %02x\n", 353 client->addr, reg); 354 return err; 355 } 356 return val; 357 } 358 359 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX 360 * size to one or more registers. 361 * 362 * A value of zero will be returned on success, a negative errno will 363 * be returned in error cases. 364 */ 365 static int adv76xx_write_block(struct adv76xx_state *state, int client_page, 366 unsigned int init_reg, const void *val, 367 size_t val_len) 368 { 369 struct regmap *regmap = state->regmap[client_page]; 370 371 if (val_len > I2C_SMBUS_BLOCK_MAX) 372 val_len = I2C_SMBUS_BLOCK_MAX; 373 374 return regmap_raw_write(regmap, init_reg, val, val_len); 375 } 376 377 /* ----------------------------------------------------------------------- */ 378 379 static inline int io_read(struct v4l2_subdev *sd, u8 reg) 380 { 381 struct adv76xx_state *state = to_state(sd); 382 383 return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg); 384 } 385 386 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val) 387 { 388 struct adv76xx_state *state = to_state(sd); 389 390 return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val); 391 } 392 393 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, 394 u8 val) 395 { 396 return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val); 397 } 398 399 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg) 400 { 401 struct adv76xx_state *state = to_state(sd); 402 403 return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg); 404 } 405 406 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val) 407 { 408 struct adv76xx_state *state = to_state(sd); 409 410 return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val); 411 } 412 413 static inline int cec_read(struct v4l2_subdev *sd, u8 reg) 414 { 415 struct adv76xx_state *state = to_state(sd); 416 417 return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg); 418 } 419 420 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val) 421 { 422 struct adv76xx_state *state = to_state(sd); 423 424 return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val); 425 } 426 427 static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, 428 u8 val) 429 { 430 return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val); 431 } 432 433 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg) 434 { 435 struct adv76xx_state *state = to_state(sd); 436 437 return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg); 438 } 439 440 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val) 441 { 442 struct adv76xx_state *state = to_state(sd); 443 444 return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val); 445 } 446 447 static inline int afe_read(struct v4l2_subdev *sd, u8 reg) 448 { 449 struct adv76xx_state *state = to_state(sd); 450 451 return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg); 452 } 453 454 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val) 455 { 456 struct adv76xx_state *state = to_state(sd); 457 458 return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val); 459 } 460 461 static inline int rep_read(struct v4l2_subdev *sd, u8 reg) 462 { 463 struct adv76xx_state *state = to_state(sd); 464 465 return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg); 466 } 467 468 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val) 469 { 470 struct adv76xx_state *state = to_state(sd); 471 472 return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val); 473 } 474 475 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 476 { 477 return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val); 478 } 479 480 static inline int edid_read(struct v4l2_subdev *sd, u8 reg) 481 { 482 struct adv76xx_state *state = to_state(sd); 483 484 return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg); 485 } 486 487 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val) 488 { 489 struct adv76xx_state *state = to_state(sd); 490 491 return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val); 492 } 493 494 static inline int edid_write_block(struct v4l2_subdev *sd, 495 unsigned int total_len, const u8 *val) 496 { 497 struct adv76xx_state *state = to_state(sd); 498 int err = 0; 499 int i = 0; 500 int len = 0; 501 502 v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n", 503 __func__, total_len); 504 505 while (!err && i < total_len) { 506 len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ? 507 I2C_SMBUS_BLOCK_MAX : 508 (total_len - i); 509 510 err = adv76xx_write_block(state, ADV76XX_PAGE_EDID, 511 i, val + i, len); 512 i += len; 513 } 514 515 return err; 516 } 517 518 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd) 519 { 520 unsigned int i; 521 522 for (i = 0; i < state->info->num_dv_ports; ++i) 523 gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i)); 524 525 v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd); 526 } 527 528 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work) 529 { 530 struct delayed_work *dwork = to_delayed_work(work); 531 struct adv76xx_state *state = container_of(dwork, struct adv76xx_state, 532 delayed_work_enable_hotplug); 533 struct v4l2_subdev *sd = &state->sd; 534 535 v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__); 536 537 adv76xx_set_hpd(state, state->edid.present); 538 } 539 540 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg) 541 { 542 struct adv76xx_state *state = to_state(sd); 543 544 return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg); 545 } 546 547 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask) 548 { 549 return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask; 550 } 551 552 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val) 553 { 554 struct adv76xx_state *state = to_state(sd); 555 556 return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val); 557 } 558 559 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 560 { 561 return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val); 562 } 563 564 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val) 565 { 566 struct adv76xx_state *state = to_state(sd); 567 568 return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val); 569 } 570 571 static inline int cp_read(struct v4l2_subdev *sd, u8 reg) 572 { 573 struct adv76xx_state *state = to_state(sd); 574 575 return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg); 576 } 577 578 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask) 579 { 580 return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask; 581 } 582 583 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val) 584 { 585 struct adv76xx_state *state = to_state(sd); 586 587 return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val); 588 } 589 590 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 591 { 592 return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val); 593 } 594 595 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg) 596 { 597 struct adv76xx_state *state = to_state(sd); 598 599 return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg); 600 } 601 602 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val) 603 { 604 struct adv76xx_state *state = to_state(sd); 605 606 return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val); 607 } 608 609 #define ADV76XX_REG(page, offset) (((page) << 8) | (offset)) 610 #define ADV76XX_REG_SEQ_TERM 0xffff 611 612 #ifdef CONFIG_VIDEO_ADV_DEBUG 613 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg) 614 { 615 struct adv76xx_state *state = to_state(sd); 616 unsigned int page = reg >> 8; 617 unsigned int val; 618 int err; 619 620 if (!(BIT(page) & state->info->page_mask)) 621 return -EINVAL; 622 623 reg &= 0xff; 624 err = regmap_read(state->regmap[page], reg, &val); 625 626 return err ? err : val; 627 } 628 #endif 629 630 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val) 631 { 632 struct adv76xx_state *state = to_state(sd); 633 unsigned int page = reg >> 8; 634 635 if (!(BIT(page) & state->info->page_mask)) 636 return -EINVAL; 637 638 reg &= 0xff; 639 640 return regmap_write(state->regmap[page], reg, val); 641 } 642 643 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd, 644 const struct adv76xx_reg_seq *reg_seq) 645 { 646 unsigned int i; 647 648 for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++) 649 adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val); 650 } 651 652 /* ----------------------------------------------------------------------------- 653 * Format helpers 654 */ 655 656 static const struct adv76xx_format_info adv7604_formats[] = { 657 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, 658 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, 659 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, 660 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 661 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, 662 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 663 { MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false, 664 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT }, 665 { MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true, 666 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT }, 667 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false, 668 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 669 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true, 670 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 671 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, 672 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 673 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, 674 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 675 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, 676 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 677 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, 678 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 679 { MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false, 680 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 681 { MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true, 682 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 683 { MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false, 684 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 685 { MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true, 686 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 687 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false, 688 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 689 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true, 690 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 691 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false, 692 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 693 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true, 694 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 695 }; 696 697 static const struct adv76xx_format_info adv7611_formats[] = { 698 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, 699 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, 700 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, 701 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 702 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, 703 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 704 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false, 705 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 706 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true, 707 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 708 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, 709 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 710 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, 711 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 712 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, 713 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 714 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, 715 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 716 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false, 717 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 718 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true, 719 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 720 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false, 721 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 722 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true, 723 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 724 }; 725 726 static const struct adv76xx_format_info adv7612_formats[] = { 727 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, 728 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, 729 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, 730 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 731 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, 732 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 733 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, 734 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 735 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, 736 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 737 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, 738 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 739 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, 740 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 741 }; 742 743 static const struct adv76xx_format_info * 744 adv76xx_format_info(struct adv76xx_state *state, u32 code) 745 { 746 unsigned int i; 747 748 for (i = 0; i < state->info->nformats; ++i) { 749 if (state->info->formats[i].code == code) 750 return &state->info->formats[i]; 751 } 752 753 return NULL; 754 } 755 756 /* ----------------------------------------------------------------------- */ 757 758 static inline bool is_analog_input(struct v4l2_subdev *sd) 759 { 760 struct adv76xx_state *state = to_state(sd); 761 762 return state->selected_input == ADV7604_PAD_VGA_RGB || 763 state->selected_input == ADV7604_PAD_VGA_COMP; 764 } 765 766 static inline bool is_digital_input(struct v4l2_subdev *sd) 767 { 768 struct adv76xx_state *state = to_state(sd); 769 770 return state->selected_input == ADV76XX_PAD_HDMI_PORT_A || 771 state->selected_input == ADV7604_PAD_HDMI_PORT_B || 772 state->selected_input == ADV7604_PAD_HDMI_PORT_C || 773 state->selected_input == ADV7604_PAD_HDMI_PORT_D; 774 } 775 776 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = { 777 .type = V4L2_DV_BT_656_1120, 778 /* keep this initialization for compatibility with GCC < 4.4.6 */ 779 .reserved = { 0 }, 780 V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000, 781 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | 782 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT, 783 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING | 784 V4L2_DV_BT_CAP_CUSTOM) 785 }; 786 787 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = { 788 .type = V4L2_DV_BT_656_1120, 789 /* keep this initialization for compatibility with GCC < 4.4.6 */ 790 .reserved = { 0 }, 791 V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 225000000, 792 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | 793 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT, 794 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING | 795 V4L2_DV_BT_CAP_CUSTOM) 796 }; 797 798 /* 799 * Return the DV timings capabilities for the requested sink pad. As a special 800 * case, pad value -1 returns the capabilities for the currently selected input. 801 */ 802 static const struct v4l2_dv_timings_cap * 803 adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad) 804 { 805 if (pad == -1) { 806 struct adv76xx_state *state = to_state(sd); 807 808 pad = state->selected_input; 809 } 810 811 switch (pad) { 812 case ADV76XX_PAD_HDMI_PORT_A: 813 case ADV7604_PAD_HDMI_PORT_B: 814 case ADV7604_PAD_HDMI_PORT_C: 815 case ADV7604_PAD_HDMI_PORT_D: 816 return &adv76xx_timings_cap_digital; 817 818 case ADV7604_PAD_VGA_RGB: 819 case ADV7604_PAD_VGA_COMP: 820 default: 821 return &adv7604_timings_cap_analog; 822 } 823 } 824 825 826 /* ----------------------------------------------------------------------- */ 827 828 #ifdef CONFIG_VIDEO_ADV_DEBUG 829 static void adv76xx_inv_register(struct v4l2_subdev *sd) 830 { 831 v4l2_info(sd, "0x000-0x0ff: IO Map\n"); 832 v4l2_info(sd, "0x100-0x1ff: AVLink Map\n"); 833 v4l2_info(sd, "0x200-0x2ff: CEC Map\n"); 834 v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n"); 835 v4l2_info(sd, "0x400-0x4ff: ESDP Map\n"); 836 v4l2_info(sd, "0x500-0x5ff: DPP Map\n"); 837 v4l2_info(sd, "0x600-0x6ff: AFE Map\n"); 838 v4l2_info(sd, "0x700-0x7ff: Repeater Map\n"); 839 v4l2_info(sd, "0x800-0x8ff: EDID Map\n"); 840 v4l2_info(sd, "0x900-0x9ff: HDMI Map\n"); 841 v4l2_info(sd, "0xa00-0xaff: Test Map\n"); 842 v4l2_info(sd, "0xb00-0xbff: CP Map\n"); 843 v4l2_info(sd, "0xc00-0xcff: VDP Map\n"); 844 } 845 846 static int adv76xx_g_register(struct v4l2_subdev *sd, 847 struct v4l2_dbg_register *reg) 848 { 849 int ret; 850 851 ret = adv76xx_read_reg(sd, reg->reg); 852 if (ret < 0) { 853 v4l2_info(sd, "Register %03llx not supported\n", reg->reg); 854 adv76xx_inv_register(sd); 855 return ret; 856 } 857 858 reg->size = 1; 859 reg->val = ret; 860 861 return 0; 862 } 863 864 static int adv76xx_s_register(struct v4l2_subdev *sd, 865 const struct v4l2_dbg_register *reg) 866 { 867 int ret; 868 869 ret = adv76xx_write_reg(sd, reg->reg, reg->val); 870 if (ret < 0) { 871 v4l2_info(sd, "Register %03llx not supported\n", reg->reg); 872 adv76xx_inv_register(sd); 873 return ret; 874 } 875 876 return 0; 877 } 878 #endif 879 880 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd) 881 { 882 u8 value = io_read(sd, 0x6f); 883 884 return ((value & 0x10) >> 4) 885 | ((value & 0x08) >> 2) 886 | ((value & 0x04) << 0) 887 | ((value & 0x02) << 2); 888 } 889 890 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd) 891 { 892 u8 value = io_read(sd, 0x6f); 893 894 return value & 1; 895 } 896 897 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd) 898 { 899 /* Reads CABLE_DET_A_RAW. For input B support, need to 900 * account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW) 901 */ 902 u8 value = io_read(sd, 0x6f); 903 904 return value & 1; 905 } 906 907 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd) 908 { 909 struct adv76xx_state *state = to_state(sd); 910 const struct adv76xx_chip_info *info = state->info; 911 u16 cable_det = info->read_cable_det(sd); 912 913 return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det); 914 } 915 916 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd, 917 u8 prim_mode, 918 const struct adv76xx_video_standards *predef_vid_timings, 919 const struct v4l2_dv_timings *timings) 920 { 921 int i; 922 923 for (i = 0; predef_vid_timings[i].timings.bt.width; i++) { 924 if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings, 925 is_digital_input(sd) ? 250000 : 1000000, false)) 926 continue; 927 io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */ 928 io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) + 929 prim_mode); /* v_freq and prim mode */ 930 return 0; 931 } 932 933 return -1; 934 } 935 936 static int configure_predefined_video_timings(struct v4l2_subdev *sd, 937 struct v4l2_dv_timings *timings) 938 { 939 struct adv76xx_state *state = to_state(sd); 940 int err; 941 942 v4l2_dbg(1, debug, sd, "%s", __func__); 943 944 if (adv76xx_has_afe(state)) { 945 /* reset to default values */ 946 io_write(sd, 0x16, 0x43); 947 io_write(sd, 0x17, 0x5a); 948 } 949 /* disable embedded syncs for auto graphics mode */ 950 cp_write_clr_set(sd, 0x81, 0x10, 0x00); 951 cp_write(sd, 0x8f, 0x00); 952 cp_write(sd, 0x90, 0x00); 953 cp_write(sd, 0xa2, 0x00); 954 cp_write(sd, 0xa3, 0x00); 955 cp_write(sd, 0xa4, 0x00); 956 cp_write(sd, 0xa5, 0x00); 957 cp_write(sd, 0xa6, 0x00); 958 cp_write(sd, 0xa7, 0x00); 959 cp_write(sd, 0xab, 0x00); 960 cp_write(sd, 0xac, 0x00); 961 962 if (is_analog_input(sd)) { 963 err = find_and_set_predefined_video_timings(sd, 964 0x01, adv7604_prim_mode_comp, timings); 965 if (err) 966 err = find_and_set_predefined_video_timings(sd, 967 0x02, adv7604_prim_mode_gr, timings); 968 } else if (is_digital_input(sd)) { 969 err = find_and_set_predefined_video_timings(sd, 970 0x05, adv76xx_prim_mode_hdmi_comp, timings); 971 if (err) 972 err = find_and_set_predefined_video_timings(sd, 973 0x06, adv76xx_prim_mode_hdmi_gr, timings); 974 } else { 975 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 976 __func__, state->selected_input); 977 err = -1; 978 } 979 980 981 return err; 982 } 983 984 static void configure_custom_video_timings(struct v4l2_subdev *sd, 985 const struct v4l2_bt_timings *bt) 986 { 987 struct adv76xx_state *state = to_state(sd); 988 u32 width = htotal(bt); 989 u32 height = vtotal(bt); 990 u16 cp_start_sav = bt->hsync + bt->hbackporch - 4; 991 u16 cp_start_eav = width - bt->hfrontporch; 992 u16 cp_start_vbi = height - bt->vfrontporch; 993 u16 cp_end_vbi = bt->vsync + bt->vbackporch; 994 u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ? 995 ((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0; 996 const u8 pll[2] = { 997 0xc0 | ((width >> 8) & 0x1f), 998 width & 0xff 999 }; 1000 1001 v4l2_dbg(2, debug, sd, "%s\n", __func__); 1002 1003 if (is_analog_input(sd)) { 1004 /* auto graphics */ 1005 io_write(sd, 0x00, 0x07); /* video std */ 1006 io_write(sd, 0x01, 0x02); /* prim mode */ 1007 /* enable embedded syncs for auto graphics mode */ 1008 cp_write_clr_set(sd, 0x81, 0x10, 0x10); 1009 1010 /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */ 1011 /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */ 1012 /* IO-map reg. 0x16 and 0x17 should be written in sequence */ 1013 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO], 1014 0x16, pll, 2)) 1015 v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n"); 1016 1017 /* active video - horizontal timing */ 1018 cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff); 1019 cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) | 1020 ((cp_start_eav >> 8) & 0x0f)); 1021 cp_write(sd, 0xa4, cp_start_eav & 0xff); 1022 1023 /* active video - vertical timing */ 1024 cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff); 1025 cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) | 1026 ((cp_end_vbi >> 8) & 0xf)); 1027 cp_write(sd, 0xa7, cp_end_vbi & 0xff); 1028 } else if (is_digital_input(sd)) { 1029 /* set default prim_mode/vid_std for HDMI 1030 according to [REF_03, c. 4.2] */ 1031 io_write(sd, 0x00, 0x02); /* video std */ 1032 io_write(sd, 0x01, 0x06); /* prim mode */ 1033 } else { 1034 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 1035 __func__, state->selected_input); 1036 } 1037 1038 cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7); 1039 cp_write(sd, 0x90, ch1_fr_ll & 0xff); 1040 cp_write(sd, 0xab, (height >> 4) & 0xff); 1041 cp_write(sd, 0xac, (height & 0x0f) << 4); 1042 } 1043 1044 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c) 1045 { 1046 struct adv76xx_state *state = to_state(sd); 1047 u8 offset_buf[4]; 1048 1049 if (auto_offset) { 1050 offset_a = 0x3ff; 1051 offset_b = 0x3ff; 1052 offset_c = 0x3ff; 1053 } 1054 1055 v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n", 1056 __func__, auto_offset ? "Auto" : "Manual", 1057 offset_a, offset_b, offset_c); 1058 1059 offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4); 1060 offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6); 1061 offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8); 1062 offset_buf[3] = offset_c & 0x0ff; 1063 1064 /* Registers must be written in this order with no i2c access in between */ 1065 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP], 1066 0x77, offset_buf, 4)) 1067 v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__); 1068 } 1069 1070 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c) 1071 { 1072 struct adv76xx_state *state = to_state(sd); 1073 u8 gain_buf[4]; 1074 u8 gain_man = 1; 1075 u8 agc_mode_man = 1; 1076 1077 if (auto_gain) { 1078 gain_man = 0; 1079 agc_mode_man = 0; 1080 gain_a = 0x100; 1081 gain_b = 0x100; 1082 gain_c = 0x100; 1083 } 1084 1085 v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n", 1086 __func__, auto_gain ? "Auto" : "Manual", 1087 gain_a, gain_b, gain_c); 1088 1089 gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4)); 1090 gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6)); 1091 gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8)); 1092 gain_buf[3] = ((gain_c & 0x0ff)); 1093 1094 /* Registers must be written in this order with no i2c access in between */ 1095 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP], 1096 0x73, gain_buf, 4)) 1097 v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__); 1098 } 1099 1100 static void set_rgb_quantization_range(struct v4l2_subdev *sd) 1101 { 1102 struct adv76xx_state *state = to_state(sd); 1103 bool rgb_output = io_read(sd, 0x02) & 0x02; 1104 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80; 1105 u8 y = HDMI_COLORSPACE_RGB; 1106 1107 if (hdmi_signal && (io_read(sd, 0x60) & 1)) 1108 y = infoframe_read(sd, 0x01) >> 5; 1109 1110 v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n", 1111 __func__, state->rgb_quantization_range, 1112 rgb_output, hdmi_signal); 1113 1114 adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0); 1115 adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0); 1116 io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4); 1117 1118 switch (state->rgb_quantization_range) { 1119 case V4L2_DV_RGB_RANGE_AUTO: 1120 if (state->selected_input == ADV7604_PAD_VGA_RGB) { 1121 /* Receiving analog RGB signal 1122 * Set RGB full range (0-255) */ 1123 io_write_clr_set(sd, 0x02, 0xf0, 0x10); 1124 break; 1125 } 1126 1127 if (state->selected_input == ADV7604_PAD_VGA_COMP) { 1128 /* Receiving analog YPbPr signal 1129 * Set automode */ 1130 io_write_clr_set(sd, 0x02, 0xf0, 0xf0); 1131 break; 1132 } 1133 1134 if (hdmi_signal) { 1135 /* Receiving HDMI signal 1136 * Set automode */ 1137 io_write_clr_set(sd, 0x02, 0xf0, 0xf0); 1138 break; 1139 } 1140 1141 /* Receiving DVI-D signal 1142 * ADV7604 selects RGB limited range regardless of 1143 * input format (CE/IT) in automatic mode */ 1144 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) { 1145 /* RGB limited range (16-235) */ 1146 io_write_clr_set(sd, 0x02, 0xf0, 0x00); 1147 } else { 1148 /* RGB full range (0-255) */ 1149 io_write_clr_set(sd, 0x02, 0xf0, 0x10); 1150 1151 if (is_digital_input(sd) && rgb_output) { 1152 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40); 1153 } else { 1154 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0); 1155 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70); 1156 } 1157 } 1158 break; 1159 case V4L2_DV_RGB_RANGE_LIMITED: 1160 if (state->selected_input == ADV7604_PAD_VGA_COMP) { 1161 /* YCrCb limited range (16-235) */ 1162 io_write_clr_set(sd, 0x02, 0xf0, 0x20); 1163 break; 1164 } 1165 1166 if (y != HDMI_COLORSPACE_RGB) 1167 break; 1168 1169 /* RGB limited range (16-235) */ 1170 io_write_clr_set(sd, 0x02, 0xf0, 0x00); 1171 1172 break; 1173 case V4L2_DV_RGB_RANGE_FULL: 1174 if (state->selected_input == ADV7604_PAD_VGA_COMP) { 1175 /* YCrCb full range (0-255) */ 1176 io_write_clr_set(sd, 0x02, 0xf0, 0x60); 1177 break; 1178 } 1179 1180 if (y != HDMI_COLORSPACE_RGB) 1181 break; 1182 1183 /* RGB full range (0-255) */ 1184 io_write_clr_set(sd, 0x02, 0xf0, 0x10); 1185 1186 if (is_analog_input(sd) || hdmi_signal) 1187 break; 1188 1189 /* Adjust gain/offset for DVI-D signals only */ 1190 if (rgb_output) { 1191 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40); 1192 } else { 1193 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0); 1194 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70); 1195 } 1196 break; 1197 } 1198 } 1199 1200 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl) 1201 { 1202 struct v4l2_subdev *sd = 1203 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd; 1204 1205 struct adv76xx_state *state = to_state(sd); 1206 1207 switch (ctrl->id) { 1208 case V4L2_CID_BRIGHTNESS: 1209 cp_write(sd, 0x3c, ctrl->val); 1210 return 0; 1211 case V4L2_CID_CONTRAST: 1212 cp_write(sd, 0x3a, ctrl->val); 1213 return 0; 1214 case V4L2_CID_SATURATION: 1215 cp_write(sd, 0x3b, ctrl->val); 1216 return 0; 1217 case V4L2_CID_HUE: 1218 cp_write(sd, 0x3d, ctrl->val); 1219 return 0; 1220 case V4L2_CID_DV_RX_RGB_RANGE: 1221 state->rgb_quantization_range = ctrl->val; 1222 set_rgb_quantization_range(sd); 1223 return 0; 1224 case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE: 1225 if (!adv76xx_has_afe(state)) 1226 return -EINVAL; 1227 /* Set the analog sampling phase. This is needed to find the 1228 best sampling phase for analog video: an application or 1229 driver has to try a number of phases and analyze the picture 1230 quality before settling on the best performing phase. */ 1231 afe_write(sd, 0xc8, ctrl->val); 1232 return 0; 1233 case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL: 1234 /* Use the default blue color for free running mode, 1235 or supply your own. */ 1236 cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2); 1237 return 0; 1238 case V4L2_CID_ADV_RX_FREE_RUN_COLOR: 1239 cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16); 1240 cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8); 1241 cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff)); 1242 return 0; 1243 } 1244 return -EINVAL; 1245 } 1246 1247 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 1248 { 1249 struct v4l2_subdev *sd = 1250 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd; 1251 1252 if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) { 1253 ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC; 1254 if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80)) 1255 ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3; 1256 return 0; 1257 } 1258 return -EINVAL; 1259 } 1260 1261 /* ----------------------------------------------------------------------- */ 1262 1263 static inline bool no_power(struct v4l2_subdev *sd) 1264 { 1265 /* Entire chip or CP powered off */ 1266 return io_read(sd, 0x0c) & 0x24; 1267 } 1268 1269 static inline bool no_signal_tmds(struct v4l2_subdev *sd) 1270 { 1271 struct adv76xx_state *state = to_state(sd); 1272 1273 return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input)); 1274 } 1275 1276 static inline bool no_lock_tmds(struct v4l2_subdev *sd) 1277 { 1278 struct adv76xx_state *state = to_state(sd); 1279 const struct adv76xx_chip_info *info = state->info; 1280 1281 return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask; 1282 } 1283 1284 static inline bool is_hdmi(struct v4l2_subdev *sd) 1285 { 1286 return hdmi_read(sd, 0x05) & 0x80; 1287 } 1288 1289 static inline bool no_lock_sspd(struct v4l2_subdev *sd) 1290 { 1291 struct adv76xx_state *state = to_state(sd); 1292 1293 /* 1294 * Chips without a AFE don't expose registers for the SSPD, so just assume 1295 * that we have a lock. 1296 */ 1297 if (adv76xx_has_afe(state)) 1298 return false; 1299 1300 /* TODO channel 2 */ 1301 return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0); 1302 } 1303 1304 static inline bool no_lock_stdi(struct v4l2_subdev *sd) 1305 { 1306 /* TODO channel 2 */ 1307 return !(cp_read(sd, 0xb1) & 0x80); 1308 } 1309 1310 static inline bool no_signal(struct v4l2_subdev *sd) 1311 { 1312 bool ret; 1313 1314 ret = no_power(sd); 1315 1316 ret |= no_lock_stdi(sd); 1317 ret |= no_lock_sspd(sd); 1318 1319 if (is_digital_input(sd)) { 1320 ret |= no_lock_tmds(sd); 1321 ret |= no_signal_tmds(sd); 1322 } 1323 1324 return ret; 1325 } 1326 1327 static inline bool no_lock_cp(struct v4l2_subdev *sd) 1328 { 1329 struct adv76xx_state *state = to_state(sd); 1330 1331 if (!adv76xx_has_afe(state)) 1332 return false; 1333 1334 /* CP has detected a non standard number of lines on the incoming 1335 video compared to what it is configured to receive by s_dv_timings */ 1336 return io_read(sd, 0x12) & 0x01; 1337 } 1338 1339 static inline bool in_free_run(struct v4l2_subdev *sd) 1340 { 1341 return cp_read(sd, 0xff) & 0x10; 1342 } 1343 1344 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status) 1345 { 1346 *status = 0; 1347 *status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0; 1348 *status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0; 1349 if (!in_free_run(sd) && no_lock_cp(sd)) 1350 *status |= is_digital_input(sd) ? 1351 V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK; 1352 1353 v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status); 1354 1355 return 0; 1356 } 1357 1358 /* ----------------------------------------------------------------------- */ 1359 1360 struct stdi_readback { 1361 u16 bl, lcf, lcvs; 1362 u8 hs_pol, vs_pol; 1363 bool interlaced; 1364 }; 1365 1366 static int stdi2dv_timings(struct v4l2_subdev *sd, 1367 struct stdi_readback *stdi, 1368 struct v4l2_dv_timings *timings) 1369 { 1370 struct adv76xx_state *state = to_state(sd); 1371 u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl; 1372 u32 pix_clk; 1373 int i; 1374 1375 for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) { 1376 const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt; 1377 1378 if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i], 1379 adv76xx_get_dv_timings_cap(sd, -1), 1380 adv76xx_check_dv_timings, NULL)) 1381 continue; 1382 if (vtotal(bt) != stdi->lcf + 1) 1383 continue; 1384 if (bt->vsync != stdi->lcvs) 1385 continue; 1386 1387 pix_clk = hfreq * htotal(bt); 1388 1389 if ((pix_clk < bt->pixelclock + 1000000) && 1390 (pix_clk > bt->pixelclock - 1000000)) { 1391 *timings = v4l2_dv_timings_presets[i]; 1392 return 0; 1393 } 1394 } 1395 1396 if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0, 1397 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) | 1398 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0), 1399 false, timings)) 1400 return 0; 1401 if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs, 1402 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) | 1403 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0), 1404 false, state->aspect_ratio, timings)) 1405 return 0; 1406 1407 v4l2_dbg(2, debug, sd, 1408 "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n", 1409 __func__, stdi->lcvs, stdi->lcf, stdi->bl, 1410 stdi->hs_pol, stdi->vs_pol); 1411 return -1; 1412 } 1413 1414 1415 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi) 1416 { 1417 struct adv76xx_state *state = to_state(sd); 1418 const struct adv76xx_chip_info *info = state->info; 1419 u8 polarity; 1420 1421 if (no_lock_stdi(sd) || no_lock_sspd(sd)) { 1422 v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__); 1423 return -1; 1424 } 1425 1426 /* read STDI */ 1427 stdi->bl = cp_read16(sd, 0xb1, 0x3fff); 1428 stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff); 1429 stdi->lcvs = cp_read(sd, 0xb3) >> 3; 1430 stdi->interlaced = io_read(sd, 0x12) & 0x10; 1431 1432 if (adv76xx_has_afe(state)) { 1433 /* read SSPD */ 1434 polarity = cp_read(sd, 0xb5); 1435 if ((polarity & 0x03) == 0x01) { 1436 stdi->hs_pol = polarity & 0x10 1437 ? (polarity & 0x08 ? '+' : '-') : 'x'; 1438 stdi->vs_pol = polarity & 0x40 1439 ? (polarity & 0x20 ? '+' : '-') : 'x'; 1440 } else { 1441 stdi->hs_pol = 'x'; 1442 stdi->vs_pol = 'x'; 1443 } 1444 } else { 1445 polarity = hdmi_read(sd, 0x05); 1446 stdi->hs_pol = polarity & 0x20 ? '+' : '-'; 1447 stdi->vs_pol = polarity & 0x10 ? '+' : '-'; 1448 } 1449 1450 if (no_lock_stdi(sd) || no_lock_sspd(sd)) { 1451 v4l2_dbg(2, debug, sd, 1452 "%s: signal lost during readout of STDI/SSPD\n", __func__); 1453 return -1; 1454 } 1455 1456 if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) { 1457 v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__); 1458 memset(stdi, 0, sizeof(struct stdi_readback)); 1459 return -1; 1460 } 1461 1462 v4l2_dbg(2, debug, sd, 1463 "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n", 1464 __func__, stdi->lcf, stdi->bl, stdi->lcvs, 1465 stdi->hs_pol, stdi->vs_pol, 1466 stdi->interlaced ? "interlaced" : "progressive"); 1467 1468 return 0; 1469 } 1470 1471 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd, 1472 struct v4l2_enum_dv_timings *timings) 1473 { 1474 struct adv76xx_state *state = to_state(sd); 1475 1476 if (timings->pad >= state->source_pad) 1477 return -EINVAL; 1478 1479 return v4l2_enum_dv_timings_cap(timings, 1480 adv76xx_get_dv_timings_cap(sd, timings->pad), 1481 adv76xx_check_dv_timings, NULL); 1482 } 1483 1484 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd, 1485 struct v4l2_dv_timings_cap *cap) 1486 { 1487 struct adv76xx_state *state = to_state(sd); 1488 unsigned int pad = cap->pad; 1489 1490 if (cap->pad >= state->source_pad) 1491 return -EINVAL; 1492 1493 *cap = *adv76xx_get_dv_timings_cap(sd, pad); 1494 cap->pad = pad; 1495 1496 return 0; 1497 } 1498 1499 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings 1500 if the format is listed in adv76xx_timings[] */ 1501 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd, 1502 struct v4l2_dv_timings *timings) 1503 { 1504 v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1), 1505 is_digital_input(sd) ? 250000 : 1000000, 1506 adv76xx_check_dv_timings, NULL); 1507 } 1508 1509 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd) 1510 { 1511 unsigned int freq; 1512 int a, b; 1513 1514 a = hdmi_read(sd, 0x06); 1515 b = hdmi_read(sd, 0x3b); 1516 if (a < 0 || b < 0) 1517 return 0; 1518 freq = a * 1000000 + ((b & 0x30) >> 4) * 250000; 1519 1520 if (is_hdmi(sd)) { 1521 /* adjust for deep color mode */ 1522 unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8; 1523 1524 freq = freq * 8 / bits_per_channel; 1525 } 1526 1527 return freq; 1528 } 1529 1530 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd) 1531 { 1532 int a, b; 1533 1534 a = hdmi_read(sd, 0x51); 1535 b = hdmi_read(sd, 0x52); 1536 if (a < 0 || b < 0) 1537 return 0; 1538 return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128; 1539 } 1540 1541 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd, 1542 struct v4l2_dv_timings *timings) 1543 { 1544 struct adv76xx_state *state = to_state(sd); 1545 const struct adv76xx_chip_info *info = state->info; 1546 struct v4l2_bt_timings *bt = &timings->bt; 1547 struct stdi_readback stdi; 1548 1549 if (!timings) 1550 return -EINVAL; 1551 1552 memset(timings, 0, sizeof(struct v4l2_dv_timings)); 1553 1554 if (no_signal(sd)) { 1555 state->restart_stdi_once = true; 1556 v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__); 1557 return -ENOLINK; 1558 } 1559 1560 /* read STDI */ 1561 if (read_stdi(sd, &stdi)) { 1562 v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__); 1563 return -ENOLINK; 1564 } 1565 bt->interlaced = stdi.interlaced ? 1566 V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE; 1567 1568 if (is_digital_input(sd)) { 1569 timings->type = V4L2_DV_BT_656_1120; 1570 1571 bt->width = hdmi_read16(sd, 0x07, info->linewidth_mask); 1572 bt->height = hdmi_read16(sd, 0x09, info->field0_height_mask); 1573 bt->pixelclock = info->read_hdmi_pixelclock(sd); 1574 bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask); 1575 bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask); 1576 bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask); 1577 bt->vfrontporch = hdmi_read16(sd, 0x2a, 1578 info->field0_vfrontporch_mask) / 2; 1579 bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2; 1580 bt->vbackporch = hdmi_read16(sd, 0x32, 1581 info->field0_vbackporch_mask) / 2; 1582 bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) | 1583 ((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0); 1584 if (bt->interlaced == V4L2_DV_INTERLACED) { 1585 bt->height += hdmi_read16(sd, 0x0b, 1586 info->field1_height_mask); 1587 bt->il_vfrontporch = hdmi_read16(sd, 0x2c, 1588 info->field1_vfrontporch_mask) / 2; 1589 bt->il_vsync = hdmi_read16(sd, 0x30, 1590 info->field1_vsync_mask) / 2; 1591 bt->il_vbackporch = hdmi_read16(sd, 0x34, 1592 info->field1_vbackporch_mask) / 2; 1593 } 1594 adv76xx_fill_optional_dv_timings_fields(sd, timings); 1595 } else { 1596 /* find format 1597 * Since LCVS values are inaccurate [REF_03, p. 275-276], 1598 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails. 1599 */ 1600 if (!stdi2dv_timings(sd, &stdi, timings)) 1601 goto found; 1602 stdi.lcvs += 1; 1603 v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs); 1604 if (!stdi2dv_timings(sd, &stdi, timings)) 1605 goto found; 1606 stdi.lcvs -= 2; 1607 v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs); 1608 if (stdi2dv_timings(sd, &stdi, timings)) { 1609 /* 1610 * The STDI block may measure wrong values, especially 1611 * for lcvs and lcf. If the driver can not find any 1612 * valid timing, the STDI block is restarted to measure 1613 * the video timings again. The function will return an 1614 * error, but the restart of STDI will generate a new 1615 * STDI interrupt and the format detection process will 1616 * restart. 1617 */ 1618 if (state->restart_stdi_once) { 1619 v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__); 1620 /* TODO restart STDI for Sync Channel 2 */ 1621 /* enter one-shot mode */ 1622 cp_write_clr_set(sd, 0x86, 0x06, 0x00); 1623 /* trigger STDI restart */ 1624 cp_write_clr_set(sd, 0x86, 0x06, 0x04); 1625 /* reset to continuous mode */ 1626 cp_write_clr_set(sd, 0x86, 0x06, 0x02); 1627 state->restart_stdi_once = false; 1628 return -ENOLINK; 1629 } 1630 v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__); 1631 return -ERANGE; 1632 } 1633 state->restart_stdi_once = true; 1634 } 1635 found: 1636 1637 if (no_signal(sd)) { 1638 v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__); 1639 memset(timings, 0, sizeof(struct v4l2_dv_timings)); 1640 return -ENOLINK; 1641 } 1642 1643 if ((is_analog_input(sd) && bt->pixelclock > 170000000) || 1644 (is_digital_input(sd) && bt->pixelclock > 225000000)) { 1645 v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n", 1646 __func__, (u32)bt->pixelclock); 1647 return -ERANGE; 1648 } 1649 1650 if (debug > 1) 1651 v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ", 1652 timings, true); 1653 1654 return 0; 1655 } 1656 1657 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd, 1658 struct v4l2_dv_timings *timings) 1659 { 1660 struct adv76xx_state *state = to_state(sd); 1661 struct v4l2_bt_timings *bt; 1662 int err; 1663 1664 if (!timings) 1665 return -EINVAL; 1666 1667 if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) { 1668 v4l2_dbg(1, debug, sd, "%s: no change\n", __func__); 1669 return 0; 1670 } 1671 1672 bt = &timings->bt; 1673 1674 if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1), 1675 adv76xx_check_dv_timings, NULL)) 1676 return -ERANGE; 1677 1678 adv76xx_fill_optional_dv_timings_fields(sd, timings); 1679 1680 state->timings = *timings; 1681 1682 cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00); 1683 1684 /* Use prim_mode and vid_std when available */ 1685 err = configure_predefined_video_timings(sd, timings); 1686 if (err) { 1687 /* custom settings when the video format 1688 does not have prim_mode/vid_std */ 1689 configure_custom_video_timings(sd, bt); 1690 } 1691 1692 set_rgb_quantization_range(sd); 1693 1694 if (debug > 1) 1695 v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ", 1696 timings, true); 1697 return 0; 1698 } 1699 1700 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd, 1701 struct v4l2_dv_timings *timings) 1702 { 1703 struct adv76xx_state *state = to_state(sd); 1704 1705 *timings = state->timings; 1706 return 0; 1707 } 1708 1709 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable) 1710 { 1711 hdmi_write(sd, 0x01, enable ? 0x00 : 0x78); 1712 } 1713 1714 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable) 1715 { 1716 hdmi_write(sd, 0x83, enable ? 0xfe : 0xff); 1717 } 1718 1719 static void enable_input(struct v4l2_subdev *sd) 1720 { 1721 struct adv76xx_state *state = to_state(sd); 1722 1723 if (is_analog_input(sd)) { 1724 io_write(sd, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */ 1725 } else if (is_digital_input(sd)) { 1726 hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input); 1727 state->info->set_termination(sd, true); 1728 io_write(sd, 0x15, 0xa0); /* Disable Tristate of Pins */ 1729 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */ 1730 } else { 1731 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 1732 __func__, state->selected_input); 1733 } 1734 } 1735 1736 static void disable_input(struct v4l2_subdev *sd) 1737 { 1738 struct adv76xx_state *state = to_state(sd); 1739 1740 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */ 1741 msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */ 1742 io_write(sd, 0x15, 0xbe); /* Tristate all outputs from video core */ 1743 state->info->set_termination(sd, false); 1744 } 1745 1746 static void select_input(struct v4l2_subdev *sd) 1747 { 1748 struct adv76xx_state *state = to_state(sd); 1749 const struct adv76xx_chip_info *info = state->info; 1750 1751 if (is_analog_input(sd)) { 1752 adv76xx_write_reg_seq(sd, info->recommended_settings[0]); 1753 1754 afe_write(sd, 0x00, 0x08); /* power up ADC */ 1755 afe_write(sd, 0x01, 0x06); /* power up Analog Front End */ 1756 afe_write(sd, 0xc8, 0x00); /* phase control */ 1757 } else if (is_digital_input(sd)) { 1758 hdmi_write(sd, 0x00, state->selected_input & 0x03); 1759 1760 adv76xx_write_reg_seq(sd, info->recommended_settings[1]); 1761 1762 if (adv76xx_has_afe(state)) { 1763 afe_write(sd, 0x00, 0xff); /* power down ADC */ 1764 afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */ 1765 afe_write(sd, 0xc8, 0x40); /* phase control */ 1766 } 1767 1768 cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */ 1769 cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */ 1770 cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */ 1771 } else { 1772 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 1773 __func__, state->selected_input); 1774 } 1775 } 1776 1777 static int adv76xx_s_routing(struct v4l2_subdev *sd, 1778 u32 input, u32 output, u32 config) 1779 { 1780 struct adv76xx_state *state = to_state(sd); 1781 1782 v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d", 1783 __func__, input, state->selected_input); 1784 1785 if (input == state->selected_input) 1786 return 0; 1787 1788 if (input > state->info->max_port) 1789 return -EINVAL; 1790 1791 state->selected_input = input; 1792 1793 disable_input(sd); 1794 select_input(sd); 1795 enable_input(sd); 1796 1797 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt); 1798 1799 return 0; 1800 } 1801 1802 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd, 1803 struct v4l2_subdev_pad_config *cfg, 1804 struct v4l2_subdev_mbus_code_enum *code) 1805 { 1806 struct adv76xx_state *state = to_state(sd); 1807 1808 if (code->index >= state->info->nformats) 1809 return -EINVAL; 1810 1811 code->code = state->info->formats[code->index].code; 1812 1813 return 0; 1814 } 1815 1816 static void adv76xx_fill_format(struct adv76xx_state *state, 1817 struct v4l2_mbus_framefmt *format) 1818 { 1819 memset(format, 0, sizeof(*format)); 1820 1821 format->width = state->timings.bt.width; 1822 format->height = state->timings.bt.height; 1823 format->field = V4L2_FIELD_NONE; 1824 format->colorspace = V4L2_COLORSPACE_SRGB; 1825 1826 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) 1827 format->colorspace = (state->timings.bt.height <= 576) ? 1828 V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709; 1829 } 1830 1831 /* 1832 * Compute the op_ch_sel value required to obtain on the bus the component order 1833 * corresponding to the selected format taking into account bus reordering 1834 * applied by the board at the output of the device. 1835 * 1836 * The following table gives the op_ch_value from the format component order 1837 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as 1838 * adv76xx_bus_order value in row). 1839 * 1840 * | GBR(0) GRB(1) BGR(2) RGB(3) BRG(4) RBG(5) 1841 * ----------+------------------------------------------------- 1842 * RGB (NOP) | GBR GRB BGR RGB BRG RBG 1843 * GRB (1-2) | BGR RGB GBR GRB RBG BRG 1844 * RBG (2-3) | GRB GBR BRG RBG BGR RGB 1845 * BGR (1-3) | RBG BRG RGB BGR GRB GBR 1846 * BRG (ROR) | BRG RBG GRB GBR RGB BGR 1847 * GBR (ROL) | RGB BGR RBG BRG GBR GRB 1848 */ 1849 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state) 1850 { 1851 #define _SEL(a,b,c,d,e,f) { \ 1852 ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \ 1853 ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f } 1854 #define _BUS(x) [ADV7604_BUS_ORDER_##x] 1855 1856 static const unsigned int op_ch_sel[6][6] = { 1857 _BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG), 1858 _BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG), 1859 _BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB), 1860 _BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR), 1861 _BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR), 1862 _BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB), 1863 }; 1864 1865 return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5]; 1866 } 1867 1868 static void adv76xx_setup_format(struct adv76xx_state *state) 1869 { 1870 struct v4l2_subdev *sd = &state->sd; 1871 1872 io_write_clr_set(sd, 0x02, 0x02, 1873 state->format->rgb_out ? ADV76XX_RGB_OUT : 0); 1874 io_write(sd, 0x03, state->format->op_format_sel | 1875 state->pdata.op_format_mode_sel); 1876 io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state)); 1877 io_write_clr_set(sd, 0x05, 0x01, 1878 state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0); 1879 set_rgb_quantization_range(sd); 1880 } 1881 1882 static int adv76xx_get_format(struct v4l2_subdev *sd, 1883 struct v4l2_subdev_pad_config *cfg, 1884 struct v4l2_subdev_format *format) 1885 { 1886 struct adv76xx_state *state = to_state(sd); 1887 1888 if (format->pad != state->source_pad) 1889 return -EINVAL; 1890 1891 adv76xx_fill_format(state, &format->format); 1892 1893 if (format->which == V4L2_SUBDEV_FORMAT_TRY) { 1894 struct v4l2_mbus_framefmt *fmt; 1895 1896 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad); 1897 format->format.code = fmt->code; 1898 } else { 1899 format->format.code = state->format->code; 1900 } 1901 1902 return 0; 1903 } 1904 1905 static int adv76xx_get_selection(struct v4l2_subdev *sd, 1906 struct v4l2_subdev_pad_config *cfg, 1907 struct v4l2_subdev_selection *sel) 1908 { 1909 struct adv76xx_state *state = to_state(sd); 1910 1911 if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE) 1912 return -EINVAL; 1913 /* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */ 1914 if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS) 1915 return -EINVAL; 1916 1917 sel->r.left = 0; 1918 sel->r.top = 0; 1919 sel->r.width = state->timings.bt.width; 1920 sel->r.height = state->timings.bt.height; 1921 1922 return 0; 1923 } 1924 1925 static int adv76xx_set_format(struct v4l2_subdev *sd, 1926 struct v4l2_subdev_pad_config *cfg, 1927 struct v4l2_subdev_format *format) 1928 { 1929 struct adv76xx_state *state = to_state(sd); 1930 const struct adv76xx_format_info *info; 1931 1932 if (format->pad != state->source_pad) 1933 return -EINVAL; 1934 1935 info = adv76xx_format_info(state, format->format.code); 1936 if (info == NULL) 1937 info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8); 1938 1939 adv76xx_fill_format(state, &format->format); 1940 format->format.code = info->code; 1941 1942 if (format->which == V4L2_SUBDEV_FORMAT_TRY) { 1943 struct v4l2_mbus_framefmt *fmt; 1944 1945 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad); 1946 fmt->code = format->format.code; 1947 } else { 1948 state->format = info; 1949 adv76xx_setup_format(state); 1950 } 1951 1952 return 0; 1953 } 1954 1955 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC) 1956 static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status) 1957 { 1958 struct adv76xx_state *state = to_state(sd); 1959 1960 if ((cec_read(sd, 0x11) & 0x01) == 0) { 1961 v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__); 1962 return; 1963 } 1964 1965 if (tx_raw_status & 0x02) { 1966 v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n", 1967 __func__); 1968 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST, 1969 1, 0, 0, 0); 1970 } 1971 if (tx_raw_status & 0x04) { 1972 u8 status; 1973 u8 nack_cnt; 1974 u8 low_drive_cnt; 1975 1976 v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__); 1977 /* 1978 * We set this status bit since this hardware performs 1979 * retransmissions. 1980 */ 1981 status = CEC_TX_STATUS_MAX_RETRIES; 1982 nack_cnt = cec_read(sd, 0x14) & 0xf; 1983 if (nack_cnt) 1984 status |= CEC_TX_STATUS_NACK; 1985 low_drive_cnt = cec_read(sd, 0x14) >> 4; 1986 if (low_drive_cnt) 1987 status |= CEC_TX_STATUS_LOW_DRIVE; 1988 cec_transmit_done(state->cec_adap, status, 1989 0, nack_cnt, low_drive_cnt, 0); 1990 return; 1991 } 1992 if (tx_raw_status & 0x01) { 1993 v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__); 1994 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0); 1995 return; 1996 } 1997 } 1998 1999 static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled) 2000 { 2001 struct adv76xx_state *state = to_state(sd); 2002 u8 cec_irq; 2003 2004 /* cec controller */ 2005 cec_irq = io_read(sd, 0x4d) & 0x0f; 2006 if (!cec_irq) 2007 return; 2008 2009 v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq); 2010 adv76xx_cec_tx_raw_status(sd, cec_irq); 2011 if (cec_irq & 0x08) { 2012 struct cec_msg msg; 2013 2014 msg.len = cec_read(sd, 0x25) & 0x1f; 2015 if (msg.len > 16) 2016 msg.len = 16; 2017 2018 if (msg.len) { 2019 u8 i; 2020 2021 for (i = 0; i < msg.len; i++) 2022 msg.msg[i] = cec_read(sd, i + 0x15); 2023 cec_write(sd, 0x26, 0x01); /* re-enable rx */ 2024 cec_received_msg(state->cec_adap, &msg); 2025 } 2026 } 2027 2028 /* note: the bit order is swapped between 0x4d and 0x4e */ 2029 cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) | 2030 ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3); 2031 io_write(sd, 0x4e, cec_irq); 2032 2033 if (handled) 2034 *handled = true; 2035 } 2036 2037 static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable) 2038 { 2039 struct adv76xx_state *state = adap->priv; 2040 struct v4l2_subdev *sd = &state->sd; 2041 2042 if (!state->cec_enabled_adap && enable) { 2043 cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */ 2044 cec_write(sd, 0x2c, 0x01); /* cec soft reset */ 2045 cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */ 2046 /* enabled irqs: */ 2047 /* tx: ready */ 2048 /* tx: arbitration lost */ 2049 /* tx: retry timeout */ 2050 /* rx: ready */ 2051 io_write_clr_set(sd, 0x50, 0x0f, 0x0f); 2052 cec_write(sd, 0x26, 0x01); /* enable rx */ 2053 } else if (state->cec_enabled_adap && !enable) { 2054 /* disable cec interrupts */ 2055 io_write_clr_set(sd, 0x50, 0x0f, 0x00); 2056 /* disable address mask 1-3 */ 2057 cec_write_clr_set(sd, 0x27, 0x70, 0x00); 2058 /* power down cec section */ 2059 cec_write_clr_set(sd, 0x2a, 0x01, 0x00); 2060 state->cec_valid_addrs = 0; 2061 } 2062 state->cec_enabled_adap = enable; 2063 adv76xx_s_detect_tx_5v_ctrl(sd); 2064 return 0; 2065 } 2066 2067 static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr) 2068 { 2069 struct adv76xx_state *state = adap->priv; 2070 struct v4l2_subdev *sd = &state->sd; 2071 unsigned int i, free_idx = ADV76XX_MAX_ADDRS; 2072 2073 if (!state->cec_enabled_adap) 2074 return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO; 2075 2076 if (addr == CEC_LOG_ADDR_INVALID) { 2077 cec_write_clr_set(sd, 0x27, 0x70, 0); 2078 state->cec_valid_addrs = 0; 2079 return 0; 2080 } 2081 2082 for (i = 0; i < ADV76XX_MAX_ADDRS; i++) { 2083 bool is_valid = state->cec_valid_addrs & (1 << i); 2084 2085 if (free_idx == ADV76XX_MAX_ADDRS && !is_valid) 2086 free_idx = i; 2087 if (is_valid && state->cec_addr[i] == addr) 2088 return 0; 2089 } 2090 if (i == ADV76XX_MAX_ADDRS) { 2091 i = free_idx; 2092 if (i == ADV76XX_MAX_ADDRS) 2093 return -ENXIO; 2094 } 2095 state->cec_addr[i] = addr; 2096 state->cec_valid_addrs |= 1 << i; 2097 2098 switch (i) { 2099 case 0: 2100 /* enable address mask 0 */ 2101 cec_write_clr_set(sd, 0x27, 0x10, 0x10); 2102 /* set address for mask 0 */ 2103 cec_write_clr_set(sd, 0x28, 0x0f, addr); 2104 break; 2105 case 1: 2106 /* enable address mask 1 */ 2107 cec_write_clr_set(sd, 0x27, 0x20, 0x20); 2108 /* set address for mask 1 */ 2109 cec_write_clr_set(sd, 0x28, 0xf0, addr << 4); 2110 break; 2111 case 2: 2112 /* enable address mask 2 */ 2113 cec_write_clr_set(sd, 0x27, 0x40, 0x40); 2114 /* set address for mask 1 */ 2115 cec_write_clr_set(sd, 0x29, 0x0f, addr); 2116 break; 2117 } 2118 return 0; 2119 } 2120 2121 static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts, 2122 u32 signal_free_time, struct cec_msg *msg) 2123 { 2124 struct adv76xx_state *state = adap->priv; 2125 struct v4l2_subdev *sd = &state->sd; 2126 u8 len = msg->len; 2127 unsigned int i; 2128 2129 /* 2130 * The number of retries is the number of attempts - 1, but retry 2131 * at least once. It's not clear if a value of 0 is allowed, so 2132 * let's do at least one retry. 2133 */ 2134 cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4); 2135 2136 if (len > 16) { 2137 v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len); 2138 return -EINVAL; 2139 } 2140 2141 /* write data */ 2142 for (i = 0; i < len; i++) 2143 cec_write(sd, i, msg->msg[i]); 2144 2145 /* set length (data + header) */ 2146 cec_write(sd, 0x10, len); 2147 /* start transmit, enable tx */ 2148 cec_write(sd, 0x11, 0x01); 2149 return 0; 2150 } 2151 2152 static const struct cec_adap_ops adv76xx_cec_adap_ops = { 2153 .adap_enable = adv76xx_cec_adap_enable, 2154 .adap_log_addr = adv76xx_cec_adap_log_addr, 2155 .adap_transmit = adv76xx_cec_adap_transmit, 2156 }; 2157 #endif 2158 2159 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled) 2160 { 2161 struct adv76xx_state *state = to_state(sd); 2162 const struct adv76xx_chip_info *info = state->info; 2163 const u8 irq_reg_0x43 = io_read(sd, 0x43); 2164 const u8 irq_reg_0x6b = io_read(sd, 0x6b); 2165 const u8 irq_reg_0x70 = io_read(sd, 0x70); 2166 u8 fmt_change_digital; 2167 u8 fmt_change; 2168 u8 tx_5v; 2169 2170 if (irq_reg_0x43) 2171 io_write(sd, 0x44, irq_reg_0x43); 2172 if (irq_reg_0x70) 2173 io_write(sd, 0x71, irq_reg_0x70); 2174 if (irq_reg_0x6b) 2175 io_write(sd, 0x6c, irq_reg_0x6b); 2176 2177 v4l2_dbg(2, debug, sd, "%s: ", __func__); 2178 2179 /* format change */ 2180 fmt_change = irq_reg_0x43 & 0x98; 2181 fmt_change_digital = is_digital_input(sd) 2182 ? irq_reg_0x6b & info->fmt_change_digital_mask 2183 : 0; 2184 2185 if (fmt_change || fmt_change_digital) { 2186 v4l2_dbg(1, debug, sd, 2187 "%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n", 2188 __func__, fmt_change, fmt_change_digital); 2189 2190 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt); 2191 2192 if (handled) 2193 *handled = true; 2194 } 2195 /* HDMI/DVI mode */ 2196 if (irq_reg_0x6b & 0x01) { 2197 v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__, 2198 (io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI"); 2199 set_rgb_quantization_range(sd); 2200 if (handled) 2201 *handled = true; 2202 } 2203 2204 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC) 2205 /* cec */ 2206 adv76xx_cec_isr(sd, handled); 2207 #endif 2208 2209 /* tx 5v detect */ 2210 tx_5v = irq_reg_0x70 & info->cable_det_mask; 2211 if (tx_5v) { 2212 v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v); 2213 adv76xx_s_detect_tx_5v_ctrl(sd); 2214 if (handled) 2215 *handled = true; 2216 } 2217 return 0; 2218 } 2219 2220 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid) 2221 { 2222 struct adv76xx_state *state = to_state(sd); 2223 u8 *data = NULL; 2224 2225 memset(edid->reserved, 0, sizeof(edid->reserved)); 2226 2227 switch (edid->pad) { 2228 case ADV76XX_PAD_HDMI_PORT_A: 2229 case ADV7604_PAD_HDMI_PORT_B: 2230 case ADV7604_PAD_HDMI_PORT_C: 2231 case ADV7604_PAD_HDMI_PORT_D: 2232 if (state->edid.present & (1 << edid->pad)) 2233 data = state->edid.edid; 2234 break; 2235 default: 2236 return -EINVAL; 2237 } 2238 2239 if (edid->start_block == 0 && edid->blocks == 0) { 2240 edid->blocks = data ? state->edid.blocks : 0; 2241 return 0; 2242 } 2243 2244 if (data == NULL) 2245 return -ENODATA; 2246 2247 if (edid->start_block >= state->edid.blocks) 2248 return -EINVAL; 2249 2250 if (edid->start_block + edid->blocks > state->edid.blocks) 2251 edid->blocks = state->edid.blocks - edid->start_block; 2252 2253 memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128); 2254 2255 return 0; 2256 } 2257 2258 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid) 2259 { 2260 struct adv76xx_state *state = to_state(sd); 2261 const struct adv76xx_chip_info *info = state->info; 2262 unsigned int spa_loc; 2263 u16 pa; 2264 int err; 2265 int i; 2266 2267 memset(edid->reserved, 0, sizeof(edid->reserved)); 2268 2269 if (edid->pad > ADV7604_PAD_HDMI_PORT_D) 2270 return -EINVAL; 2271 if (edid->start_block != 0) 2272 return -EINVAL; 2273 if (edid->blocks == 0) { 2274 /* Disable hotplug and I2C access to EDID RAM from DDC port */ 2275 state->edid.present &= ~(1 << edid->pad); 2276 adv76xx_set_hpd(state, state->edid.present); 2277 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present); 2278 2279 /* Fall back to a 16:9 aspect ratio */ 2280 state->aspect_ratio.numerator = 16; 2281 state->aspect_ratio.denominator = 9; 2282 2283 if (!state->edid.present) 2284 state->edid.blocks = 0; 2285 2286 v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n", 2287 __func__, edid->pad, state->edid.present); 2288 return 0; 2289 } 2290 if (edid->blocks > 2) { 2291 edid->blocks = 2; 2292 return -E2BIG; 2293 } 2294 pa = cec_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc); 2295 err = cec_phys_addr_validate(pa, &pa, NULL); 2296 if (err) 2297 return err; 2298 2299 v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n", 2300 __func__, edid->pad, state->edid.present); 2301 2302 /* Disable hotplug and I2C access to EDID RAM from DDC port */ 2303 cancel_delayed_work_sync(&state->delayed_work_enable_hotplug); 2304 adv76xx_set_hpd(state, 0); 2305 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00); 2306 2307 /* 2308 * Return an error if no location of the source physical address 2309 * was found. 2310 */ 2311 if (spa_loc == 0) 2312 return -EINVAL; 2313 2314 switch (edid->pad) { 2315 case ADV76XX_PAD_HDMI_PORT_A: 2316 state->spa_port_a[0] = edid->edid[spa_loc]; 2317 state->spa_port_a[1] = edid->edid[spa_loc + 1]; 2318 break; 2319 case ADV7604_PAD_HDMI_PORT_B: 2320 rep_write(sd, 0x70, edid->edid[spa_loc]); 2321 rep_write(sd, 0x71, edid->edid[spa_loc + 1]); 2322 break; 2323 case ADV7604_PAD_HDMI_PORT_C: 2324 rep_write(sd, 0x72, edid->edid[spa_loc]); 2325 rep_write(sd, 0x73, edid->edid[spa_loc + 1]); 2326 break; 2327 case ADV7604_PAD_HDMI_PORT_D: 2328 rep_write(sd, 0x74, edid->edid[spa_loc]); 2329 rep_write(sd, 0x75, edid->edid[spa_loc + 1]); 2330 break; 2331 default: 2332 return -EINVAL; 2333 } 2334 2335 if (info->type == ADV7604) { 2336 rep_write(sd, 0x76, spa_loc & 0xff); 2337 rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2); 2338 } else { 2339 /* ADV7612 Software Manual Rev. A, p. 15 */ 2340 rep_write(sd, 0x70, spa_loc & 0xff); 2341 rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8); 2342 } 2343 2344 edid->edid[spa_loc] = state->spa_port_a[0]; 2345 edid->edid[spa_loc + 1] = state->spa_port_a[1]; 2346 2347 memcpy(state->edid.edid, edid->edid, 128 * edid->blocks); 2348 state->edid.blocks = edid->blocks; 2349 state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15], 2350 edid->edid[0x16]); 2351 state->edid.present |= 1 << edid->pad; 2352 2353 err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid); 2354 if (err < 0) { 2355 v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad); 2356 return err; 2357 } 2358 2359 /* adv76xx calculates the checksums and enables I2C access to internal 2360 EDID RAM from DDC port. */ 2361 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present); 2362 2363 for (i = 0; i < 1000; i++) { 2364 if (rep_read(sd, info->edid_status_reg) & state->edid.present) 2365 break; 2366 mdelay(1); 2367 } 2368 if (i == 1000) { 2369 v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present); 2370 return -EIO; 2371 } 2372 cec_s_phys_addr(state->cec_adap, pa, false); 2373 2374 /* enable hotplug after 100 ms */ 2375 schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10); 2376 return 0; 2377 } 2378 2379 /*********** avi info frame CEA-861-E **************/ 2380 2381 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = { 2382 { "AVI", 0x01, 0xe0, 0x00 }, 2383 { "Audio", 0x02, 0xe3, 0x1c }, 2384 { "SDP", 0x04, 0xe6, 0x2a }, 2385 { "Vendor", 0x10, 0xec, 0x54 } 2386 }; 2387 2388 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index, 2389 union hdmi_infoframe *frame) 2390 { 2391 uint8_t buffer[32]; 2392 u8 len; 2393 int i; 2394 2395 if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) { 2396 v4l2_info(sd, "%s infoframe not received\n", 2397 adv76xx_cri[index].desc); 2398 return -ENOENT; 2399 } 2400 2401 for (i = 0; i < 3; i++) 2402 buffer[i] = infoframe_read(sd, 2403 adv76xx_cri[index].head_addr + i); 2404 2405 len = buffer[2] + 1; 2406 2407 if (len + 3 > sizeof(buffer)) { 2408 v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__, 2409 adv76xx_cri[index].desc, len); 2410 return -ENOENT; 2411 } 2412 2413 for (i = 0; i < len; i++) 2414 buffer[i + 3] = infoframe_read(sd, 2415 adv76xx_cri[index].payload_addr + i); 2416 2417 if (hdmi_infoframe_unpack(frame, buffer) < 0) { 2418 v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__, 2419 adv76xx_cri[index].desc); 2420 return -ENOENT; 2421 } 2422 return 0; 2423 } 2424 2425 static void adv76xx_log_infoframes(struct v4l2_subdev *sd) 2426 { 2427 int i; 2428 2429 if (!is_hdmi(sd)) { 2430 v4l2_info(sd, "receive DVI-D signal, no infoframes\n"); 2431 return; 2432 } 2433 2434 for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) { 2435 union hdmi_infoframe frame; 2436 struct i2c_client *client = v4l2_get_subdevdata(sd); 2437 2438 if (adv76xx_read_infoframe(sd, i, &frame)) 2439 return; 2440 hdmi_infoframe_log(KERN_INFO, &client->dev, &frame); 2441 } 2442 } 2443 2444 static int adv76xx_log_status(struct v4l2_subdev *sd) 2445 { 2446 struct adv76xx_state *state = to_state(sd); 2447 const struct adv76xx_chip_info *info = state->info; 2448 struct v4l2_dv_timings timings; 2449 struct stdi_readback stdi; 2450 u8 reg_io_0x02 = io_read(sd, 0x02); 2451 u8 edid_enabled; 2452 u8 cable_det; 2453 2454 static const char * const csc_coeff_sel_rb[16] = { 2455 "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB", 2456 "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709", 2457 "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709", 2458 "reserved", "reserved", "reserved", "reserved", "manual" 2459 }; 2460 static const char * const input_color_space_txt[16] = { 2461 "RGB limited range (16-235)", "RGB full range (0-255)", 2462 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)", 2463 "xvYCC Bt.601", "xvYCC Bt.709", 2464 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)", 2465 "invalid", "invalid", "invalid", "invalid", "invalid", 2466 "invalid", "invalid", "automatic" 2467 }; 2468 static const char * const hdmi_color_space_txt[16] = { 2469 "RGB limited range (16-235)", "RGB full range (0-255)", 2470 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)", 2471 "xvYCC Bt.601", "xvYCC Bt.709", 2472 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)", 2473 "sYCC", "Adobe YCC 601", "AdobeRGB", "invalid", "invalid", 2474 "invalid", "invalid", "invalid" 2475 }; 2476 static const char * const rgb_quantization_range_txt[] = { 2477 "Automatic", 2478 "RGB limited range (16-235)", 2479 "RGB full range (0-255)", 2480 }; 2481 static const char * const deep_color_mode_txt[4] = { 2482 "8-bits per channel", 2483 "10-bits per channel", 2484 "12-bits per channel", 2485 "16-bits per channel (not supported)" 2486 }; 2487 2488 v4l2_info(sd, "-----Chip status-----\n"); 2489 v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on"); 2490 edid_enabled = rep_read(sd, info->edid_status_reg); 2491 v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n", 2492 ((edid_enabled & 0x01) ? "Yes" : "No"), 2493 ((edid_enabled & 0x02) ? "Yes" : "No"), 2494 ((edid_enabled & 0x04) ? "Yes" : "No"), 2495 ((edid_enabled & 0x08) ? "Yes" : "No")); 2496 v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ? 2497 "enabled" : "disabled"); 2498 if (state->cec_enabled_adap) { 2499 int i; 2500 2501 for (i = 0; i < ADV76XX_MAX_ADDRS; i++) { 2502 bool is_valid = state->cec_valid_addrs & (1 << i); 2503 2504 if (is_valid) 2505 v4l2_info(sd, "CEC Logical Address: 0x%x\n", 2506 state->cec_addr[i]); 2507 } 2508 } 2509 2510 v4l2_info(sd, "-----Signal status-----\n"); 2511 cable_det = info->read_cable_det(sd); 2512 v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n", 2513 ((cable_det & 0x01) ? "Yes" : "No"), 2514 ((cable_det & 0x02) ? "Yes" : "No"), 2515 ((cable_det & 0x04) ? "Yes" : "No"), 2516 ((cable_det & 0x08) ? "Yes" : "No")); 2517 v4l2_info(sd, "TMDS signal detected: %s\n", 2518 no_signal_tmds(sd) ? "false" : "true"); 2519 v4l2_info(sd, "TMDS signal locked: %s\n", 2520 no_lock_tmds(sd) ? "false" : "true"); 2521 v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true"); 2522 v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true"); 2523 v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true"); 2524 v4l2_info(sd, "CP free run: %s\n", 2525 (in_free_run(sd)) ? "on" : "off"); 2526 v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n", 2527 io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f, 2528 (io_read(sd, 0x01) & 0x70) >> 4); 2529 2530 v4l2_info(sd, "-----Video Timings-----\n"); 2531 if (read_stdi(sd, &stdi)) 2532 v4l2_info(sd, "STDI: not locked\n"); 2533 else 2534 v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n", 2535 stdi.lcf, stdi.bl, stdi.lcvs, 2536 stdi.interlaced ? "interlaced" : "progressive", 2537 stdi.hs_pol, stdi.vs_pol); 2538 if (adv76xx_query_dv_timings(sd, &timings)) 2539 v4l2_info(sd, "No video detected\n"); 2540 else 2541 v4l2_print_dv_timings(sd->name, "Detected format: ", 2542 &timings, true); 2543 v4l2_print_dv_timings(sd->name, "Configured format: ", 2544 &state->timings, true); 2545 2546 if (no_signal(sd)) 2547 return 0; 2548 2549 v4l2_info(sd, "-----Color space-----\n"); 2550 v4l2_info(sd, "RGB quantization range ctrl: %s\n", 2551 rgb_quantization_range_txt[state->rgb_quantization_range]); 2552 v4l2_info(sd, "Input color space: %s\n", 2553 input_color_space_txt[reg_io_0x02 >> 4]); 2554 v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n", 2555 (reg_io_0x02 & 0x02) ? "RGB" : "YCbCr", 2556 (((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ? 2557 "(16-235)" : "(0-255)", 2558 (reg_io_0x02 & 0x08) ? "enabled" : "disabled"); 2559 v4l2_info(sd, "Color space conversion: %s\n", 2560 csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]); 2561 2562 if (!is_digital_input(sd)) 2563 return 0; 2564 2565 v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D"); 2566 v4l2_info(sd, "Digital video port selected: %c\n", 2567 (hdmi_read(sd, 0x00) & 0x03) + 'A'); 2568 v4l2_info(sd, "HDCP encrypted content: %s\n", 2569 (hdmi_read(sd, 0x05) & 0x40) ? "true" : "false"); 2570 v4l2_info(sd, "HDCP keys read: %s%s\n", 2571 (hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no", 2572 (hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : ""); 2573 if (is_hdmi(sd)) { 2574 bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01; 2575 bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01; 2576 bool audio_mute = io_read(sd, 0x65) & 0x40; 2577 2578 v4l2_info(sd, "Audio: pll %s, samples %s, %s\n", 2579 audio_pll_locked ? "locked" : "not locked", 2580 audio_sample_packet_detect ? "detected" : "not detected", 2581 audio_mute ? "muted" : "enabled"); 2582 if (audio_pll_locked && audio_sample_packet_detect) { 2583 v4l2_info(sd, "Audio format: %s\n", 2584 (hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo"); 2585 } 2586 v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) + 2587 (hdmi_read(sd, 0x5c) << 8) + 2588 (hdmi_read(sd, 0x5d) & 0xf0)); 2589 v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) + 2590 (hdmi_read(sd, 0x5e) << 8) + 2591 hdmi_read(sd, 0x5f)); 2592 v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off"); 2593 2594 v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]); 2595 v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]); 2596 2597 adv76xx_log_infoframes(sd); 2598 } 2599 2600 return 0; 2601 } 2602 2603 static int adv76xx_subscribe_event(struct v4l2_subdev *sd, 2604 struct v4l2_fh *fh, 2605 struct v4l2_event_subscription *sub) 2606 { 2607 switch (sub->type) { 2608 case V4L2_EVENT_SOURCE_CHANGE: 2609 return v4l2_src_change_event_subdev_subscribe(sd, fh, sub); 2610 case V4L2_EVENT_CTRL: 2611 return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub); 2612 default: 2613 return -EINVAL; 2614 } 2615 } 2616 2617 static int adv76xx_registered(struct v4l2_subdev *sd) 2618 { 2619 struct adv76xx_state *state = to_state(sd); 2620 int err; 2621 2622 err = cec_register_adapter(state->cec_adap); 2623 if (err) 2624 cec_delete_adapter(state->cec_adap); 2625 return err; 2626 } 2627 2628 static void adv76xx_unregistered(struct v4l2_subdev *sd) 2629 { 2630 struct adv76xx_state *state = to_state(sd); 2631 2632 cec_unregister_adapter(state->cec_adap); 2633 } 2634 2635 /* ----------------------------------------------------------------------- */ 2636 2637 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = { 2638 .s_ctrl = adv76xx_s_ctrl, 2639 .g_volatile_ctrl = adv76xx_g_volatile_ctrl, 2640 }; 2641 2642 static const struct v4l2_subdev_core_ops adv76xx_core_ops = { 2643 .log_status = adv76xx_log_status, 2644 .interrupt_service_routine = adv76xx_isr, 2645 .subscribe_event = adv76xx_subscribe_event, 2646 .unsubscribe_event = v4l2_event_subdev_unsubscribe, 2647 #ifdef CONFIG_VIDEO_ADV_DEBUG 2648 .g_register = adv76xx_g_register, 2649 .s_register = adv76xx_s_register, 2650 #endif 2651 }; 2652 2653 static const struct v4l2_subdev_video_ops adv76xx_video_ops = { 2654 .s_routing = adv76xx_s_routing, 2655 .g_input_status = adv76xx_g_input_status, 2656 .s_dv_timings = adv76xx_s_dv_timings, 2657 .g_dv_timings = adv76xx_g_dv_timings, 2658 .query_dv_timings = adv76xx_query_dv_timings, 2659 }; 2660 2661 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = { 2662 .enum_mbus_code = adv76xx_enum_mbus_code, 2663 .get_selection = adv76xx_get_selection, 2664 .get_fmt = adv76xx_get_format, 2665 .set_fmt = adv76xx_set_format, 2666 .get_edid = adv76xx_get_edid, 2667 .set_edid = adv76xx_set_edid, 2668 .dv_timings_cap = adv76xx_dv_timings_cap, 2669 .enum_dv_timings = adv76xx_enum_dv_timings, 2670 }; 2671 2672 static const struct v4l2_subdev_ops adv76xx_ops = { 2673 .core = &adv76xx_core_ops, 2674 .video = &adv76xx_video_ops, 2675 .pad = &adv76xx_pad_ops, 2676 }; 2677 2678 static const struct v4l2_subdev_internal_ops adv76xx_int_ops = { 2679 .registered = adv76xx_registered, 2680 .unregistered = adv76xx_unregistered, 2681 }; 2682 2683 /* -------------------------- custom ctrls ---------------------------------- */ 2684 2685 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = { 2686 .ops = &adv76xx_ctrl_ops, 2687 .id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE, 2688 .name = "Analog Sampling Phase", 2689 .type = V4L2_CTRL_TYPE_INTEGER, 2690 .min = 0, 2691 .max = 0x1f, 2692 .step = 1, 2693 .def = 0, 2694 }; 2695 2696 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = { 2697 .ops = &adv76xx_ctrl_ops, 2698 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL, 2699 .name = "Free Running Color, Manual", 2700 .type = V4L2_CTRL_TYPE_BOOLEAN, 2701 .min = false, 2702 .max = true, 2703 .step = 1, 2704 .def = false, 2705 }; 2706 2707 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = { 2708 .ops = &adv76xx_ctrl_ops, 2709 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR, 2710 .name = "Free Running Color", 2711 .type = V4L2_CTRL_TYPE_INTEGER, 2712 .min = 0x0, 2713 .max = 0xffffff, 2714 .step = 0x1, 2715 .def = 0x0, 2716 }; 2717 2718 /* ----------------------------------------------------------------------- */ 2719 2720 static int adv76xx_core_init(struct v4l2_subdev *sd) 2721 { 2722 struct adv76xx_state *state = to_state(sd); 2723 const struct adv76xx_chip_info *info = state->info; 2724 struct adv76xx_platform_data *pdata = &state->pdata; 2725 2726 hdmi_write(sd, 0x48, 2727 (pdata->disable_pwrdnb ? 0x80 : 0) | 2728 (pdata->disable_cable_det_rst ? 0x40 : 0)); 2729 2730 disable_input(sd); 2731 2732 if (pdata->default_input >= 0 && 2733 pdata->default_input < state->source_pad) { 2734 state->selected_input = pdata->default_input; 2735 select_input(sd); 2736 enable_input(sd); 2737 } 2738 2739 /* power */ 2740 io_write(sd, 0x0c, 0x42); /* Power up part and power down VDP */ 2741 io_write(sd, 0x0b, 0x44); /* Power down ESDP block */ 2742 cp_write(sd, 0xcf, 0x01); /* Power down macrovision */ 2743 2744 /* video format */ 2745 io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3); 2746 io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 | 2747 pdata->insert_av_codes << 2 | 2748 pdata->replicate_av_codes << 1); 2749 adv76xx_setup_format(state); 2750 2751 cp_write(sd, 0x69, 0x30); /* Enable CP CSC */ 2752 2753 /* VS, HS polarities */ 2754 io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 | 2755 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol); 2756 2757 /* Adjust drive strength */ 2758 io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 | 2759 pdata->dr_str_clk << 2 | 2760 pdata->dr_str_sync); 2761 2762 cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */ 2763 cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */ 2764 cp_write(sd, 0xf9, 0x23); /* STDI ch. 1 - LCVS change threshold - 2765 ADI recommended setting [REF_01, c. 2.3.3] */ 2766 cp_write(sd, 0x45, 0x23); /* STDI ch. 2 - LCVS change threshold - 2767 ADI recommended setting [REF_01, c. 2.3.3] */ 2768 cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution 2769 for digital formats */ 2770 2771 /* HDMI audio */ 2772 hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */ 2773 hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */ 2774 hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */ 2775 2776 /* TODO from platform data */ 2777 afe_write(sd, 0xb5, 0x01); /* Setting MCLK to 256Fs */ 2778 2779 if (adv76xx_has_afe(state)) { 2780 afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */ 2781 io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4); 2782 } 2783 2784 /* interrupts */ 2785 io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */ 2786 io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */ 2787 io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */ 2788 io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */ 2789 info->setup_irqs(sd); 2790 2791 return v4l2_ctrl_handler_setup(sd->ctrl_handler); 2792 } 2793 2794 static void adv7604_setup_irqs(struct v4l2_subdev *sd) 2795 { 2796 io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */ 2797 } 2798 2799 static void adv7611_setup_irqs(struct v4l2_subdev *sd) 2800 { 2801 io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */ 2802 } 2803 2804 static void adv7612_setup_irqs(struct v4l2_subdev *sd) 2805 { 2806 io_write(sd, 0x41, 0xd0); /* disable INT2 */ 2807 } 2808 2809 static void adv76xx_unregister_clients(struct adv76xx_state *state) 2810 { 2811 unsigned int i; 2812 2813 for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) { 2814 if (state->i2c_clients[i]) 2815 i2c_unregister_device(state->i2c_clients[i]); 2816 } 2817 } 2818 2819 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd, 2820 u8 addr, u8 io_reg) 2821 { 2822 struct i2c_client *client = v4l2_get_subdevdata(sd); 2823 2824 if (addr) 2825 io_write(sd, io_reg, addr << 1); 2826 return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1); 2827 } 2828 2829 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = { 2830 /* reset ADI recommended settings for HDMI: */ 2831 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */ 2832 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */ 2833 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */ 2834 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */ 2835 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */ 2836 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */ 2837 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */ 2838 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */ 2839 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */ 2840 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */ 2841 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */ 2842 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */ 2843 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */ 2844 2845 /* set ADI recommended settings for digitizer */ 2846 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */ 2847 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */ 2848 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */ 2849 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */ 2850 { ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */ 2851 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */ 2852 2853 { ADV76XX_REG_SEQ_TERM, 0 }, 2854 }; 2855 2856 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = { 2857 /* set ADI recommended settings for HDMI: */ 2858 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */ 2859 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */ 2860 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */ 2861 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */ 2862 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */ 2863 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */ 2864 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */ 2865 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */ 2866 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */ 2867 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */ 2868 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */ 2869 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */ 2870 2871 /* reset ADI recommended settings for digitizer */ 2872 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */ 2873 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */ 2874 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */ 2875 2876 { ADV76XX_REG_SEQ_TERM, 0 }, 2877 }; 2878 2879 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = { 2880 /* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */ 2881 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 }, 2882 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 }, 2883 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 }, 2884 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f }, 2885 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 }, 2886 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda }, 2887 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 }, 2888 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 }, 2889 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 }, 2890 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 }, 2891 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e }, 2892 2893 { ADV76XX_REG_SEQ_TERM, 0 }, 2894 }; 2895 2896 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = { 2897 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 }, 2898 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 }, 2899 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 }, 2900 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f }, 2901 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 }, 2902 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda }, 2903 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 }, 2904 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 }, 2905 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 }, 2906 { ADV76XX_REG_SEQ_TERM, 0 }, 2907 }; 2908 2909 static const struct adv76xx_chip_info adv76xx_chip_info[] = { 2910 [ADV7604] = { 2911 .type = ADV7604, 2912 .has_afe = true, 2913 .max_port = ADV7604_PAD_VGA_COMP, 2914 .num_dv_ports = 4, 2915 .edid_enable_reg = 0x77, 2916 .edid_status_reg = 0x7d, 2917 .lcf_reg = 0xb3, 2918 .tdms_lock_mask = 0xe0, 2919 .cable_det_mask = 0x1e, 2920 .fmt_change_digital_mask = 0xc1, 2921 .cp_csc = 0xfc, 2922 .formats = adv7604_formats, 2923 .nformats = ARRAY_SIZE(adv7604_formats), 2924 .set_termination = adv7604_set_termination, 2925 .setup_irqs = adv7604_setup_irqs, 2926 .read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock, 2927 .read_cable_det = adv7604_read_cable_det, 2928 .recommended_settings = { 2929 [0] = adv7604_recommended_settings_afe, 2930 [1] = adv7604_recommended_settings_hdmi, 2931 }, 2932 .num_recommended_settings = { 2933 [0] = ARRAY_SIZE(adv7604_recommended_settings_afe), 2934 [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi), 2935 }, 2936 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) | 2937 BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) | 2938 BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) | 2939 BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) | 2940 BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) | 2941 BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) | 2942 BIT(ADV7604_PAGE_VDP), 2943 .linewidth_mask = 0xfff, 2944 .field0_height_mask = 0xfff, 2945 .field1_height_mask = 0xfff, 2946 .hfrontporch_mask = 0x3ff, 2947 .hsync_mask = 0x3ff, 2948 .hbackporch_mask = 0x3ff, 2949 .field0_vfrontporch_mask = 0x1fff, 2950 .field0_vsync_mask = 0x1fff, 2951 .field0_vbackporch_mask = 0x1fff, 2952 .field1_vfrontporch_mask = 0x1fff, 2953 .field1_vsync_mask = 0x1fff, 2954 .field1_vbackporch_mask = 0x1fff, 2955 }, 2956 [ADV7611] = { 2957 .type = ADV7611, 2958 .has_afe = false, 2959 .max_port = ADV76XX_PAD_HDMI_PORT_A, 2960 .num_dv_ports = 1, 2961 .edid_enable_reg = 0x74, 2962 .edid_status_reg = 0x76, 2963 .lcf_reg = 0xa3, 2964 .tdms_lock_mask = 0x43, 2965 .cable_det_mask = 0x01, 2966 .fmt_change_digital_mask = 0x03, 2967 .cp_csc = 0xf4, 2968 .formats = adv7611_formats, 2969 .nformats = ARRAY_SIZE(adv7611_formats), 2970 .set_termination = adv7611_set_termination, 2971 .setup_irqs = adv7611_setup_irqs, 2972 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock, 2973 .read_cable_det = adv7611_read_cable_det, 2974 .recommended_settings = { 2975 [1] = adv7611_recommended_settings_hdmi, 2976 }, 2977 .num_recommended_settings = { 2978 [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi), 2979 }, 2980 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) | 2981 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) | 2982 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) | 2983 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP), 2984 .linewidth_mask = 0x1fff, 2985 .field0_height_mask = 0x1fff, 2986 .field1_height_mask = 0x1fff, 2987 .hfrontporch_mask = 0x1fff, 2988 .hsync_mask = 0x1fff, 2989 .hbackporch_mask = 0x1fff, 2990 .field0_vfrontporch_mask = 0x3fff, 2991 .field0_vsync_mask = 0x3fff, 2992 .field0_vbackporch_mask = 0x3fff, 2993 .field1_vfrontporch_mask = 0x3fff, 2994 .field1_vsync_mask = 0x3fff, 2995 .field1_vbackporch_mask = 0x3fff, 2996 }, 2997 [ADV7612] = { 2998 .type = ADV7612, 2999 .has_afe = false, 3000 .max_port = ADV76XX_PAD_HDMI_PORT_A, /* B not supported */ 3001 .num_dv_ports = 1, /* normally 2 */ 3002 .edid_enable_reg = 0x74, 3003 .edid_status_reg = 0x76, 3004 .lcf_reg = 0xa3, 3005 .tdms_lock_mask = 0x43, 3006 .cable_det_mask = 0x01, 3007 .fmt_change_digital_mask = 0x03, 3008 .cp_csc = 0xf4, 3009 .formats = adv7612_formats, 3010 .nformats = ARRAY_SIZE(adv7612_formats), 3011 .set_termination = adv7611_set_termination, 3012 .setup_irqs = adv7612_setup_irqs, 3013 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock, 3014 .read_cable_det = adv7612_read_cable_det, 3015 .recommended_settings = { 3016 [1] = adv7612_recommended_settings_hdmi, 3017 }, 3018 .num_recommended_settings = { 3019 [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi), 3020 }, 3021 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) | 3022 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) | 3023 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) | 3024 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP), 3025 .linewidth_mask = 0x1fff, 3026 .field0_height_mask = 0x1fff, 3027 .field1_height_mask = 0x1fff, 3028 .hfrontporch_mask = 0x1fff, 3029 .hsync_mask = 0x1fff, 3030 .hbackporch_mask = 0x1fff, 3031 .field0_vfrontporch_mask = 0x3fff, 3032 .field0_vsync_mask = 0x3fff, 3033 .field0_vbackporch_mask = 0x3fff, 3034 .field1_vfrontporch_mask = 0x3fff, 3035 .field1_vsync_mask = 0x3fff, 3036 .field1_vbackporch_mask = 0x3fff, 3037 }, 3038 }; 3039 3040 static const struct i2c_device_id adv76xx_i2c_id[] = { 3041 { "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] }, 3042 { "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] }, 3043 { "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] }, 3044 { } 3045 }; 3046 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id); 3047 3048 static const struct of_device_id adv76xx_of_id[] __maybe_unused = { 3049 { .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] }, 3050 { .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] }, 3051 { } 3052 }; 3053 MODULE_DEVICE_TABLE(of, adv76xx_of_id); 3054 3055 static int adv76xx_parse_dt(struct adv76xx_state *state) 3056 { 3057 struct v4l2_of_endpoint bus_cfg; 3058 struct device_node *endpoint; 3059 struct device_node *np; 3060 unsigned int flags; 3061 int ret; 3062 u32 v; 3063 3064 np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node; 3065 3066 /* Parse the endpoint. */ 3067 endpoint = of_graph_get_next_endpoint(np, NULL); 3068 if (!endpoint) 3069 return -EINVAL; 3070 3071 ret = v4l2_of_parse_endpoint(endpoint, &bus_cfg); 3072 if (ret) { 3073 of_node_put(endpoint); 3074 return ret; 3075 } 3076 3077 if (!of_property_read_u32(endpoint, "default-input", &v)) 3078 state->pdata.default_input = v; 3079 else 3080 state->pdata.default_input = -1; 3081 3082 of_node_put(endpoint); 3083 3084 flags = bus_cfg.bus.parallel.flags; 3085 3086 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH) 3087 state->pdata.inv_hs_pol = 1; 3088 3089 if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH) 3090 state->pdata.inv_vs_pol = 1; 3091 3092 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING) 3093 state->pdata.inv_llc_pol = 1; 3094 3095 if (bus_cfg.bus_type == V4L2_MBUS_BT656) 3096 state->pdata.insert_av_codes = 1; 3097 3098 /* Disable the interrupt for now as no DT-based board uses it. */ 3099 state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED; 3100 3101 /* Use the default I2C addresses. */ 3102 state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42; 3103 state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40; 3104 state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e; 3105 state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38; 3106 state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c; 3107 state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26; 3108 state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32; 3109 state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36; 3110 state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34; 3111 state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30; 3112 state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22; 3113 state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24; 3114 3115 /* Hardcode the remaining platform data fields. */ 3116 state->pdata.disable_pwrdnb = 0; 3117 state->pdata.disable_cable_det_rst = 0; 3118 state->pdata.blank_data = 1; 3119 state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0; 3120 state->pdata.bus_order = ADV7604_BUS_ORDER_RGB; 3121 3122 return 0; 3123 } 3124 3125 static const struct regmap_config adv76xx_regmap_cnf[] = { 3126 { 3127 .name = "io", 3128 .reg_bits = 8, 3129 .val_bits = 8, 3130 3131 .max_register = 0xff, 3132 .cache_type = REGCACHE_NONE, 3133 }, 3134 { 3135 .name = "avlink", 3136 .reg_bits = 8, 3137 .val_bits = 8, 3138 3139 .max_register = 0xff, 3140 .cache_type = REGCACHE_NONE, 3141 }, 3142 { 3143 .name = "cec", 3144 .reg_bits = 8, 3145 .val_bits = 8, 3146 3147 .max_register = 0xff, 3148 .cache_type = REGCACHE_NONE, 3149 }, 3150 { 3151 .name = "infoframe", 3152 .reg_bits = 8, 3153 .val_bits = 8, 3154 3155 .max_register = 0xff, 3156 .cache_type = REGCACHE_NONE, 3157 }, 3158 { 3159 .name = "esdp", 3160 .reg_bits = 8, 3161 .val_bits = 8, 3162 3163 .max_register = 0xff, 3164 .cache_type = REGCACHE_NONE, 3165 }, 3166 { 3167 .name = "epp", 3168 .reg_bits = 8, 3169 .val_bits = 8, 3170 3171 .max_register = 0xff, 3172 .cache_type = REGCACHE_NONE, 3173 }, 3174 { 3175 .name = "afe", 3176 .reg_bits = 8, 3177 .val_bits = 8, 3178 3179 .max_register = 0xff, 3180 .cache_type = REGCACHE_NONE, 3181 }, 3182 { 3183 .name = "rep", 3184 .reg_bits = 8, 3185 .val_bits = 8, 3186 3187 .max_register = 0xff, 3188 .cache_type = REGCACHE_NONE, 3189 }, 3190 { 3191 .name = "edid", 3192 .reg_bits = 8, 3193 .val_bits = 8, 3194 3195 .max_register = 0xff, 3196 .cache_type = REGCACHE_NONE, 3197 }, 3198 3199 { 3200 .name = "hdmi", 3201 .reg_bits = 8, 3202 .val_bits = 8, 3203 3204 .max_register = 0xff, 3205 .cache_type = REGCACHE_NONE, 3206 }, 3207 { 3208 .name = "test", 3209 .reg_bits = 8, 3210 .val_bits = 8, 3211 3212 .max_register = 0xff, 3213 .cache_type = REGCACHE_NONE, 3214 }, 3215 { 3216 .name = "cp", 3217 .reg_bits = 8, 3218 .val_bits = 8, 3219 3220 .max_register = 0xff, 3221 .cache_type = REGCACHE_NONE, 3222 }, 3223 { 3224 .name = "vdp", 3225 .reg_bits = 8, 3226 .val_bits = 8, 3227 3228 .max_register = 0xff, 3229 .cache_type = REGCACHE_NONE, 3230 }, 3231 }; 3232 3233 static int configure_regmap(struct adv76xx_state *state, int region) 3234 { 3235 int err; 3236 3237 if (!state->i2c_clients[region]) 3238 return -ENODEV; 3239 3240 state->regmap[region] = 3241 devm_regmap_init_i2c(state->i2c_clients[region], 3242 &adv76xx_regmap_cnf[region]); 3243 3244 if (IS_ERR(state->regmap[region])) { 3245 err = PTR_ERR(state->regmap[region]); 3246 v4l_err(state->i2c_clients[region], 3247 "Error initializing regmap %d with error %d\n", 3248 region, err); 3249 return -EINVAL; 3250 } 3251 3252 return 0; 3253 } 3254 3255 static int configure_regmaps(struct adv76xx_state *state) 3256 { 3257 int i, err; 3258 3259 for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) { 3260 err = configure_regmap(state, i); 3261 if (err && (err != -ENODEV)) 3262 return err; 3263 } 3264 return 0; 3265 } 3266 3267 static void adv76xx_reset(struct adv76xx_state *state) 3268 { 3269 if (state->reset_gpio) { 3270 /* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */ 3271 gpiod_set_value_cansleep(state->reset_gpio, 0); 3272 usleep_range(5000, 10000); 3273 gpiod_set_value_cansleep(state->reset_gpio, 1); 3274 /* It is recommended to wait 5 ms after the low pulse before */ 3275 /* an I2C write is performed to the ADV76XX. */ 3276 usleep_range(5000, 10000); 3277 } 3278 } 3279 3280 static int adv76xx_probe(struct i2c_client *client, 3281 const struct i2c_device_id *id) 3282 { 3283 static const struct v4l2_dv_timings cea640x480 = 3284 V4L2_DV_BT_CEA_640X480P59_94; 3285 struct adv76xx_state *state; 3286 struct v4l2_ctrl_handler *hdl; 3287 struct v4l2_ctrl *ctrl; 3288 struct v4l2_subdev *sd; 3289 unsigned int i; 3290 unsigned int val, val2; 3291 int err; 3292 3293 /* Check if the adapter supports the needed features */ 3294 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 3295 return -EIO; 3296 v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n", 3297 client->addr << 1); 3298 3299 state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL); 3300 if (!state) { 3301 v4l_err(client, "Could not allocate adv76xx_state memory!\n"); 3302 return -ENOMEM; 3303 } 3304 3305 state->i2c_clients[ADV76XX_PAGE_IO] = client; 3306 3307 /* initialize variables */ 3308 state->restart_stdi_once = true; 3309 state->selected_input = ~0; 3310 3311 if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) { 3312 const struct of_device_id *oid; 3313 3314 oid = of_match_node(adv76xx_of_id, client->dev.of_node); 3315 state->info = oid->data; 3316 3317 err = adv76xx_parse_dt(state); 3318 if (err < 0) { 3319 v4l_err(client, "DT parsing error\n"); 3320 return err; 3321 } 3322 } else if (client->dev.platform_data) { 3323 struct adv76xx_platform_data *pdata = client->dev.platform_data; 3324 3325 state->info = (const struct adv76xx_chip_info *)id->driver_data; 3326 state->pdata = *pdata; 3327 } else { 3328 v4l_err(client, "No platform data!\n"); 3329 return -ENODEV; 3330 } 3331 3332 /* Request GPIOs. */ 3333 for (i = 0; i < state->info->num_dv_ports; ++i) { 3334 state->hpd_gpio[i] = 3335 devm_gpiod_get_index_optional(&client->dev, "hpd", i, 3336 GPIOD_OUT_LOW); 3337 if (IS_ERR(state->hpd_gpio[i])) 3338 return PTR_ERR(state->hpd_gpio[i]); 3339 3340 if (state->hpd_gpio[i]) 3341 v4l_info(client, "Handling HPD %u GPIO\n", i); 3342 } 3343 state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset", 3344 GPIOD_OUT_HIGH); 3345 if (IS_ERR(state->reset_gpio)) 3346 return PTR_ERR(state->reset_gpio); 3347 3348 adv76xx_reset(state); 3349 3350 state->timings = cea640x480; 3351 state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8); 3352 3353 sd = &state->sd; 3354 v4l2_i2c_subdev_init(sd, client, &adv76xx_ops); 3355 snprintf(sd->name, sizeof(sd->name), "%s %d-%04x", 3356 id->name, i2c_adapter_id(client->adapter), 3357 client->addr); 3358 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS; 3359 sd->internal_ops = &adv76xx_int_ops; 3360 3361 /* Configure IO Regmap region */ 3362 err = configure_regmap(state, ADV76XX_PAGE_IO); 3363 3364 if (err) { 3365 v4l2_err(sd, "Error configuring IO regmap region\n"); 3366 return -ENODEV; 3367 } 3368 3369 /* 3370 * Verify that the chip is present. On ADV7604 the RD_INFO register only 3371 * identifies the revision, while on ADV7611 it identifies the model as 3372 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611. 3373 */ 3374 switch (state->info->type) { 3375 case ADV7604: 3376 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val); 3377 if (err) { 3378 v4l2_err(sd, "Error %d reading IO Regmap\n", err); 3379 return -ENODEV; 3380 } 3381 if (val != 0x68) { 3382 v4l2_err(sd, "not an adv7604 on address 0x%x\n", 3383 client->addr << 1); 3384 return -ENODEV; 3385 } 3386 break; 3387 case ADV7611: 3388 case ADV7612: 3389 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 3390 0xea, 3391 &val); 3392 if (err) { 3393 v4l2_err(sd, "Error %d reading IO Regmap\n", err); 3394 return -ENODEV; 3395 } 3396 val2 = val << 8; 3397 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 3398 0xeb, 3399 &val); 3400 if (err) { 3401 v4l2_err(sd, "Error %d reading IO Regmap\n", err); 3402 return -ENODEV; 3403 } 3404 val |= val2; 3405 if ((state->info->type == ADV7611 && val != 0x2051) || 3406 (state->info->type == ADV7612 && val != 0x2041)) { 3407 v4l2_err(sd, "not an adv761x on address 0x%x\n", 3408 client->addr << 1); 3409 return -ENODEV; 3410 } 3411 break; 3412 } 3413 3414 /* control handlers */ 3415 hdl = &state->hdl; 3416 v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8); 3417 3418 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3419 V4L2_CID_BRIGHTNESS, -128, 127, 1, 0); 3420 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3421 V4L2_CID_CONTRAST, 0, 255, 1, 128); 3422 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3423 V4L2_CID_SATURATION, 0, 255, 1, 128); 3424 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3425 V4L2_CID_HUE, 0, 128, 1, 0); 3426 ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops, 3427 V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC, 3428 0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC); 3429 if (ctrl) 3430 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE; 3431 3432 state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL, 3433 V4L2_CID_DV_RX_POWER_PRESENT, 0, 3434 (1 << state->info->num_dv_ports) - 1, 0, 0); 3435 state->rgb_quantization_range_ctrl = 3436 v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops, 3437 V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 3438 0, V4L2_DV_RGB_RANGE_AUTO); 3439 3440 /* custom controls */ 3441 if (adv76xx_has_afe(state)) 3442 state->analog_sampling_phase_ctrl = 3443 v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL); 3444 state->free_run_color_manual_ctrl = 3445 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL); 3446 state->free_run_color_ctrl = 3447 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL); 3448 3449 sd->ctrl_handler = hdl; 3450 if (hdl->error) { 3451 err = hdl->error; 3452 goto err_hdl; 3453 } 3454 if (adv76xx_s_detect_tx_5v_ctrl(sd)) { 3455 err = -ENODEV; 3456 goto err_hdl; 3457 } 3458 3459 for (i = 1; i < ADV76XX_PAGE_MAX; ++i) { 3460 if (!(BIT(i) & state->info->page_mask)) 3461 continue; 3462 3463 state->i2c_clients[i] = 3464 adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i], 3465 0xf2 + i); 3466 if (state->i2c_clients[i] == NULL) { 3467 err = -ENOMEM; 3468 v4l2_err(sd, "failed to create i2c client %u\n", i); 3469 goto err_i2c; 3470 } 3471 } 3472 3473 INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug, 3474 adv76xx_delayed_work_enable_hotplug); 3475 3476 state->source_pad = state->info->num_dv_ports 3477 + (state->info->has_afe ? 2 : 0); 3478 for (i = 0; i < state->source_pad; ++i) 3479 state->pads[i].flags = MEDIA_PAD_FL_SINK; 3480 state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE; 3481 3482 err = media_entity_pads_init(&sd->entity, state->source_pad + 1, 3483 state->pads); 3484 if (err) 3485 goto err_work_queues; 3486 3487 /* Configure regmaps */ 3488 err = configure_regmaps(state); 3489 if (err) 3490 goto err_entity; 3491 3492 err = adv76xx_core_init(sd); 3493 if (err) 3494 goto err_entity; 3495 3496 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC) 3497 state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops, 3498 state, dev_name(&client->dev), 3499 CEC_CAP_TRANSMIT | CEC_CAP_LOG_ADDRS | 3500 CEC_CAP_PASSTHROUGH | CEC_CAP_RC, ADV76XX_MAX_ADDRS, 3501 &client->dev); 3502 err = PTR_ERR_OR_ZERO(state->cec_adap); 3503 if (err) 3504 goto err_entity; 3505 #endif 3506 3507 v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name, 3508 client->addr << 1, client->adapter->name); 3509 3510 err = v4l2_async_register_subdev(sd); 3511 if (err) 3512 goto err_entity; 3513 3514 return 0; 3515 3516 err_entity: 3517 media_entity_cleanup(&sd->entity); 3518 err_work_queues: 3519 cancel_delayed_work(&state->delayed_work_enable_hotplug); 3520 err_i2c: 3521 adv76xx_unregister_clients(state); 3522 err_hdl: 3523 v4l2_ctrl_handler_free(hdl); 3524 return err; 3525 } 3526 3527 /* ----------------------------------------------------------------------- */ 3528 3529 static int adv76xx_remove(struct i2c_client *client) 3530 { 3531 struct v4l2_subdev *sd = i2c_get_clientdata(client); 3532 struct adv76xx_state *state = to_state(sd); 3533 3534 /* disable interrupts */ 3535 io_write(sd, 0x40, 0); 3536 io_write(sd, 0x41, 0); 3537 io_write(sd, 0x46, 0); 3538 io_write(sd, 0x6e, 0); 3539 io_write(sd, 0x73, 0); 3540 3541 cancel_delayed_work(&state->delayed_work_enable_hotplug); 3542 v4l2_async_unregister_subdev(sd); 3543 media_entity_cleanup(&sd->entity); 3544 adv76xx_unregister_clients(to_state(sd)); 3545 v4l2_ctrl_handler_free(sd->ctrl_handler); 3546 return 0; 3547 } 3548 3549 /* ----------------------------------------------------------------------- */ 3550 3551 static struct i2c_driver adv76xx_driver = { 3552 .driver = { 3553 .name = "adv7604", 3554 .of_match_table = of_match_ptr(adv76xx_of_id), 3555 }, 3556 .probe = adv76xx_probe, 3557 .remove = adv76xx_remove, 3558 .id_table = adv76xx_i2c_id, 3559 }; 3560 3561 module_i2c_driver(adv76xx_driver); 3562