1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * adv7604 - Analog Devices ADV7604 video decoder driver 4 * 5 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved. 6 * 7 */ 8 9 /* 10 * References (c = chapter, p = page): 11 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations, 12 * Revision 2.5, June 2010 13 * REF_02 - Analog devices, Register map documentation, Documentation of 14 * the register maps, Software manual, Rev. F, June 2010 15 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010 16 */ 17 18 #include <linux/delay.h> 19 #include <linux/gpio/consumer.h> 20 #include <linux/hdmi.h> 21 #include <linux/i2c.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/of_graph.h> 25 #include <linux/slab.h> 26 #include <linux/v4l2-dv-timings.h> 27 #include <linux/videodev2.h> 28 #include <linux/workqueue.h> 29 #include <linux/regmap.h> 30 #include <linux/interrupt.h> 31 32 #include <media/i2c/adv7604.h> 33 #include <media/cec.h> 34 #include <media/v4l2-ctrls.h> 35 #include <media/v4l2-device.h> 36 #include <media/v4l2-event.h> 37 #include <media/v4l2-dv-timings.h> 38 #include <media/v4l2-fwnode.h> 39 40 static int debug; 41 module_param(debug, int, 0644); 42 MODULE_PARM_DESC(debug, "debug level (0-2)"); 43 44 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver"); 45 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>"); 46 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>"); 47 MODULE_LICENSE("GPL"); 48 49 /* ADV7604 system clock frequency */ 50 #define ADV76XX_FSC (28636360) 51 52 #define ADV76XX_RGB_OUT (1 << 1) 53 54 #define ADV76XX_OP_FORMAT_SEL_8BIT (0 << 0) 55 #define ADV7604_OP_FORMAT_SEL_10BIT (1 << 0) 56 #define ADV76XX_OP_FORMAT_SEL_12BIT (2 << 0) 57 58 #define ADV76XX_OP_MODE_SEL_SDR_422 (0 << 5) 59 #define ADV7604_OP_MODE_SEL_DDR_422 (1 << 5) 60 #define ADV76XX_OP_MODE_SEL_SDR_444 (2 << 5) 61 #define ADV7604_OP_MODE_SEL_DDR_444 (3 << 5) 62 #define ADV76XX_OP_MODE_SEL_SDR_422_2X (4 << 5) 63 #define ADV7604_OP_MODE_SEL_ADI_CM (5 << 5) 64 65 #define ADV76XX_OP_CH_SEL_GBR (0 << 5) 66 #define ADV76XX_OP_CH_SEL_GRB (1 << 5) 67 #define ADV76XX_OP_CH_SEL_BGR (2 << 5) 68 #define ADV76XX_OP_CH_SEL_RGB (3 << 5) 69 #define ADV76XX_OP_CH_SEL_BRG (4 << 5) 70 #define ADV76XX_OP_CH_SEL_RBG (5 << 5) 71 72 #define ADV76XX_OP_SWAP_CB_CR (1 << 0) 73 74 #define ADV76XX_MAX_ADDRS (3) 75 76 enum adv76xx_type { 77 ADV7604, 78 ADV7611, 79 ADV7612, 80 }; 81 82 struct adv76xx_reg_seq { 83 unsigned int reg; 84 u8 val; 85 }; 86 87 struct adv76xx_format_info { 88 u32 code; 89 u8 op_ch_sel; 90 bool rgb_out; 91 bool swap_cb_cr; 92 u8 op_format_sel; 93 }; 94 95 struct adv76xx_cfg_read_infoframe { 96 const char *desc; 97 u8 present_mask; 98 u8 head_addr; 99 u8 payload_addr; 100 }; 101 102 struct adv76xx_chip_info { 103 enum adv76xx_type type; 104 105 bool has_afe; 106 unsigned int max_port; 107 unsigned int num_dv_ports; 108 109 unsigned int edid_enable_reg; 110 unsigned int edid_status_reg; 111 unsigned int lcf_reg; 112 113 unsigned int cable_det_mask; 114 unsigned int tdms_lock_mask; 115 unsigned int fmt_change_digital_mask; 116 unsigned int cp_csc; 117 118 unsigned int cec_irq_status; 119 unsigned int cec_rx_enable; 120 unsigned int cec_rx_enable_mask; 121 bool cec_irq_swap; 122 123 const struct adv76xx_format_info *formats; 124 unsigned int nformats; 125 126 void (*set_termination)(struct v4l2_subdev *sd, bool enable); 127 void (*setup_irqs)(struct v4l2_subdev *sd); 128 unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd); 129 unsigned int (*read_cable_det)(struct v4l2_subdev *sd); 130 131 /* 0 = AFE, 1 = HDMI */ 132 const struct adv76xx_reg_seq *recommended_settings[2]; 133 unsigned int num_recommended_settings[2]; 134 135 unsigned long page_mask; 136 137 /* Masks for timings */ 138 unsigned int linewidth_mask; 139 unsigned int field0_height_mask; 140 unsigned int field1_height_mask; 141 unsigned int hfrontporch_mask; 142 unsigned int hsync_mask; 143 unsigned int hbackporch_mask; 144 unsigned int field0_vfrontporch_mask; 145 unsigned int field1_vfrontporch_mask; 146 unsigned int field0_vsync_mask; 147 unsigned int field1_vsync_mask; 148 unsigned int field0_vbackporch_mask; 149 unsigned int field1_vbackporch_mask; 150 }; 151 152 /* 153 ********************************************************************** 154 * 155 * Arrays with configuration parameters for the ADV7604 156 * 157 ********************************************************************** 158 */ 159 160 struct adv76xx_state { 161 const struct adv76xx_chip_info *info; 162 struct adv76xx_platform_data pdata; 163 164 struct gpio_desc *hpd_gpio[4]; 165 struct gpio_desc *reset_gpio; 166 167 struct v4l2_subdev sd; 168 struct media_pad pads[ADV76XX_PAD_MAX]; 169 unsigned int source_pad; 170 171 struct v4l2_ctrl_handler hdl; 172 173 enum adv76xx_pad selected_input; 174 175 struct v4l2_dv_timings timings; 176 const struct adv76xx_format_info *format; 177 178 struct { 179 u8 edid[256]; 180 u32 present; 181 unsigned blocks; 182 } edid; 183 u16 spa_port_a[2]; 184 struct v4l2_fract aspect_ratio; 185 u32 rgb_quantization_range; 186 struct delayed_work delayed_work_enable_hotplug; 187 bool restart_stdi_once; 188 189 /* CEC */ 190 struct cec_adapter *cec_adap; 191 u8 cec_addr[ADV76XX_MAX_ADDRS]; 192 u8 cec_valid_addrs; 193 bool cec_enabled_adap; 194 195 /* i2c clients */ 196 struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX]; 197 198 /* Regmaps */ 199 struct regmap *regmap[ADV76XX_PAGE_MAX]; 200 201 /* controls */ 202 struct v4l2_ctrl *detect_tx_5v_ctrl; 203 struct v4l2_ctrl *analog_sampling_phase_ctrl; 204 struct v4l2_ctrl *free_run_color_manual_ctrl; 205 struct v4l2_ctrl *free_run_color_ctrl; 206 struct v4l2_ctrl *rgb_quantization_range_ctrl; 207 }; 208 209 static bool adv76xx_has_afe(struct adv76xx_state *state) 210 { 211 return state->info->has_afe; 212 } 213 214 /* Unsupported timings. This device cannot support 720p30. */ 215 static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = { 216 V4L2_DV_BT_CEA_1280X720P30, 217 { } 218 }; 219 220 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl) 221 { 222 int i; 223 224 for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++) 225 if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false)) 226 return false; 227 return true; 228 } 229 230 struct adv76xx_video_standards { 231 struct v4l2_dv_timings timings; 232 u8 vid_std; 233 u8 v_freq; 234 }; 235 236 /* sorted by number of lines */ 237 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = { 238 /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */ 239 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 }, 240 { V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 }, 241 { V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 }, 242 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 }, 243 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 }, 244 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 }, 245 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 }, 246 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 }, 247 /* TODO add 1920x1080P60_RB (CVT timing) */ 248 { }, 249 }; 250 251 /* sorted by number of lines */ 252 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = { 253 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 }, 254 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 }, 255 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 }, 256 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 }, 257 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 }, 258 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 }, 259 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 }, 260 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 }, 261 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 }, 262 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 }, 263 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 }, 264 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 }, 265 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 }, 266 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 }, 267 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 }, 268 { V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 }, 269 { V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 }, 270 { V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 }, 271 { V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 }, 272 { V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */ 273 /* TODO add 1600X1200P60_RB (not a DMT timing) */ 274 { V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 }, 275 { V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */ 276 { }, 277 }; 278 279 /* sorted by number of lines */ 280 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = { 281 { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, 282 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 }, 283 { V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 }, 284 { V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 }, 285 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 }, 286 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 }, 287 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 }, 288 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 }, 289 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 }, 290 { }, 291 }; 292 293 /* sorted by number of lines */ 294 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = { 295 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 }, 296 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 }, 297 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 }, 298 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 }, 299 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 }, 300 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 }, 301 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 }, 302 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 }, 303 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 }, 304 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 }, 305 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 }, 306 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 }, 307 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 }, 308 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 }, 309 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 }, 310 { }, 311 }; 312 313 static const struct v4l2_event adv76xx_ev_fmt = { 314 .type = V4L2_EVENT_SOURCE_CHANGE, 315 .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION, 316 }; 317 318 /* ----------------------------------------------------------------------- */ 319 320 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd) 321 { 322 return container_of(sd, struct adv76xx_state, sd); 323 } 324 325 static inline unsigned htotal(const struct v4l2_bt_timings *t) 326 { 327 return V4L2_DV_BT_FRAME_WIDTH(t); 328 } 329 330 static inline unsigned vtotal(const struct v4l2_bt_timings *t) 331 { 332 return V4L2_DV_BT_FRAME_HEIGHT(t); 333 } 334 335 /* ----------------------------------------------------------------------- */ 336 337 static int adv76xx_read_check(struct adv76xx_state *state, 338 int client_page, u8 reg) 339 { 340 struct i2c_client *client = state->i2c_clients[client_page]; 341 int err; 342 unsigned int val; 343 344 err = regmap_read(state->regmap[client_page], reg, &val); 345 346 if (err) { 347 v4l_err(client, "error reading %02x, %02x\n", 348 client->addr, reg); 349 return err; 350 } 351 return val; 352 } 353 354 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX 355 * size to one or more registers. 356 * 357 * A value of zero will be returned on success, a negative errno will 358 * be returned in error cases. 359 */ 360 static int adv76xx_write_block(struct adv76xx_state *state, int client_page, 361 unsigned int init_reg, const void *val, 362 size_t val_len) 363 { 364 struct regmap *regmap = state->regmap[client_page]; 365 366 if (val_len > I2C_SMBUS_BLOCK_MAX) 367 val_len = I2C_SMBUS_BLOCK_MAX; 368 369 return regmap_raw_write(regmap, init_reg, val, val_len); 370 } 371 372 /* ----------------------------------------------------------------------- */ 373 374 static inline int io_read(struct v4l2_subdev *sd, u8 reg) 375 { 376 struct adv76xx_state *state = to_state(sd); 377 378 return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg); 379 } 380 381 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val) 382 { 383 struct adv76xx_state *state = to_state(sd); 384 385 return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val); 386 } 387 388 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, 389 u8 val) 390 { 391 return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val); 392 } 393 394 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg) 395 { 396 struct adv76xx_state *state = to_state(sd); 397 398 return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg); 399 } 400 401 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val) 402 { 403 struct adv76xx_state *state = to_state(sd); 404 405 return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val); 406 } 407 408 static inline int cec_read(struct v4l2_subdev *sd, u8 reg) 409 { 410 struct adv76xx_state *state = to_state(sd); 411 412 return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg); 413 } 414 415 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val) 416 { 417 struct adv76xx_state *state = to_state(sd); 418 419 return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val); 420 } 421 422 static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, 423 u8 val) 424 { 425 return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val); 426 } 427 428 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg) 429 { 430 struct adv76xx_state *state = to_state(sd); 431 432 return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg); 433 } 434 435 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val) 436 { 437 struct adv76xx_state *state = to_state(sd); 438 439 return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val); 440 } 441 442 static inline int afe_read(struct v4l2_subdev *sd, u8 reg) 443 { 444 struct adv76xx_state *state = to_state(sd); 445 446 return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg); 447 } 448 449 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val) 450 { 451 struct adv76xx_state *state = to_state(sd); 452 453 return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val); 454 } 455 456 static inline int rep_read(struct v4l2_subdev *sd, u8 reg) 457 { 458 struct adv76xx_state *state = to_state(sd); 459 460 return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg); 461 } 462 463 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val) 464 { 465 struct adv76xx_state *state = to_state(sd); 466 467 return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val); 468 } 469 470 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 471 { 472 return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val); 473 } 474 475 static inline int edid_read(struct v4l2_subdev *sd, u8 reg) 476 { 477 struct adv76xx_state *state = to_state(sd); 478 479 return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg); 480 } 481 482 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val) 483 { 484 struct adv76xx_state *state = to_state(sd); 485 486 return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val); 487 } 488 489 static inline int edid_write_block(struct v4l2_subdev *sd, 490 unsigned int total_len, const u8 *val) 491 { 492 struct adv76xx_state *state = to_state(sd); 493 int err = 0; 494 int i = 0; 495 int len = 0; 496 497 v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n", 498 __func__, total_len); 499 500 while (!err && i < total_len) { 501 len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ? 502 I2C_SMBUS_BLOCK_MAX : 503 (total_len - i); 504 505 err = adv76xx_write_block(state, ADV76XX_PAGE_EDID, 506 i, val + i, len); 507 i += len; 508 } 509 510 return err; 511 } 512 513 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd) 514 { 515 unsigned int i; 516 517 for (i = 0; i < state->info->num_dv_ports; ++i) 518 gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i)); 519 520 v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd); 521 } 522 523 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work) 524 { 525 struct delayed_work *dwork = to_delayed_work(work); 526 struct adv76xx_state *state = container_of(dwork, struct adv76xx_state, 527 delayed_work_enable_hotplug); 528 struct v4l2_subdev *sd = &state->sd; 529 530 v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__); 531 532 adv76xx_set_hpd(state, state->edid.present); 533 } 534 535 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg) 536 { 537 struct adv76xx_state *state = to_state(sd); 538 539 return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg); 540 } 541 542 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask) 543 { 544 return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask; 545 } 546 547 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val) 548 { 549 struct adv76xx_state *state = to_state(sd); 550 551 return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val); 552 } 553 554 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 555 { 556 return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val); 557 } 558 559 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val) 560 { 561 struct adv76xx_state *state = to_state(sd); 562 563 return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val); 564 } 565 566 static inline int cp_read(struct v4l2_subdev *sd, u8 reg) 567 { 568 struct adv76xx_state *state = to_state(sd); 569 570 return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg); 571 } 572 573 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask) 574 { 575 return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask; 576 } 577 578 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val) 579 { 580 struct adv76xx_state *state = to_state(sd); 581 582 return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val); 583 } 584 585 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 586 { 587 return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val); 588 } 589 590 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg) 591 { 592 struct adv76xx_state *state = to_state(sd); 593 594 return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg); 595 } 596 597 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val) 598 { 599 struct adv76xx_state *state = to_state(sd); 600 601 return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val); 602 } 603 604 #define ADV76XX_REG(page, offset) (((page) << 8) | (offset)) 605 #define ADV76XX_REG_SEQ_TERM 0xffff 606 607 #ifdef CONFIG_VIDEO_ADV_DEBUG 608 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg) 609 { 610 struct adv76xx_state *state = to_state(sd); 611 unsigned int page = reg >> 8; 612 unsigned int val; 613 int err; 614 615 if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask)) 616 return -EINVAL; 617 618 reg &= 0xff; 619 err = regmap_read(state->regmap[page], reg, &val); 620 621 return err ? err : val; 622 } 623 #endif 624 625 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val) 626 { 627 struct adv76xx_state *state = to_state(sd); 628 unsigned int page = reg >> 8; 629 630 if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask)) 631 return -EINVAL; 632 633 reg &= 0xff; 634 635 return regmap_write(state->regmap[page], reg, val); 636 } 637 638 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd, 639 const struct adv76xx_reg_seq *reg_seq) 640 { 641 unsigned int i; 642 643 for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++) 644 adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val); 645 } 646 647 /* ----------------------------------------------------------------------------- 648 * Format helpers 649 */ 650 651 static const struct adv76xx_format_info adv7604_formats[] = { 652 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, 653 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, 654 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, 655 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 656 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, 657 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 658 { MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false, 659 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT }, 660 { MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true, 661 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT }, 662 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false, 663 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 664 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true, 665 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 666 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, 667 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 668 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, 669 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 670 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, 671 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 672 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, 673 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 674 { MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false, 675 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 676 { MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true, 677 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 678 { MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false, 679 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 680 { MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true, 681 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 682 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false, 683 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 684 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true, 685 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 686 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false, 687 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 688 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true, 689 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 690 }; 691 692 static const struct adv76xx_format_info adv7611_formats[] = { 693 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, 694 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, 695 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, 696 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 697 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, 698 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 699 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false, 700 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 701 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true, 702 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 703 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, 704 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 705 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, 706 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 707 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, 708 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 709 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, 710 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 711 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false, 712 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 713 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true, 714 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 715 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false, 716 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 717 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true, 718 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 719 }; 720 721 static const struct adv76xx_format_info adv7612_formats[] = { 722 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, 723 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, 724 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, 725 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 726 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, 727 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 728 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, 729 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 730 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, 731 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 732 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, 733 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 734 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, 735 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 736 }; 737 738 static const struct adv76xx_format_info * 739 adv76xx_format_info(struct adv76xx_state *state, u32 code) 740 { 741 unsigned int i; 742 743 for (i = 0; i < state->info->nformats; ++i) { 744 if (state->info->formats[i].code == code) 745 return &state->info->formats[i]; 746 } 747 748 return NULL; 749 } 750 751 /* ----------------------------------------------------------------------- */ 752 753 static inline bool is_analog_input(struct v4l2_subdev *sd) 754 { 755 struct adv76xx_state *state = to_state(sd); 756 757 return state->selected_input == ADV7604_PAD_VGA_RGB || 758 state->selected_input == ADV7604_PAD_VGA_COMP; 759 } 760 761 static inline bool is_digital_input(struct v4l2_subdev *sd) 762 { 763 struct adv76xx_state *state = to_state(sd); 764 765 return state->selected_input == ADV76XX_PAD_HDMI_PORT_A || 766 state->selected_input == ADV7604_PAD_HDMI_PORT_B || 767 state->selected_input == ADV7604_PAD_HDMI_PORT_C || 768 state->selected_input == ADV7604_PAD_HDMI_PORT_D; 769 } 770 771 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = { 772 .type = V4L2_DV_BT_656_1120, 773 /* keep this initialization for compatibility with GCC < 4.4.6 */ 774 .reserved = { 0 }, 775 V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 170000000, 776 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | 777 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT, 778 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING | 779 V4L2_DV_BT_CAP_CUSTOM) 780 }; 781 782 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = { 783 .type = V4L2_DV_BT_656_1120, 784 /* keep this initialization for compatibility with GCC < 4.4.6 */ 785 .reserved = { 0 }, 786 V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 225000000, 787 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | 788 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT, 789 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING | 790 V4L2_DV_BT_CAP_CUSTOM) 791 }; 792 793 /* 794 * Return the DV timings capabilities for the requested sink pad. As a special 795 * case, pad value -1 returns the capabilities for the currently selected input. 796 */ 797 static const struct v4l2_dv_timings_cap * 798 adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad) 799 { 800 if (pad == -1) { 801 struct adv76xx_state *state = to_state(sd); 802 803 pad = state->selected_input; 804 } 805 806 switch (pad) { 807 case ADV76XX_PAD_HDMI_PORT_A: 808 case ADV7604_PAD_HDMI_PORT_B: 809 case ADV7604_PAD_HDMI_PORT_C: 810 case ADV7604_PAD_HDMI_PORT_D: 811 return &adv76xx_timings_cap_digital; 812 813 case ADV7604_PAD_VGA_RGB: 814 case ADV7604_PAD_VGA_COMP: 815 default: 816 return &adv7604_timings_cap_analog; 817 } 818 } 819 820 821 /* ----------------------------------------------------------------------- */ 822 823 #ifdef CONFIG_VIDEO_ADV_DEBUG 824 static void adv76xx_inv_register(struct v4l2_subdev *sd) 825 { 826 v4l2_info(sd, "0x000-0x0ff: IO Map\n"); 827 v4l2_info(sd, "0x100-0x1ff: AVLink Map\n"); 828 v4l2_info(sd, "0x200-0x2ff: CEC Map\n"); 829 v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n"); 830 v4l2_info(sd, "0x400-0x4ff: ESDP Map\n"); 831 v4l2_info(sd, "0x500-0x5ff: DPP Map\n"); 832 v4l2_info(sd, "0x600-0x6ff: AFE Map\n"); 833 v4l2_info(sd, "0x700-0x7ff: Repeater Map\n"); 834 v4l2_info(sd, "0x800-0x8ff: EDID Map\n"); 835 v4l2_info(sd, "0x900-0x9ff: HDMI Map\n"); 836 v4l2_info(sd, "0xa00-0xaff: Test Map\n"); 837 v4l2_info(sd, "0xb00-0xbff: CP Map\n"); 838 v4l2_info(sd, "0xc00-0xcff: VDP Map\n"); 839 } 840 841 static int adv76xx_g_register(struct v4l2_subdev *sd, 842 struct v4l2_dbg_register *reg) 843 { 844 int ret; 845 846 ret = adv76xx_read_reg(sd, reg->reg); 847 if (ret < 0) { 848 v4l2_info(sd, "Register %03llx not supported\n", reg->reg); 849 adv76xx_inv_register(sd); 850 return ret; 851 } 852 853 reg->size = 1; 854 reg->val = ret; 855 856 return 0; 857 } 858 859 static int adv76xx_s_register(struct v4l2_subdev *sd, 860 const struct v4l2_dbg_register *reg) 861 { 862 int ret; 863 864 ret = adv76xx_write_reg(sd, reg->reg, reg->val); 865 if (ret < 0) { 866 v4l2_info(sd, "Register %03llx not supported\n", reg->reg); 867 adv76xx_inv_register(sd); 868 return ret; 869 } 870 871 return 0; 872 } 873 #endif 874 875 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd) 876 { 877 u8 value = io_read(sd, 0x6f); 878 879 return ((value & 0x10) >> 4) 880 | ((value & 0x08) >> 2) 881 | ((value & 0x04) << 0) 882 | ((value & 0x02) << 2); 883 } 884 885 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd) 886 { 887 u8 value = io_read(sd, 0x6f); 888 889 return value & 1; 890 } 891 892 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd) 893 { 894 /* Reads CABLE_DET_A_RAW. For input B support, need to 895 * account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW) 896 */ 897 u8 value = io_read(sd, 0x6f); 898 899 return value & 1; 900 } 901 902 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd) 903 { 904 struct adv76xx_state *state = to_state(sd); 905 const struct adv76xx_chip_info *info = state->info; 906 u16 cable_det = info->read_cable_det(sd); 907 908 return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det); 909 } 910 911 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd, 912 u8 prim_mode, 913 const struct adv76xx_video_standards *predef_vid_timings, 914 const struct v4l2_dv_timings *timings) 915 { 916 int i; 917 918 for (i = 0; predef_vid_timings[i].timings.bt.width; i++) { 919 if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings, 920 is_digital_input(sd) ? 250000 : 1000000, false)) 921 continue; 922 io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */ 923 io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) + 924 prim_mode); /* v_freq and prim mode */ 925 return 0; 926 } 927 928 return -1; 929 } 930 931 static int configure_predefined_video_timings(struct v4l2_subdev *sd, 932 struct v4l2_dv_timings *timings) 933 { 934 struct adv76xx_state *state = to_state(sd); 935 int err; 936 937 v4l2_dbg(1, debug, sd, "%s", __func__); 938 939 if (adv76xx_has_afe(state)) { 940 /* reset to default values */ 941 io_write(sd, 0x16, 0x43); 942 io_write(sd, 0x17, 0x5a); 943 } 944 /* disable embedded syncs for auto graphics mode */ 945 cp_write_clr_set(sd, 0x81, 0x10, 0x00); 946 cp_write(sd, 0x8f, 0x00); 947 cp_write(sd, 0x90, 0x00); 948 cp_write(sd, 0xa2, 0x00); 949 cp_write(sd, 0xa3, 0x00); 950 cp_write(sd, 0xa4, 0x00); 951 cp_write(sd, 0xa5, 0x00); 952 cp_write(sd, 0xa6, 0x00); 953 cp_write(sd, 0xa7, 0x00); 954 cp_write(sd, 0xab, 0x00); 955 cp_write(sd, 0xac, 0x00); 956 957 if (is_analog_input(sd)) { 958 err = find_and_set_predefined_video_timings(sd, 959 0x01, adv7604_prim_mode_comp, timings); 960 if (err) 961 err = find_and_set_predefined_video_timings(sd, 962 0x02, adv7604_prim_mode_gr, timings); 963 } else if (is_digital_input(sd)) { 964 err = find_and_set_predefined_video_timings(sd, 965 0x05, adv76xx_prim_mode_hdmi_comp, timings); 966 if (err) 967 err = find_and_set_predefined_video_timings(sd, 968 0x06, adv76xx_prim_mode_hdmi_gr, timings); 969 } else { 970 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 971 __func__, state->selected_input); 972 err = -1; 973 } 974 975 976 return err; 977 } 978 979 static void configure_custom_video_timings(struct v4l2_subdev *sd, 980 const struct v4l2_bt_timings *bt) 981 { 982 struct adv76xx_state *state = to_state(sd); 983 u32 width = htotal(bt); 984 u32 height = vtotal(bt); 985 u16 cp_start_sav = bt->hsync + bt->hbackporch - 4; 986 u16 cp_start_eav = width - bt->hfrontporch; 987 u16 cp_start_vbi = height - bt->vfrontporch; 988 u16 cp_end_vbi = bt->vsync + bt->vbackporch; 989 u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ? 990 ((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0; 991 const u8 pll[2] = { 992 0xc0 | ((width >> 8) & 0x1f), 993 width & 0xff 994 }; 995 996 v4l2_dbg(2, debug, sd, "%s\n", __func__); 997 998 if (is_analog_input(sd)) { 999 /* auto graphics */ 1000 io_write(sd, 0x00, 0x07); /* video std */ 1001 io_write(sd, 0x01, 0x02); /* prim mode */ 1002 /* enable embedded syncs for auto graphics mode */ 1003 cp_write_clr_set(sd, 0x81, 0x10, 0x10); 1004 1005 /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */ 1006 /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */ 1007 /* IO-map reg. 0x16 and 0x17 should be written in sequence */ 1008 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO], 1009 0x16, pll, 2)) 1010 v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n"); 1011 1012 /* active video - horizontal timing */ 1013 cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff); 1014 cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) | 1015 ((cp_start_eav >> 8) & 0x0f)); 1016 cp_write(sd, 0xa4, cp_start_eav & 0xff); 1017 1018 /* active video - vertical timing */ 1019 cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff); 1020 cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) | 1021 ((cp_end_vbi >> 8) & 0xf)); 1022 cp_write(sd, 0xa7, cp_end_vbi & 0xff); 1023 } else if (is_digital_input(sd)) { 1024 /* set default prim_mode/vid_std for HDMI 1025 according to [REF_03, c. 4.2] */ 1026 io_write(sd, 0x00, 0x02); /* video std */ 1027 io_write(sd, 0x01, 0x06); /* prim mode */ 1028 } else { 1029 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 1030 __func__, state->selected_input); 1031 } 1032 1033 cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7); 1034 cp_write(sd, 0x90, ch1_fr_ll & 0xff); 1035 cp_write(sd, 0xab, (height >> 4) & 0xff); 1036 cp_write(sd, 0xac, (height & 0x0f) << 4); 1037 } 1038 1039 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c) 1040 { 1041 struct adv76xx_state *state = to_state(sd); 1042 u8 offset_buf[4]; 1043 1044 if (auto_offset) { 1045 offset_a = 0x3ff; 1046 offset_b = 0x3ff; 1047 offset_c = 0x3ff; 1048 } 1049 1050 v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n", 1051 __func__, auto_offset ? "Auto" : "Manual", 1052 offset_a, offset_b, offset_c); 1053 1054 offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4); 1055 offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6); 1056 offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8); 1057 offset_buf[3] = offset_c & 0x0ff; 1058 1059 /* Registers must be written in this order with no i2c access in between */ 1060 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP], 1061 0x77, offset_buf, 4)) 1062 v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__); 1063 } 1064 1065 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c) 1066 { 1067 struct adv76xx_state *state = to_state(sd); 1068 u8 gain_buf[4]; 1069 u8 gain_man = 1; 1070 u8 agc_mode_man = 1; 1071 1072 if (auto_gain) { 1073 gain_man = 0; 1074 agc_mode_man = 0; 1075 gain_a = 0x100; 1076 gain_b = 0x100; 1077 gain_c = 0x100; 1078 } 1079 1080 v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n", 1081 __func__, auto_gain ? "Auto" : "Manual", 1082 gain_a, gain_b, gain_c); 1083 1084 gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4)); 1085 gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6)); 1086 gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8)); 1087 gain_buf[3] = ((gain_c & 0x0ff)); 1088 1089 /* Registers must be written in this order with no i2c access in between */ 1090 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP], 1091 0x73, gain_buf, 4)) 1092 v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__); 1093 } 1094 1095 static void set_rgb_quantization_range(struct v4l2_subdev *sd) 1096 { 1097 struct adv76xx_state *state = to_state(sd); 1098 bool rgb_output = io_read(sd, 0x02) & 0x02; 1099 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80; 1100 u8 y = HDMI_COLORSPACE_RGB; 1101 1102 if (hdmi_signal && (io_read(sd, 0x60) & 1)) 1103 y = infoframe_read(sd, 0x01) >> 5; 1104 1105 v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n", 1106 __func__, state->rgb_quantization_range, 1107 rgb_output, hdmi_signal); 1108 1109 adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0); 1110 adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0); 1111 io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4); 1112 1113 switch (state->rgb_quantization_range) { 1114 case V4L2_DV_RGB_RANGE_AUTO: 1115 if (state->selected_input == ADV7604_PAD_VGA_RGB) { 1116 /* Receiving analog RGB signal 1117 * Set RGB full range (0-255) */ 1118 io_write_clr_set(sd, 0x02, 0xf0, 0x10); 1119 break; 1120 } 1121 1122 if (state->selected_input == ADV7604_PAD_VGA_COMP) { 1123 /* Receiving analog YPbPr signal 1124 * Set automode */ 1125 io_write_clr_set(sd, 0x02, 0xf0, 0xf0); 1126 break; 1127 } 1128 1129 if (hdmi_signal) { 1130 /* Receiving HDMI signal 1131 * Set automode */ 1132 io_write_clr_set(sd, 0x02, 0xf0, 0xf0); 1133 break; 1134 } 1135 1136 /* Receiving DVI-D signal 1137 * ADV7604 selects RGB limited range regardless of 1138 * input format (CE/IT) in automatic mode */ 1139 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) { 1140 /* RGB limited range (16-235) */ 1141 io_write_clr_set(sd, 0x02, 0xf0, 0x00); 1142 } else { 1143 /* RGB full range (0-255) */ 1144 io_write_clr_set(sd, 0x02, 0xf0, 0x10); 1145 1146 if (is_digital_input(sd) && rgb_output) { 1147 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40); 1148 } else { 1149 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0); 1150 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70); 1151 } 1152 } 1153 break; 1154 case V4L2_DV_RGB_RANGE_LIMITED: 1155 if (state->selected_input == ADV7604_PAD_VGA_COMP) { 1156 /* YCrCb limited range (16-235) */ 1157 io_write_clr_set(sd, 0x02, 0xf0, 0x20); 1158 break; 1159 } 1160 1161 if (y != HDMI_COLORSPACE_RGB) 1162 break; 1163 1164 /* RGB limited range (16-235) */ 1165 io_write_clr_set(sd, 0x02, 0xf0, 0x00); 1166 1167 break; 1168 case V4L2_DV_RGB_RANGE_FULL: 1169 if (state->selected_input == ADV7604_PAD_VGA_COMP) { 1170 /* YCrCb full range (0-255) */ 1171 io_write_clr_set(sd, 0x02, 0xf0, 0x60); 1172 break; 1173 } 1174 1175 if (y != HDMI_COLORSPACE_RGB) 1176 break; 1177 1178 /* RGB full range (0-255) */ 1179 io_write_clr_set(sd, 0x02, 0xf0, 0x10); 1180 1181 if (is_analog_input(sd) || hdmi_signal) 1182 break; 1183 1184 /* Adjust gain/offset for DVI-D signals only */ 1185 if (rgb_output) { 1186 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40); 1187 } else { 1188 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0); 1189 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70); 1190 } 1191 break; 1192 } 1193 } 1194 1195 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl) 1196 { 1197 struct v4l2_subdev *sd = 1198 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd; 1199 1200 struct adv76xx_state *state = to_state(sd); 1201 1202 switch (ctrl->id) { 1203 case V4L2_CID_BRIGHTNESS: 1204 cp_write(sd, 0x3c, ctrl->val); 1205 return 0; 1206 case V4L2_CID_CONTRAST: 1207 cp_write(sd, 0x3a, ctrl->val); 1208 return 0; 1209 case V4L2_CID_SATURATION: 1210 cp_write(sd, 0x3b, ctrl->val); 1211 return 0; 1212 case V4L2_CID_HUE: 1213 cp_write(sd, 0x3d, ctrl->val); 1214 return 0; 1215 case V4L2_CID_DV_RX_RGB_RANGE: 1216 state->rgb_quantization_range = ctrl->val; 1217 set_rgb_quantization_range(sd); 1218 return 0; 1219 case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE: 1220 if (!adv76xx_has_afe(state)) 1221 return -EINVAL; 1222 /* Set the analog sampling phase. This is needed to find the 1223 best sampling phase for analog video: an application or 1224 driver has to try a number of phases and analyze the picture 1225 quality before settling on the best performing phase. */ 1226 afe_write(sd, 0xc8, ctrl->val); 1227 return 0; 1228 case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL: 1229 /* Use the default blue color for free running mode, 1230 or supply your own. */ 1231 cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2); 1232 return 0; 1233 case V4L2_CID_ADV_RX_FREE_RUN_COLOR: 1234 cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16); 1235 cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8); 1236 cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff)); 1237 return 0; 1238 } 1239 return -EINVAL; 1240 } 1241 1242 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 1243 { 1244 struct v4l2_subdev *sd = 1245 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd; 1246 1247 if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) { 1248 ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC; 1249 if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80)) 1250 ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3; 1251 return 0; 1252 } 1253 return -EINVAL; 1254 } 1255 1256 /* ----------------------------------------------------------------------- */ 1257 1258 static inline bool no_power(struct v4l2_subdev *sd) 1259 { 1260 /* Entire chip or CP powered off */ 1261 return io_read(sd, 0x0c) & 0x24; 1262 } 1263 1264 static inline bool no_signal_tmds(struct v4l2_subdev *sd) 1265 { 1266 struct adv76xx_state *state = to_state(sd); 1267 1268 return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input)); 1269 } 1270 1271 static inline bool no_lock_tmds(struct v4l2_subdev *sd) 1272 { 1273 struct adv76xx_state *state = to_state(sd); 1274 const struct adv76xx_chip_info *info = state->info; 1275 1276 return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask; 1277 } 1278 1279 static inline bool is_hdmi(struct v4l2_subdev *sd) 1280 { 1281 return hdmi_read(sd, 0x05) & 0x80; 1282 } 1283 1284 static inline bool no_lock_sspd(struct v4l2_subdev *sd) 1285 { 1286 struct adv76xx_state *state = to_state(sd); 1287 1288 /* 1289 * Chips without a AFE don't expose registers for the SSPD, so just assume 1290 * that we have a lock. 1291 */ 1292 if (adv76xx_has_afe(state)) 1293 return false; 1294 1295 /* TODO channel 2 */ 1296 return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0); 1297 } 1298 1299 static inline bool no_lock_stdi(struct v4l2_subdev *sd) 1300 { 1301 /* TODO channel 2 */ 1302 return !(cp_read(sd, 0xb1) & 0x80); 1303 } 1304 1305 static inline bool no_signal(struct v4l2_subdev *sd) 1306 { 1307 bool ret; 1308 1309 ret = no_power(sd); 1310 1311 ret |= no_lock_stdi(sd); 1312 ret |= no_lock_sspd(sd); 1313 1314 if (is_digital_input(sd)) { 1315 ret |= no_lock_tmds(sd); 1316 ret |= no_signal_tmds(sd); 1317 } 1318 1319 return ret; 1320 } 1321 1322 static inline bool no_lock_cp(struct v4l2_subdev *sd) 1323 { 1324 struct adv76xx_state *state = to_state(sd); 1325 1326 if (!adv76xx_has_afe(state)) 1327 return false; 1328 1329 /* CP has detected a non standard number of lines on the incoming 1330 video compared to what it is configured to receive by s_dv_timings */ 1331 return io_read(sd, 0x12) & 0x01; 1332 } 1333 1334 static inline bool in_free_run(struct v4l2_subdev *sd) 1335 { 1336 return cp_read(sd, 0xff) & 0x10; 1337 } 1338 1339 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status) 1340 { 1341 *status = 0; 1342 *status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0; 1343 *status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0; 1344 if (!in_free_run(sd) && no_lock_cp(sd)) 1345 *status |= is_digital_input(sd) ? 1346 V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK; 1347 1348 v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status); 1349 1350 return 0; 1351 } 1352 1353 /* ----------------------------------------------------------------------- */ 1354 1355 struct stdi_readback { 1356 u16 bl, lcf, lcvs; 1357 u8 hs_pol, vs_pol; 1358 bool interlaced; 1359 }; 1360 1361 static int stdi2dv_timings(struct v4l2_subdev *sd, 1362 struct stdi_readback *stdi, 1363 struct v4l2_dv_timings *timings) 1364 { 1365 struct adv76xx_state *state = to_state(sd); 1366 u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl; 1367 u32 pix_clk; 1368 int i; 1369 1370 for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) { 1371 const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt; 1372 1373 if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i], 1374 adv76xx_get_dv_timings_cap(sd, -1), 1375 adv76xx_check_dv_timings, NULL)) 1376 continue; 1377 if (vtotal(bt) != stdi->lcf + 1) 1378 continue; 1379 if (bt->vsync != stdi->lcvs) 1380 continue; 1381 1382 pix_clk = hfreq * htotal(bt); 1383 1384 if ((pix_clk < bt->pixelclock + 1000000) && 1385 (pix_clk > bt->pixelclock - 1000000)) { 1386 *timings = v4l2_dv_timings_presets[i]; 1387 return 0; 1388 } 1389 } 1390 1391 if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0, 1392 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) | 1393 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0), 1394 false, timings)) 1395 return 0; 1396 if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs, 1397 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) | 1398 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0), 1399 false, state->aspect_ratio, timings)) 1400 return 0; 1401 1402 v4l2_dbg(2, debug, sd, 1403 "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n", 1404 __func__, stdi->lcvs, stdi->lcf, stdi->bl, 1405 stdi->hs_pol, stdi->vs_pol); 1406 return -1; 1407 } 1408 1409 1410 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi) 1411 { 1412 struct adv76xx_state *state = to_state(sd); 1413 const struct adv76xx_chip_info *info = state->info; 1414 u8 polarity; 1415 1416 if (no_lock_stdi(sd) || no_lock_sspd(sd)) { 1417 v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__); 1418 return -1; 1419 } 1420 1421 /* read STDI */ 1422 stdi->bl = cp_read16(sd, 0xb1, 0x3fff); 1423 stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff); 1424 stdi->lcvs = cp_read(sd, 0xb3) >> 3; 1425 stdi->interlaced = io_read(sd, 0x12) & 0x10; 1426 1427 if (adv76xx_has_afe(state)) { 1428 /* read SSPD */ 1429 polarity = cp_read(sd, 0xb5); 1430 if ((polarity & 0x03) == 0x01) { 1431 stdi->hs_pol = polarity & 0x10 1432 ? (polarity & 0x08 ? '+' : '-') : 'x'; 1433 stdi->vs_pol = polarity & 0x40 1434 ? (polarity & 0x20 ? '+' : '-') : 'x'; 1435 } else { 1436 stdi->hs_pol = 'x'; 1437 stdi->vs_pol = 'x'; 1438 } 1439 } else { 1440 polarity = hdmi_read(sd, 0x05); 1441 stdi->hs_pol = polarity & 0x20 ? '+' : '-'; 1442 stdi->vs_pol = polarity & 0x10 ? '+' : '-'; 1443 } 1444 1445 if (no_lock_stdi(sd) || no_lock_sspd(sd)) { 1446 v4l2_dbg(2, debug, sd, 1447 "%s: signal lost during readout of STDI/SSPD\n", __func__); 1448 return -1; 1449 } 1450 1451 if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) { 1452 v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__); 1453 memset(stdi, 0, sizeof(struct stdi_readback)); 1454 return -1; 1455 } 1456 1457 v4l2_dbg(2, debug, sd, 1458 "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n", 1459 __func__, stdi->lcf, stdi->bl, stdi->lcvs, 1460 stdi->hs_pol, stdi->vs_pol, 1461 stdi->interlaced ? "interlaced" : "progressive"); 1462 1463 return 0; 1464 } 1465 1466 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd, 1467 struct v4l2_enum_dv_timings *timings) 1468 { 1469 struct adv76xx_state *state = to_state(sd); 1470 1471 if (timings->pad >= state->source_pad) 1472 return -EINVAL; 1473 1474 return v4l2_enum_dv_timings_cap(timings, 1475 adv76xx_get_dv_timings_cap(sd, timings->pad), 1476 adv76xx_check_dv_timings, NULL); 1477 } 1478 1479 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd, 1480 struct v4l2_dv_timings_cap *cap) 1481 { 1482 struct adv76xx_state *state = to_state(sd); 1483 unsigned int pad = cap->pad; 1484 1485 if (cap->pad >= state->source_pad) 1486 return -EINVAL; 1487 1488 *cap = *adv76xx_get_dv_timings_cap(sd, pad); 1489 cap->pad = pad; 1490 1491 return 0; 1492 } 1493 1494 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings 1495 if the format is listed in adv76xx_timings[] */ 1496 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd, 1497 struct v4l2_dv_timings *timings) 1498 { 1499 v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1), 1500 is_digital_input(sd) ? 250000 : 1000000, 1501 adv76xx_check_dv_timings, NULL); 1502 } 1503 1504 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd) 1505 { 1506 unsigned int freq; 1507 int a, b; 1508 1509 a = hdmi_read(sd, 0x06); 1510 b = hdmi_read(sd, 0x3b); 1511 if (a < 0 || b < 0) 1512 return 0; 1513 freq = a * 1000000 + ((b & 0x30) >> 4) * 250000; 1514 1515 if (is_hdmi(sd)) { 1516 /* adjust for deep color mode */ 1517 unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8; 1518 1519 freq = freq * 8 / bits_per_channel; 1520 } 1521 1522 return freq; 1523 } 1524 1525 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd) 1526 { 1527 int a, b; 1528 1529 a = hdmi_read(sd, 0x51); 1530 b = hdmi_read(sd, 0x52); 1531 if (a < 0 || b < 0) 1532 return 0; 1533 return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128; 1534 } 1535 1536 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd, 1537 struct v4l2_dv_timings *timings) 1538 { 1539 struct adv76xx_state *state = to_state(sd); 1540 const struct adv76xx_chip_info *info = state->info; 1541 struct v4l2_bt_timings *bt = &timings->bt; 1542 struct stdi_readback stdi; 1543 1544 if (!timings) 1545 return -EINVAL; 1546 1547 memset(timings, 0, sizeof(struct v4l2_dv_timings)); 1548 1549 if (no_signal(sd)) { 1550 state->restart_stdi_once = true; 1551 v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__); 1552 return -ENOLINK; 1553 } 1554 1555 /* read STDI */ 1556 if (read_stdi(sd, &stdi)) { 1557 v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__); 1558 return -ENOLINK; 1559 } 1560 bt->interlaced = stdi.interlaced ? 1561 V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE; 1562 1563 if (is_digital_input(sd)) { 1564 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80; 1565 u8 vic = 0; 1566 u32 w, h; 1567 1568 w = hdmi_read16(sd, 0x07, info->linewidth_mask); 1569 h = hdmi_read16(sd, 0x09, info->field0_height_mask); 1570 1571 if (hdmi_signal && (io_read(sd, 0x60) & 1)) 1572 vic = infoframe_read(sd, 0x04); 1573 1574 if (vic && v4l2_find_dv_timings_cea861_vic(timings, vic) && 1575 bt->width == w && bt->height == h) 1576 goto found; 1577 1578 timings->type = V4L2_DV_BT_656_1120; 1579 1580 bt->width = w; 1581 bt->height = h; 1582 bt->pixelclock = info->read_hdmi_pixelclock(sd); 1583 bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask); 1584 bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask); 1585 bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask); 1586 bt->vfrontporch = hdmi_read16(sd, 0x2a, 1587 info->field0_vfrontporch_mask) / 2; 1588 bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2; 1589 bt->vbackporch = hdmi_read16(sd, 0x32, 1590 info->field0_vbackporch_mask) / 2; 1591 bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) | 1592 ((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0); 1593 if (bt->interlaced == V4L2_DV_INTERLACED) { 1594 bt->height += hdmi_read16(sd, 0x0b, 1595 info->field1_height_mask); 1596 bt->il_vfrontporch = hdmi_read16(sd, 0x2c, 1597 info->field1_vfrontporch_mask) / 2; 1598 bt->il_vsync = hdmi_read16(sd, 0x30, 1599 info->field1_vsync_mask) / 2; 1600 bt->il_vbackporch = hdmi_read16(sd, 0x34, 1601 info->field1_vbackporch_mask) / 2; 1602 } 1603 adv76xx_fill_optional_dv_timings_fields(sd, timings); 1604 } else { 1605 /* find format 1606 * Since LCVS values are inaccurate [REF_03, p. 275-276], 1607 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails. 1608 */ 1609 if (!stdi2dv_timings(sd, &stdi, timings)) 1610 goto found; 1611 stdi.lcvs += 1; 1612 v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs); 1613 if (!stdi2dv_timings(sd, &stdi, timings)) 1614 goto found; 1615 stdi.lcvs -= 2; 1616 v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs); 1617 if (stdi2dv_timings(sd, &stdi, timings)) { 1618 /* 1619 * The STDI block may measure wrong values, especially 1620 * for lcvs and lcf. If the driver can not find any 1621 * valid timing, the STDI block is restarted to measure 1622 * the video timings again. The function will return an 1623 * error, but the restart of STDI will generate a new 1624 * STDI interrupt and the format detection process will 1625 * restart. 1626 */ 1627 if (state->restart_stdi_once) { 1628 v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__); 1629 /* TODO restart STDI for Sync Channel 2 */ 1630 /* enter one-shot mode */ 1631 cp_write_clr_set(sd, 0x86, 0x06, 0x00); 1632 /* trigger STDI restart */ 1633 cp_write_clr_set(sd, 0x86, 0x06, 0x04); 1634 /* reset to continuous mode */ 1635 cp_write_clr_set(sd, 0x86, 0x06, 0x02); 1636 state->restart_stdi_once = false; 1637 return -ENOLINK; 1638 } 1639 v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__); 1640 return -ERANGE; 1641 } 1642 state->restart_stdi_once = true; 1643 } 1644 found: 1645 1646 if (no_signal(sd)) { 1647 v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__); 1648 memset(timings, 0, sizeof(struct v4l2_dv_timings)); 1649 return -ENOLINK; 1650 } 1651 1652 if ((is_analog_input(sd) && bt->pixelclock > 170000000) || 1653 (is_digital_input(sd) && bt->pixelclock > 225000000)) { 1654 v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n", 1655 __func__, (u32)bt->pixelclock); 1656 return -ERANGE; 1657 } 1658 1659 if (debug > 1) 1660 v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ", 1661 timings, true); 1662 1663 return 0; 1664 } 1665 1666 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd, 1667 struct v4l2_dv_timings *timings) 1668 { 1669 struct adv76xx_state *state = to_state(sd); 1670 struct v4l2_bt_timings *bt; 1671 int err; 1672 1673 if (!timings) 1674 return -EINVAL; 1675 1676 if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) { 1677 v4l2_dbg(1, debug, sd, "%s: no change\n", __func__); 1678 return 0; 1679 } 1680 1681 bt = &timings->bt; 1682 1683 if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1), 1684 adv76xx_check_dv_timings, NULL)) 1685 return -ERANGE; 1686 1687 adv76xx_fill_optional_dv_timings_fields(sd, timings); 1688 1689 state->timings = *timings; 1690 1691 cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00); 1692 1693 /* Use prim_mode and vid_std when available */ 1694 err = configure_predefined_video_timings(sd, timings); 1695 if (err) { 1696 /* custom settings when the video format 1697 does not have prim_mode/vid_std */ 1698 configure_custom_video_timings(sd, bt); 1699 } 1700 1701 set_rgb_quantization_range(sd); 1702 1703 if (debug > 1) 1704 v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ", 1705 timings, true); 1706 return 0; 1707 } 1708 1709 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd, 1710 struct v4l2_dv_timings *timings) 1711 { 1712 struct adv76xx_state *state = to_state(sd); 1713 1714 *timings = state->timings; 1715 return 0; 1716 } 1717 1718 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable) 1719 { 1720 hdmi_write(sd, 0x01, enable ? 0x00 : 0x78); 1721 } 1722 1723 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable) 1724 { 1725 hdmi_write(sd, 0x83, enable ? 0xfe : 0xff); 1726 } 1727 1728 static void enable_input(struct v4l2_subdev *sd) 1729 { 1730 struct adv76xx_state *state = to_state(sd); 1731 1732 if (is_analog_input(sd)) { 1733 io_write(sd, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */ 1734 } else if (is_digital_input(sd)) { 1735 hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input); 1736 state->info->set_termination(sd, true); 1737 io_write(sd, 0x15, 0xa0); /* Disable Tristate of Pins */ 1738 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */ 1739 } else { 1740 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 1741 __func__, state->selected_input); 1742 } 1743 } 1744 1745 static void disable_input(struct v4l2_subdev *sd) 1746 { 1747 struct adv76xx_state *state = to_state(sd); 1748 1749 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */ 1750 msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */ 1751 io_write(sd, 0x15, 0xbe); /* Tristate all outputs from video core */ 1752 state->info->set_termination(sd, false); 1753 } 1754 1755 static void select_input(struct v4l2_subdev *sd) 1756 { 1757 struct adv76xx_state *state = to_state(sd); 1758 const struct adv76xx_chip_info *info = state->info; 1759 1760 if (is_analog_input(sd)) { 1761 adv76xx_write_reg_seq(sd, info->recommended_settings[0]); 1762 1763 afe_write(sd, 0x00, 0x08); /* power up ADC */ 1764 afe_write(sd, 0x01, 0x06); /* power up Analog Front End */ 1765 afe_write(sd, 0xc8, 0x00); /* phase control */ 1766 } else if (is_digital_input(sd)) { 1767 hdmi_write(sd, 0x00, state->selected_input & 0x03); 1768 1769 adv76xx_write_reg_seq(sd, info->recommended_settings[1]); 1770 1771 if (adv76xx_has_afe(state)) { 1772 afe_write(sd, 0x00, 0xff); /* power down ADC */ 1773 afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */ 1774 afe_write(sd, 0xc8, 0x40); /* phase control */ 1775 } 1776 1777 cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */ 1778 cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */ 1779 cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */ 1780 } else { 1781 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 1782 __func__, state->selected_input); 1783 } 1784 } 1785 1786 static int adv76xx_s_routing(struct v4l2_subdev *sd, 1787 u32 input, u32 output, u32 config) 1788 { 1789 struct adv76xx_state *state = to_state(sd); 1790 1791 v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d", 1792 __func__, input, state->selected_input); 1793 1794 if (input == state->selected_input) 1795 return 0; 1796 1797 if (input > state->info->max_port) 1798 return -EINVAL; 1799 1800 state->selected_input = input; 1801 1802 disable_input(sd); 1803 select_input(sd); 1804 enable_input(sd); 1805 1806 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt); 1807 1808 return 0; 1809 } 1810 1811 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd, 1812 struct v4l2_subdev_pad_config *cfg, 1813 struct v4l2_subdev_mbus_code_enum *code) 1814 { 1815 struct adv76xx_state *state = to_state(sd); 1816 1817 if (code->index >= state->info->nformats) 1818 return -EINVAL; 1819 1820 code->code = state->info->formats[code->index].code; 1821 1822 return 0; 1823 } 1824 1825 static void adv76xx_fill_format(struct adv76xx_state *state, 1826 struct v4l2_mbus_framefmt *format) 1827 { 1828 memset(format, 0, sizeof(*format)); 1829 1830 format->width = state->timings.bt.width; 1831 format->height = state->timings.bt.height; 1832 format->field = V4L2_FIELD_NONE; 1833 format->colorspace = V4L2_COLORSPACE_SRGB; 1834 1835 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) 1836 format->colorspace = (state->timings.bt.height <= 576) ? 1837 V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709; 1838 } 1839 1840 /* 1841 * Compute the op_ch_sel value required to obtain on the bus the component order 1842 * corresponding to the selected format taking into account bus reordering 1843 * applied by the board at the output of the device. 1844 * 1845 * The following table gives the op_ch_value from the format component order 1846 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as 1847 * adv76xx_bus_order value in row). 1848 * 1849 * | GBR(0) GRB(1) BGR(2) RGB(3) BRG(4) RBG(5) 1850 * ----------+------------------------------------------------- 1851 * RGB (NOP) | GBR GRB BGR RGB BRG RBG 1852 * GRB (1-2) | BGR RGB GBR GRB RBG BRG 1853 * RBG (2-3) | GRB GBR BRG RBG BGR RGB 1854 * BGR (1-3) | RBG BRG RGB BGR GRB GBR 1855 * BRG (ROR) | BRG RBG GRB GBR RGB BGR 1856 * GBR (ROL) | RGB BGR RBG BRG GBR GRB 1857 */ 1858 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state) 1859 { 1860 #define _SEL(a,b,c,d,e,f) { \ 1861 ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \ 1862 ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f } 1863 #define _BUS(x) [ADV7604_BUS_ORDER_##x] 1864 1865 static const unsigned int op_ch_sel[6][6] = { 1866 _BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG), 1867 _BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG), 1868 _BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB), 1869 _BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR), 1870 _BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR), 1871 _BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB), 1872 }; 1873 1874 return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5]; 1875 } 1876 1877 static void adv76xx_setup_format(struct adv76xx_state *state) 1878 { 1879 struct v4l2_subdev *sd = &state->sd; 1880 1881 io_write_clr_set(sd, 0x02, 0x02, 1882 state->format->rgb_out ? ADV76XX_RGB_OUT : 0); 1883 io_write(sd, 0x03, state->format->op_format_sel | 1884 state->pdata.op_format_mode_sel); 1885 io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state)); 1886 io_write_clr_set(sd, 0x05, 0x01, 1887 state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0); 1888 set_rgb_quantization_range(sd); 1889 } 1890 1891 static int adv76xx_get_format(struct v4l2_subdev *sd, 1892 struct v4l2_subdev_pad_config *cfg, 1893 struct v4l2_subdev_format *format) 1894 { 1895 struct adv76xx_state *state = to_state(sd); 1896 1897 if (format->pad != state->source_pad) 1898 return -EINVAL; 1899 1900 adv76xx_fill_format(state, &format->format); 1901 1902 if (format->which == V4L2_SUBDEV_FORMAT_TRY) { 1903 struct v4l2_mbus_framefmt *fmt; 1904 1905 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad); 1906 format->format.code = fmt->code; 1907 } else { 1908 format->format.code = state->format->code; 1909 } 1910 1911 return 0; 1912 } 1913 1914 static int adv76xx_get_selection(struct v4l2_subdev *sd, 1915 struct v4l2_subdev_pad_config *cfg, 1916 struct v4l2_subdev_selection *sel) 1917 { 1918 struct adv76xx_state *state = to_state(sd); 1919 1920 if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE) 1921 return -EINVAL; 1922 /* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */ 1923 if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS) 1924 return -EINVAL; 1925 1926 sel->r.left = 0; 1927 sel->r.top = 0; 1928 sel->r.width = state->timings.bt.width; 1929 sel->r.height = state->timings.bt.height; 1930 1931 return 0; 1932 } 1933 1934 static int adv76xx_set_format(struct v4l2_subdev *sd, 1935 struct v4l2_subdev_pad_config *cfg, 1936 struct v4l2_subdev_format *format) 1937 { 1938 struct adv76xx_state *state = to_state(sd); 1939 const struct adv76xx_format_info *info; 1940 1941 if (format->pad != state->source_pad) 1942 return -EINVAL; 1943 1944 info = adv76xx_format_info(state, format->format.code); 1945 if (!info) 1946 info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8); 1947 1948 adv76xx_fill_format(state, &format->format); 1949 format->format.code = info->code; 1950 1951 if (format->which == V4L2_SUBDEV_FORMAT_TRY) { 1952 struct v4l2_mbus_framefmt *fmt; 1953 1954 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad); 1955 fmt->code = format->format.code; 1956 } else { 1957 state->format = info; 1958 adv76xx_setup_format(state); 1959 } 1960 1961 return 0; 1962 } 1963 1964 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC) 1965 static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status) 1966 { 1967 struct adv76xx_state *state = to_state(sd); 1968 1969 if ((cec_read(sd, 0x11) & 0x01) == 0) { 1970 v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__); 1971 return; 1972 } 1973 1974 if (tx_raw_status & 0x02) { 1975 v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n", 1976 __func__); 1977 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST, 1978 1, 0, 0, 0); 1979 return; 1980 } 1981 if (tx_raw_status & 0x04) { 1982 u8 status; 1983 u8 nack_cnt; 1984 u8 low_drive_cnt; 1985 1986 v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__); 1987 /* 1988 * We set this status bit since this hardware performs 1989 * retransmissions. 1990 */ 1991 status = CEC_TX_STATUS_MAX_RETRIES; 1992 nack_cnt = cec_read(sd, 0x14) & 0xf; 1993 if (nack_cnt) 1994 status |= CEC_TX_STATUS_NACK; 1995 low_drive_cnt = cec_read(sd, 0x14) >> 4; 1996 if (low_drive_cnt) 1997 status |= CEC_TX_STATUS_LOW_DRIVE; 1998 cec_transmit_done(state->cec_adap, status, 1999 0, nack_cnt, low_drive_cnt, 0); 2000 return; 2001 } 2002 if (tx_raw_status & 0x01) { 2003 v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__); 2004 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0); 2005 return; 2006 } 2007 } 2008 2009 static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled) 2010 { 2011 struct adv76xx_state *state = to_state(sd); 2012 const struct adv76xx_chip_info *info = state->info; 2013 u8 cec_irq; 2014 2015 /* cec controller */ 2016 cec_irq = io_read(sd, info->cec_irq_status) & 0x0f; 2017 if (!cec_irq) 2018 return; 2019 2020 v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq); 2021 adv76xx_cec_tx_raw_status(sd, cec_irq); 2022 if (cec_irq & 0x08) { 2023 struct cec_msg msg; 2024 2025 msg.len = cec_read(sd, 0x25) & 0x1f; 2026 if (msg.len > 16) 2027 msg.len = 16; 2028 2029 if (msg.len) { 2030 u8 i; 2031 2032 for (i = 0; i < msg.len; i++) 2033 msg.msg[i] = cec_read(sd, i + 0x15); 2034 cec_write(sd, info->cec_rx_enable, 2035 info->cec_rx_enable_mask); /* re-enable rx */ 2036 cec_received_msg(state->cec_adap, &msg); 2037 } 2038 } 2039 2040 if (info->cec_irq_swap) { 2041 /* 2042 * Note: the bit order is swapped between 0x4d and 0x4e 2043 * on adv7604 2044 */ 2045 cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) | 2046 ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3); 2047 } 2048 io_write(sd, info->cec_irq_status + 1, cec_irq); 2049 2050 if (handled) 2051 *handled = true; 2052 } 2053 2054 static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable) 2055 { 2056 struct adv76xx_state *state = cec_get_drvdata(adap); 2057 const struct adv76xx_chip_info *info = state->info; 2058 struct v4l2_subdev *sd = &state->sd; 2059 2060 if (!state->cec_enabled_adap && enable) { 2061 cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */ 2062 cec_write(sd, 0x2c, 0x01); /* cec soft reset */ 2063 cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */ 2064 /* enabled irqs: */ 2065 /* tx: ready */ 2066 /* tx: arbitration lost */ 2067 /* tx: retry timeout */ 2068 /* rx: ready */ 2069 io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x0f); 2070 cec_write(sd, info->cec_rx_enable, info->cec_rx_enable_mask); 2071 } else if (state->cec_enabled_adap && !enable) { 2072 /* disable cec interrupts */ 2073 io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x00); 2074 /* disable address mask 1-3 */ 2075 cec_write_clr_set(sd, 0x27, 0x70, 0x00); 2076 /* power down cec section */ 2077 cec_write_clr_set(sd, 0x2a, 0x01, 0x00); 2078 state->cec_valid_addrs = 0; 2079 } 2080 state->cec_enabled_adap = enable; 2081 adv76xx_s_detect_tx_5v_ctrl(sd); 2082 return 0; 2083 } 2084 2085 static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr) 2086 { 2087 struct adv76xx_state *state = cec_get_drvdata(adap); 2088 struct v4l2_subdev *sd = &state->sd; 2089 unsigned int i, free_idx = ADV76XX_MAX_ADDRS; 2090 2091 if (!state->cec_enabled_adap) 2092 return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO; 2093 2094 if (addr == CEC_LOG_ADDR_INVALID) { 2095 cec_write_clr_set(sd, 0x27, 0x70, 0); 2096 state->cec_valid_addrs = 0; 2097 return 0; 2098 } 2099 2100 for (i = 0; i < ADV76XX_MAX_ADDRS; i++) { 2101 bool is_valid = state->cec_valid_addrs & (1 << i); 2102 2103 if (free_idx == ADV76XX_MAX_ADDRS && !is_valid) 2104 free_idx = i; 2105 if (is_valid && state->cec_addr[i] == addr) 2106 return 0; 2107 } 2108 if (i == ADV76XX_MAX_ADDRS) { 2109 i = free_idx; 2110 if (i == ADV76XX_MAX_ADDRS) 2111 return -ENXIO; 2112 } 2113 state->cec_addr[i] = addr; 2114 state->cec_valid_addrs |= 1 << i; 2115 2116 switch (i) { 2117 case 0: 2118 /* enable address mask 0 */ 2119 cec_write_clr_set(sd, 0x27, 0x10, 0x10); 2120 /* set address for mask 0 */ 2121 cec_write_clr_set(sd, 0x28, 0x0f, addr); 2122 break; 2123 case 1: 2124 /* enable address mask 1 */ 2125 cec_write_clr_set(sd, 0x27, 0x20, 0x20); 2126 /* set address for mask 1 */ 2127 cec_write_clr_set(sd, 0x28, 0xf0, addr << 4); 2128 break; 2129 case 2: 2130 /* enable address mask 2 */ 2131 cec_write_clr_set(sd, 0x27, 0x40, 0x40); 2132 /* set address for mask 1 */ 2133 cec_write_clr_set(sd, 0x29, 0x0f, addr); 2134 break; 2135 } 2136 return 0; 2137 } 2138 2139 static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts, 2140 u32 signal_free_time, struct cec_msg *msg) 2141 { 2142 struct adv76xx_state *state = cec_get_drvdata(adap); 2143 struct v4l2_subdev *sd = &state->sd; 2144 u8 len = msg->len; 2145 unsigned int i; 2146 2147 /* 2148 * The number of retries is the number of attempts - 1, but retry 2149 * at least once. It's not clear if a value of 0 is allowed, so 2150 * let's do at least one retry. 2151 */ 2152 cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4); 2153 2154 if (len > 16) { 2155 v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len); 2156 return -EINVAL; 2157 } 2158 2159 /* write data */ 2160 for (i = 0; i < len; i++) 2161 cec_write(sd, i, msg->msg[i]); 2162 2163 /* set length (data + header) */ 2164 cec_write(sd, 0x10, len); 2165 /* start transmit, enable tx */ 2166 cec_write(sd, 0x11, 0x01); 2167 return 0; 2168 } 2169 2170 static const struct cec_adap_ops adv76xx_cec_adap_ops = { 2171 .adap_enable = adv76xx_cec_adap_enable, 2172 .adap_log_addr = adv76xx_cec_adap_log_addr, 2173 .adap_transmit = adv76xx_cec_adap_transmit, 2174 }; 2175 #endif 2176 2177 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled) 2178 { 2179 struct adv76xx_state *state = to_state(sd); 2180 const struct adv76xx_chip_info *info = state->info; 2181 const u8 irq_reg_0x43 = io_read(sd, 0x43); 2182 const u8 irq_reg_0x6b = io_read(sd, 0x6b); 2183 const u8 irq_reg_0x70 = io_read(sd, 0x70); 2184 u8 fmt_change_digital; 2185 u8 fmt_change; 2186 u8 tx_5v; 2187 2188 if (irq_reg_0x43) 2189 io_write(sd, 0x44, irq_reg_0x43); 2190 if (irq_reg_0x70) 2191 io_write(sd, 0x71, irq_reg_0x70); 2192 if (irq_reg_0x6b) 2193 io_write(sd, 0x6c, irq_reg_0x6b); 2194 2195 v4l2_dbg(2, debug, sd, "%s: ", __func__); 2196 2197 /* format change */ 2198 fmt_change = irq_reg_0x43 & 0x98; 2199 fmt_change_digital = is_digital_input(sd) 2200 ? irq_reg_0x6b & info->fmt_change_digital_mask 2201 : 0; 2202 2203 if (fmt_change || fmt_change_digital) { 2204 v4l2_dbg(1, debug, sd, 2205 "%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n", 2206 __func__, fmt_change, fmt_change_digital); 2207 2208 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt); 2209 2210 if (handled) 2211 *handled = true; 2212 } 2213 /* HDMI/DVI mode */ 2214 if (irq_reg_0x6b & 0x01) { 2215 v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__, 2216 (io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI"); 2217 set_rgb_quantization_range(sd); 2218 if (handled) 2219 *handled = true; 2220 } 2221 2222 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC) 2223 /* cec */ 2224 adv76xx_cec_isr(sd, handled); 2225 #endif 2226 2227 /* tx 5v detect */ 2228 tx_5v = irq_reg_0x70 & info->cable_det_mask; 2229 if (tx_5v) { 2230 v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v); 2231 adv76xx_s_detect_tx_5v_ctrl(sd); 2232 if (handled) 2233 *handled = true; 2234 } 2235 return 0; 2236 } 2237 2238 static irqreturn_t adv76xx_irq_handler(int irq, void *dev_id) 2239 { 2240 struct adv76xx_state *state = dev_id; 2241 bool handled = false; 2242 2243 adv76xx_isr(&state->sd, 0, &handled); 2244 2245 return handled ? IRQ_HANDLED : IRQ_NONE; 2246 } 2247 2248 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid) 2249 { 2250 struct adv76xx_state *state = to_state(sd); 2251 u8 *data = NULL; 2252 2253 memset(edid->reserved, 0, sizeof(edid->reserved)); 2254 2255 switch (edid->pad) { 2256 case ADV76XX_PAD_HDMI_PORT_A: 2257 case ADV7604_PAD_HDMI_PORT_B: 2258 case ADV7604_PAD_HDMI_PORT_C: 2259 case ADV7604_PAD_HDMI_PORT_D: 2260 if (state->edid.present & (1 << edid->pad)) 2261 data = state->edid.edid; 2262 break; 2263 default: 2264 return -EINVAL; 2265 } 2266 2267 if (edid->start_block == 0 && edid->blocks == 0) { 2268 edid->blocks = data ? state->edid.blocks : 0; 2269 return 0; 2270 } 2271 2272 if (!data) 2273 return -ENODATA; 2274 2275 if (edid->start_block >= state->edid.blocks) 2276 return -EINVAL; 2277 2278 if (edid->start_block + edid->blocks > state->edid.blocks) 2279 edid->blocks = state->edid.blocks - edid->start_block; 2280 2281 memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128); 2282 2283 return 0; 2284 } 2285 2286 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid) 2287 { 2288 struct adv76xx_state *state = to_state(sd); 2289 const struct adv76xx_chip_info *info = state->info; 2290 unsigned int spa_loc; 2291 u16 pa; 2292 int err; 2293 int i; 2294 2295 memset(edid->reserved, 0, sizeof(edid->reserved)); 2296 2297 if (edid->pad > ADV7604_PAD_HDMI_PORT_D) 2298 return -EINVAL; 2299 if (edid->start_block != 0) 2300 return -EINVAL; 2301 if (edid->blocks == 0) { 2302 /* Disable hotplug and I2C access to EDID RAM from DDC port */ 2303 state->edid.present &= ~(1 << edid->pad); 2304 adv76xx_set_hpd(state, state->edid.present); 2305 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present); 2306 2307 /* Fall back to a 16:9 aspect ratio */ 2308 state->aspect_ratio.numerator = 16; 2309 state->aspect_ratio.denominator = 9; 2310 2311 if (!state->edid.present) { 2312 state->edid.blocks = 0; 2313 cec_phys_addr_invalidate(state->cec_adap); 2314 } 2315 2316 v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n", 2317 __func__, edid->pad, state->edid.present); 2318 return 0; 2319 } 2320 if (edid->blocks > 2) { 2321 edid->blocks = 2; 2322 return -E2BIG; 2323 } 2324 pa = v4l2_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc); 2325 err = v4l2_phys_addr_validate(pa, &pa, NULL); 2326 if (err) 2327 return err; 2328 2329 v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n", 2330 __func__, edid->pad, state->edid.present); 2331 2332 /* Disable hotplug and I2C access to EDID RAM from DDC port */ 2333 cancel_delayed_work_sync(&state->delayed_work_enable_hotplug); 2334 adv76xx_set_hpd(state, 0); 2335 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00); 2336 2337 /* 2338 * Return an error if no location of the source physical address 2339 * was found. 2340 */ 2341 if (spa_loc == 0) 2342 return -EINVAL; 2343 2344 switch (edid->pad) { 2345 case ADV76XX_PAD_HDMI_PORT_A: 2346 state->spa_port_a[0] = edid->edid[spa_loc]; 2347 state->spa_port_a[1] = edid->edid[spa_loc + 1]; 2348 break; 2349 case ADV7604_PAD_HDMI_PORT_B: 2350 rep_write(sd, 0x70, edid->edid[spa_loc]); 2351 rep_write(sd, 0x71, edid->edid[spa_loc + 1]); 2352 break; 2353 case ADV7604_PAD_HDMI_PORT_C: 2354 rep_write(sd, 0x72, edid->edid[spa_loc]); 2355 rep_write(sd, 0x73, edid->edid[spa_loc + 1]); 2356 break; 2357 case ADV7604_PAD_HDMI_PORT_D: 2358 rep_write(sd, 0x74, edid->edid[spa_loc]); 2359 rep_write(sd, 0x75, edid->edid[spa_loc + 1]); 2360 break; 2361 default: 2362 return -EINVAL; 2363 } 2364 2365 if (info->type == ADV7604) { 2366 rep_write(sd, 0x76, spa_loc & 0xff); 2367 rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2); 2368 } else { 2369 /* ADV7612 Software Manual Rev. A, p. 15 */ 2370 rep_write(sd, 0x70, spa_loc & 0xff); 2371 rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8); 2372 } 2373 2374 edid->edid[spa_loc] = state->spa_port_a[0]; 2375 edid->edid[spa_loc + 1] = state->spa_port_a[1]; 2376 2377 memcpy(state->edid.edid, edid->edid, 128 * edid->blocks); 2378 state->edid.blocks = edid->blocks; 2379 state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15], 2380 edid->edid[0x16]); 2381 state->edid.present |= 1 << edid->pad; 2382 2383 err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid); 2384 if (err < 0) { 2385 v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad); 2386 return err; 2387 } 2388 2389 /* adv76xx calculates the checksums and enables I2C access to internal 2390 EDID RAM from DDC port. */ 2391 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present); 2392 2393 for (i = 0; i < 1000; i++) { 2394 if (rep_read(sd, info->edid_status_reg) & state->edid.present) 2395 break; 2396 mdelay(1); 2397 } 2398 if (i == 1000) { 2399 v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present); 2400 return -EIO; 2401 } 2402 cec_s_phys_addr(state->cec_adap, pa, false); 2403 2404 /* enable hotplug after 100 ms */ 2405 schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10); 2406 return 0; 2407 } 2408 2409 /*********** avi info frame CEA-861-E **************/ 2410 2411 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = { 2412 { "AVI", 0x01, 0xe0, 0x00 }, 2413 { "Audio", 0x02, 0xe3, 0x1c }, 2414 { "SDP", 0x04, 0xe6, 0x2a }, 2415 { "Vendor", 0x10, 0xec, 0x54 } 2416 }; 2417 2418 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index, 2419 union hdmi_infoframe *frame) 2420 { 2421 uint8_t buffer[32]; 2422 u8 len; 2423 int i; 2424 2425 if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) { 2426 v4l2_info(sd, "%s infoframe not received\n", 2427 adv76xx_cri[index].desc); 2428 return -ENOENT; 2429 } 2430 2431 for (i = 0; i < 3; i++) 2432 buffer[i] = infoframe_read(sd, 2433 adv76xx_cri[index].head_addr + i); 2434 2435 len = buffer[2] + 1; 2436 2437 if (len + 3 > sizeof(buffer)) { 2438 v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__, 2439 adv76xx_cri[index].desc, len); 2440 return -ENOENT; 2441 } 2442 2443 for (i = 0; i < len; i++) 2444 buffer[i + 3] = infoframe_read(sd, 2445 adv76xx_cri[index].payload_addr + i); 2446 2447 if (hdmi_infoframe_unpack(frame, buffer, sizeof(buffer)) < 0) { 2448 v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__, 2449 adv76xx_cri[index].desc); 2450 return -ENOENT; 2451 } 2452 return 0; 2453 } 2454 2455 static void adv76xx_log_infoframes(struct v4l2_subdev *sd) 2456 { 2457 int i; 2458 2459 if (!is_hdmi(sd)) { 2460 v4l2_info(sd, "receive DVI-D signal, no infoframes\n"); 2461 return; 2462 } 2463 2464 for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) { 2465 union hdmi_infoframe frame; 2466 struct i2c_client *client = v4l2_get_subdevdata(sd); 2467 2468 if (adv76xx_read_infoframe(sd, i, &frame)) 2469 return; 2470 hdmi_infoframe_log(KERN_INFO, &client->dev, &frame); 2471 } 2472 } 2473 2474 static int adv76xx_log_status(struct v4l2_subdev *sd) 2475 { 2476 struct adv76xx_state *state = to_state(sd); 2477 const struct adv76xx_chip_info *info = state->info; 2478 struct v4l2_dv_timings timings; 2479 struct stdi_readback stdi; 2480 u8 reg_io_0x02 = io_read(sd, 0x02); 2481 u8 edid_enabled; 2482 u8 cable_det; 2483 2484 static const char * const csc_coeff_sel_rb[16] = { 2485 "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB", 2486 "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709", 2487 "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709", 2488 "reserved", "reserved", "reserved", "reserved", "manual" 2489 }; 2490 static const char * const input_color_space_txt[16] = { 2491 "RGB limited range (16-235)", "RGB full range (0-255)", 2492 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)", 2493 "xvYCC Bt.601", "xvYCC Bt.709", 2494 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)", 2495 "invalid", "invalid", "invalid", "invalid", "invalid", 2496 "invalid", "invalid", "automatic" 2497 }; 2498 static const char * const hdmi_color_space_txt[16] = { 2499 "RGB limited range (16-235)", "RGB full range (0-255)", 2500 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)", 2501 "xvYCC Bt.601", "xvYCC Bt.709", 2502 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)", 2503 "sYCC", "opYCC 601", "opRGB", "invalid", "invalid", 2504 "invalid", "invalid", "invalid" 2505 }; 2506 static const char * const rgb_quantization_range_txt[] = { 2507 "Automatic", 2508 "RGB limited range (16-235)", 2509 "RGB full range (0-255)", 2510 }; 2511 static const char * const deep_color_mode_txt[4] = { 2512 "8-bits per channel", 2513 "10-bits per channel", 2514 "12-bits per channel", 2515 "16-bits per channel (not supported)" 2516 }; 2517 2518 v4l2_info(sd, "-----Chip status-----\n"); 2519 v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on"); 2520 edid_enabled = rep_read(sd, info->edid_status_reg); 2521 v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n", 2522 ((edid_enabled & 0x01) ? "Yes" : "No"), 2523 ((edid_enabled & 0x02) ? "Yes" : "No"), 2524 ((edid_enabled & 0x04) ? "Yes" : "No"), 2525 ((edid_enabled & 0x08) ? "Yes" : "No")); 2526 v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ? 2527 "enabled" : "disabled"); 2528 if (state->cec_enabled_adap) { 2529 int i; 2530 2531 for (i = 0; i < ADV76XX_MAX_ADDRS; i++) { 2532 bool is_valid = state->cec_valid_addrs & (1 << i); 2533 2534 if (is_valid) 2535 v4l2_info(sd, "CEC Logical Address: 0x%x\n", 2536 state->cec_addr[i]); 2537 } 2538 } 2539 2540 v4l2_info(sd, "-----Signal status-----\n"); 2541 cable_det = info->read_cable_det(sd); 2542 v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n", 2543 ((cable_det & 0x01) ? "Yes" : "No"), 2544 ((cable_det & 0x02) ? "Yes" : "No"), 2545 ((cable_det & 0x04) ? "Yes" : "No"), 2546 ((cable_det & 0x08) ? "Yes" : "No")); 2547 v4l2_info(sd, "TMDS signal detected: %s\n", 2548 no_signal_tmds(sd) ? "false" : "true"); 2549 v4l2_info(sd, "TMDS signal locked: %s\n", 2550 no_lock_tmds(sd) ? "false" : "true"); 2551 v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true"); 2552 v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true"); 2553 v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true"); 2554 v4l2_info(sd, "CP free run: %s\n", 2555 (in_free_run(sd)) ? "on" : "off"); 2556 v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n", 2557 io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f, 2558 (io_read(sd, 0x01) & 0x70) >> 4); 2559 2560 v4l2_info(sd, "-----Video Timings-----\n"); 2561 if (read_stdi(sd, &stdi)) 2562 v4l2_info(sd, "STDI: not locked\n"); 2563 else 2564 v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n", 2565 stdi.lcf, stdi.bl, stdi.lcvs, 2566 stdi.interlaced ? "interlaced" : "progressive", 2567 stdi.hs_pol, stdi.vs_pol); 2568 if (adv76xx_query_dv_timings(sd, &timings)) 2569 v4l2_info(sd, "No video detected\n"); 2570 else 2571 v4l2_print_dv_timings(sd->name, "Detected format: ", 2572 &timings, true); 2573 v4l2_print_dv_timings(sd->name, "Configured format: ", 2574 &state->timings, true); 2575 2576 if (no_signal(sd)) 2577 return 0; 2578 2579 v4l2_info(sd, "-----Color space-----\n"); 2580 v4l2_info(sd, "RGB quantization range ctrl: %s\n", 2581 rgb_quantization_range_txt[state->rgb_quantization_range]); 2582 v4l2_info(sd, "Input color space: %s\n", 2583 input_color_space_txt[reg_io_0x02 >> 4]); 2584 v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n", 2585 (reg_io_0x02 & 0x02) ? "RGB" : "YCbCr", 2586 (((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ? 2587 "(16-235)" : "(0-255)", 2588 (reg_io_0x02 & 0x08) ? "enabled" : "disabled"); 2589 v4l2_info(sd, "Color space conversion: %s\n", 2590 csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]); 2591 2592 if (!is_digital_input(sd)) 2593 return 0; 2594 2595 v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D"); 2596 v4l2_info(sd, "Digital video port selected: %c\n", 2597 (hdmi_read(sd, 0x00) & 0x03) + 'A'); 2598 v4l2_info(sd, "HDCP encrypted content: %s\n", 2599 (hdmi_read(sd, 0x05) & 0x40) ? "true" : "false"); 2600 v4l2_info(sd, "HDCP keys read: %s%s\n", 2601 (hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no", 2602 (hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : ""); 2603 if (is_hdmi(sd)) { 2604 bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01; 2605 bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01; 2606 bool audio_mute = io_read(sd, 0x65) & 0x40; 2607 2608 v4l2_info(sd, "Audio: pll %s, samples %s, %s\n", 2609 audio_pll_locked ? "locked" : "not locked", 2610 audio_sample_packet_detect ? "detected" : "not detected", 2611 audio_mute ? "muted" : "enabled"); 2612 if (audio_pll_locked && audio_sample_packet_detect) { 2613 v4l2_info(sd, "Audio format: %s\n", 2614 (hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo"); 2615 } 2616 v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) + 2617 (hdmi_read(sd, 0x5c) << 8) + 2618 (hdmi_read(sd, 0x5d) & 0xf0)); 2619 v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) + 2620 (hdmi_read(sd, 0x5e) << 8) + 2621 hdmi_read(sd, 0x5f)); 2622 v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off"); 2623 2624 v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]); 2625 v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]); 2626 2627 adv76xx_log_infoframes(sd); 2628 } 2629 2630 return 0; 2631 } 2632 2633 static int adv76xx_subscribe_event(struct v4l2_subdev *sd, 2634 struct v4l2_fh *fh, 2635 struct v4l2_event_subscription *sub) 2636 { 2637 switch (sub->type) { 2638 case V4L2_EVENT_SOURCE_CHANGE: 2639 return v4l2_src_change_event_subdev_subscribe(sd, fh, sub); 2640 case V4L2_EVENT_CTRL: 2641 return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub); 2642 default: 2643 return -EINVAL; 2644 } 2645 } 2646 2647 static int adv76xx_registered(struct v4l2_subdev *sd) 2648 { 2649 struct adv76xx_state *state = to_state(sd); 2650 struct i2c_client *client = v4l2_get_subdevdata(sd); 2651 int err; 2652 2653 err = cec_register_adapter(state->cec_adap, &client->dev); 2654 if (err) 2655 cec_delete_adapter(state->cec_adap); 2656 return err; 2657 } 2658 2659 static void adv76xx_unregistered(struct v4l2_subdev *sd) 2660 { 2661 struct adv76xx_state *state = to_state(sd); 2662 2663 cec_unregister_adapter(state->cec_adap); 2664 } 2665 2666 /* ----------------------------------------------------------------------- */ 2667 2668 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = { 2669 .s_ctrl = adv76xx_s_ctrl, 2670 .g_volatile_ctrl = adv76xx_g_volatile_ctrl, 2671 }; 2672 2673 static const struct v4l2_subdev_core_ops adv76xx_core_ops = { 2674 .log_status = adv76xx_log_status, 2675 .interrupt_service_routine = adv76xx_isr, 2676 .subscribe_event = adv76xx_subscribe_event, 2677 .unsubscribe_event = v4l2_event_subdev_unsubscribe, 2678 #ifdef CONFIG_VIDEO_ADV_DEBUG 2679 .g_register = adv76xx_g_register, 2680 .s_register = adv76xx_s_register, 2681 #endif 2682 }; 2683 2684 static const struct v4l2_subdev_video_ops adv76xx_video_ops = { 2685 .s_routing = adv76xx_s_routing, 2686 .g_input_status = adv76xx_g_input_status, 2687 .s_dv_timings = adv76xx_s_dv_timings, 2688 .g_dv_timings = adv76xx_g_dv_timings, 2689 .query_dv_timings = adv76xx_query_dv_timings, 2690 }; 2691 2692 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = { 2693 .enum_mbus_code = adv76xx_enum_mbus_code, 2694 .get_selection = adv76xx_get_selection, 2695 .get_fmt = adv76xx_get_format, 2696 .set_fmt = adv76xx_set_format, 2697 .get_edid = adv76xx_get_edid, 2698 .set_edid = adv76xx_set_edid, 2699 .dv_timings_cap = adv76xx_dv_timings_cap, 2700 .enum_dv_timings = adv76xx_enum_dv_timings, 2701 }; 2702 2703 static const struct v4l2_subdev_ops adv76xx_ops = { 2704 .core = &adv76xx_core_ops, 2705 .video = &adv76xx_video_ops, 2706 .pad = &adv76xx_pad_ops, 2707 }; 2708 2709 static const struct v4l2_subdev_internal_ops adv76xx_int_ops = { 2710 .registered = adv76xx_registered, 2711 .unregistered = adv76xx_unregistered, 2712 }; 2713 2714 /* -------------------------- custom ctrls ---------------------------------- */ 2715 2716 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = { 2717 .ops = &adv76xx_ctrl_ops, 2718 .id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE, 2719 .name = "Analog Sampling Phase", 2720 .type = V4L2_CTRL_TYPE_INTEGER, 2721 .min = 0, 2722 .max = 0x1f, 2723 .step = 1, 2724 .def = 0, 2725 }; 2726 2727 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = { 2728 .ops = &adv76xx_ctrl_ops, 2729 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL, 2730 .name = "Free Running Color, Manual", 2731 .type = V4L2_CTRL_TYPE_BOOLEAN, 2732 .min = false, 2733 .max = true, 2734 .step = 1, 2735 .def = false, 2736 }; 2737 2738 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = { 2739 .ops = &adv76xx_ctrl_ops, 2740 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR, 2741 .name = "Free Running Color", 2742 .type = V4L2_CTRL_TYPE_INTEGER, 2743 .min = 0x0, 2744 .max = 0xffffff, 2745 .step = 0x1, 2746 .def = 0x0, 2747 }; 2748 2749 /* ----------------------------------------------------------------------- */ 2750 2751 struct adv76xx_register_map { 2752 const char *name; 2753 u8 default_addr; 2754 }; 2755 2756 static const struct adv76xx_register_map adv76xx_default_addresses[] = { 2757 [ADV76XX_PAGE_IO] = { "main", 0x4c }, 2758 [ADV7604_PAGE_AVLINK] = { "avlink", 0x42 }, 2759 [ADV76XX_PAGE_CEC] = { "cec", 0x40 }, 2760 [ADV76XX_PAGE_INFOFRAME] = { "infoframe", 0x3e }, 2761 [ADV7604_PAGE_ESDP] = { "esdp", 0x38 }, 2762 [ADV7604_PAGE_DPP] = { "dpp", 0x3c }, 2763 [ADV76XX_PAGE_AFE] = { "afe", 0x26 }, 2764 [ADV76XX_PAGE_REP] = { "rep", 0x32 }, 2765 [ADV76XX_PAGE_EDID] = { "edid", 0x36 }, 2766 [ADV76XX_PAGE_HDMI] = { "hdmi", 0x34 }, 2767 [ADV76XX_PAGE_TEST] = { "test", 0x30 }, 2768 [ADV76XX_PAGE_CP] = { "cp", 0x22 }, 2769 [ADV7604_PAGE_VDP] = { "vdp", 0x24 }, 2770 }; 2771 2772 static int adv76xx_core_init(struct v4l2_subdev *sd) 2773 { 2774 struct adv76xx_state *state = to_state(sd); 2775 const struct adv76xx_chip_info *info = state->info; 2776 struct adv76xx_platform_data *pdata = &state->pdata; 2777 2778 hdmi_write(sd, 0x48, 2779 (pdata->disable_pwrdnb ? 0x80 : 0) | 2780 (pdata->disable_cable_det_rst ? 0x40 : 0)); 2781 2782 disable_input(sd); 2783 2784 if (pdata->default_input >= 0 && 2785 pdata->default_input < state->source_pad) { 2786 state->selected_input = pdata->default_input; 2787 select_input(sd); 2788 enable_input(sd); 2789 } 2790 2791 /* power */ 2792 io_write(sd, 0x0c, 0x42); /* Power up part and power down VDP */ 2793 io_write(sd, 0x0b, 0x44); /* Power down ESDP block */ 2794 cp_write(sd, 0xcf, 0x01); /* Power down macrovision */ 2795 2796 /* video format */ 2797 io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3); 2798 io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 | 2799 pdata->insert_av_codes << 2 | 2800 pdata->replicate_av_codes << 1); 2801 adv76xx_setup_format(state); 2802 2803 cp_write(sd, 0x69, 0x30); /* Enable CP CSC */ 2804 2805 /* VS, HS polarities */ 2806 io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 | 2807 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol); 2808 2809 /* Adjust drive strength */ 2810 io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 | 2811 pdata->dr_str_clk << 2 | 2812 pdata->dr_str_sync); 2813 2814 cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */ 2815 cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */ 2816 cp_write(sd, 0xf9, 0x23); /* STDI ch. 1 - LCVS change threshold - 2817 ADI recommended setting [REF_01, c. 2.3.3] */ 2818 cp_write(sd, 0x45, 0x23); /* STDI ch. 2 - LCVS change threshold - 2819 ADI recommended setting [REF_01, c. 2.3.3] */ 2820 cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution 2821 for digital formats */ 2822 2823 /* HDMI audio */ 2824 hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */ 2825 hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */ 2826 hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */ 2827 2828 /* TODO from platform data */ 2829 afe_write(sd, 0xb5, 0x01); /* Setting MCLK to 256Fs */ 2830 2831 if (adv76xx_has_afe(state)) { 2832 afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */ 2833 io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4); 2834 } 2835 2836 /* interrupts */ 2837 io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */ 2838 io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */ 2839 io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */ 2840 io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */ 2841 info->setup_irqs(sd); 2842 2843 return v4l2_ctrl_handler_setup(sd->ctrl_handler); 2844 } 2845 2846 static void adv7604_setup_irqs(struct v4l2_subdev *sd) 2847 { 2848 io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */ 2849 } 2850 2851 static void adv7611_setup_irqs(struct v4l2_subdev *sd) 2852 { 2853 io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */ 2854 } 2855 2856 static void adv7612_setup_irqs(struct v4l2_subdev *sd) 2857 { 2858 io_write(sd, 0x41, 0xd0); /* disable INT2 */ 2859 } 2860 2861 static void adv76xx_unregister_clients(struct adv76xx_state *state) 2862 { 2863 unsigned int i; 2864 2865 for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) 2866 i2c_unregister_device(state->i2c_clients[i]); 2867 } 2868 2869 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd, 2870 unsigned int page) 2871 { 2872 struct i2c_client *client = v4l2_get_subdevdata(sd); 2873 struct adv76xx_state *state = to_state(sd); 2874 struct adv76xx_platform_data *pdata = &state->pdata; 2875 unsigned int io_reg = 0xf2 + page; 2876 struct i2c_client *new_client; 2877 2878 if (pdata && pdata->i2c_addresses[page]) 2879 new_client = i2c_new_dummy_device(client->adapter, 2880 pdata->i2c_addresses[page]); 2881 else 2882 new_client = i2c_new_ancillary_device(client, 2883 adv76xx_default_addresses[page].name, 2884 adv76xx_default_addresses[page].default_addr); 2885 2886 if (!IS_ERR(new_client)) 2887 io_write(sd, io_reg, new_client->addr << 1); 2888 2889 return new_client; 2890 } 2891 2892 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = { 2893 /* reset ADI recommended settings for HDMI: */ 2894 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */ 2895 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */ 2896 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */ 2897 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */ 2898 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */ 2899 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */ 2900 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */ 2901 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */ 2902 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */ 2903 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */ 2904 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */ 2905 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */ 2906 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */ 2907 2908 /* set ADI recommended settings for digitizer */ 2909 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */ 2910 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */ 2911 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */ 2912 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */ 2913 { ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */ 2914 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */ 2915 2916 { ADV76XX_REG_SEQ_TERM, 0 }, 2917 }; 2918 2919 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = { 2920 /* set ADI recommended settings for HDMI: */ 2921 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */ 2922 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */ 2923 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */ 2924 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */ 2925 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */ 2926 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */ 2927 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */ 2928 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */ 2929 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */ 2930 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */ 2931 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */ 2932 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */ 2933 2934 /* reset ADI recommended settings for digitizer */ 2935 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */ 2936 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */ 2937 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */ 2938 2939 { ADV76XX_REG_SEQ_TERM, 0 }, 2940 }; 2941 2942 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = { 2943 /* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */ 2944 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 }, 2945 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 }, 2946 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 }, 2947 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f }, 2948 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 }, 2949 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda }, 2950 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 }, 2951 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 }, 2952 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 }, 2953 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 }, 2954 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e }, 2955 2956 { ADV76XX_REG_SEQ_TERM, 0 }, 2957 }; 2958 2959 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = { 2960 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 }, 2961 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 }, 2962 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 }, 2963 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f }, 2964 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 }, 2965 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda }, 2966 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 }, 2967 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 }, 2968 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 }, 2969 { ADV76XX_REG_SEQ_TERM, 0 }, 2970 }; 2971 2972 static const struct adv76xx_chip_info adv76xx_chip_info[] = { 2973 [ADV7604] = { 2974 .type = ADV7604, 2975 .has_afe = true, 2976 .max_port = ADV7604_PAD_VGA_COMP, 2977 .num_dv_ports = 4, 2978 .edid_enable_reg = 0x77, 2979 .edid_status_reg = 0x7d, 2980 .lcf_reg = 0xb3, 2981 .tdms_lock_mask = 0xe0, 2982 .cable_det_mask = 0x1e, 2983 .fmt_change_digital_mask = 0xc1, 2984 .cp_csc = 0xfc, 2985 .cec_irq_status = 0x4d, 2986 .cec_rx_enable = 0x26, 2987 .cec_rx_enable_mask = 0x01, 2988 .cec_irq_swap = true, 2989 .formats = adv7604_formats, 2990 .nformats = ARRAY_SIZE(adv7604_formats), 2991 .set_termination = adv7604_set_termination, 2992 .setup_irqs = adv7604_setup_irqs, 2993 .read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock, 2994 .read_cable_det = adv7604_read_cable_det, 2995 .recommended_settings = { 2996 [0] = adv7604_recommended_settings_afe, 2997 [1] = adv7604_recommended_settings_hdmi, 2998 }, 2999 .num_recommended_settings = { 3000 [0] = ARRAY_SIZE(adv7604_recommended_settings_afe), 3001 [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi), 3002 }, 3003 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) | 3004 BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) | 3005 BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) | 3006 BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) | 3007 BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) | 3008 BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) | 3009 BIT(ADV7604_PAGE_VDP), 3010 .linewidth_mask = 0xfff, 3011 .field0_height_mask = 0xfff, 3012 .field1_height_mask = 0xfff, 3013 .hfrontporch_mask = 0x3ff, 3014 .hsync_mask = 0x3ff, 3015 .hbackporch_mask = 0x3ff, 3016 .field0_vfrontporch_mask = 0x1fff, 3017 .field0_vsync_mask = 0x1fff, 3018 .field0_vbackporch_mask = 0x1fff, 3019 .field1_vfrontporch_mask = 0x1fff, 3020 .field1_vsync_mask = 0x1fff, 3021 .field1_vbackporch_mask = 0x1fff, 3022 }, 3023 [ADV7611] = { 3024 .type = ADV7611, 3025 .has_afe = false, 3026 .max_port = ADV76XX_PAD_HDMI_PORT_A, 3027 .num_dv_ports = 1, 3028 .edid_enable_reg = 0x74, 3029 .edid_status_reg = 0x76, 3030 .lcf_reg = 0xa3, 3031 .tdms_lock_mask = 0x43, 3032 .cable_det_mask = 0x01, 3033 .fmt_change_digital_mask = 0x03, 3034 .cp_csc = 0xf4, 3035 .cec_irq_status = 0x93, 3036 .cec_rx_enable = 0x2c, 3037 .cec_rx_enable_mask = 0x02, 3038 .formats = adv7611_formats, 3039 .nformats = ARRAY_SIZE(adv7611_formats), 3040 .set_termination = adv7611_set_termination, 3041 .setup_irqs = adv7611_setup_irqs, 3042 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock, 3043 .read_cable_det = adv7611_read_cable_det, 3044 .recommended_settings = { 3045 [1] = adv7611_recommended_settings_hdmi, 3046 }, 3047 .num_recommended_settings = { 3048 [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi), 3049 }, 3050 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) | 3051 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) | 3052 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) | 3053 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP), 3054 .linewidth_mask = 0x1fff, 3055 .field0_height_mask = 0x1fff, 3056 .field1_height_mask = 0x1fff, 3057 .hfrontporch_mask = 0x1fff, 3058 .hsync_mask = 0x1fff, 3059 .hbackporch_mask = 0x1fff, 3060 .field0_vfrontporch_mask = 0x3fff, 3061 .field0_vsync_mask = 0x3fff, 3062 .field0_vbackporch_mask = 0x3fff, 3063 .field1_vfrontporch_mask = 0x3fff, 3064 .field1_vsync_mask = 0x3fff, 3065 .field1_vbackporch_mask = 0x3fff, 3066 }, 3067 [ADV7612] = { 3068 .type = ADV7612, 3069 .has_afe = false, 3070 .max_port = ADV76XX_PAD_HDMI_PORT_A, /* B not supported */ 3071 .num_dv_ports = 1, /* normally 2 */ 3072 .edid_enable_reg = 0x74, 3073 .edid_status_reg = 0x76, 3074 .lcf_reg = 0xa3, 3075 .tdms_lock_mask = 0x43, 3076 .cable_det_mask = 0x01, 3077 .fmt_change_digital_mask = 0x03, 3078 .cp_csc = 0xf4, 3079 .cec_irq_status = 0x93, 3080 .cec_rx_enable = 0x2c, 3081 .cec_rx_enable_mask = 0x02, 3082 .formats = adv7612_formats, 3083 .nformats = ARRAY_SIZE(adv7612_formats), 3084 .set_termination = adv7611_set_termination, 3085 .setup_irqs = adv7612_setup_irqs, 3086 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock, 3087 .read_cable_det = adv7612_read_cable_det, 3088 .recommended_settings = { 3089 [1] = adv7612_recommended_settings_hdmi, 3090 }, 3091 .num_recommended_settings = { 3092 [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi), 3093 }, 3094 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) | 3095 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) | 3096 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) | 3097 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP), 3098 .linewidth_mask = 0x1fff, 3099 .field0_height_mask = 0x1fff, 3100 .field1_height_mask = 0x1fff, 3101 .hfrontporch_mask = 0x1fff, 3102 .hsync_mask = 0x1fff, 3103 .hbackporch_mask = 0x1fff, 3104 .field0_vfrontporch_mask = 0x3fff, 3105 .field0_vsync_mask = 0x3fff, 3106 .field0_vbackporch_mask = 0x3fff, 3107 .field1_vfrontporch_mask = 0x3fff, 3108 .field1_vsync_mask = 0x3fff, 3109 .field1_vbackporch_mask = 0x3fff, 3110 }, 3111 }; 3112 3113 static const struct i2c_device_id adv76xx_i2c_id[] = { 3114 { "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] }, 3115 { "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] }, 3116 { "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] }, 3117 { } 3118 }; 3119 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id); 3120 3121 static const struct of_device_id adv76xx_of_id[] __maybe_unused = { 3122 { .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] }, 3123 { .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] }, 3124 { } 3125 }; 3126 MODULE_DEVICE_TABLE(of, adv76xx_of_id); 3127 3128 static int adv76xx_parse_dt(struct adv76xx_state *state) 3129 { 3130 struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 }; 3131 struct device_node *endpoint; 3132 struct device_node *np; 3133 unsigned int flags; 3134 int ret; 3135 u32 v; 3136 3137 np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node; 3138 3139 /* Parse the endpoint. */ 3140 endpoint = of_graph_get_next_endpoint(np, NULL); 3141 if (!endpoint) 3142 return -EINVAL; 3143 3144 ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), &bus_cfg); 3145 of_node_put(endpoint); 3146 if (ret) 3147 return ret; 3148 3149 if (!of_property_read_u32(np, "default-input", &v)) 3150 state->pdata.default_input = v; 3151 else 3152 state->pdata.default_input = -1; 3153 3154 flags = bus_cfg.bus.parallel.flags; 3155 3156 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH) 3157 state->pdata.inv_hs_pol = 1; 3158 3159 if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH) 3160 state->pdata.inv_vs_pol = 1; 3161 3162 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING) 3163 state->pdata.inv_llc_pol = 1; 3164 3165 if (bus_cfg.bus_type == V4L2_MBUS_BT656) 3166 state->pdata.insert_av_codes = 1; 3167 3168 /* Disable the interrupt for now as no DT-based board uses it. */ 3169 state->pdata.int1_config = ADV76XX_INT1_CONFIG_ACTIVE_HIGH; 3170 3171 /* Hardcode the remaining platform data fields. */ 3172 state->pdata.disable_pwrdnb = 0; 3173 state->pdata.disable_cable_det_rst = 0; 3174 state->pdata.blank_data = 1; 3175 state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0; 3176 state->pdata.bus_order = ADV7604_BUS_ORDER_RGB; 3177 state->pdata.dr_str_data = ADV76XX_DR_STR_MEDIUM_HIGH; 3178 state->pdata.dr_str_clk = ADV76XX_DR_STR_MEDIUM_HIGH; 3179 state->pdata.dr_str_sync = ADV76XX_DR_STR_MEDIUM_HIGH; 3180 3181 return 0; 3182 } 3183 3184 static const struct regmap_config adv76xx_regmap_cnf[] = { 3185 { 3186 .name = "io", 3187 .reg_bits = 8, 3188 .val_bits = 8, 3189 3190 .max_register = 0xff, 3191 .cache_type = REGCACHE_NONE, 3192 }, 3193 { 3194 .name = "avlink", 3195 .reg_bits = 8, 3196 .val_bits = 8, 3197 3198 .max_register = 0xff, 3199 .cache_type = REGCACHE_NONE, 3200 }, 3201 { 3202 .name = "cec", 3203 .reg_bits = 8, 3204 .val_bits = 8, 3205 3206 .max_register = 0xff, 3207 .cache_type = REGCACHE_NONE, 3208 }, 3209 { 3210 .name = "infoframe", 3211 .reg_bits = 8, 3212 .val_bits = 8, 3213 3214 .max_register = 0xff, 3215 .cache_type = REGCACHE_NONE, 3216 }, 3217 { 3218 .name = "esdp", 3219 .reg_bits = 8, 3220 .val_bits = 8, 3221 3222 .max_register = 0xff, 3223 .cache_type = REGCACHE_NONE, 3224 }, 3225 { 3226 .name = "epp", 3227 .reg_bits = 8, 3228 .val_bits = 8, 3229 3230 .max_register = 0xff, 3231 .cache_type = REGCACHE_NONE, 3232 }, 3233 { 3234 .name = "afe", 3235 .reg_bits = 8, 3236 .val_bits = 8, 3237 3238 .max_register = 0xff, 3239 .cache_type = REGCACHE_NONE, 3240 }, 3241 { 3242 .name = "rep", 3243 .reg_bits = 8, 3244 .val_bits = 8, 3245 3246 .max_register = 0xff, 3247 .cache_type = REGCACHE_NONE, 3248 }, 3249 { 3250 .name = "edid", 3251 .reg_bits = 8, 3252 .val_bits = 8, 3253 3254 .max_register = 0xff, 3255 .cache_type = REGCACHE_NONE, 3256 }, 3257 3258 { 3259 .name = "hdmi", 3260 .reg_bits = 8, 3261 .val_bits = 8, 3262 3263 .max_register = 0xff, 3264 .cache_type = REGCACHE_NONE, 3265 }, 3266 { 3267 .name = "test", 3268 .reg_bits = 8, 3269 .val_bits = 8, 3270 3271 .max_register = 0xff, 3272 .cache_type = REGCACHE_NONE, 3273 }, 3274 { 3275 .name = "cp", 3276 .reg_bits = 8, 3277 .val_bits = 8, 3278 3279 .max_register = 0xff, 3280 .cache_type = REGCACHE_NONE, 3281 }, 3282 { 3283 .name = "vdp", 3284 .reg_bits = 8, 3285 .val_bits = 8, 3286 3287 .max_register = 0xff, 3288 .cache_type = REGCACHE_NONE, 3289 }, 3290 }; 3291 3292 static int configure_regmap(struct adv76xx_state *state, int region) 3293 { 3294 int err; 3295 3296 if (!state->i2c_clients[region]) 3297 return -ENODEV; 3298 3299 state->regmap[region] = 3300 devm_regmap_init_i2c(state->i2c_clients[region], 3301 &adv76xx_regmap_cnf[region]); 3302 3303 if (IS_ERR(state->regmap[region])) { 3304 err = PTR_ERR(state->regmap[region]); 3305 v4l_err(state->i2c_clients[region], 3306 "Error initializing regmap %d with error %d\n", 3307 region, err); 3308 return -EINVAL; 3309 } 3310 3311 return 0; 3312 } 3313 3314 static int configure_regmaps(struct adv76xx_state *state) 3315 { 3316 int i, err; 3317 3318 for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) { 3319 err = configure_regmap(state, i); 3320 if (err && (err != -ENODEV)) 3321 return err; 3322 } 3323 return 0; 3324 } 3325 3326 static void adv76xx_reset(struct adv76xx_state *state) 3327 { 3328 if (state->reset_gpio) { 3329 /* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */ 3330 gpiod_set_value_cansleep(state->reset_gpio, 0); 3331 usleep_range(5000, 10000); 3332 gpiod_set_value_cansleep(state->reset_gpio, 1); 3333 /* It is recommended to wait 5 ms after the low pulse before */ 3334 /* an I2C write is performed to the ADV76XX. */ 3335 usleep_range(5000, 10000); 3336 } 3337 } 3338 3339 static int adv76xx_probe(struct i2c_client *client, 3340 const struct i2c_device_id *id) 3341 { 3342 static const struct v4l2_dv_timings cea640x480 = 3343 V4L2_DV_BT_CEA_640X480P59_94; 3344 struct adv76xx_state *state; 3345 struct v4l2_ctrl_handler *hdl; 3346 struct v4l2_ctrl *ctrl; 3347 struct v4l2_subdev *sd; 3348 unsigned int i; 3349 unsigned int val, val2; 3350 int err; 3351 3352 /* Check if the adapter supports the needed features */ 3353 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 3354 return -EIO; 3355 v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n", 3356 client->addr << 1); 3357 3358 state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL); 3359 if (!state) 3360 return -ENOMEM; 3361 3362 state->i2c_clients[ADV76XX_PAGE_IO] = client; 3363 3364 /* initialize variables */ 3365 state->restart_stdi_once = true; 3366 state->selected_input = ~0; 3367 3368 if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) { 3369 const struct of_device_id *oid; 3370 3371 oid = of_match_node(adv76xx_of_id, client->dev.of_node); 3372 state->info = oid->data; 3373 3374 err = adv76xx_parse_dt(state); 3375 if (err < 0) { 3376 v4l_err(client, "DT parsing error\n"); 3377 return err; 3378 } 3379 } else if (client->dev.platform_data) { 3380 struct adv76xx_platform_data *pdata = client->dev.platform_data; 3381 3382 state->info = (const struct adv76xx_chip_info *)id->driver_data; 3383 state->pdata = *pdata; 3384 } else { 3385 v4l_err(client, "No platform data!\n"); 3386 return -ENODEV; 3387 } 3388 3389 /* Request GPIOs. */ 3390 for (i = 0; i < state->info->num_dv_ports; ++i) { 3391 state->hpd_gpio[i] = 3392 devm_gpiod_get_index_optional(&client->dev, "hpd", i, 3393 GPIOD_OUT_LOW); 3394 if (IS_ERR(state->hpd_gpio[i])) 3395 return PTR_ERR(state->hpd_gpio[i]); 3396 3397 if (state->hpd_gpio[i]) 3398 v4l_info(client, "Handling HPD %u GPIO\n", i); 3399 } 3400 state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset", 3401 GPIOD_OUT_HIGH); 3402 if (IS_ERR(state->reset_gpio)) 3403 return PTR_ERR(state->reset_gpio); 3404 3405 adv76xx_reset(state); 3406 3407 state->timings = cea640x480; 3408 state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8); 3409 3410 sd = &state->sd; 3411 v4l2_i2c_subdev_init(sd, client, &adv76xx_ops); 3412 snprintf(sd->name, sizeof(sd->name), "%s %d-%04x", 3413 id->name, i2c_adapter_id(client->adapter), 3414 client->addr); 3415 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS; 3416 sd->internal_ops = &adv76xx_int_ops; 3417 3418 /* Configure IO Regmap region */ 3419 err = configure_regmap(state, ADV76XX_PAGE_IO); 3420 3421 if (err) { 3422 v4l2_err(sd, "Error configuring IO regmap region\n"); 3423 return -ENODEV; 3424 } 3425 3426 /* 3427 * Verify that the chip is present. On ADV7604 the RD_INFO register only 3428 * identifies the revision, while on ADV7611 it identifies the model as 3429 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611. 3430 */ 3431 switch (state->info->type) { 3432 case ADV7604: 3433 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val); 3434 if (err) { 3435 v4l2_err(sd, "Error %d reading IO Regmap\n", err); 3436 return -ENODEV; 3437 } 3438 if (val != 0x68) { 3439 v4l2_err(sd, "not an adv7604 on address 0x%x\n", 3440 client->addr << 1); 3441 return -ENODEV; 3442 } 3443 break; 3444 case ADV7611: 3445 case ADV7612: 3446 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 3447 0xea, 3448 &val); 3449 if (err) { 3450 v4l2_err(sd, "Error %d reading IO Regmap\n", err); 3451 return -ENODEV; 3452 } 3453 val2 = val << 8; 3454 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 3455 0xeb, 3456 &val); 3457 if (err) { 3458 v4l2_err(sd, "Error %d reading IO Regmap\n", err); 3459 return -ENODEV; 3460 } 3461 val |= val2; 3462 if ((state->info->type == ADV7611 && val != 0x2051) || 3463 (state->info->type == ADV7612 && val != 0x2041)) { 3464 v4l2_err(sd, "not an adv761x on address 0x%x\n", 3465 client->addr << 1); 3466 return -ENODEV; 3467 } 3468 break; 3469 } 3470 3471 /* control handlers */ 3472 hdl = &state->hdl; 3473 v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8); 3474 3475 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3476 V4L2_CID_BRIGHTNESS, -128, 127, 1, 0); 3477 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3478 V4L2_CID_CONTRAST, 0, 255, 1, 128); 3479 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3480 V4L2_CID_SATURATION, 0, 255, 1, 128); 3481 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3482 V4L2_CID_HUE, 0, 128, 1, 0); 3483 ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops, 3484 V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC, 3485 0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC); 3486 if (ctrl) 3487 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE; 3488 3489 state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL, 3490 V4L2_CID_DV_RX_POWER_PRESENT, 0, 3491 (1 << state->info->num_dv_ports) - 1, 0, 0); 3492 state->rgb_quantization_range_ctrl = 3493 v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops, 3494 V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 3495 0, V4L2_DV_RGB_RANGE_AUTO); 3496 3497 /* custom controls */ 3498 if (adv76xx_has_afe(state)) 3499 state->analog_sampling_phase_ctrl = 3500 v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL); 3501 state->free_run_color_manual_ctrl = 3502 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL); 3503 state->free_run_color_ctrl = 3504 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL); 3505 3506 sd->ctrl_handler = hdl; 3507 if (hdl->error) { 3508 err = hdl->error; 3509 goto err_hdl; 3510 } 3511 if (adv76xx_s_detect_tx_5v_ctrl(sd)) { 3512 err = -ENODEV; 3513 goto err_hdl; 3514 } 3515 3516 for (i = 1; i < ADV76XX_PAGE_MAX; ++i) { 3517 struct i2c_client *dummy_client; 3518 3519 if (!(BIT(i) & state->info->page_mask)) 3520 continue; 3521 3522 dummy_client = adv76xx_dummy_client(sd, i); 3523 if (IS_ERR(dummy_client)) { 3524 err = PTR_ERR(dummy_client); 3525 v4l2_err(sd, "failed to create i2c client %u\n", i); 3526 goto err_i2c; 3527 } 3528 3529 state->i2c_clients[i] = dummy_client; 3530 } 3531 3532 INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug, 3533 adv76xx_delayed_work_enable_hotplug); 3534 3535 state->source_pad = state->info->num_dv_ports 3536 + (state->info->has_afe ? 2 : 0); 3537 for (i = 0; i < state->source_pad; ++i) 3538 state->pads[i].flags = MEDIA_PAD_FL_SINK; 3539 state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE; 3540 sd->entity.function = MEDIA_ENT_F_DV_DECODER; 3541 3542 err = media_entity_pads_init(&sd->entity, state->source_pad + 1, 3543 state->pads); 3544 if (err) 3545 goto err_work_queues; 3546 3547 /* Configure regmaps */ 3548 err = configure_regmaps(state); 3549 if (err) 3550 goto err_entity; 3551 3552 err = adv76xx_core_init(sd); 3553 if (err) 3554 goto err_entity; 3555 3556 if (client->irq) { 3557 err = devm_request_threaded_irq(&client->dev, 3558 client->irq, 3559 NULL, adv76xx_irq_handler, 3560 IRQF_TRIGGER_HIGH | IRQF_ONESHOT, 3561 client->name, state); 3562 if (err) 3563 goto err_entity; 3564 } 3565 3566 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC) 3567 state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops, 3568 state, dev_name(&client->dev), 3569 CEC_CAP_DEFAULTS, ADV76XX_MAX_ADDRS); 3570 err = PTR_ERR_OR_ZERO(state->cec_adap); 3571 if (err) 3572 goto err_entity; 3573 #endif 3574 3575 v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name, 3576 client->addr << 1, client->adapter->name); 3577 3578 err = v4l2_async_register_subdev(sd); 3579 if (err) 3580 goto err_entity; 3581 3582 return 0; 3583 3584 err_entity: 3585 media_entity_cleanup(&sd->entity); 3586 err_work_queues: 3587 cancel_delayed_work(&state->delayed_work_enable_hotplug); 3588 err_i2c: 3589 adv76xx_unregister_clients(state); 3590 err_hdl: 3591 v4l2_ctrl_handler_free(hdl); 3592 return err; 3593 } 3594 3595 /* ----------------------------------------------------------------------- */ 3596 3597 static int adv76xx_remove(struct i2c_client *client) 3598 { 3599 struct v4l2_subdev *sd = i2c_get_clientdata(client); 3600 struct adv76xx_state *state = to_state(sd); 3601 3602 /* disable interrupts */ 3603 io_write(sd, 0x40, 0); 3604 io_write(sd, 0x41, 0); 3605 io_write(sd, 0x46, 0); 3606 io_write(sd, 0x6e, 0); 3607 io_write(sd, 0x73, 0); 3608 3609 cancel_delayed_work(&state->delayed_work_enable_hotplug); 3610 v4l2_async_unregister_subdev(sd); 3611 media_entity_cleanup(&sd->entity); 3612 adv76xx_unregister_clients(to_state(sd)); 3613 v4l2_ctrl_handler_free(sd->ctrl_handler); 3614 return 0; 3615 } 3616 3617 /* ----------------------------------------------------------------------- */ 3618 3619 static struct i2c_driver adv76xx_driver = { 3620 .driver = { 3621 .name = "adv7604", 3622 .of_match_table = of_match_ptr(adv76xx_of_id), 3623 }, 3624 .probe = adv76xx_probe, 3625 .remove = adv76xx_remove, 3626 .id_table = adv76xx_i2c_id, 3627 }; 3628 3629 module_i2c_driver(adv76xx_driver); 3630