xref: /openbmc/linux/drivers/media/i2c/adv7604.c (revision b9df3997)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * adv7604 - Analog Devices ADV7604 video decoder driver
4  *
5  * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  *
7  */
8 
9 /*
10  * References (c = chapter, p = page):
11  * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
12  *		Revision 2.5, June 2010
13  * REF_02 - Analog devices, Register map documentation, Documentation of
14  *		the register maps, Software manual, Rev. F, June 2010
15  * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
16  */
17 
18 #include <linux/delay.h>
19 #include <linux/gpio/consumer.h>
20 #include <linux/hdmi.h>
21 #include <linux/i2c.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of_graph.h>
25 #include <linux/slab.h>
26 #include <linux/v4l2-dv-timings.h>
27 #include <linux/videodev2.h>
28 #include <linux/workqueue.h>
29 #include <linux/regmap.h>
30 #include <linux/interrupt.h>
31 
32 #include <media/i2c/adv7604.h>
33 #include <media/cec.h>
34 #include <media/v4l2-ctrls.h>
35 #include <media/v4l2-device.h>
36 #include <media/v4l2-event.h>
37 #include <media/v4l2-dv-timings.h>
38 #include <media/v4l2-fwnode.h>
39 
40 static int debug;
41 module_param(debug, int, 0644);
42 MODULE_PARM_DESC(debug, "debug level (0-2)");
43 
44 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
45 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
46 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
47 MODULE_LICENSE("GPL");
48 
49 /* ADV7604 system clock frequency */
50 #define ADV76XX_FSC (28636360)
51 
52 #define ADV76XX_RGB_OUT					(1 << 1)
53 
54 #define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
55 #define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
56 #define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
57 
58 #define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
59 #define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
60 #define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
61 #define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
62 #define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
63 #define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)
64 
65 #define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
66 #define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
67 #define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
68 #define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
69 #define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
70 #define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
71 
72 #define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
73 
74 #define ADV76XX_MAX_ADDRS (3)
75 
76 enum adv76xx_type {
77 	ADV7604,
78 	ADV7611,
79 	ADV7612,
80 };
81 
82 struct adv76xx_reg_seq {
83 	unsigned int reg;
84 	u8 val;
85 };
86 
87 struct adv76xx_format_info {
88 	u32 code;
89 	u8 op_ch_sel;
90 	bool rgb_out;
91 	bool swap_cb_cr;
92 	u8 op_format_sel;
93 };
94 
95 struct adv76xx_cfg_read_infoframe {
96 	const char *desc;
97 	u8 present_mask;
98 	u8 head_addr;
99 	u8 payload_addr;
100 };
101 
102 struct adv76xx_chip_info {
103 	enum adv76xx_type type;
104 
105 	bool has_afe;
106 	unsigned int max_port;
107 	unsigned int num_dv_ports;
108 
109 	unsigned int edid_enable_reg;
110 	unsigned int edid_status_reg;
111 	unsigned int lcf_reg;
112 
113 	unsigned int cable_det_mask;
114 	unsigned int tdms_lock_mask;
115 	unsigned int fmt_change_digital_mask;
116 	unsigned int cp_csc;
117 
118 	unsigned int cec_irq_status;
119 	unsigned int cec_rx_enable;
120 	unsigned int cec_rx_enable_mask;
121 	bool cec_irq_swap;
122 
123 	const struct adv76xx_format_info *formats;
124 	unsigned int nformats;
125 
126 	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
127 	void (*setup_irqs)(struct v4l2_subdev *sd);
128 	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
129 	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
130 
131 	/* 0 = AFE, 1 = HDMI */
132 	const struct adv76xx_reg_seq *recommended_settings[2];
133 	unsigned int num_recommended_settings[2];
134 
135 	unsigned long page_mask;
136 
137 	/* Masks for timings */
138 	unsigned int linewidth_mask;
139 	unsigned int field0_height_mask;
140 	unsigned int field1_height_mask;
141 	unsigned int hfrontporch_mask;
142 	unsigned int hsync_mask;
143 	unsigned int hbackporch_mask;
144 	unsigned int field0_vfrontporch_mask;
145 	unsigned int field1_vfrontporch_mask;
146 	unsigned int field0_vsync_mask;
147 	unsigned int field1_vsync_mask;
148 	unsigned int field0_vbackporch_mask;
149 	unsigned int field1_vbackporch_mask;
150 };
151 
152 /*
153  **********************************************************************
154  *
155  *  Arrays with configuration parameters for the ADV7604
156  *
157  **********************************************************************
158  */
159 
160 struct adv76xx_state {
161 	const struct adv76xx_chip_info *info;
162 	struct adv76xx_platform_data pdata;
163 
164 	struct gpio_desc *hpd_gpio[4];
165 	struct gpio_desc *reset_gpio;
166 
167 	struct v4l2_subdev sd;
168 	struct media_pad pads[ADV76XX_PAD_MAX];
169 	unsigned int source_pad;
170 
171 	struct v4l2_ctrl_handler hdl;
172 
173 	enum adv76xx_pad selected_input;
174 
175 	struct v4l2_dv_timings timings;
176 	const struct adv76xx_format_info *format;
177 
178 	struct {
179 		u8 edid[256];
180 		u32 present;
181 		unsigned blocks;
182 	} edid;
183 	u16 spa_port_a[2];
184 	struct v4l2_fract aspect_ratio;
185 	u32 rgb_quantization_range;
186 	struct delayed_work delayed_work_enable_hotplug;
187 	bool restart_stdi_once;
188 
189 	/* CEC */
190 	struct cec_adapter *cec_adap;
191 	u8   cec_addr[ADV76XX_MAX_ADDRS];
192 	u8   cec_valid_addrs;
193 	bool cec_enabled_adap;
194 
195 	/* i2c clients */
196 	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
197 
198 	/* Regmaps */
199 	struct regmap *regmap[ADV76XX_PAGE_MAX];
200 
201 	/* controls */
202 	struct v4l2_ctrl *detect_tx_5v_ctrl;
203 	struct v4l2_ctrl *analog_sampling_phase_ctrl;
204 	struct v4l2_ctrl *free_run_color_manual_ctrl;
205 	struct v4l2_ctrl *free_run_color_ctrl;
206 	struct v4l2_ctrl *rgb_quantization_range_ctrl;
207 };
208 
209 static bool adv76xx_has_afe(struct adv76xx_state *state)
210 {
211 	return state->info->has_afe;
212 }
213 
214 /* Unsupported timings. This device cannot support 720p30. */
215 static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
216 	V4L2_DV_BT_CEA_1280X720P30,
217 	{ }
218 };
219 
220 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
221 {
222 	int i;
223 
224 	for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
225 		if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
226 			return false;
227 	return true;
228 }
229 
230 struct adv76xx_video_standards {
231 	struct v4l2_dv_timings timings;
232 	u8 vid_std;
233 	u8 v_freq;
234 };
235 
236 /* sorted by number of lines */
237 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
238 	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
239 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
240 	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
241 	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
242 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
243 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
244 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
245 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
246 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
247 	/* TODO add 1920x1080P60_RB (CVT timing) */
248 	{ },
249 };
250 
251 /* sorted by number of lines */
252 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
253 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
254 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
255 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
256 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
257 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
258 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
259 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
260 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
261 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
262 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
263 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
264 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
265 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
266 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
267 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
268 	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
269 	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
270 	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
271 	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
272 	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
273 	/* TODO add 1600X1200P60_RB (not a DMT timing) */
274 	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
275 	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
276 	{ },
277 };
278 
279 /* sorted by number of lines */
280 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
281 	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
282 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
283 	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
284 	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
285 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
286 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
287 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
288 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
289 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
290 	{ },
291 };
292 
293 /* sorted by number of lines */
294 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
295 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
296 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
297 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
298 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
299 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
300 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
301 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
302 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
303 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
304 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
305 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
306 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
307 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
308 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
309 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
310 	{ },
311 };
312 
313 static const struct v4l2_event adv76xx_ev_fmt = {
314 	.type = V4L2_EVENT_SOURCE_CHANGE,
315 	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
316 };
317 
318 /* ----------------------------------------------------------------------- */
319 
320 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
321 {
322 	return container_of(sd, struct adv76xx_state, sd);
323 }
324 
325 static inline unsigned htotal(const struct v4l2_bt_timings *t)
326 {
327 	return V4L2_DV_BT_FRAME_WIDTH(t);
328 }
329 
330 static inline unsigned vtotal(const struct v4l2_bt_timings *t)
331 {
332 	return V4L2_DV_BT_FRAME_HEIGHT(t);
333 }
334 
335 /* ----------------------------------------------------------------------- */
336 
337 static int adv76xx_read_check(struct adv76xx_state *state,
338 			     int client_page, u8 reg)
339 {
340 	struct i2c_client *client = state->i2c_clients[client_page];
341 	int err;
342 	unsigned int val;
343 
344 	err = regmap_read(state->regmap[client_page], reg, &val);
345 
346 	if (err) {
347 		v4l_err(client, "error reading %02x, %02x\n",
348 				client->addr, reg);
349 		return err;
350 	}
351 	return val;
352 }
353 
354 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
355  * size to one or more registers.
356  *
357  * A value of zero will be returned on success, a negative errno will
358  * be returned in error cases.
359  */
360 static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
361 			      unsigned int init_reg, const void *val,
362 			      size_t val_len)
363 {
364 	struct regmap *regmap = state->regmap[client_page];
365 
366 	if (val_len > I2C_SMBUS_BLOCK_MAX)
367 		val_len = I2C_SMBUS_BLOCK_MAX;
368 
369 	return regmap_raw_write(regmap, init_reg, val, val_len);
370 }
371 
372 /* ----------------------------------------------------------------------- */
373 
374 static inline int io_read(struct v4l2_subdev *sd, u8 reg)
375 {
376 	struct adv76xx_state *state = to_state(sd);
377 
378 	return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
379 }
380 
381 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
382 {
383 	struct adv76xx_state *state = to_state(sd);
384 
385 	return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
386 }
387 
388 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
389 				   u8 val)
390 {
391 	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
392 }
393 
394 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
395 {
396 	struct adv76xx_state *state = to_state(sd);
397 
398 	return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
399 }
400 
401 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
402 {
403 	struct adv76xx_state *state = to_state(sd);
404 
405 	return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
406 }
407 
408 static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
409 {
410 	struct adv76xx_state *state = to_state(sd);
411 
412 	return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
413 }
414 
415 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
416 {
417 	struct adv76xx_state *state = to_state(sd);
418 
419 	return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
420 }
421 
422 static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
423 				   u8 val)
424 {
425 	return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val);
426 }
427 
428 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
429 {
430 	struct adv76xx_state *state = to_state(sd);
431 
432 	return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
433 }
434 
435 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
436 {
437 	struct adv76xx_state *state = to_state(sd);
438 
439 	return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
440 }
441 
442 static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
443 {
444 	struct adv76xx_state *state = to_state(sd);
445 
446 	return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
447 }
448 
449 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
450 {
451 	struct adv76xx_state *state = to_state(sd);
452 
453 	return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
454 }
455 
456 static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
457 {
458 	struct adv76xx_state *state = to_state(sd);
459 
460 	return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
461 }
462 
463 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
464 {
465 	struct adv76xx_state *state = to_state(sd);
466 
467 	return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
468 }
469 
470 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
471 {
472 	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
473 }
474 
475 static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
476 {
477 	struct adv76xx_state *state = to_state(sd);
478 
479 	return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
480 }
481 
482 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
483 {
484 	struct adv76xx_state *state = to_state(sd);
485 
486 	return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
487 }
488 
489 static inline int edid_write_block(struct v4l2_subdev *sd,
490 					unsigned int total_len, const u8 *val)
491 {
492 	struct adv76xx_state *state = to_state(sd);
493 	int err = 0;
494 	int i = 0;
495 	int len = 0;
496 
497 	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
498 				__func__, total_len);
499 
500 	while (!err && i < total_len) {
501 		len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
502 				I2C_SMBUS_BLOCK_MAX :
503 				(total_len - i);
504 
505 		err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
506 				i, val + i, len);
507 		i += len;
508 	}
509 
510 	return err;
511 }
512 
513 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
514 {
515 	unsigned int i;
516 
517 	for (i = 0; i < state->info->num_dv_ports; ++i)
518 		gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
519 
520 	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
521 }
522 
523 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
524 {
525 	struct delayed_work *dwork = to_delayed_work(work);
526 	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
527 						delayed_work_enable_hotplug);
528 	struct v4l2_subdev *sd = &state->sd;
529 
530 	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
531 
532 	adv76xx_set_hpd(state, state->edid.present);
533 }
534 
535 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
536 {
537 	struct adv76xx_state *state = to_state(sd);
538 
539 	return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
540 }
541 
542 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
543 {
544 	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
545 }
546 
547 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
548 {
549 	struct adv76xx_state *state = to_state(sd);
550 
551 	return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
552 }
553 
554 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
555 {
556 	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
557 }
558 
559 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
560 {
561 	struct adv76xx_state *state = to_state(sd);
562 
563 	return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
564 }
565 
566 static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
567 {
568 	struct adv76xx_state *state = to_state(sd);
569 
570 	return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
571 }
572 
573 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
574 {
575 	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
576 }
577 
578 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
579 {
580 	struct adv76xx_state *state = to_state(sd);
581 
582 	return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
583 }
584 
585 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
586 {
587 	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
588 }
589 
590 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
591 {
592 	struct adv76xx_state *state = to_state(sd);
593 
594 	return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
595 }
596 
597 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
598 {
599 	struct adv76xx_state *state = to_state(sd);
600 
601 	return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
602 }
603 
604 #define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
605 #define ADV76XX_REG_SEQ_TERM		0xffff
606 
607 #ifdef CONFIG_VIDEO_ADV_DEBUG
608 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
609 {
610 	struct adv76xx_state *state = to_state(sd);
611 	unsigned int page = reg >> 8;
612 	unsigned int val;
613 	int err;
614 
615 	if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
616 		return -EINVAL;
617 
618 	reg &= 0xff;
619 	err = regmap_read(state->regmap[page], reg, &val);
620 
621 	return err ? err : val;
622 }
623 #endif
624 
625 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
626 {
627 	struct adv76xx_state *state = to_state(sd);
628 	unsigned int page = reg >> 8;
629 
630 	if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
631 		return -EINVAL;
632 
633 	reg &= 0xff;
634 
635 	return regmap_write(state->regmap[page], reg, val);
636 }
637 
638 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
639 				  const struct adv76xx_reg_seq *reg_seq)
640 {
641 	unsigned int i;
642 
643 	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
644 		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
645 }
646 
647 /* -----------------------------------------------------------------------------
648  * Format helpers
649  */
650 
651 static const struct adv76xx_format_info adv7604_formats[] = {
652 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
653 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
654 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
655 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
656 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
657 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
658 	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
659 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
660 	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
661 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
662 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
663 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
664 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
665 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
666 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
667 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
668 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
669 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
670 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
671 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
672 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
673 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
674 	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
675 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
676 	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
677 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
678 	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
679 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
680 	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
681 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
682 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
683 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
684 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
685 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
686 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
687 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
688 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
689 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
690 };
691 
692 static const struct adv76xx_format_info adv7611_formats[] = {
693 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
694 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
695 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
696 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
697 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
698 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
699 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
700 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
701 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
702 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
703 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
704 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
705 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
706 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
707 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
708 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
709 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
710 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
711 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
712 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
713 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
714 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
715 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
716 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
717 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
718 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
719 };
720 
721 static const struct adv76xx_format_info adv7612_formats[] = {
722 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
723 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
724 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
725 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
726 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
727 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
728 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
729 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
730 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
731 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
732 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
733 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
734 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
735 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
736 };
737 
738 static const struct adv76xx_format_info *
739 adv76xx_format_info(struct adv76xx_state *state, u32 code)
740 {
741 	unsigned int i;
742 
743 	for (i = 0; i < state->info->nformats; ++i) {
744 		if (state->info->formats[i].code == code)
745 			return &state->info->formats[i];
746 	}
747 
748 	return NULL;
749 }
750 
751 /* ----------------------------------------------------------------------- */
752 
753 static inline bool is_analog_input(struct v4l2_subdev *sd)
754 {
755 	struct adv76xx_state *state = to_state(sd);
756 
757 	return state->selected_input == ADV7604_PAD_VGA_RGB ||
758 	       state->selected_input == ADV7604_PAD_VGA_COMP;
759 }
760 
761 static inline bool is_digital_input(struct v4l2_subdev *sd)
762 {
763 	struct adv76xx_state *state = to_state(sd);
764 
765 	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
766 	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
767 	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
768 	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
769 }
770 
771 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
772 	.type = V4L2_DV_BT_656_1120,
773 	/* keep this initialization for compatibility with GCC < 4.4.6 */
774 	.reserved = { 0 },
775 	V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 170000000,
776 		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
777 			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
778 		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
779 			V4L2_DV_BT_CAP_CUSTOM)
780 };
781 
782 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
783 	.type = V4L2_DV_BT_656_1120,
784 	/* keep this initialization for compatibility with GCC < 4.4.6 */
785 	.reserved = { 0 },
786 	V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 225000000,
787 		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
788 			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
789 		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
790 			V4L2_DV_BT_CAP_CUSTOM)
791 };
792 
793 /*
794  * Return the DV timings capabilities for the requested sink pad. As a special
795  * case, pad value -1 returns the capabilities for the currently selected input.
796  */
797 static const struct v4l2_dv_timings_cap *
798 adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
799 {
800 	if (pad == -1) {
801 		struct adv76xx_state *state = to_state(sd);
802 
803 		pad = state->selected_input;
804 	}
805 
806 	switch (pad) {
807 	case ADV76XX_PAD_HDMI_PORT_A:
808 	case ADV7604_PAD_HDMI_PORT_B:
809 	case ADV7604_PAD_HDMI_PORT_C:
810 	case ADV7604_PAD_HDMI_PORT_D:
811 		return &adv76xx_timings_cap_digital;
812 
813 	case ADV7604_PAD_VGA_RGB:
814 	case ADV7604_PAD_VGA_COMP:
815 	default:
816 		return &adv7604_timings_cap_analog;
817 	}
818 }
819 
820 
821 /* ----------------------------------------------------------------------- */
822 
823 #ifdef CONFIG_VIDEO_ADV_DEBUG
824 static void adv76xx_inv_register(struct v4l2_subdev *sd)
825 {
826 	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
827 	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
828 	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
829 	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
830 	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
831 	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
832 	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
833 	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
834 	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
835 	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
836 	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
837 	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
838 	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
839 }
840 
841 static int adv76xx_g_register(struct v4l2_subdev *sd,
842 					struct v4l2_dbg_register *reg)
843 {
844 	int ret;
845 
846 	ret = adv76xx_read_reg(sd, reg->reg);
847 	if (ret < 0) {
848 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
849 		adv76xx_inv_register(sd);
850 		return ret;
851 	}
852 
853 	reg->size = 1;
854 	reg->val = ret;
855 
856 	return 0;
857 }
858 
859 static int adv76xx_s_register(struct v4l2_subdev *sd,
860 					const struct v4l2_dbg_register *reg)
861 {
862 	int ret;
863 
864 	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
865 	if (ret < 0) {
866 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
867 		adv76xx_inv_register(sd);
868 		return ret;
869 	}
870 
871 	return 0;
872 }
873 #endif
874 
875 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
876 {
877 	u8 value = io_read(sd, 0x6f);
878 
879 	return ((value & 0x10) >> 4)
880 	     | ((value & 0x08) >> 2)
881 	     | ((value & 0x04) << 0)
882 	     | ((value & 0x02) << 2);
883 }
884 
885 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
886 {
887 	u8 value = io_read(sd, 0x6f);
888 
889 	return value & 1;
890 }
891 
892 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
893 {
894 	/*  Reads CABLE_DET_A_RAW. For input B support, need to
895 	 *  account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
896 	 */
897 	u8 value = io_read(sd, 0x6f);
898 
899 	return value & 1;
900 }
901 
902 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
903 {
904 	struct adv76xx_state *state = to_state(sd);
905 	const struct adv76xx_chip_info *info = state->info;
906 	u16 cable_det = info->read_cable_det(sd);
907 
908 	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det);
909 }
910 
911 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
912 		u8 prim_mode,
913 		const struct adv76xx_video_standards *predef_vid_timings,
914 		const struct v4l2_dv_timings *timings)
915 {
916 	int i;
917 
918 	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
919 		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
920 				is_digital_input(sd) ? 250000 : 1000000, false))
921 			continue;
922 		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
923 		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
924 				prim_mode); /* v_freq and prim mode */
925 		return 0;
926 	}
927 
928 	return -1;
929 }
930 
931 static int configure_predefined_video_timings(struct v4l2_subdev *sd,
932 		struct v4l2_dv_timings *timings)
933 {
934 	struct adv76xx_state *state = to_state(sd);
935 	int err;
936 
937 	v4l2_dbg(1, debug, sd, "%s", __func__);
938 
939 	if (adv76xx_has_afe(state)) {
940 		/* reset to default values */
941 		io_write(sd, 0x16, 0x43);
942 		io_write(sd, 0x17, 0x5a);
943 	}
944 	/* disable embedded syncs for auto graphics mode */
945 	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
946 	cp_write(sd, 0x8f, 0x00);
947 	cp_write(sd, 0x90, 0x00);
948 	cp_write(sd, 0xa2, 0x00);
949 	cp_write(sd, 0xa3, 0x00);
950 	cp_write(sd, 0xa4, 0x00);
951 	cp_write(sd, 0xa5, 0x00);
952 	cp_write(sd, 0xa6, 0x00);
953 	cp_write(sd, 0xa7, 0x00);
954 	cp_write(sd, 0xab, 0x00);
955 	cp_write(sd, 0xac, 0x00);
956 
957 	if (is_analog_input(sd)) {
958 		err = find_and_set_predefined_video_timings(sd,
959 				0x01, adv7604_prim_mode_comp, timings);
960 		if (err)
961 			err = find_and_set_predefined_video_timings(sd,
962 					0x02, adv7604_prim_mode_gr, timings);
963 	} else if (is_digital_input(sd)) {
964 		err = find_and_set_predefined_video_timings(sd,
965 				0x05, adv76xx_prim_mode_hdmi_comp, timings);
966 		if (err)
967 			err = find_and_set_predefined_video_timings(sd,
968 					0x06, adv76xx_prim_mode_hdmi_gr, timings);
969 	} else {
970 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
971 				__func__, state->selected_input);
972 		err = -1;
973 	}
974 
975 
976 	return err;
977 }
978 
979 static void configure_custom_video_timings(struct v4l2_subdev *sd,
980 		const struct v4l2_bt_timings *bt)
981 {
982 	struct adv76xx_state *state = to_state(sd);
983 	u32 width = htotal(bt);
984 	u32 height = vtotal(bt);
985 	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
986 	u16 cp_start_eav = width - bt->hfrontporch;
987 	u16 cp_start_vbi = height - bt->vfrontporch;
988 	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
989 	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
990 		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
991 	const u8 pll[2] = {
992 		0xc0 | ((width >> 8) & 0x1f),
993 		width & 0xff
994 	};
995 
996 	v4l2_dbg(2, debug, sd, "%s\n", __func__);
997 
998 	if (is_analog_input(sd)) {
999 		/* auto graphics */
1000 		io_write(sd, 0x00, 0x07); /* video std */
1001 		io_write(sd, 0x01, 0x02); /* prim mode */
1002 		/* enable embedded syncs for auto graphics mode */
1003 		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
1004 
1005 		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1006 		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
1007 		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
1008 		if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
1009 					0x16, pll, 2))
1010 			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
1011 
1012 		/* active video - horizontal timing */
1013 		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1014 		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1015 				   ((cp_start_eav >> 8) & 0x0f));
1016 		cp_write(sd, 0xa4, cp_start_eav & 0xff);
1017 
1018 		/* active video - vertical timing */
1019 		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1020 		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1021 				   ((cp_end_vbi >> 8) & 0xf));
1022 		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1023 	} else if (is_digital_input(sd)) {
1024 		/* set default prim_mode/vid_std for HDMI
1025 		   according to [REF_03, c. 4.2] */
1026 		io_write(sd, 0x00, 0x02); /* video std */
1027 		io_write(sd, 0x01, 0x06); /* prim mode */
1028 	} else {
1029 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1030 				__func__, state->selected_input);
1031 	}
1032 
1033 	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1034 	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1035 	cp_write(sd, 0xab, (height >> 4) & 0xff);
1036 	cp_write(sd, 0xac, (height & 0x0f) << 4);
1037 }
1038 
1039 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1040 {
1041 	struct adv76xx_state *state = to_state(sd);
1042 	u8 offset_buf[4];
1043 
1044 	if (auto_offset) {
1045 		offset_a = 0x3ff;
1046 		offset_b = 0x3ff;
1047 		offset_c = 0x3ff;
1048 	}
1049 
1050 	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1051 			__func__, auto_offset ? "Auto" : "Manual",
1052 			offset_a, offset_b, offset_c);
1053 
1054 	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1055 	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1056 	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1057 	offset_buf[3] = offset_c & 0x0ff;
1058 
1059 	/* Registers must be written in this order with no i2c access in between */
1060 	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1061 			0x77, offset_buf, 4))
1062 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1063 }
1064 
1065 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1066 {
1067 	struct adv76xx_state *state = to_state(sd);
1068 	u8 gain_buf[4];
1069 	u8 gain_man = 1;
1070 	u8 agc_mode_man = 1;
1071 
1072 	if (auto_gain) {
1073 		gain_man = 0;
1074 		agc_mode_man = 0;
1075 		gain_a = 0x100;
1076 		gain_b = 0x100;
1077 		gain_c = 0x100;
1078 	}
1079 
1080 	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1081 			__func__, auto_gain ? "Auto" : "Manual",
1082 			gain_a, gain_b, gain_c);
1083 
1084 	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1085 	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1086 	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1087 	gain_buf[3] = ((gain_c & 0x0ff));
1088 
1089 	/* Registers must be written in this order with no i2c access in between */
1090 	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1091 			     0x73, gain_buf, 4))
1092 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1093 }
1094 
1095 static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1096 {
1097 	struct adv76xx_state *state = to_state(sd);
1098 	bool rgb_output = io_read(sd, 0x02) & 0x02;
1099 	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1100 	u8 y = HDMI_COLORSPACE_RGB;
1101 
1102 	if (hdmi_signal && (io_read(sd, 0x60) & 1))
1103 		y = infoframe_read(sd, 0x01) >> 5;
1104 
1105 	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1106 			__func__, state->rgb_quantization_range,
1107 			rgb_output, hdmi_signal);
1108 
1109 	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1110 	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1111 	io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4);
1112 
1113 	switch (state->rgb_quantization_range) {
1114 	case V4L2_DV_RGB_RANGE_AUTO:
1115 		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1116 			/* Receiving analog RGB signal
1117 			 * Set RGB full range (0-255) */
1118 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1119 			break;
1120 		}
1121 
1122 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1123 			/* Receiving analog YPbPr signal
1124 			 * Set automode */
1125 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1126 			break;
1127 		}
1128 
1129 		if (hdmi_signal) {
1130 			/* Receiving HDMI signal
1131 			 * Set automode */
1132 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1133 			break;
1134 		}
1135 
1136 		/* Receiving DVI-D signal
1137 		 * ADV7604 selects RGB limited range regardless of
1138 		 * input format (CE/IT) in automatic mode */
1139 		if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1140 			/* RGB limited range (16-235) */
1141 			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1142 		} else {
1143 			/* RGB full range (0-255) */
1144 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1145 
1146 			if (is_digital_input(sd) && rgb_output) {
1147 				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1148 			} else {
1149 				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1150 				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1151 			}
1152 		}
1153 		break;
1154 	case V4L2_DV_RGB_RANGE_LIMITED:
1155 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1156 			/* YCrCb limited range (16-235) */
1157 			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1158 			break;
1159 		}
1160 
1161 		if (y != HDMI_COLORSPACE_RGB)
1162 			break;
1163 
1164 		/* RGB limited range (16-235) */
1165 		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1166 
1167 		break;
1168 	case V4L2_DV_RGB_RANGE_FULL:
1169 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1170 			/* YCrCb full range (0-255) */
1171 			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1172 			break;
1173 		}
1174 
1175 		if (y != HDMI_COLORSPACE_RGB)
1176 			break;
1177 
1178 		/* RGB full range (0-255) */
1179 		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1180 
1181 		if (is_analog_input(sd) || hdmi_signal)
1182 			break;
1183 
1184 		/* Adjust gain/offset for DVI-D signals only */
1185 		if (rgb_output) {
1186 			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1187 		} else {
1188 			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1189 			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1190 		}
1191 		break;
1192 	}
1193 }
1194 
1195 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1196 {
1197 	struct v4l2_subdev *sd =
1198 		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1199 
1200 	struct adv76xx_state *state = to_state(sd);
1201 
1202 	switch (ctrl->id) {
1203 	case V4L2_CID_BRIGHTNESS:
1204 		cp_write(sd, 0x3c, ctrl->val);
1205 		return 0;
1206 	case V4L2_CID_CONTRAST:
1207 		cp_write(sd, 0x3a, ctrl->val);
1208 		return 0;
1209 	case V4L2_CID_SATURATION:
1210 		cp_write(sd, 0x3b, ctrl->val);
1211 		return 0;
1212 	case V4L2_CID_HUE:
1213 		cp_write(sd, 0x3d, ctrl->val);
1214 		return 0;
1215 	case  V4L2_CID_DV_RX_RGB_RANGE:
1216 		state->rgb_quantization_range = ctrl->val;
1217 		set_rgb_quantization_range(sd);
1218 		return 0;
1219 	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1220 		if (!adv76xx_has_afe(state))
1221 			return -EINVAL;
1222 		/* Set the analog sampling phase. This is needed to find the
1223 		   best sampling phase for analog video: an application or
1224 		   driver has to try a number of phases and analyze the picture
1225 		   quality before settling on the best performing phase. */
1226 		afe_write(sd, 0xc8, ctrl->val);
1227 		return 0;
1228 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1229 		/* Use the default blue color for free running mode,
1230 		   or supply your own. */
1231 		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1232 		return 0;
1233 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1234 		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1235 		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1236 		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1237 		return 0;
1238 	}
1239 	return -EINVAL;
1240 }
1241 
1242 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1243 {
1244 	struct v4l2_subdev *sd =
1245 		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1246 
1247 	if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
1248 		ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
1249 		if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
1250 			ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
1251 		return 0;
1252 	}
1253 	return -EINVAL;
1254 }
1255 
1256 /* ----------------------------------------------------------------------- */
1257 
1258 static inline bool no_power(struct v4l2_subdev *sd)
1259 {
1260 	/* Entire chip or CP powered off */
1261 	return io_read(sd, 0x0c) & 0x24;
1262 }
1263 
1264 static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1265 {
1266 	struct adv76xx_state *state = to_state(sd);
1267 
1268 	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1269 }
1270 
1271 static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1272 {
1273 	struct adv76xx_state *state = to_state(sd);
1274 	const struct adv76xx_chip_info *info = state->info;
1275 
1276 	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1277 }
1278 
1279 static inline bool is_hdmi(struct v4l2_subdev *sd)
1280 {
1281 	return hdmi_read(sd, 0x05) & 0x80;
1282 }
1283 
1284 static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1285 {
1286 	struct adv76xx_state *state = to_state(sd);
1287 
1288 	/*
1289 	 * Chips without a AFE don't expose registers for the SSPD, so just assume
1290 	 * that we have a lock.
1291 	 */
1292 	if (adv76xx_has_afe(state))
1293 		return false;
1294 
1295 	/* TODO channel 2 */
1296 	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1297 }
1298 
1299 static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1300 {
1301 	/* TODO channel 2 */
1302 	return !(cp_read(sd, 0xb1) & 0x80);
1303 }
1304 
1305 static inline bool no_signal(struct v4l2_subdev *sd)
1306 {
1307 	bool ret;
1308 
1309 	ret = no_power(sd);
1310 
1311 	ret |= no_lock_stdi(sd);
1312 	ret |= no_lock_sspd(sd);
1313 
1314 	if (is_digital_input(sd)) {
1315 		ret |= no_lock_tmds(sd);
1316 		ret |= no_signal_tmds(sd);
1317 	}
1318 
1319 	return ret;
1320 }
1321 
1322 static inline bool no_lock_cp(struct v4l2_subdev *sd)
1323 {
1324 	struct adv76xx_state *state = to_state(sd);
1325 
1326 	if (!adv76xx_has_afe(state))
1327 		return false;
1328 
1329 	/* CP has detected a non standard number of lines on the incoming
1330 	   video compared to what it is configured to receive by s_dv_timings */
1331 	return io_read(sd, 0x12) & 0x01;
1332 }
1333 
1334 static inline bool in_free_run(struct v4l2_subdev *sd)
1335 {
1336 	return cp_read(sd, 0xff) & 0x10;
1337 }
1338 
1339 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1340 {
1341 	*status = 0;
1342 	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1343 	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1344 	if (!in_free_run(sd) && no_lock_cp(sd))
1345 		*status |= is_digital_input(sd) ?
1346 			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1347 
1348 	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1349 
1350 	return 0;
1351 }
1352 
1353 /* ----------------------------------------------------------------------- */
1354 
1355 struct stdi_readback {
1356 	u16 bl, lcf, lcvs;
1357 	u8 hs_pol, vs_pol;
1358 	bool interlaced;
1359 };
1360 
1361 static int stdi2dv_timings(struct v4l2_subdev *sd,
1362 		struct stdi_readback *stdi,
1363 		struct v4l2_dv_timings *timings)
1364 {
1365 	struct adv76xx_state *state = to_state(sd);
1366 	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1367 	u32 pix_clk;
1368 	int i;
1369 
1370 	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1371 		const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
1372 
1373 		if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1374 					   adv76xx_get_dv_timings_cap(sd, -1),
1375 					   adv76xx_check_dv_timings, NULL))
1376 			continue;
1377 		if (vtotal(bt) != stdi->lcf + 1)
1378 			continue;
1379 		if (bt->vsync != stdi->lcvs)
1380 			continue;
1381 
1382 		pix_clk = hfreq * htotal(bt);
1383 
1384 		if ((pix_clk < bt->pixelclock + 1000000) &&
1385 		    (pix_clk > bt->pixelclock - 1000000)) {
1386 			*timings = v4l2_dv_timings_presets[i];
1387 			return 0;
1388 		}
1389 	}
1390 
1391 	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1392 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1393 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1394 			false, timings))
1395 		return 0;
1396 	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1397 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1398 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1399 			false, state->aspect_ratio, timings))
1400 		return 0;
1401 
1402 	v4l2_dbg(2, debug, sd,
1403 		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1404 		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
1405 		stdi->hs_pol, stdi->vs_pol);
1406 	return -1;
1407 }
1408 
1409 
1410 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1411 {
1412 	struct adv76xx_state *state = to_state(sd);
1413 	const struct adv76xx_chip_info *info = state->info;
1414 	u8 polarity;
1415 
1416 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1417 		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1418 		return -1;
1419 	}
1420 
1421 	/* read STDI */
1422 	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1423 	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1424 	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1425 	stdi->interlaced = io_read(sd, 0x12) & 0x10;
1426 
1427 	if (adv76xx_has_afe(state)) {
1428 		/* read SSPD */
1429 		polarity = cp_read(sd, 0xb5);
1430 		if ((polarity & 0x03) == 0x01) {
1431 			stdi->hs_pol = polarity & 0x10
1432 				     ? (polarity & 0x08 ? '+' : '-') : 'x';
1433 			stdi->vs_pol = polarity & 0x40
1434 				     ? (polarity & 0x20 ? '+' : '-') : 'x';
1435 		} else {
1436 			stdi->hs_pol = 'x';
1437 			stdi->vs_pol = 'x';
1438 		}
1439 	} else {
1440 		polarity = hdmi_read(sd, 0x05);
1441 		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1442 		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1443 	}
1444 
1445 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1446 		v4l2_dbg(2, debug, sd,
1447 			"%s: signal lost during readout of STDI/SSPD\n", __func__);
1448 		return -1;
1449 	}
1450 
1451 	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1452 		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1453 		memset(stdi, 0, sizeof(struct stdi_readback));
1454 		return -1;
1455 	}
1456 
1457 	v4l2_dbg(2, debug, sd,
1458 		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1459 		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
1460 		stdi->hs_pol, stdi->vs_pol,
1461 		stdi->interlaced ? "interlaced" : "progressive");
1462 
1463 	return 0;
1464 }
1465 
1466 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1467 			struct v4l2_enum_dv_timings *timings)
1468 {
1469 	struct adv76xx_state *state = to_state(sd);
1470 
1471 	if (timings->pad >= state->source_pad)
1472 		return -EINVAL;
1473 
1474 	return v4l2_enum_dv_timings_cap(timings,
1475 		adv76xx_get_dv_timings_cap(sd, timings->pad),
1476 		adv76xx_check_dv_timings, NULL);
1477 }
1478 
1479 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1480 			struct v4l2_dv_timings_cap *cap)
1481 {
1482 	struct adv76xx_state *state = to_state(sd);
1483 	unsigned int pad = cap->pad;
1484 
1485 	if (cap->pad >= state->source_pad)
1486 		return -EINVAL;
1487 
1488 	*cap = *adv76xx_get_dv_timings_cap(sd, pad);
1489 	cap->pad = pad;
1490 
1491 	return 0;
1492 }
1493 
1494 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1495    if the format is listed in adv76xx_timings[] */
1496 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1497 		struct v4l2_dv_timings *timings)
1498 {
1499 	v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
1500 				 is_digital_input(sd) ? 250000 : 1000000,
1501 				 adv76xx_check_dv_timings, NULL);
1502 }
1503 
1504 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1505 {
1506 	unsigned int freq;
1507 	int a, b;
1508 
1509 	a = hdmi_read(sd, 0x06);
1510 	b = hdmi_read(sd, 0x3b);
1511 	if (a < 0 || b < 0)
1512 		return 0;
1513 	freq =  a * 1000000 + ((b & 0x30) >> 4) * 250000;
1514 
1515 	if (is_hdmi(sd)) {
1516 		/* adjust for deep color mode */
1517 		unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1518 
1519 		freq = freq * 8 / bits_per_channel;
1520 	}
1521 
1522 	return freq;
1523 }
1524 
1525 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1526 {
1527 	int a, b;
1528 
1529 	a = hdmi_read(sd, 0x51);
1530 	b = hdmi_read(sd, 0x52);
1531 	if (a < 0 || b < 0)
1532 		return 0;
1533 	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1534 }
1535 
1536 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1537 			struct v4l2_dv_timings *timings)
1538 {
1539 	struct adv76xx_state *state = to_state(sd);
1540 	const struct adv76xx_chip_info *info = state->info;
1541 	struct v4l2_bt_timings *bt = &timings->bt;
1542 	struct stdi_readback stdi;
1543 
1544 	if (!timings)
1545 		return -EINVAL;
1546 
1547 	memset(timings, 0, sizeof(struct v4l2_dv_timings));
1548 
1549 	if (no_signal(sd)) {
1550 		state->restart_stdi_once = true;
1551 		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1552 		return -ENOLINK;
1553 	}
1554 
1555 	/* read STDI */
1556 	if (read_stdi(sd, &stdi)) {
1557 		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1558 		return -ENOLINK;
1559 	}
1560 	bt->interlaced = stdi.interlaced ?
1561 		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1562 
1563 	if (is_digital_input(sd)) {
1564 		bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1565 		u8 vic = 0;
1566 		u32 w, h;
1567 
1568 		w = hdmi_read16(sd, 0x07, info->linewidth_mask);
1569 		h = hdmi_read16(sd, 0x09, info->field0_height_mask);
1570 
1571 		if (hdmi_signal && (io_read(sd, 0x60) & 1))
1572 			vic = infoframe_read(sd, 0x04);
1573 
1574 		if (vic && v4l2_find_dv_timings_cea861_vic(timings, vic) &&
1575 		    bt->width == w && bt->height == h)
1576 			goto found;
1577 
1578 		timings->type = V4L2_DV_BT_656_1120;
1579 
1580 		bt->width = w;
1581 		bt->height = h;
1582 		bt->pixelclock = info->read_hdmi_pixelclock(sd);
1583 		bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1584 		bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1585 		bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1586 		bt->vfrontporch = hdmi_read16(sd, 0x2a,
1587 			info->field0_vfrontporch_mask) / 2;
1588 		bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1589 		bt->vbackporch = hdmi_read16(sd, 0x32,
1590 			info->field0_vbackporch_mask) / 2;
1591 		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1592 			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1593 		if (bt->interlaced == V4L2_DV_INTERLACED) {
1594 			bt->height += hdmi_read16(sd, 0x0b,
1595 				info->field1_height_mask);
1596 			bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1597 				info->field1_vfrontporch_mask) / 2;
1598 			bt->il_vsync = hdmi_read16(sd, 0x30,
1599 				info->field1_vsync_mask) / 2;
1600 			bt->il_vbackporch = hdmi_read16(sd, 0x34,
1601 				info->field1_vbackporch_mask) / 2;
1602 		}
1603 		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1604 	} else {
1605 		/* find format
1606 		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1607 		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1608 		 */
1609 		if (!stdi2dv_timings(sd, &stdi, timings))
1610 			goto found;
1611 		stdi.lcvs += 1;
1612 		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1613 		if (!stdi2dv_timings(sd, &stdi, timings))
1614 			goto found;
1615 		stdi.lcvs -= 2;
1616 		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1617 		if (stdi2dv_timings(sd, &stdi, timings)) {
1618 			/*
1619 			 * The STDI block may measure wrong values, especially
1620 			 * for lcvs and lcf. If the driver can not find any
1621 			 * valid timing, the STDI block is restarted to measure
1622 			 * the video timings again. The function will return an
1623 			 * error, but the restart of STDI will generate a new
1624 			 * STDI interrupt and the format detection process will
1625 			 * restart.
1626 			 */
1627 			if (state->restart_stdi_once) {
1628 				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1629 				/* TODO restart STDI for Sync Channel 2 */
1630 				/* enter one-shot mode */
1631 				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1632 				/* trigger STDI restart */
1633 				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1634 				/* reset to continuous mode */
1635 				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1636 				state->restart_stdi_once = false;
1637 				return -ENOLINK;
1638 			}
1639 			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1640 			return -ERANGE;
1641 		}
1642 		state->restart_stdi_once = true;
1643 	}
1644 found:
1645 
1646 	if (no_signal(sd)) {
1647 		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1648 		memset(timings, 0, sizeof(struct v4l2_dv_timings));
1649 		return -ENOLINK;
1650 	}
1651 
1652 	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1653 			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1654 		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1655 				__func__, (u32)bt->pixelclock);
1656 		return -ERANGE;
1657 	}
1658 
1659 	if (debug > 1)
1660 		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1661 				      timings, true);
1662 
1663 	return 0;
1664 }
1665 
1666 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1667 		struct v4l2_dv_timings *timings)
1668 {
1669 	struct adv76xx_state *state = to_state(sd);
1670 	struct v4l2_bt_timings *bt;
1671 	int err;
1672 
1673 	if (!timings)
1674 		return -EINVAL;
1675 
1676 	if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1677 		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1678 		return 0;
1679 	}
1680 
1681 	bt = &timings->bt;
1682 
1683 	if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1684 				   adv76xx_check_dv_timings, NULL))
1685 		return -ERANGE;
1686 
1687 	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1688 
1689 	state->timings = *timings;
1690 
1691 	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1692 
1693 	/* Use prim_mode and vid_std when available */
1694 	err = configure_predefined_video_timings(sd, timings);
1695 	if (err) {
1696 		/* custom settings when the video format
1697 		 does not have prim_mode/vid_std */
1698 		configure_custom_video_timings(sd, bt);
1699 	}
1700 
1701 	set_rgb_quantization_range(sd);
1702 
1703 	if (debug > 1)
1704 		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1705 				      timings, true);
1706 	return 0;
1707 }
1708 
1709 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1710 		struct v4l2_dv_timings *timings)
1711 {
1712 	struct adv76xx_state *state = to_state(sd);
1713 
1714 	*timings = state->timings;
1715 	return 0;
1716 }
1717 
1718 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1719 {
1720 	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1721 }
1722 
1723 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1724 {
1725 	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1726 }
1727 
1728 static void enable_input(struct v4l2_subdev *sd)
1729 {
1730 	struct adv76xx_state *state = to_state(sd);
1731 
1732 	if (is_analog_input(sd)) {
1733 		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1734 	} else if (is_digital_input(sd)) {
1735 		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1736 		state->info->set_termination(sd, true);
1737 		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1738 		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1739 	} else {
1740 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1741 				__func__, state->selected_input);
1742 	}
1743 }
1744 
1745 static void disable_input(struct v4l2_subdev *sd)
1746 {
1747 	struct adv76xx_state *state = to_state(sd);
1748 
1749 	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1750 	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1751 	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1752 	state->info->set_termination(sd, false);
1753 }
1754 
1755 static void select_input(struct v4l2_subdev *sd)
1756 {
1757 	struct adv76xx_state *state = to_state(sd);
1758 	const struct adv76xx_chip_info *info = state->info;
1759 
1760 	if (is_analog_input(sd)) {
1761 		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1762 
1763 		afe_write(sd, 0x00, 0x08); /* power up ADC */
1764 		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1765 		afe_write(sd, 0xc8, 0x00); /* phase control */
1766 	} else if (is_digital_input(sd)) {
1767 		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1768 
1769 		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1770 
1771 		if (adv76xx_has_afe(state)) {
1772 			afe_write(sd, 0x00, 0xff); /* power down ADC */
1773 			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1774 			afe_write(sd, 0xc8, 0x40); /* phase control */
1775 		}
1776 
1777 		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1778 		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1779 		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1780 	} else {
1781 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1782 				__func__, state->selected_input);
1783 	}
1784 }
1785 
1786 static int adv76xx_s_routing(struct v4l2_subdev *sd,
1787 		u32 input, u32 output, u32 config)
1788 {
1789 	struct adv76xx_state *state = to_state(sd);
1790 
1791 	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1792 			__func__, input, state->selected_input);
1793 
1794 	if (input == state->selected_input)
1795 		return 0;
1796 
1797 	if (input > state->info->max_port)
1798 		return -EINVAL;
1799 
1800 	state->selected_input = input;
1801 
1802 	disable_input(sd);
1803 	select_input(sd);
1804 	enable_input(sd);
1805 
1806 	v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1807 
1808 	return 0;
1809 }
1810 
1811 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1812 				  struct v4l2_subdev_pad_config *cfg,
1813 				  struct v4l2_subdev_mbus_code_enum *code)
1814 {
1815 	struct adv76xx_state *state = to_state(sd);
1816 
1817 	if (code->index >= state->info->nformats)
1818 		return -EINVAL;
1819 
1820 	code->code = state->info->formats[code->index].code;
1821 
1822 	return 0;
1823 }
1824 
1825 static void adv76xx_fill_format(struct adv76xx_state *state,
1826 				struct v4l2_mbus_framefmt *format)
1827 {
1828 	memset(format, 0, sizeof(*format));
1829 
1830 	format->width = state->timings.bt.width;
1831 	format->height = state->timings.bt.height;
1832 	format->field = V4L2_FIELD_NONE;
1833 	format->colorspace = V4L2_COLORSPACE_SRGB;
1834 
1835 	if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1836 		format->colorspace = (state->timings.bt.height <= 576) ?
1837 			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1838 }
1839 
1840 /*
1841  * Compute the op_ch_sel value required to obtain on the bus the component order
1842  * corresponding to the selected format taking into account bus reordering
1843  * applied by the board at the output of the device.
1844  *
1845  * The following table gives the op_ch_value from the format component order
1846  * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1847  * adv76xx_bus_order value in row).
1848  *
1849  *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
1850  * ----------+-------------------------------------------------
1851  * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
1852  * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
1853  * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
1854  * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
1855  * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
1856  * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
1857  */
1858 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1859 {
1860 #define _SEL(a,b,c,d,e,f)	{ \
1861 	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1862 	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1863 #define _BUS(x)			[ADV7604_BUS_ORDER_##x]
1864 
1865 	static const unsigned int op_ch_sel[6][6] = {
1866 		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1867 		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1868 		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1869 		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1870 		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1871 		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1872 	};
1873 
1874 	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1875 }
1876 
1877 static void adv76xx_setup_format(struct adv76xx_state *state)
1878 {
1879 	struct v4l2_subdev *sd = &state->sd;
1880 
1881 	io_write_clr_set(sd, 0x02, 0x02,
1882 			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1883 	io_write(sd, 0x03, state->format->op_format_sel |
1884 		 state->pdata.op_format_mode_sel);
1885 	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1886 	io_write_clr_set(sd, 0x05, 0x01,
1887 			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1888 	set_rgb_quantization_range(sd);
1889 }
1890 
1891 static int adv76xx_get_format(struct v4l2_subdev *sd,
1892 			      struct v4l2_subdev_pad_config *cfg,
1893 			      struct v4l2_subdev_format *format)
1894 {
1895 	struct adv76xx_state *state = to_state(sd);
1896 
1897 	if (format->pad != state->source_pad)
1898 		return -EINVAL;
1899 
1900 	adv76xx_fill_format(state, &format->format);
1901 
1902 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1903 		struct v4l2_mbus_framefmt *fmt;
1904 
1905 		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1906 		format->format.code = fmt->code;
1907 	} else {
1908 		format->format.code = state->format->code;
1909 	}
1910 
1911 	return 0;
1912 }
1913 
1914 static int adv76xx_get_selection(struct v4l2_subdev *sd,
1915 				 struct v4l2_subdev_pad_config *cfg,
1916 				 struct v4l2_subdev_selection *sel)
1917 {
1918 	struct adv76xx_state *state = to_state(sd);
1919 
1920 	if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1921 		return -EINVAL;
1922 	/* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1923 	if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
1924 		return -EINVAL;
1925 
1926 	sel->r.left	= 0;
1927 	sel->r.top	= 0;
1928 	sel->r.width	= state->timings.bt.width;
1929 	sel->r.height	= state->timings.bt.height;
1930 
1931 	return 0;
1932 }
1933 
1934 static int adv76xx_set_format(struct v4l2_subdev *sd,
1935 			      struct v4l2_subdev_pad_config *cfg,
1936 			      struct v4l2_subdev_format *format)
1937 {
1938 	struct adv76xx_state *state = to_state(sd);
1939 	const struct adv76xx_format_info *info;
1940 
1941 	if (format->pad != state->source_pad)
1942 		return -EINVAL;
1943 
1944 	info = adv76xx_format_info(state, format->format.code);
1945 	if (!info)
1946 		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1947 
1948 	adv76xx_fill_format(state, &format->format);
1949 	format->format.code = info->code;
1950 
1951 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1952 		struct v4l2_mbus_framefmt *fmt;
1953 
1954 		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1955 		fmt->code = format->format.code;
1956 	} else {
1957 		state->format = info;
1958 		adv76xx_setup_format(state);
1959 	}
1960 
1961 	return 0;
1962 }
1963 
1964 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
1965 static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status)
1966 {
1967 	struct adv76xx_state *state = to_state(sd);
1968 
1969 	if ((cec_read(sd, 0x11) & 0x01) == 0) {
1970 		v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__);
1971 		return;
1972 	}
1973 
1974 	if (tx_raw_status & 0x02) {
1975 		v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n",
1976 			 __func__);
1977 		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST,
1978 				  1, 0, 0, 0);
1979 		return;
1980 	}
1981 	if (tx_raw_status & 0x04) {
1982 		u8 status;
1983 		u8 nack_cnt;
1984 		u8 low_drive_cnt;
1985 
1986 		v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__);
1987 		/*
1988 		 * We set this status bit since this hardware performs
1989 		 * retransmissions.
1990 		 */
1991 		status = CEC_TX_STATUS_MAX_RETRIES;
1992 		nack_cnt = cec_read(sd, 0x14) & 0xf;
1993 		if (nack_cnt)
1994 			status |= CEC_TX_STATUS_NACK;
1995 		low_drive_cnt = cec_read(sd, 0x14) >> 4;
1996 		if (low_drive_cnt)
1997 			status |= CEC_TX_STATUS_LOW_DRIVE;
1998 		cec_transmit_done(state->cec_adap, status,
1999 				  0, nack_cnt, low_drive_cnt, 0);
2000 		return;
2001 	}
2002 	if (tx_raw_status & 0x01) {
2003 		v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__);
2004 		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0);
2005 		return;
2006 	}
2007 }
2008 
2009 static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled)
2010 {
2011 	struct adv76xx_state *state = to_state(sd);
2012 	const struct adv76xx_chip_info *info = state->info;
2013 	u8 cec_irq;
2014 
2015 	/* cec controller */
2016 	cec_irq = io_read(sd, info->cec_irq_status) & 0x0f;
2017 	if (!cec_irq)
2018 		return;
2019 
2020 	v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq);
2021 	adv76xx_cec_tx_raw_status(sd, cec_irq);
2022 	if (cec_irq & 0x08) {
2023 		struct cec_msg msg;
2024 
2025 		msg.len = cec_read(sd, 0x25) & 0x1f;
2026 		if (msg.len > 16)
2027 			msg.len = 16;
2028 
2029 		if (msg.len) {
2030 			u8 i;
2031 
2032 			for (i = 0; i < msg.len; i++)
2033 				msg.msg[i] = cec_read(sd, i + 0x15);
2034 			cec_write(sd, info->cec_rx_enable,
2035 				  info->cec_rx_enable_mask); /* re-enable rx */
2036 			cec_received_msg(state->cec_adap, &msg);
2037 		}
2038 	}
2039 
2040 	if (info->cec_irq_swap) {
2041 		/*
2042 		 * Note: the bit order is swapped between 0x4d and 0x4e
2043 		 * on adv7604
2044 		 */
2045 		cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) |
2046 			  ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3);
2047 	}
2048 	io_write(sd, info->cec_irq_status + 1, cec_irq);
2049 
2050 	if (handled)
2051 		*handled = true;
2052 }
2053 
2054 static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable)
2055 {
2056 	struct adv76xx_state *state = cec_get_drvdata(adap);
2057 	const struct adv76xx_chip_info *info = state->info;
2058 	struct v4l2_subdev *sd = &state->sd;
2059 
2060 	if (!state->cec_enabled_adap && enable) {
2061 		cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */
2062 		cec_write(sd, 0x2c, 0x01);	/* cec soft reset */
2063 		cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */
2064 		/* enabled irqs: */
2065 		/* tx: ready */
2066 		/* tx: arbitration lost */
2067 		/* tx: retry timeout */
2068 		/* rx: ready */
2069 		io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x0f);
2070 		cec_write(sd, info->cec_rx_enable, info->cec_rx_enable_mask);
2071 	} else if (state->cec_enabled_adap && !enable) {
2072 		/* disable cec interrupts */
2073 		io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x00);
2074 		/* disable address mask 1-3 */
2075 		cec_write_clr_set(sd, 0x27, 0x70, 0x00);
2076 		/* power down cec section */
2077 		cec_write_clr_set(sd, 0x2a, 0x01, 0x00);
2078 		state->cec_valid_addrs = 0;
2079 	}
2080 	state->cec_enabled_adap = enable;
2081 	adv76xx_s_detect_tx_5v_ctrl(sd);
2082 	return 0;
2083 }
2084 
2085 static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
2086 {
2087 	struct adv76xx_state *state = cec_get_drvdata(adap);
2088 	struct v4l2_subdev *sd = &state->sd;
2089 	unsigned int i, free_idx = ADV76XX_MAX_ADDRS;
2090 
2091 	if (!state->cec_enabled_adap)
2092 		return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;
2093 
2094 	if (addr == CEC_LOG_ADDR_INVALID) {
2095 		cec_write_clr_set(sd, 0x27, 0x70, 0);
2096 		state->cec_valid_addrs = 0;
2097 		return 0;
2098 	}
2099 
2100 	for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2101 		bool is_valid = state->cec_valid_addrs & (1 << i);
2102 
2103 		if (free_idx == ADV76XX_MAX_ADDRS && !is_valid)
2104 			free_idx = i;
2105 		if (is_valid && state->cec_addr[i] == addr)
2106 			return 0;
2107 	}
2108 	if (i == ADV76XX_MAX_ADDRS) {
2109 		i = free_idx;
2110 		if (i == ADV76XX_MAX_ADDRS)
2111 			return -ENXIO;
2112 	}
2113 	state->cec_addr[i] = addr;
2114 	state->cec_valid_addrs |= 1 << i;
2115 
2116 	switch (i) {
2117 	case 0:
2118 		/* enable address mask 0 */
2119 		cec_write_clr_set(sd, 0x27, 0x10, 0x10);
2120 		/* set address for mask 0 */
2121 		cec_write_clr_set(sd, 0x28, 0x0f, addr);
2122 		break;
2123 	case 1:
2124 		/* enable address mask 1 */
2125 		cec_write_clr_set(sd, 0x27, 0x20, 0x20);
2126 		/* set address for mask 1 */
2127 		cec_write_clr_set(sd, 0x28, 0xf0, addr << 4);
2128 		break;
2129 	case 2:
2130 		/* enable address mask 2 */
2131 		cec_write_clr_set(sd, 0x27, 0x40, 0x40);
2132 		/* set address for mask 1 */
2133 		cec_write_clr_set(sd, 0x29, 0x0f, addr);
2134 		break;
2135 	}
2136 	return 0;
2137 }
2138 
2139 static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
2140 				     u32 signal_free_time, struct cec_msg *msg)
2141 {
2142 	struct adv76xx_state *state = cec_get_drvdata(adap);
2143 	struct v4l2_subdev *sd = &state->sd;
2144 	u8 len = msg->len;
2145 	unsigned int i;
2146 
2147 	/*
2148 	 * The number of retries is the number of attempts - 1, but retry
2149 	 * at least once. It's not clear if a value of 0 is allowed, so
2150 	 * let's do at least one retry.
2151 	 */
2152 	cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4);
2153 
2154 	if (len > 16) {
2155 		v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len);
2156 		return -EINVAL;
2157 	}
2158 
2159 	/* write data */
2160 	for (i = 0; i < len; i++)
2161 		cec_write(sd, i, msg->msg[i]);
2162 
2163 	/* set length (data + header) */
2164 	cec_write(sd, 0x10, len);
2165 	/* start transmit, enable tx */
2166 	cec_write(sd, 0x11, 0x01);
2167 	return 0;
2168 }
2169 
2170 static const struct cec_adap_ops adv76xx_cec_adap_ops = {
2171 	.adap_enable = adv76xx_cec_adap_enable,
2172 	.adap_log_addr = adv76xx_cec_adap_log_addr,
2173 	.adap_transmit = adv76xx_cec_adap_transmit,
2174 };
2175 #endif
2176 
2177 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
2178 {
2179 	struct adv76xx_state *state = to_state(sd);
2180 	const struct adv76xx_chip_info *info = state->info;
2181 	const u8 irq_reg_0x43 = io_read(sd, 0x43);
2182 	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
2183 	const u8 irq_reg_0x70 = io_read(sd, 0x70);
2184 	u8 fmt_change_digital;
2185 	u8 fmt_change;
2186 	u8 tx_5v;
2187 
2188 	if (irq_reg_0x43)
2189 		io_write(sd, 0x44, irq_reg_0x43);
2190 	if (irq_reg_0x70)
2191 		io_write(sd, 0x71, irq_reg_0x70);
2192 	if (irq_reg_0x6b)
2193 		io_write(sd, 0x6c, irq_reg_0x6b);
2194 
2195 	v4l2_dbg(2, debug, sd, "%s: ", __func__);
2196 
2197 	/* format change */
2198 	fmt_change = irq_reg_0x43 & 0x98;
2199 	fmt_change_digital = is_digital_input(sd)
2200 			   ? irq_reg_0x6b & info->fmt_change_digital_mask
2201 			   : 0;
2202 
2203 	if (fmt_change || fmt_change_digital) {
2204 		v4l2_dbg(1, debug, sd,
2205 			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2206 			__func__, fmt_change, fmt_change_digital);
2207 
2208 		v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
2209 
2210 		if (handled)
2211 			*handled = true;
2212 	}
2213 	/* HDMI/DVI mode */
2214 	if (irq_reg_0x6b & 0x01) {
2215 		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
2216 			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
2217 		set_rgb_quantization_range(sd);
2218 		if (handled)
2219 			*handled = true;
2220 	}
2221 
2222 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
2223 	/* cec */
2224 	adv76xx_cec_isr(sd, handled);
2225 #endif
2226 
2227 	/* tx 5v detect */
2228 	tx_5v = irq_reg_0x70 & info->cable_det_mask;
2229 	if (tx_5v) {
2230 		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
2231 		adv76xx_s_detect_tx_5v_ctrl(sd);
2232 		if (handled)
2233 			*handled = true;
2234 	}
2235 	return 0;
2236 }
2237 
2238 static irqreturn_t adv76xx_irq_handler(int irq, void *dev_id)
2239 {
2240 	struct adv76xx_state *state = dev_id;
2241 	bool handled = false;
2242 
2243 	adv76xx_isr(&state->sd, 0, &handled);
2244 
2245 	return handled ? IRQ_HANDLED : IRQ_NONE;
2246 }
2247 
2248 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2249 {
2250 	struct adv76xx_state *state = to_state(sd);
2251 	u8 *data = NULL;
2252 
2253 	memset(edid->reserved, 0, sizeof(edid->reserved));
2254 
2255 	switch (edid->pad) {
2256 	case ADV76XX_PAD_HDMI_PORT_A:
2257 	case ADV7604_PAD_HDMI_PORT_B:
2258 	case ADV7604_PAD_HDMI_PORT_C:
2259 	case ADV7604_PAD_HDMI_PORT_D:
2260 		if (state->edid.present & (1 << edid->pad))
2261 			data = state->edid.edid;
2262 		break;
2263 	default:
2264 		return -EINVAL;
2265 	}
2266 
2267 	if (edid->start_block == 0 && edid->blocks == 0) {
2268 		edid->blocks = data ? state->edid.blocks : 0;
2269 		return 0;
2270 	}
2271 
2272 	if (!data)
2273 		return -ENODATA;
2274 
2275 	if (edid->start_block >= state->edid.blocks)
2276 		return -EINVAL;
2277 
2278 	if (edid->start_block + edid->blocks > state->edid.blocks)
2279 		edid->blocks = state->edid.blocks - edid->start_block;
2280 
2281 	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2282 
2283 	return 0;
2284 }
2285 
2286 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2287 {
2288 	struct adv76xx_state *state = to_state(sd);
2289 	const struct adv76xx_chip_info *info = state->info;
2290 	unsigned int spa_loc;
2291 	u16 pa;
2292 	int err;
2293 	int i;
2294 
2295 	memset(edid->reserved, 0, sizeof(edid->reserved));
2296 
2297 	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2298 		return -EINVAL;
2299 	if (edid->start_block != 0)
2300 		return -EINVAL;
2301 	if (edid->blocks == 0) {
2302 		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2303 		state->edid.present &= ~(1 << edid->pad);
2304 		adv76xx_set_hpd(state, state->edid.present);
2305 		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2306 
2307 		/* Fall back to a 16:9 aspect ratio */
2308 		state->aspect_ratio.numerator = 16;
2309 		state->aspect_ratio.denominator = 9;
2310 
2311 		if (!state->edid.present) {
2312 			state->edid.blocks = 0;
2313 			cec_phys_addr_invalidate(state->cec_adap);
2314 		}
2315 
2316 		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2317 				__func__, edid->pad, state->edid.present);
2318 		return 0;
2319 	}
2320 	if (edid->blocks > 2) {
2321 		edid->blocks = 2;
2322 		return -E2BIG;
2323 	}
2324 	pa = v4l2_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc);
2325 	err = v4l2_phys_addr_validate(pa, &pa, NULL);
2326 	if (err)
2327 		return err;
2328 
2329 	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2330 			__func__, edid->pad, state->edid.present);
2331 
2332 	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2333 	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2334 	adv76xx_set_hpd(state, 0);
2335 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2336 
2337 	/*
2338 	 * Return an error if no location of the source physical address
2339 	 * was found.
2340 	 */
2341 	if (spa_loc == 0)
2342 		return -EINVAL;
2343 
2344 	switch (edid->pad) {
2345 	case ADV76XX_PAD_HDMI_PORT_A:
2346 		state->spa_port_a[0] = edid->edid[spa_loc];
2347 		state->spa_port_a[1] = edid->edid[spa_loc + 1];
2348 		break;
2349 	case ADV7604_PAD_HDMI_PORT_B:
2350 		rep_write(sd, 0x70, edid->edid[spa_loc]);
2351 		rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2352 		break;
2353 	case ADV7604_PAD_HDMI_PORT_C:
2354 		rep_write(sd, 0x72, edid->edid[spa_loc]);
2355 		rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2356 		break;
2357 	case ADV7604_PAD_HDMI_PORT_D:
2358 		rep_write(sd, 0x74, edid->edid[spa_loc]);
2359 		rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2360 		break;
2361 	default:
2362 		return -EINVAL;
2363 	}
2364 
2365 	if (info->type == ADV7604) {
2366 		rep_write(sd, 0x76, spa_loc & 0xff);
2367 		rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2368 	} else {
2369 		/* ADV7612 Software Manual Rev. A, p. 15 */
2370 		rep_write(sd, 0x70, spa_loc & 0xff);
2371 		rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2372 	}
2373 
2374 	edid->edid[spa_loc] = state->spa_port_a[0];
2375 	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2376 
2377 	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2378 	state->edid.blocks = edid->blocks;
2379 	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2380 			edid->edid[0x16]);
2381 	state->edid.present |= 1 << edid->pad;
2382 
2383 	err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
2384 	if (err < 0) {
2385 		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2386 		return err;
2387 	}
2388 
2389 	/* adv76xx calculates the checksums and enables I2C access to internal
2390 	   EDID RAM from DDC port. */
2391 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2392 
2393 	for (i = 0; i < 1000; i++) {
2394 		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2395 			break;
2396 		mdelay(1);
2397 	}
2398 	if (i == 1000) {
2399 		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2400 		return -EIO;
2401 	}
2402 	cec_s_phys_addr(state->cec_adap, pa, false);
2403 
2404 	/* enable hotplug after 100 ms */
2405 	schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
2406 	return 0;
2407 }
2408 
2409 /*********** avi info frame CEA-861-E **************/
2410 
2411 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2412 	{ "AVI", 0x01, 0xe0, 0x00 },
2413 	{ "Audio", 0x02, 0xe3, 0x1c },
2414 	{ "SDP", 0x04, 0xe6, 0x2a },
2415 	{ "Vendor", 0x10, 0xec, 0x54 }
2416 };
2417 
2418 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2419 				  union hdmi_infoframe *frame)
2420 {
2421 	uint8_t buffer[32];
2422 	u8 len;
2423 	int i;
2424 
2425 	if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2426 		v4l2_info(sd, "%s infoframe not received\n",
2427 			  adv76xx_cri[index].desc);
2428 		return -ENOENT;
2429 	}
2430 
2431 	for (i = 0; i < 3; i++)
2432 		buffer[i] = infoframe_read(sd,
2433 					   adv76xx_cri[index].head_addr + i);
2434 
2435 	len = buffer[2] + 1;
2436 
2437 	if (len + 3 > sizeof(buffer)) {
2438 		v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2439 			 adv76xx_cri[index].desc, len);
2440 		return -ENOENT;
2441 	}
2442 
2443 	for (i = 0; i < len; i++)
2444 		buffer[i + 3] = infoframe_read(sd,
2445 				       adv76xx_cri[index].payload_addr + i);
2446 
2447 	if (hdmi_infoframe_unpack(frame, buffer, sizeof(buffer)) < 0) {
2448 		v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2449 			 adv76xx_cri[index].desc);
2450 		return -ENOENT;
2451 	}
2452 	return 0;
2453 }
2454 
2455 static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2456 {
2457 	int i;
2458 
2459 	if (!is_hdmi(sd)) {
2460 		v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2461 		return;
2462 	}
2463 
2464 	for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2465 		union hdmi_infoframe frame;
2466 		struct i2c_client *client = v4l2_get_subdevdata(sd);
2467 
2468 		if (adv76xx_read_infoframe(sd, i, &frame))
2469 			return;
2470 		hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2471 	}
2472 }
2473 
2474 static int adv76xx_log_status(struct v4l2_subdev *sd)
2475 {
2476 	struct adv76xx_state *state = to_state(sd);
2477 	const struct adv76xx_chip_info *info = state->info;
2478 	struct v4l2_dv_timings timings;
2479 	struct stdi_readback stdi;
2480 	u8 reg_io_0x02 = io_read(sd, 0x02);
2481 	u8 edid_enabled;
2482 	u8 cable_det;
2483 
2484 	static const char * const csc_coeff_sel_rb[16] = {
2485 		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2486 		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2487 		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2488 		"reserved", "reserved", "reserved", "reserved", "manual"
2489 	};
2490 	static const char * const input_color_space_txt[16] = {
2491 		"RGB limited range (16-235)", "RGB full range (0-255)",
2492 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2493 		"xvYCC Bt.601", "xvYCC Bt.709",
2494 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2495 		"invalid", "invalid", "invalid", "invalid", "invalid",
2496 		"invalid", "invalid", "automatic"
2497 	};
2498 	static const char * const hdmi_color_space_txt[16] = {
2499 		"RGB limited range (16-235)", "RGB full range (0-255)",
2500 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2501 		"xvYCC Bt.601", "xvYCC Bt.709",
2502 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2503 		"sYCC", "opYCC 601", "opRGB", "invalid", "invalid",
2504 		"invalid", "invalid", "invalid"
2505 	};
2506 	static const char * const rgb_quantization_range_txt[] = {
2507 		"Automatic",
2508 		"RGB limited range (16-235)",
2509 		"RGB full range (0-255)",
2510 	};
2511 	static const char * const deep_color_mode_txt[4] = {
2512 		"8-bits per channel",
2513 		"10-bits per channel",
2514 		"12-bits per channel",
2515 		"16-bits per channel (not supported)"
2516 	};
2517 
2518 	v4l2_info(sd, "-----Chip status-----\n");
2519 	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2520 	edid_enabled = rep_read(sd, info->edid_status_reg);
2521 	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2522 			((edid_enabled & 0x01) ? "Yes" : "No"),
2523 			((edid_enabled & 0x02) ? "Yes" : "No"),
2524 			((edid_enabled & 0x04) ? "Yes" : "No"),
2525 			((edid_enabled & 0x08) ? "Yes" : "No"));
2526 	v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ?
2527 			"enabled" : "disabled");
2528 	if (state->cec_enabled_adap) {
2529 		int i;
2530 
2531 		for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2532 			bool is_valid = state->cec_valid_addrs & (1 << i);
2533 
2534 			if (is_valid)
2535 				v4l2_info(sd, "CEC Logical Address: 0x%x\n",
2536 					  state->cec_addr[i]);
2537 		}
2538 	}
2539 
2540 	v4l2_info(sd, "-----Signal status-----\n");
2541 	cable_det = info->read_cable_det(sd);
2542 	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2543 			((cable_det & 0x01) ? "Yes" : "No"),
2544 			((cable_det & 0x02) ? "Yes" : "No"),
2545 			((cable_det & 0x04) ? "Yes" : "No"),
2546 			((cable_det & 0x08) ? "Yes" : "No"));
2547 	v4l2_info(sd, "TMDS signal detected: %s\n",
2548 			no_signal_tmds(sd) ? "false" : "true");
2549 	v4l2_info(sd, "TMDS signal locked: %s\n",
2550 			no_lock_tmds(sd) ? "false" : "true");
2551 	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2552 	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2553 	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2554 	v4l2_info(sd, "CP free run: %s\n",
2555 			(in_free_run(sd)) ? "on" : "off");
2556 	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2557 			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2558 			(io_read(sd, 0x01) & 0x70) >> 4);
2559 
2560 	v4l2_info(sd, "-----Video Timings-----\n");
2561 	if (read_stdi(sd, &stdi))
2562 		v4l2_info(sd, "STDI: not locked\n");
2563 	else
2564 		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2565 				stdi.lcf, stdi.bl, stdi.lcvs,
2566 				stdi.interlaced ? "interlaced" : "progressive",
2567 				stdi.hs_pol, stdi.vs_pol);
2568 	if (adv76xx_query_dv_timings(sd, &timings))
2569 		v4l2_info(sd, "No video detected\n");
2570 	else
2571 		v4l2_print_dv_timings(sd->name, "Detected format: ",
2572 				      &timings, true);
2573 	v4l2_print_dv_timings(sd->name, "Configured format: ",
2574 			      &state->timings, true);
2575 
2576 	if (no_signal(sd))
2577 		return 0;
2578 
2579 	v4l2_info(sd, "-----Color space-----\n");
2580 	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2581 			rgb_quantization_range_txt[state->rgb_quantization_range]);
2582 	v4l2_info(sd, "Input color space: %s\n",
2583 			input_color_space_txt[reg_io_0x02 >> 4]);
2584 	v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n",
2585 			(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2586 			(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2587 				"(16-235)" : "(0-255)",
2588 			(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2589 	v4l2_info(sd, "Color space conversion: %s\n",
2590 			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2591 
2592 	if (!is_digital_input(sd))
2593 		return 0;
2594 
2595 	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2596 	v4l2_info(sd, "Digital video port selected: %c\n",
2597 			(hdmi_read(sd, 0x00) & 0x03) + 'A');
2598 	v4l2_info(sd, "HDCP encrypted content: %s\n",
2599 			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2600 	v4l2_info(sd, "HDCP keys read: %s%s\n",
2601 			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2602 			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2603 	if (is_hdmi(sd)) {
2604 		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2605 		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2606 		bool audio_mute = io_read(sd, 0x65) & 0x40;
2607 
2608 		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2609 				audio_pll_locked ? "locked" : "not locked",
2610 				audio_sample_packet_detect ? "detected" : "not detected",
2611 				audio_mute ? "muted" : "enabled");
2612 		if (audio_pll_locked && audio_sample_packet_detect) {
2613 			v4l2_info(sd, "Audio format: %s\n",
2614 					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2615 		}
2616 		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2617 				(hdmi_read(sd, 0x5c) << 8) +
2618 				(hdmi_read(sd, 0x5d) & 0xf0));
2619 		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2620 				(hdmi_read(sd, 0x5e) << 8) +
2621 				hdmi_read(sd, 0x5f));
2622 		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2623 
2624 		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2625 		v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2626 
2627 		adv76xx_log_infoframes(sd);
2628 	}
2629 
2630 	return 0;
2631 }
2632 
2633 static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2634 				   struct v4l2_fh *fh,
2635 				   struct v4l2_event_subscription *sub)
2636 {
2637 	switch (sub->type) {
2638 	case V4L2_EVENT_SOURCE_CHANGE:
2639 		return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2640 	case V4L2_EVENT_CTRL:
2641 		return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2642 	default:
2643 		return -EINVAL;
2644 	}
2645 }
2646 
2647 static int adv76xx_registered(struct v4l2_subdev *sd)
2648 {
2649 	struct adv76xx_state *state = to_state(sd);
2650 	struct i2c_client *client = v4l2_get_subdevdata(sd);
2651 	int err;
2652 
2653 	err = cec_register_adapter(state->cec_adap, &client->dev);
2654 	if (err)
2655 		cec_delete_adapter(state->cec_adap);
2656 	return err;
2657 }
2658 
2659 static void adv76xx_unregistered(struct v4l2_subdev *sd)
2660 {
2661 	struct adv76xx_state *state = to_state(sd);
2662 
2663 	cec_unregister_adapter(state->cec_adap);
2664 }
2665 
2666 /* ----------------------------------------------------------------------- */
2667 
2668 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2669 	.s_ctrl = adv76xx_s_ctrl,
2670 	.g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2671 };
2672 
2673 static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2674 	.log_status = adv76xx_log_status,
2675 	.interrupt_service_routine = adv76xx_isr,
2676 	.subscribe_event = adv76xx_subscribe_event,
2677 	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2678 #ifdef CONFIG_VIDEO_ADV_DEBUG
2679 	.g_register = adv76xx_g_register,
2680 	.s_register = adv76xx_s_register,
2681 #endif
2682 };
2683 
2684 static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2685 	.s_routing = adv76xx_s_routing,
2686 	.g_input_status = adv76xx_g_input_status,
2687 	.s_dv_timings = adv76xx_s_dv_timings,
2688 	.g_dv_timings = adv76xx_g_dv_timings,
2689 	.query_dv_timings = adv76xx_query_dv_timings,
2690 };
2691 
2692 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2693 	.enum_mbus_code = adv76xx_enum_mbus_code,
2694 	.get_selection = adv76xx_get_selection,
2695 	.get_fmt = adv76xx_get_format,
2696 	.set_fmt = adv76xx_set_format,
2697 	.get_edid = adv76xx_get_edid,
2698 	.set_edid = adv76xx_set_edid,
2699 	.dv_timings_cap = adv76xx_dv_timings_cap,
2700 	.enum_dv_timings = adv76xx_enum_dv_timings,
2701 };
2702 
2703 static const struct v4l2_subdev_ops adv76xx_ops = {
2704 	.core = &adv76xx_core_ops,
2705 	.video = &adv76xx_video_ops,
2706 	.pad = &adv76xx_pad_ops,
2707 };
2708 
2709 static const struct v4l2_subdev_internal_ops adv76xx_int_ops = {
2710 	.registered = adv76xx_registered,
2711 	.unregistered = adv76xx_unregistered,
2712 };
2713 
2714 /* -------------------------- custom ctrls ---------------------------------- */
2715 
2716 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2717 	.ops = &adv76xx_ctrl_ops,
2718 	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2719 	.name = "Analog Sampling Phase",
2720 	.type = V4L2_CTRL_TYPE_INTEGER,
2721 	.min = 0,
2722 	.max = 0x1f,
2723 	.step = 1,
2724 	.def = 0,
2725 };
2726 
2727 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2728 	.ops = &adv76xx_ctrl_ops,
2729 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2730 	.name = "Free Running Color, Manual",
2731 	.type = V4L2_CTRL_TYPE_BOOLEAN,
2732 	.min = false,
2733 	.max = true,
2734 	.step = 1,
2735 	.def = false,
2736 };
2737 
2738 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2739 	.ops = &adv76xx_ctrl_ops,
2740 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2741 	.name = "Free Running Color",
2742 	.type = V4L2_CTRL_TYPE_INTEGER,
2743 	.min = 0x0,
2744 	.max = 0xffffff,
2745 	.step = 0x1,
2746 	.def = 0x0,
2747 };
2748 
2749 /* ----------------------------------------------------------------------- */
2750 
2751 struct adv76xx_register_map {
2752 	const char *name;
2753 	u8 default_addr;
2754 };
2755 
2756 static const struct adv76xx_register_map adv76xx_default_addresses[] = {
2757 	[ADV76XX_PAGE_IO] = { "main", 0x4c },
2758 	[ADV7604_PAGE_AVLINK] = { "avlink", 0x42 },
2759 	[ADV76XX_PAGE_CEC] = { "cec", 0x40 },
2760 	[ADV76XX_PAGE_INFOFRAME] = { "infoframe", 0x3e },
2761 	[ADV7604_PAGE_ESDP] = { "esdp", 0x38 },
2762 	[ADV7604_PAGE_DPP] = { "dpp", 0x3c },
2763 	[ADV76XX_PAGE_AFE] = { "afe", 0x26 },
2764 	[ADV76XX_PAGE_REP] = { "rep", 0x32 },
2765 	[ADV76XX_PAGE_EDID] = { "edid", 0x36 },
2766 	[ADV76XX_PAGE_HDMI] = { "hdmi", 0x34 },
2767 	[ADV76XX_PAGE_TEST] = { "test", 0x30 },
2768 	[ADV76XX_PAGE_CP] = { "cp", 0x22 },
2769 	[ADV7604_PAGE_VDP] = { "vdp", 0x24 },
2770 };
2771 
2772 static int adv76xx_core_init(struct v4l2_subdev *sd)
2773 {
2774 	struct adv76xx_state *state = to_state(sd);
2775 	const struct adv76xx_chip_info *info = state->info;
2776 	struct adv76xx_platform_data *pdata = &state->pdata;
2777 
2778 	hdmi_write(sd, 0x48,
2779 		(pdata->disable_pwrdnb ? 0x80 : 0) |
2780 		(pdata->disable_cable_det_rst ? 0x40 : 0));
2781 
2782 	disable_input(sd);
2783 
2784 	if (pdata->default_input >= 0 &&
2785 	    pdata->default_input < state->source_pad) {
2786 		state->selected_input = pdata->default_input;
2787 		select_input(sd);
2788 		enable_input(sd);
2789 	}
2790 
2791 	/* power */
2792 	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
2793 	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
2794 	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */
2795 
2796 	/* video format */
2797 	io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3);
2798 	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2799 			pdata->insert_av_codes << 2 |
2800 			pdata->replicate_av_codes << 1);
2801 	adv76xx_setup_format(state);
2802 
2803 	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2804 
2805 	/* VS, HS polarities */
2806 	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2807 		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2808 
2809 	/* Adjust drive strength */
2810 	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2811 				pdata->dr_str_clk << 2 |
2812 				pdata->dr_str_sync);
2813 
2814 	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2815 	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2816 	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
2817 				      ADI recommended setting [REF_01, c. 2.3.3] */
2818 	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
2819 				      ADI recommended setting [REF_01, c. 2.3.3] */
2820 	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2821 				     for digital formats */
2822 
2823 	/* HDMI audio */
2824 	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2825 	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2826 	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2827 
2828 	/* TODO from platform data */
2829 	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */
2830 
2831 	if (adv76xx_has_afe(state)) {
2832 		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2833 		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2834 	}
2835 
2836 	/* interrupts */
2837 	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2838 	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2839 	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2840 	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2841 	info->setup_irqs(sd);
2842 
2843 	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2844 }
2845 
2846 static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2847 {
2848 	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2849 }
2850 
2851 static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2852 {
2853 	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2854 }
2855 
2856 static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2857 {
2858 	io_write(sd, 0x41, 0xd0); /* disable INT2 */
2859 }
2860 
2861 static void adv76xx_unregister_clients(struct adv76xx_state *state)
2862 {
2863 	unsigned int i;
2864 
2865 	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i)
2866 		i2c_unregister_device(state->i2c_clients[i]);
2867 }
2868 
2869 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2870 					       unsigned int page)
2871 {
2872 	struct i2c_client *client = v4l2_get_subdevdata(sd);
2873 	struct adv76xx_state *state = to_state(sd);
2874 	struct adv76xx_platform_data *pdata = &state->pdata;
2875 	unsigned int io_reg = 0xf2 + page;
2876 	struct i2c_client *new_client;
2877 
2878 	if (pdata && pdata->i2c_addresses[page])
2879 		new_client = i2c_new_dummy_device(client->adapter,
2880 					   pdata->i2c_addresses[page]);
2881 	else
2882 		new_client = i2c_new_ancillary_device(client,
2883 				adv76xx_default_addresses[page].name,
2884 				adv76xx_default_addresses[page].default_addr);
2885 
2886 	if (!IS_ERR(new_client))
2887 		io_write(sd, io_reg, new_client->addr << 1);
2888 
2889 	return new_client;
2890 }
2891 
2892 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2893 	/* reset ADI recommended settings for HDMI: */
2894 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2895 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2896 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2897 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2898 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2899 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2900 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2901 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2902 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2903 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2904 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2905 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2906 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2907 
2908 	/* set ADI recommended settings for digitizer */
2909 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2910 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2911 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2912 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2913 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2914 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2915 
2916 	{ ADV76XX_REG_SEQ_TERM, 0 },
2917 };
2918 
2919 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2920 	/* set ADI recommended settings for HDMI: */
2921 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2922 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2923 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2924 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2925 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2926 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2927 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2928 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2929 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2930 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2931 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2932 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2933 
2934 	/* reset ADI recommended settings for digitizer */
2935 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2936 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2937 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2938 
2939 	{ ADV76XX_REG_SEQ_TERM, 0 },
2940 };
2941 
2942 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2943 	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2944 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2945 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2946 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2947 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2948 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2949 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2950 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2951 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2952 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2953 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
2954 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
2955 
2956 	{ ADV76XX_REG_SEQ_TERM, 0 },
2957 };
2958 
2959 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
2960 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2961 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2962 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2963 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2964 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2965 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2966 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2967 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2968 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2969 	{ ADV76XX_REG_SEQ_TERM, 0 },
2970 };
2971 
2972 static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2973 	[ADV7604] = {
2974 		.type = ADV7604,
2975 		.has_afe = true,
2976 		.max_port = ADV7604_PAD_VGA_COMP,
2977 		.num_dv_ports = 4,
2978 		.edid_enable_reg = 0x77,
2979 		.edid_status_reg = 0x7d,
2980 		.lcf_reg = 0xb3,
2981 		.tdms_lock_mask = 0xe0,
2982 		.cable_det_mask = 0x1e,
2983 		.fmt_change_digital_mask = 0xc1,
2984 		.cp_csc = 0xfc,
2985 		.cec_irq_status = 0x4d,
2986 		.cec_rx_enable = 0x26,
2987 		.cec_rx_enable_mask = 0x01,
2988 		.cec_irq_swap = true,
2989 		.formats = adv7604_formats,
2990 		.nformats = ARRAY_SIZE(adv7604_formats),
2991 		.set_termination = adv7604_set_termination,
2992 		.setup_irqs = adv7604_setup_irqs,
2993 		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
2994 		.read_cable_det = adv7604_read_cable_det,
2995 		.recommended_settings = {
2996 		    [0] = adv7604_recommended_settings_afe,
2997 		    [1] = adv7604_recommended_settings_hdmi,
2998 		},
2999 		.num_recommended_settings = {
3000 		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
3001 		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
3002 		},
3003 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
3004 			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
3005 			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
3006 			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
3007 			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
3008 			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
3009 			BIT(ADV7604_PAGE_VDP),
3010 		.linewidth_mask = 0xfff,
3011 		.field0_height_mask = 0xfff,
3012 		.field1_height_mask = 0xfff,
3013 		.hfrontporch_mask = 0x3ff,
3014 		.hsync_mask = 0x3ff,
3015 		.hbackporch_mask = 0x3ff,
3016 		.field0_vfrontporch_mask = 0x1fff,
3017 		.field0_vsync_mask = 0x1fff,
3018 		.field0_vbackporch_mask = 0x1fff,
3019 		.field1_vfrontporch_mask = 0x1fff,
3020 		.field1_vsync_mask = 0x1fff,
3021 		.field1_vbackporch_mask = 0x1fff,
3022 	},
3023 	[ADV7611] = {
3024 		.type = ADV7611,
3025 		.has_afe = false,
3026 		.max_port = ADV76XX_PAD_HDMI_PORT_A,
3027 		.num_dv_ports = 1,
3028 		.edid_enable_reg = 0x74,
3029 		.edid_status_reg = 0x76,
3030 		.lcf_reg = 0xa3,
3031 		.tdms_lock_mask = 0x43,
3032 		.cable_det_mask = 0x01,
3033 		.fmt_change_digital_mask = 0x03,
3034 		.cp_csc = 0xf4,
3035 		.cec_irq_status = 0x93,
3036 		.cec_rx_enable = 0x2c,
3037 		.cec_rx_enable_mask = 0x02,
3038 		.formats = adv7611_formats,
3039 		.nformats = ARRAY_SIZE(adv7611_formats),
3040 		.set_termination = adv7611_set_termination,
3041 		.setup_irqs = adv7611_setup_irqs,
3042 		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3043 		.read_cable_det = adv7611_read_cable_det,
3044 		.recommended_settings = {
3045 		    [1] = adv7611_recommended_settings_hdmi,
3046 		},
3047 		.num_recommended_settings = {
3048 		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
3049 		},
3050 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3051 			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3052 			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3053 			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3054 		.linewidth_mask = 0x1fff,
3055 		.field0_height_mask = 0x1fff,
3056 		.field1_height_mask = 0x1fff,
3057 		.hfrontporch_mask = 0x1fff,
3058 		.hsync_mask = 0x1fff,
3059 		.hbackporch_mask = 0x1fff,
3060 		.field0_vfrontporch_mask = 0x3fff,
3061 		.field0_vsync_mask = 0x3fff,
3062 		.field0_vbackporch_mask = 0x3fff,
3063 		.field1_vfrontporch_mask = 0x3fff,
3064 		.field1_vsync_mask = 0x3fff,
3065 		.field1_vbackporch_mask = 0x3fff,
3066 	},
3067 	[ADV7612] = {
3068 		.type = ADV7612,
3069 		.has_afe = false,
3070 		.max_port = ADV76XX_PAD_HDMI_PORT_A,	/* B not supported */
3071 		.num_dv_ports = 1,			/* normally 2 */
3072 		.edid_enable_reg = 0x74,
3073 		.edid_status_reg = 0x76,
3074 		.lcf_reg = 0xa3,
3075 		.tdms_lock_mask = 0x43,
3076 		.cable_det_mask = 0x01,
3077 		.fmt_change_digital_mask = 0x03,
3078 		.cp_csc = 0xf4,
3079 		.cec_irq_status = 0x93,
3080 		.cec_rx_enable = 0x2c,
3081 		.cec_rx_enable_mask = 0x02,
3082 		.formats = adv7612_formats,
3083 		.nformats = ARRAY_SIZE(adv7612_formats),
3084 		.set_termination = adv7611_set_termination,
3085 		.setup_irqs = adv7612_setup_irqs,
3086 		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3087 		.read_cable_det = adv7612_read_cable_det,
3088 		.recommended_settings = {
3089 		    [1] = adv7612_recommended_settings_hdmi,
3090 		},
3091 		.num_recommended_settings = {
3092 		    [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
3093 		},
3094 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3095 			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3096 			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3097 			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3098 		.linewidth_mask = 0x1fff,
3099 		.field0_height_mask = 0x1fff,
3100 		.field1_height_mask = 0x1fff,
3101 		.hfrontporch_mask = 0x1fff,
3102 		.hsync_mask = 0x1fff,
3103 		.hbackporch_mask = 0x1fff,
3104 		.field0_vfrontporch_mask = 0x3fff,
3105 		.field0_vsync_mask = 0x3fff,
3106 		.field0_vbackporch_mask = 0x3fff,
3107 		.field1_vfrontporch_mask = 0x3fff,
3108 		.field1_vsync_mask = 0x3fff,
3109 		.field1_vbackporch_mask = 0x3fff,
3110 	},
3111 };
3112 
3113 static const struct i2c_device_id adv76xx_i2c_id[] = {
3114 	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
3115 	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3116 	{ "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
3117 	{ }
3118 };
3119 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
3120 
3121 static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
3122 	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
3123 	{ .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
3124 	{ }
3125 };
3126 MODULE_DEVICE_TABLE(of, adv76xx_of_id);
3127 
3128 static int adv76xx_parse_dt(struct adv76xx_state *state)
3129 {
3130 	struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
3131 	struct device_node *endpoint;
3132 	struct device_node *np;
3133 	unsigned int flags;
3134 	int ret;
3135 	u32 v;
3136 
3137 	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
3138 
3139 	/* Parse the endpoint. */
3140 	endpoint = of_graph_get_next_endpoint(np, NULL);
3141 	if (!endpoint)
3142 		return -EINVAL;
3143 
3144 	ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), &bus_cfg);
3145 	of_node_put(endpoint);
3146 	if (ret)
3147 		return ret;
3148 
3149 	if (!of_property_read_u32(np, "default-input", &v))
3150 		state->pdata.default_input = v;
3151 	else
3152 		state->pdata.default_input = -1;
3153 
3154 	flags = bus_cfg.bus.parallel.flags;
3155 
3156 	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
3157 		state->pdata.inv_hs_pol = 1;
3158 
3159 	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
3160 		state->pdata.inv_vs_pol = 1;
3161 
3162 	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
3163 		state->pdata.inv_llc_pol = 1;
3164 
3165 	if (bus_cfg.bus_type == V4L2_MBUS_BT656)
3166 		state->pdata.insert_av_codes = 1;
3167 
3168 	/* Disable the interrupt for now as no DT-based board uses it. */
3169 	state->pdata.int1_config = ADV76XX_INT1_CONFIG_ACTIVE_HIGH;
3170 
3171 	/* Hardcode the remaining platform data fields. */
3172 	state->pdata.disable_pwrdnb = 0;
3173 	state->pdata.disable_cable_det_rst = 0;
3174 	state->pdata.blank_data = 1;
3175 	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
3176 	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
3177 	state->pdata.dr_str_data = ADV76XX_DR_STR_MEDIUM_HIGH;
3178 	state->pdata.dr_str_clk = ADV76XX_DR_STR_MEDIUM_HIGH;
3179 	state->pdata.dr_str_sync = ADV76XX_DR_STR_MEDIUM_HIGH;
3180 
3181 	return 0;
3182 }
3183 
3184 static const struct regmap_config adv76xx_regmap_cnf[] = {
3185 	{
3186 		.name			= "io",
3187 		.reg_bits		= 8,
3188 		.val_bits		= 8,
3189 
3190 		.max_register		= 0xff,
3191 		.cache_type		= REGCACHE_NONE,
3192 	},
3193 	{
3194 		.name			= "avlink",
3195 		.reg_bits		= 8,
3196 		.val_bits		= 8,
3197 
3198 		.max_register		= 0xff,
3199 		.cache_type		= REGCACHE_NONE,
3200 	},
3201 	{
3202 		.name			= "cec",
3203 		.reg_bits		= 8,
3204 		.val_bits		= 8,
3205 
3206 		.max_register		= 0xff,
3207 		.cache_type		= REGCACHE_NONE,
3208 	},
3209 	{
3210 		.name			= "infoframe",
3211 		.reg_bits		= 8,
3212 		.val_bits		= 8,
3213 
3214 		.max_register		= 0xff,
3215 		.cache_type		= REGCACHE_NONE,
3216 	},
3217 	{
3218 		.name			= "esdp",
3219 		.reg_bits		= 8,
3220 		.val_bits		= 8,
3221 
3222 		.max_register		= 0xff,
3223 		.cache_type		= REGCACHE_NONE,
3224 	},
3225 	{
3226 		.name			= "epp",
3227 		.reg_bits		= 8,
3228 		.val_bits		= 8,
3229 
3230 		.max_register		= 0xff,
3231 		.cache_type		= REGCACHE_NONE,
3232 	},
3233 	{
3234 		.name			= "afe",
3235 		.reg_bits		= 8,
3236 		.val_bits		= 8,
3237 
3238 		.max_register		= 0xff,
3239 		.cache_type		= REGCACHE_NONE,
3240 	},
3241 	{
3242 		.name			= "rep",
3243 		.reg_bits		= 8,
3244 		.val_bits		= 8,
3245 
3246 		.max_register		= 0xff,
3247 		.cache_type		= REGCACHE_NONE,
3248 	},
3249 	{
3250 		.name			= "edid",
3251 		.reg_bits		= 8,
3252 		.val_bits		= 8,
3253 
3254 		.max_register		= 0xff,
3255 		.cache_type		= REGCACHE_NONE,
3256 	},
3257 
3258 	{
3259 		.name			= "hdmi",
3260 		.reg_bits		= 8,
3261 		.val_bits		= 8,
3262 
3263 		.max_register		= 0xff,
3264 		.cache_type		= REGCACHE_NONE,
3265 	},
3266 	{
3267 		.name			= "test",
3268 		.reg_bits		= 8,
3269 		.val_bits		= 8,
3270 
3271 		.max_register		= 0xff,
3272 		.cache_type		= REGCACHE_NONE,
3273 	},
3274 	{
3275 		.name			= "cp",
3276 		.reg_bits		= 8,
3277 		.val_bits		= 8,
3278 
3279 		.max_register		= 0xff,
3280 		.cache_type		= REGCACHE_NONE,
3281 	},
3282 	{
3283 		.name			= "vdp",
3284 		.reg_bits		= 8,
3285 		.val_bits		= 8,
3286 
3287 		.max_register		= 0xff,
3288 		.cache_type		= REGCACHE_NONE,
3289 	},
3290 };
3291 
3292 static int configure_regmap(struct adv76xx_state *state, int region)
3293 {
3294 	int err;
3295 
3296 	if (!state->i2c_clients[region])
3297 		return -ENODEV;
3298 
3299 	state->regmap[region] =
3300 		devm_regmap_init_i2c(state->i2c_clients[region],
3301 				     &adv76xx_regmap_cnf[region]);
3302 
3303 	if (IS_ERR(state->regmap[region])) {
3304 		err = PTR_ERR(state->regmap[region]);
3305 		v4l_err(state->i2c_clients[region],
3306 			"Error initializing regmap %d with error %d\n",
3307 			region, err);
3308 		return -EINVAL;
3309 	}
3310 
3311 	return 0;
3312 }
3313 
3314 static int configure_regmaps(struct adv76xx_state *state)
3315 {
3316 	int i, err;
3317 
3318 	for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
3319 		err = configure_regmap(state, i);
3320 		if (err && (err != -ENODEV))
3321 			return err;
3322 	}
3323 	return 0;
3324 }
3325 
3326 static void adv76xx_reset(struct adv76xx_state *state)
3327 {
3328 	if (state->reset_gpio) {
3329 		/* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
3330 		gpiod_set_value_cansleep(state->reset_gpio, 0);
3331 		usleep_range(5000, 10000);
3332 		gpiod_set_value_cansleep(state->reset_gpio, 1);
3333 		/* It is recommended to wait 5 ms after the low pulse before */
3334 		/* an I2C write is performed to the ADV76XX. */
3335 		usleep_range(5000, 10000);
3336 	}
3337 }
3338 
3339 static int adv76xx_probe(struct i2c_client *client,
3340 			 const struct i2c_device_id *id)
3341 {
3342 	static const struct v4l2_dv_timings cea640x480 =
3343 		V4L2_DV_BT_CEA_640X480P59_94;
3344 	struct adv76xx_state *state;
3345 	struct v4l2_ctrl_handler *hdl;
3346 	struct v4l2_ctrl *ctrl;
3347 	struct v4l2_subdev *sd;
3348 	unsigned int i;
3349 	unsigned int val, val2;
3350 	int err;
3351 
3352 	/* Check if the adapter supports the needed features */
3353 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3354 		return -EIO;
3355 	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3356 			client->addr << 1);
3357 
3358 	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3359 	if (!state)
3360 		return -ENOMEM;
3361 
3362 	state->i2c_clients[ADV76XX_PAGE_IO] = client;
3363 
3364 	/* initialize variables */
3365 	state->restart_stdi_once = true;
3366 	state->selected_input = ~0;
3367 
3368 	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3369 		const struct of_device_id *oid;
3370 
3371 		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3372 		state->info = oid->data;
3373 
3374 		err = adv76xx_parse_dt(state);
3375 		if (err < 0) {
3376 			v4l_err(client, "DT parsing error\n");
3377 			return err;
3378 		}
3379 	} else if (client->dev.platform_data) {
3380 		struct adv76xx_platform_data *pdata = client->dev.platform_data;
3381 
3382 		state->info = (const struct adv76xx_chip_info *)id->driver_data;
3383 		state->pdata = *pdata;
3384 	} else {
3385 		v4l_err(client, "No platform data!\n");
3386 		return -ENODEV;
3387 	}
3388 
3389 	/* Request GPIOs. */
3390 	for (i = 0; i < state->info->num_dv_ports; ++i) {
3391 		state->hpd_gpio[i] =
3392 			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3393 						      GPIOD_OUT_LOW);
3394 		if (IS_ERR(state->hpd_gpio[i]))
3395 			return PTR_ERR(state->hpd_gpio[i]);
3396 
3397 		if (state->hpd_gpio[i])
3398 			v4l_info(client, "Handling HPD %u GPIO\n", i);
3399 	}
3400 	state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
3401 								GPIOD_OUT_HIGH);
3402 	if (IS_ERR(state->reset_gpio))
3403 		return PTR_ERR(state->reset_gpio);
3404 
3405 	adv76xx_reset(state);
3406 
3407 	state->timings = cea640x480;
3408 	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3409 
3410 	sd = &state->sd;
3411 	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3412 	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3413 		id->name, i2c_adapter_id(client->adapter),
3414 		client->addr);
3415 	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3416 	sd->internal_ops = &adv76xx_int_ops;
3417 
3418 	/* Configure IO Regmap region */
3419 	err = configure_regmap(state, ADV76XX_PAGE_IO);
3420 
3421 	if (err) {
3422 		v4l2_err(sd, "Error configuring IO regmap region\n");
3423 		return -ENODEV;
3424 	}
3425 
3426 	/*
3427 	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3428 	 * identifies the revision, while on ADV7611 it identifies the model as
3429 	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3430 	 */
3431 	switch (state->info->type) {
3432 	case ADV7604:
3433 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3434 		if (err) {
3435 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3436 			return -ENODEV;
3437 		}
3438 		if (val != 0x68) {
3439 			v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3440 					client->addr << 1);
3441 			return -ENODEV;
3442 		}
3443 		break;
3444 	case ADV7611:
3445 	case ADV7612:
3446 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3447 				0xea,
3448 				&val);
3449 		if (err) {
3450 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3451 			return -ENODEV;
3452 		}
3453 		val2 = val << 8;
3454 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3455 			    0xeb,
3456 			    &val);
3457 		if (err) {
3458 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3459 			return -ENODEV;
3460 		}
3461 		val |= val2;
3462 		if ((state->info->type == ADV7611 && val != 0x2051) ||
3463 			(state->info->type == ADV7612 && val != 0x2041)) {
3464 			v4l2_err(sd, "not an adv761x on address 0x%x\n",
3465 					client->addr << 1);
3466 			return -ENODEV;
3467 		}
3468 		break;
3469 	}
3470 
3471 	/* control handlers */
3472 	hdl = &state->hdl;
3473 	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3474 
3475 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3476 			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3477 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3478 			V4L2_CID_CONTRAST, 0, 255, 1, 128);
3479 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3480 			V4L2_CID_SATURATION, 0, 255, 1, 128);
3481 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3482 			V4L2_CID_HUE, 0, 128, 1, 0);
3483 	ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3484 			V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
3485 			0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
3486 	if (ctrl)
3487 		ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3488 
3489 	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3490 			V4L2_CID_DV_RX_POWER_PRESENT, 0,
3491 			(1 << state->info->num_dv_ports) - 1, 0, 0);
3492 	state->rgb_quantization_range_ctrl =
3493 		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3494 			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3495 			0, V4L2_DV_RGB_RANGE_AUTO);
3496 
3497 	/* custom controls */
3498 	if (adv76xx_has_afe(state))
3499 		state->analog_sampling_phase_ctrl =
3500 			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3501 	state->free_run_color_manual_ctrl =
3502 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3503 	state->free_run_color_ctrl =
3504 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3505 
3506 	sd->ctrl_handler = hdl;
3507 	if (hdl->error) {
3508 		err = hdl->error;
3509 		goto err_hdl;
3510 	}
3511 	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3512 		err = -ENODEV;
3513 		goto err_hdl;
3514 	}
3515 
3516 	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3517 		struct i2c_client *dummy_client;
3518 
3519 		if (!(BIT(i) & state->info->page_mask))
3520 			continue;
3521 
3522 		dummy_client = adv76xx_dummy_client(sd, i);
3523 		if (IS_ERR(dummy_client)) {
3524 			err = PTR_ERR(dummy_client);
3525 			v4l2_err(sd, "failed to create i2c client %u\n", i);
3526 			goto err_i2c;
3527 		}
3528 
3529 		state->i2c_clients[i] = dummy_client;
3530 	}
3531 
3532 	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3533 			adv76xx_delayed_work_enable_hotplug);
3534 
3535 	state->source_pad = state->info->num_dv_ports
3536 			  + (state->info->has_afe ? 2 : 0);
3537 	for (i = 0; i < state->source_pad; ++i)
3538 		state->pads[i].flags = MEDIA_PAD_FL_SINK;
3539 	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3540 	sd->entity.function = MEDIA_ENT_F_DV_DECODER;
3541 
3542 	err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3543 				state->pads);
3544 	if (err)
3545 		goto err_work_queues;
3546 
3547 	/* Configure regmaps */
3548 	err = configure_regmaps(state);
3549 	if (err)
3550 		goto err_entity;
3551 
3552 	err = adv76xx_core_init(sd);
3553 	if (err)
3554 		goto err_entity;
3555 
3556 	if (client->irq) {
3557 		err = devm_request_threaded_irq(&client->dev,
3558 						client->irq,
3559 						NULL, adv76xx_irq_handler,
3560 						IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
3561 						client->name, state);
3562 		if (err)
3563 			goto err_entity;
3564 	}
3565 
3566 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
3567 	state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops,
3568 		state, dev_name(&client->dev),
3569 		CEC_CAP_DEFAULTS, ADV76XX_MAX_ADDRS);
3570 	err = PTR_ERR_OR_ZERO(state->cec_adap);
3571 	if (err)
3572 		goto err_entity;
3573 #endif
3574 
3575 	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3576 			client->addr << 1, client->adapter->name);
3577 
3578 	err = v4l2_async_register_subdev(sd);
3579 	if (err)
3580 		goto err_entity;
3581 
3582 	return 0;
3583 
3584 err_entity:
3585 	media_entity_cleanup(&sd->entity);
3586 err_work_queues:
3587 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3588 err_i2c:
3589 	adv76xx_unregister_clients(state);
3590 err_hdl:
3591 	v4l2_ctrl_handler_free(hdl);
3592 	return err;
3593 }
3594 
3595 /* ----------------------------------------------------------------------- */
3596 
3597 static int adv76xx_remove(struct i2c_client *client)
3598 {
3599 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3600 	struct adv76xx_state *state = to_state(sd);
3601 
3602 	/* disable interrupts */
3603 	io_write(sd, 0x40, 0);
3604 	io_write(sd, 0x41, 0);
3605 	io_write(sd, 0x46, 0);
3606 	io_write(sd, 0x6e, 0);
3607 	io_write(sd, 0x73, 0);
3608 
3609 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3610 	v4l2_async_unregister_subdev(sd);
3611 	media_entity_cleanup(&sd->entity);
3612 	adv76xx_unregister_clients(to_state(sd));
3613 	v4l2_ctrl_handler_free(sd->ctrl_handler);
3614 	return 0;
3615 }
3616 
3617 /* ----------------------------------------------------------------------- */
3618 
3619 static struct i2c_driver adv76xx_driver = {
3620 	.driver = {
3621 		.name = "adv7604",
3622 		.of_match_table = of_match_ptr(adv76xx_of_id),
3623 	},
3624 	.probe = adv76xx_probe,
3625 	.remove = adv76xx_remove,
3626 	.id_table = adv76xx_i2c_id,
3627 };
3628 
3629 module_i2c_driver(adv76xx_driver);
3630