1 /* 2 * adv7604 - Analog Devices ADV7604 video decoder driver 3 * 4 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved. 5 * 6 * This program is free software; you may redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; version 2 of the License. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 17 * SOFTWARE. 18 * 19 */ 20 21 /* 22 * References (c = chapter, p = page): 23 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations, 24 * Revision 2.5, June 2010 25 * REF_02 - Analog devices, Register map documentation, Documentation of 26 * the register maps, Software manual, Rev. F, June 2010 27 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010 28 */ 29 30 #include <linux/delay.h> 31 #include <linux/gpio/consumer.h> 32 #include <linux/hdmi.h> 33 #include <linux/i2c.h> 34 #include <linux/kernel.h> 35 #include <linux/module.h> 36 #include <linux/slab.h> 37 #include <linux/v4l2-dv-timings.h> 38 #include <linux/videodev2.h> 39 #include <linux/workqueue.h> 40 #include <linux/regmap.h> 41 42 #include <media/i2c/adv7604.h> 43 #include <media/v4l2-ctrls.h> 44 #include <media/v4l2-device.h> 45 #include <media/v4l2-event.h> 46 #include <media/v4l2-dv-timings.h> 47 #include <media/v4l2-of.h> 48 49 static int debug; 50 module_param(debug, int, 0644); 51 MODULE_PARM_DESC(debug, "debug level (0-2)"); 52 53 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver"); 54 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>"); 55 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>"); 56 MODULE_LICENSE("GPL"); 57 58 /* ADV7604 system clock frequency */ 59 #define ADV76XX_FSC (28636360) 60 61 #define ADV76XX_RGB_OUT (1 << 1) 62 63 #define ADV76XX_OP_FORMAT_SEL_8BIT (0 << 0) 64 #define ADV7604_OP_FORMAT_SEL_10BIT (1 << 0) 65 #define ADV76XX_OP_FORMAT_SEL_12BIT (2 << 0) 66 67 #define ADV76XX_OP_MODE_SEL_SDR_422 (0 << 5) 68 #define ADV7604_OP_MODE_SEL_DDR_422 (1 << 5) 69 #define ADV76XX_OP_MODE_SEL_SDR_444 (2 << 5) 70 #define ADV7604_OP_MODE_SEL_DDR_444 (3 << 5) 71 #define ADV76XX_OP_MODE_SEL_SDR_422_2X (4 << 5) 72 #define ADV7604_OP_MODE_SEL_ADI_CM (5 << 5) 73 74 #define ADV76XX_OP_CH_SEL_GBR (0 << 5) 75 #define ADV76XX_OP_CH_SEL_GRB (1 << 5) 76 #define ADV76XX_OP_CH_SEL_BGR (2 << 5) 77 #define ADV76XX_OP_CH_SEL_RGB (3 << 5) 78 #define ADV76XX_OP_CH_SEL_BRG (4 << 5) 79 #define ADV76XX_OP_CH_SEL_RBG (5 << 5) 80 81 #define ADV76XX_OP_SWAP_CB_CR (1 << 0) 82 83 enum adv76xx_type { 84 ADV7604, 85 ADV7611, 86 ADV7612, 87 }; 88 89 struct adv76xx_reg_seq { 90 unsigned int reg; 91 u8 val; 92 }; 93 94 struct adv76xx_format_info { 95 u32 code; 96 u8 op_ch_sel; 97 bool rgb_out; 98 bool swap_cb_cr; 99 u8 op_format_sel; 100 }; 101 102 struct adv76xx_cfg_read_infoframe { 103 const char *desc; 104 u8 present_mask; 105 u8 head_addr; 106 u8 payload_addr; 107 }; 108 109 struct adv76xx_chip_info { 110 enum adv76xx_type type; 111 112 bool has_afe; 113 unsigned int max_port; 114 unsigned int num_dv_ports; 115 116 unsigned int edid_enable_reg; 117 unsigned int edid_status_reg; 118 unsigned int lcf_reg; 119 120 unsigned int cable_det_mask; 121 unsigned int tdms_lock_mask; 122 unsigned int fmt_change_digital_mask; 123 unsigned int cp_csc; 124 125 const struct adv76xx_format_info *formats; 126 unsigned int nformats; 127 128 void (*set_termination)(struct v4l2_subdev *sd, bool enable); 129 void (*setup_irqs)(struct v4l2_subdev *sd); 130 unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd); 131 unsigned int (*read_cable_det)(struct v4l2_subdev *sd); 132 133 /* 0 = AFE, 1 = HDMI */ 134 const struct adv76xx_reg_seq *recommended_settings[2]; 135 unsigned int num_recommended_settings[2]; 136 137 unsigned long page_mask; 138 139 /* Masks for timings */ 140 unsigned int linewidth_mask; 141 unsigned int field0_height_mask; 142 unsigned int field1_height_mask; 143 unsigned int hfrontporch_mask; 144 unsigned int hsync_mask; 145 unsigned int hbackporch_mask; 146 unsigned int field0_vfrontporch_mask; 147 unsigned int field1_vfrontporch_mask; 148 unsigned int field0_vsync_mask; 149 unsigned int field1_vsync_mask; 150 unsigned int field0_vbackporch_mask; 151 unsigned int field1_vbackporch_mask; 152 }; 153 154 /* 155 ********************************************************************** 156 * 157 * Arrays with configuration parameters for the ADV7604 158 * 159 ********************************************************************** 160 */ 161 162 struct adv76xx_state { 163 const struct adv76xx_chip_info *info; 164 struct adv76xx_platform_data pdata; 165 166 struct gpio_desc *hpd_gpio[4]; 167 168 struct v4l2_subdev sd; 169 struct media_pad pads[ADV76XX_PAD_MAX]; 170 unsigned int source_pad; 171 172 struct v4l2_ctrl_handler hdl; 173 174 enum adv76xx_pad selected_input; 175 176 struct v4l2_dv_timings timings; 177 const struct adv76xx_format_info *format; 178 179 struct { 180 u8 edid[256]; 181 u32 present; 182 unsigned blocks; 183 } edid; 184 u16 spa_port_a[2]; 185 struct v4l2_fract aspect_ratio; 186 u32 rgb_quantization_range; 187 struct workqueue_struct *work_queues; 188 struct delayed_work delayed_work_enable_hotplug; 189 bool restart_stdi_once; 190 191 /* i2c clients */ 192 struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX]; 193 194 /* Regmaps */ 195 struct regmap *regmap[ADV76XX_PAGE_MAX]; 196 197 /* controls */ 198 struct v4l2_ctrl *detect_tx_5v_ctrl; 199 struct v4l2_ctrl *analog_sampling_phase_ctrl; 200 struct v4l2_ctrl *free_run_color_manual_ctrl; 201 struct v4l2_ctrl *free_run_color_ctrl; 202 struct v4l2_ctrl *rgb_quantization_range_ctrl; 203 }; 204 205 static bool adv76xx_has_afe(struct adv76xx_state *state) 206 { 207 return state->info->has_afe; 208 } 209 210 /* Unsupported timings. This device cannot support 720p30. */ 211 static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = { 212 V4L2_DV_BT_CEA_1280X720P30, 213 { } 214 }; 215 216 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl) 217 { 218 int i; 219 220 for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++) 221 if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false)) 222 return false; 223 return true; 224 } 225 226 struct adv76xx_video_standards { 227 struct v4l2_dv_timings timings; 228 u8 vid_std; 229 u8 v_freq; 230 }; 231 232 /* sorted by number of lines */ 233 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = { 234 /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */ 235 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 }, 236 { V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 }, 237 { V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 }, 238 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 }, 239 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 }, 240 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 }, 241 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 }, 242 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 }, 243 /* TODO add 1920x1080P60_RB (CVT timing) */ 244 { }, 245 }; 246 247 /* sorted by number of lines */ 248 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = { 249 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 }, 250 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 }, 251 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 }, 252 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 }, 253 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 }, 254 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 }, 255 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 }, 256 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 }, 257 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 }, 258 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 }, 259 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 }, 260 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 }, 261 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 }, 262 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 }, 263 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 }, 264 { V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 }, 265 { V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 }, 266 { V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 }, 267 { V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 }, 268 { V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */ 269 /* TODO add 1600X1200P60_RB (not a DMT timing) */ 270 { V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 }, 271 { V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */ 272 { }, 273 }; 274 275 /* sorted by number of lines */ 276 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = { 277 { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, 278 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 }, 279 { V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 }, 280 { V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 }, 281 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 }, 282 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 }, 283 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 }, 284 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 }, 285 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 }, 286 { }, 287 }; 288 289 /* sorted by number of lines */ 290 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = { 291 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 }, 292 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 }, 293 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 }, 294 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 }, 295 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 }, 296 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 }, 297 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 }, 298 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 }, 299 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 }, 300 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 }, 301 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 }, 302 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 }, 303 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 }, 304 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 }, 305 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 }, 306 { }, 307 }; 308 309 static const struct v4l2_event adv76xx_ev_fmt = { 310 .type = V4L2_EVENT_SOURCE_CHANGE, 311 .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION, 312 }; 313 314 /* ----------------------------------------------------------------------- */ 315 316 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd) 317 { 318 return container_of(sd, struct adv76xx_state, sd); 319 } 320 321 static inline unsigned htotal(const struct v4l2_bt_timings *t) 322 { 323 return V4L2_DV_BT_FRAME_WIDTH(t); 324 } 325 326 static inline unsigned vtotal(const struct v4l2_bt_timings *t) 327 { 328 return V4L2_DV_BT_FRAME_HEIGHT(t); 329 } 330 331 /* ----------------------------------------------------------------------- */ 332 333 static int adv76xx_read_check(struct adv76xx_state *state, 334 int client_page, u8 reg) 335 { 336 struct i2c_client *client = state->i2c_clients[client_page]; 337 int err; 338 unsigned int val; 339 340 err = regmap_read(state->regmap[client_page], reg, &val); 341 342 if (err) { 343 v4l_err(client, "error reading %02x, %02x\n", 344 client->addr, reg); 345 return err; 346 } 347 return val; 348 } 349 350 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX 351 * size to one or more registers. 352 * 353 * A value of zero will be returned on success, a negative errno will 354 * be returned in error cases. 355 */ 356 static int adv76xx_write_block(struct adv76xx_state *state, int client_page, 357 unsigned int init_reg, const void *val, 358 size_t val_len) 359 { 360 struct regmap *regmap = state->regmap[client_page]; 361 362 if (val_len > I2C_SMBUS_BLOCK_MAX) 363 val_len = I2C_SMBUS_BLOCK_MAX; 364 365 return regmap_raw_write(regmap, init_reg, val, val_len); 366 } 367 368 /* ----------------------------------------------------------------------- */ 369 370 static inline int io_read(struct v4l2_subdev *sd, u8 reg) 371 { 372 struct adv76xx_state *state = to_state(sd); 373 374 return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg); 375 } 376 377 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val) 378 { 379 struct adv76xx_state *state = to_state(sd); 380 381 return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val); 382 } 383 384 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 385 { 386 return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val); 387 } 388 389 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg) 390 { 391 struct adv76xx_state *state = to_state(sd); 392 393 return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg); 394 } 395 396 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val) 397 { 398 struct adv76xx_state *state = to_state(sd); 399 400 return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val); 401 } 402 403 static inline int cec_read(struct v4l2_subdev *sd, u8 reg) 404 { 405 struct adv76xx_state *state = to_state(sd); 406 407 return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg); 408 } 409 410 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val) 411 { 412 struct adv76xx_state *state = to_state(sd); 413 414 return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val); 415 } 416 417 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg) 418 { 419 struct adv76xx_state *state = to_state(sd); 420 421 return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg); 422 } 423 424 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val) 425 { 426 struct adv76xx_state *state = to_state(sd); 427 428 return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val); 429 } 430 431 static inline int afe_read(struct v4l2_subdev *sd, u8 reg) 432 { 433 struct adv76xx_state *state = to_state(sd); 434 435 return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg); 436 } 437 438 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val) 439 { 440 struct adv76xx_state *state = to_state(sd); 441 442 return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val); 443 } 444 445 static inline int rep_read(struct v4l2_subdev *sd, u8 reg) 446 { 447 struct adv76xx_state *state = to_state(sd); 448 449 return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg); 450 } 451 452 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val) 453 { 454 struct adv76xx_state *state = to_state(sd); 455 456 return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val); 457 } 458 459 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 460 { 461 return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val); 462 } 463 464 static inline int edid_read(struct v4l2_subdev *sd, u8 reg) 465 { 466 struct adv76xx_state *state = to_state(sd); 467 468 return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg); 469 } 470 471 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val) 472 { 473 struct adv76xx_state *state = to_state(sd); 474 475 return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val); 476 } 477 478 static inline int edid_write_block(struct v4l2_subdev *sd, 479 unsigned int total_len, const u8 *val) 480 { 481 struct adv76xx_state *state = to_state(sd); 482 int err = 0; 483 int i = 0; 484 int len = 0; 485 486 v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n", 487 __func__, total_len); 488 489 while (!err && i < total_len) { 490 len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ? 491 I2C_SMBUS_BLOCK_MAX : 492 (total_len - i); 493 494 err = adv76xx_write_block(state, ADV76XX_PAGE_EDID, 495 i, val + i, len); 496 i += len; 497 } 498 499 return err; 500 } 501 502 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd) 503 { 504 unsigned int i; 505 506 for (i = 0; i < state->info->num_dv_ports; ++i) 507 gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i)); 508 509 v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd); 510 } 511 512 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work) 513 { 514 struct delayed_work *dwork = to_delayed_work(work); 515 struct adv76xx_state *state = container_of(dwork, struct adv76xx_state, 516 delayed_work_enable_hotplug); 517 struct v4l2_subdev *sd = &state->sd; 518 519 v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__); 520 521 adv76xx_set_hpd(state, state->edid.present); 522 } 523 524 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg) 525 { 526 struct adv76xx_state *state = to_state(sd); 527 528 return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg); 529 } 530 531 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask) 532 { 533 return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask; 534 } 535 536 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val) 537 { 538 struct adv76xx_state *state = to_state(sd); 539 540 return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val); 541 } 542 543 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 544 { 545 return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val); 546 } 547 548 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val) 549 { 550 struct adv76xx_state *state = to_state(sd); 551 552 return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val); 553 } 554 555 static inline int cp_read(struct v4l2_subdev *sd, u8 reg) 556 { 557 struct adv76xx_state *state = to_state(sd); 558 559 return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg); 560 } 561 562 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask) 563 { 564 return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask; 565 } 566 567 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val) 568 { 569 struct adv76xx_state *state = to_state(sd); 570 571 return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val); 572 } 573 574 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 575 { 576 return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val); 577 } 578 579 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg) 580 { 581 struct adv76xx_state *state = to_state(sd); 582 583 return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg); 584 } 585 586 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val) 587 { 588 struct adv76xx_state *state = to_state(sd); 589 590 return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val); 591 } 592 593 #define ADV76XX_REG(page, offset) (((page) << 8) | (offset)) 594 #define ADV76XX_REG_SEQ_TERM 0xffff 595 596 #ifdef CONFIG_VIDEO_ADV_DEBUG 597 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg) 598 { 599 struct adv76xx_state *state = to_state(sd); 600 unsigned int page = reg >> 8; 601 unsigned int val; 602 int err; 603 604 if (!(BIT(page) & state->info->page_mask)) 605 return -EINVAL; 606 607 reg &= 0xff; 608 err = regmap_read(state->regmap[page], reg, &val); 609 610 return err ? err : val; 611 } 612 #endif 613 614 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val) 615 { 616 struct adv76xx_state *state = to_state(sd); 617 unsigned int page = reg >> 8; 618 619 if (!(BIT(page) & state->info->page_mask)) 620 return -EINVAL; 621 622 reg &= 0xff; 623 624 return regmap_write(state->regmap[page], reg, val); 625 } 626 627 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd, 628 const struct adv76xx_reg_seq *reg_seq) 629 { 630 unsigned int i; 631 632 for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++) 633 adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val); 634 } 635 636 /* ----------------------------------------------------------------------------- 637 * Format helpers 638 */ 639 640 static const struct adv76xx_format_info adv7604_formats[] = { 641 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, 642 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, 643 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, 644 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 645 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, 646 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 647 { MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false, 648 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT }, 649 { MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true, 650 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT }, 651 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false, 652 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 653 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true, 654 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 655 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, 656 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 657 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, 658 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 659 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, 660 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 661 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, 662 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 663 { MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false, 664 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 665 { MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true, 666 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 667 { MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false, 668 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 669 { MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true, 670 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 671 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false, 672 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 673 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true, 674 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 675 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false, 676 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 677 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true, 678 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 679 }; 680 681 static const struct adv76xx_format_info adv7611_formats[] = { 682 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, 683 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, 684 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, 685 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 686 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, 687 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 688 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false, 689 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 690 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true, 691 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 692 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, 693 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 694 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, 695 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 696 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, 697 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 698 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, 699 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 700 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false, 701 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 702 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true, 703 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 704 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false, 705 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 706 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true, 707 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 708 }; 709 710 static const struct adv76xx_format_info adv7612_formats[] = { 711 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, 712 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, 713 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, 714 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 715 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, 716 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 717 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, 718 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 719 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, 720 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 721 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, 722 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 723 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, 724 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 725 }; 726 727 static const struct adv76xx_format_info * 728 adv76xx_format_info(struct adv76xx_state *state, u32 code) 729 { 730 unsigned int i; 731 732 for (i = 0; i < state->info->nformats; ++i) { 733 if (state->info->formats[i].code == code) 734 return &state->info->formats[i]; 735 } 736 737 return NULL; 738 } 739 740 /* ----------------------------------------------------------------------- */ 741 742 static inline bool is_analog_input(struct v4l2_subdev *sd) 743 { 744 struct adv76xx_state *state = to_state(sd); 745 746 return state->selected_input == ADV7604_PAD_VGA_RGB || 747 state->selected_input == ADV7604_PAD_VGA_COMP; 748 } 749 750 static inline bool is_digital_input(struct v4l2_subdev *sd) 751 { 752 struct adv76xx_state *state = to_state(sd); 753 754 return state->selected_input == ADV76XX_PAD_HDMI_PORT_A || 755 state->selected_input == ADV7604_PAD_HDMI_PORT_B || 756 state->selected_input == ADV7604_PAD_HDMI_PORT_C || 757 state->selected_input == ADV7604_PAD_HDMI_PORT_D; 758 } 759 760 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = { 761 .type = V4L2_DV_BT_656_1120, 762 /* keep this initialization for compatibility with GCC < 4.4.6 */ 763 .reserved = { 0 }, 764 V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000, 765 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | 766 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT, 767 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING | 768 V4L2_DV_BT_CAP_CUSTOM) 769 }; 770 771 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = { 772 .type = V4L2_DV_BT_656_1120, 773 /* keep this initialization for compatibility with GCC < 4.4.6 */ 774 .reserved = { 0 }, 775 V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 225000000, 776 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | 777 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT, 778 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING | 779 V4L2_DV_BT_CAP_CUSTOM) 780 }; 781 782 static inline const struct v4l2_dv_timings_cap * 783 adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd) 784 { 785 return is_digital_input(sd) ? &adv76xx_timings_cap_digital : 786 &adv7604_timings_cap_analog; 787 } 788 789 790 /* ----------------------------------------------------------------------- */ 791 792 #ifdef CONFIG_VIDEO_ADV_DEBUG 793 static void adv76xx_inv_register(struct v4l2_subdev *sd) 794 { 795 v4l2_info(sd, "0x000-0x0ff: IO Map\n"); 796 v4l2_info(sd, "0x100-0x1ff: AVLink Map\n"); 797 v4l2_info(sd, "0x200-0x2ff: CEC Map\n"); 798 v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n"); 799 v4l2_info(sd, "0x400-0x4ff: ESDP Map\n"); 800 v4l2_info(sd, "0x500-0x5ff: DPP Map\n"); 801 v4l2_info(sd, "0x600-0x6ff: AFE Map\n"); 802 v4l2_info(sd, "0x700-0x7ff: Repeater Map\n"); 803 v4l2_info(sd, "0x800-0x8ff: EDID Map\n"); 804 v4l2_info(sd, "0x900-0x9ff: HDMI Map\n"); 805 v4l2_info(sd, "0xa00-0xaff: Test Map\n"); 806 v4l2_info(sd, "0xb00-0xbff: CP Map\n"); 807 v4l2_info(sd, "0xc00-0xcff: VDP Map\n"); 808 } 809 810 static int adv76xx_g_register(struct v4l2_subdev *sd, 811 struct v4l2_dbg_register *reg) 812 { 813 int ret; 814 815 ret = adv76xx_read_reg(sd, reg->reg); 816 if (ret < 0) { 817 v4l2_info(sd, "Register %03llx not supported\n", reg->reg); 818 adv76xx_inv_register(sd); 819 return ret; 820 } 821 822 reg->size = 1; 823 reg->val = ret; 824 825 return 0; 826 } 827 828 static int adv76xx_s_register(struct v4l2_subdev *sd, 829 const struct v4l2_dbg_register *reg) 830 { 831 int ret; 832 833 ret = adv76xx_write_reg(sd, reg->reg, reg->val); 834 if (ret < 0) { 835 v4l2_info(sd, "Register %03llx not supported\n", reg->reg); 836 adv76xx_inv_register(sd); 837 return ret; 838 } 839 840 return 0; 841 } 842 #endif 843 844 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd) 845 { 846 u8 value = io_read(sd, 0x6f); 847 848 return ((value & 0x10) >> 4) 849 | ((value & 0x08) >> 2) 850 | ((value & 0x04) << 0) 851 | ((value & 0x02) << 2); 852 } 853 854 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd) 855 { 856 u8 value = io_read(sd, 0x6f); 857 858 return value & 1; 859 } 860 861 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd) 862 { 863 /* Reads CABLE_DET_A_RAW. For input B support, need to 864 * account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW) 865 */ 866 u8 value = io_read(sd, 0x6f); 867 868 return value & 1; 869 } 870 871 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd) 872 { 873 struct adv76xx_state *state = to_state(sd); 874 const struct adv76xx_chip_info *info = state->info; 875 876 return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, 877 info->read_cable_det(sd)); 878 } 879 880 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd, 881 u8 prim_mode, 882 const struct adv76xx_video_standards *predef_vid_timings, 883 const struct v4l2_dv_timings *timings) 884 { 885 int i; 886 887 for (i = 0; predef_vid_timings[i].timings.bt.width; i++) { 888 if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings, 889 is_digital_input(sd) ? 250000 : 1000000, false)) 890 continue; 891 io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */ 892 io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) + 893 prim_mode); /* v_freq and prim mode */ 894 return 0; 895 } 896 897 return -1; 898 } 899 900 static int configure_predefined_video_timings(struct v4l2_subdev *sd, 901 struct v4l2_dv_timings *timings) 902 { 903 struct adv76xx_state *state = to_state(sd); 904 int err; 905 906 v4l2_dbg(1, debug, sd, "%s", __func__); 907 908 if (adv76xx_has_afe(state)) { 909 /* reset to default values */ 910 io_write(sd, 0x16, 0x43); 911 io_write(sd, 0x17, 0x5a); 912 } 913 /* disable embedded syncs for auto graphics mode */ 914 cp_write_clr_set(sd, 0x81, 0x10, 0x00); 915 cp_write(sd, 0x8f, 0x00); 916 cp_write(sd, 0x90, 0x00); 917 cp_write(sd, 0xa2, 0x00); 918 cp_write(sd, 0xa3, 0x00); 919 cp_write(sd, 0xa4, 0x00); 920 cp_write(sd, 0xa5, 0x00); 921 cp_write(sd, 0xa6, 0x00); 922 cp_write(sd, 0xa7, 0x00); 923 cp_write(sd, 0xab, 0x00); 924 cp_write(sd, 0xac, 0x00); 925 926 if (is_analog_input(sd)) { 927 err = find_and_set_predefined_video_timings(sd, 928 0x01, adv7604_prim_mode_comp, timings); 929 if (err) 930 err = find_and_set_predefined_video_timings(sd, 931 0x02, adv7604_prim_mode_gr, timings); 932 } else if (is_digital_input(sd)) { 933 err = find_and_set_predefined_video_timings(sd, 934 0x05, adv76xx_prim_mode_hdmi_comp, timings); 935 if (err) 936 err = find_and_set_predefined_video_timings(sd, 937 0x06, adv76xx_prim_mode_hdmi_gr, timings); 938 } else { 939 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 940 __func__, state->selected_input); 941 err = -1; 942 } 943 944 945 return err; 946 } 947 948 static void configure_custom_video_timings(struct v4l2_subdev *sd, 949 const struct v4l2_bt_timings *bt) 950 { 951 struct adv76xx_state *state = to_state(sd); 952 u32 width = htotal(bt); 953 u32 height = vtotal(bt); 954 u16 cp_start_sav = bt->hsync + bt->hbackporch - 4; 955 u16 cp_start_eav = width - bt->hfrontporch; 956 u16 cp_start_vbi = height - bt->vfrontporch; 957 u16 cp_end_vbi = bt->vsync + bt->vbackporch; 958 u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ? 959 ((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0; 960 const u8 pll[2] = { 961 0xc0 | ((width >> 8) & 0x1f), 962 width & 0xff 963 }; 964 965 v4l2_dbg(2, debug, sd, "%s\n", __func__); 966 967 if (is_analog_input(sd)) { 968 /* auto graphics */ 969 io_write(sd, 0x00, 0x07); /* video std */ 970 io_write(sd, 0x01, 0x02); /* prim mode */ 971 /* enable embedded syncs for auto graphics mode */ 972 cp_write_clr_set(sd, 0x81, 0x10, 0x10); 973 974 /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */ 975 /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */ 976 /* IO-map reg. 0x16 and 0x17 should be written in sequence */ 977 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO], 978 0x16, pll, 2)) 979 v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n"); 980 981 /* active video - horizontal timing */ 982 cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff); 983 cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) | 984 ((cp_start_eav >> 8) & 0x0f)); 985 cp_write(sd, 0xa4, cp_start_eav & 0xff); 986 987 /* active video - vertical timing */ 988 cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff); 989 cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) | 990 ((cp_end_vbi >> 8) & 0xf)); 991 cp_write(sd, 0xa7, cp_end_vbi & 0xff); 992 } else if (is_digital_input(sd)) { 993 /* set default prim_mode/vid_std for HDMI 994 according to [REF_03, c. 4.2] */ 995 io_write(sd, 0x00, 0x02); /* video std */ 996 io_write(sd, 0x01, 0x06); /* prim mode */ 997 } else { 998 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 999 __func__, state->selected_input); 1000 } 1001 1002 cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7); 1003 cp_write(sd, 0x90, ch1_fr_ll & 0xff); 1004 cp_write(sd, 0xab, (height >> 4) & 0xff); 1005 cp_write(sd, 0xac, (height & 0x0f) << 4); 1006 } 1007 1008 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c) 1009 { 1010 struct adv76xx_state *state = to_state(sd); 1011 u8 offset_buf[4]; 1012 1013 if (auto_offset) { 1014 offset_a = 0x3ff; 1015 offset_b = 0x3ff; 1016 offset_c = 0x3ff; 1017 } 1018 1019 v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n", 1020 __func__, auto_offset ? "Auto" : "Manual", 1021 offset_a, offset_b, offset_c); 1022 1023 offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4); 1024 offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6); 1025 offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8); 1026 offset_buf[3] = offset_c & 0x0ff; 1027 1028 /* Registers must be written in this order with no i2c access in between */ 1029 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP], 1030 0x77, offset_buf, 4)) 1031 v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__); 1032 } 1033 1034 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c) 1035 { 1036 struct adv76xx_state *state = to_state(sd); 1037 u8 gain_buf[4]; 1038 u8 gain_man = 1; 1039 u8 agc_mode_man = 1; 1040 1041 if (auto_gain) { 1042 gain_man = 0; 1043 agc_mode_man = 0; 1044 gain_a = 0x100; 1045 gain_b = 0x100; 1046 gain_c = 0x100; 1047 } 1048 1049 v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n", 1050 __func__, auto_gain ? "Auto" : "Manual", 1051 gain_a, gain_b, gain_c); 1052 1053 gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4)); 1054 gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6)); 1055 gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8)); 1056 gain_buf[3] = ((gain_c & 0x0ff)); 1057 1058 /* Registers must be written in this order with no i2c access in between */ 1059 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP], 1060 0x73, gain_buf, 4)) 1061 v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__); 1062 } 1063 1064 static void set_rgb_quantization_range(struct v4l2_subdev *sd) 1065 { 1066 struct adv76xx_state *state = to_state(sd); 1067 bool rgb_output = io_read(sd, 0x02) & 0x02; 1068 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80; 1069 1070 v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n", 1071 __func__, state->rgb_quantization_range, 1072 rgb_output, hdmi_signal); 1073 1074 adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0); 1075 adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0); 1076 1077 switch (state->rgb_quantization_range) { 1078 case V4L2_DV_RGB_RANGE_AUTO: 1079 if (state->selected_input == ADV7604_PAD_VGA_RGB) { 1080 /* Receiving analog RGB signal 1081 * Set RGB full range (0-255) */ 1082 io_write_clr_set(sd, 0x02, 0xf0, 0x10); 1083 break; 1084 } 1085 1086 if (state->selected_input == ADV7604_PAD_VGA_COMP) { 1087 /* Receiving analog YPbPr signal 1088 * Set automode */ 1089 io_write_clr_set(sd, 0x02, 0xf0, 0xf0); 1090 break; 1091 } 1092 1093 if (hdmi_signal) { 1094 /* Receiving HDMI signal 1095 * Set automode */ 1096 io_write_clr_set(sd, 0x02, 0xf0, 0xf0); 1097 break; 1098 } 1099 1100 /* Receiving DVI-D signal 1101 * ADV7604 selects RGB limited range regardless of 1102 * input format (CE/IT) in automatic mode */ 1103 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) { 1104 /* RGB limited range (16-235) */ 1105 io_write_clr_set(sd, 0x02, 0xf0, 0x00); 1106 } else { 1107 /* RGB full range (0-255) */ 1108 io_write_clr_set(sd, 0x02, 0xf0, 0x10); 1109 1110 if (is_digital_input(sd) && rgb_output) { 1111 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40); 1112 } else { 1113 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0); 1114 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70); 1115 } 1116 } 1117 break; 1118 case V4L2_DV_RGB_RANGE_LIMITED: 1119 if (state->selected_input == ADV7604_PAD_VGA_COMP) { 1120 /* YCrCb limited range (16-235) */ 1121 io_write_clr_set(sd, 0x02, 0xf0, 0x20); 1122 break; 1123 } 1124 1125 /* RGB limited range (16-235) */ 1126 io_write_clr_set(sd, 0x02, 0xf0, 0x00); 1127 1128 break; 1129 case V4L2_DV_RGB_RANGE_FULL: 1130 if (state->selected_input == ADV7604_PAD_VGA_COMP) { 1131 /* YCrCb full range (0-255) */ 1132 io_write_clr_set(sd, 0x02, 0xf0, 0x60); 1133 break; 1134 } 1135 1136 /* RGB full range (0-255) */ 1137 io_write_clr_set(sd, 0x02, 0xf0, 0x10); 1138 1139 if (is_analog_input(sd) || hdmi_signal) 1140 break; 1141 1142 /* Adjust gain/offset for DVI-D signals only */ 1143 if (rgb_output) { 1144 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40); 1145 } else { 1146 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0); 1147 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70); 1148 } 1149 break; 1150 } 1151 } 1152 1153 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl) 1154 { 1155 struct v4l2_subdev *sd = 1156 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd; 1157 1158 struct adv76xx_state *state = to_state(sd); 1159 1160 switch (ctrl->id) { 1161 case V4L2_CID_BRIGHTNESS: 1162 cp_write(sd, 0x3c, ctrl->val); 1163 return 0; 1164 case V4L2_CID_CONTRAST: 1165 cp_write(sd, 0x3a, ctrl->val); 1166 return 0; 1167 case V4L2_CID_SATURATION: 1168 cp_write(sd, 0x3b, ctrl->val); 1169 return 0; 1170 case V4L2_CID_HUE: 1171 cp_write(sd, 0x3d, ctrl->val); 1172 return 0; 1173 case V4L2_CID_DV_RX_RGB_RANGE: 1174 state->rgb_quantization_range = ctrl->val; 1175 set_rgb_quantization_range(sd); 1176 return 0; 1177 case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE: 1178 if (!adv76xx_has_afe(state)) 1179 return -EINVAL; 1180 /* Set the analog sampling phase. This is needed to find the 1181 best sampling phase for analog video: an application or 1182 driver has to try a number of phases and analyze the picture 1183 quality before settling on the best performing phase. */ 1184 afe_write(sd, 0xc8, ctrl->val); 1185 return 0; 1186 case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL: 1187 /* Use the default blue color for free running mode, 1188 or supply your own. */ 1189 cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2); 1190 return 0; 1191 case V4L2_CID_ADV_RX_FREE_RUN_COLOR: 1192 cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16); 1193 cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8); 1194 cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff)); 1195 return 0; 1196 } 1197 return -EINVAL; 1198 } 1199 1200 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 1201 { 1202 struct v4l2_subdev *sd = 1203 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd; 1204 1205 if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) { 1206 ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC; 1207 if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80)) 1208 ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3; 1209 return 0; 1210 } 1211 return -EINVAL; 1212 } 1213 1214 /* ----------------------------------------------------------------------- */ 1215 1216 static inline bool no_power(struct v4l2_subdev *sd) 1217 { 1218 /* Entire chip or CP powered off */ 1219 return io_read(sd, 0x0c) & 0x24; 1220 } 1221 1222 static inline bool no_signal_tmds(struct v4l2_subdev *sd) 1223 { 1224 struct adv76xx_state *state = to_state(sd); 1225 1226 return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input)); 1227 } 1228 1229 static inline bool no_lock_tmds(struct v4l2_subdev *sd) 1230 { 1231 struct adv76xx_state *state = to_state(sd); 1232 const struct adv76xx_chip_info *info = state->info; 1233 1234 return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask; 1235 } 1236 1237 static inline bool is_hdmi(struct v4l2_subdev *sd) 1238 { 1239 return hdmi_read(sd, 0x05) & 0x80; 1240 } 1241 1242 static inline bool no_lock_sspd(struct v4l2_subdev *sd) 1243 { 1244 struct adv76xx_state *state = to_state(sd); 1245 1246 /* 1247 * Chips without a AFE don't expose registers for the SSPD, so just assume 1248 * that we have a lock. 1249 */ 1250 if (adv76xx_has_afe(state)) 1251 return false; 1252 1253 /* TODO channel 2 */ 1254 return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0); 1255 } 1256 1257 static inline bool no_lock_stdi(struct v4l2_subdev *sd) 1258 { 1259 /* TODO channel 2 */ 1260 return !(cp_read(sd, 0xb1) & 0x80); 1261 } 1262 1263 static inline bool no_signal(struct v4l2_subdev *sd) 1264 { 1265 bool ret; 1266 1267 ret = no_power(sd); 1268 1269 ret |= no_lock_stdi(sd); 1270 ret |= no_lock_sspd(sd); 1271 1272 if (is_digital_input(sd)) { 1273 ret |= no_lock_tmds(sd); 1274 ret |= no_signal_tmds(sd); 1275 } 1276 1277 return ret; 1278 } 1279 1280 static inline bool no_lock_cp(struct v4l2_subdev *sd) 1281 { 1282 struct adv76xx_state *state = to_state(sd); 1283 1284 if (!adv76xx_has_afe(state)) 1285 return false; 1286 1287 /* CP has detected a non standard number of lines on the incoming 1288 video compared to what it is configured to receive by s_dv_timings */ 1289 return io_read(sd, 0x12) & 0x01; 1290 } 1291 1292 static inline bool in_free_run(struct v4l2_subdev *sd) 1293 { 1294 return cp_read(sd, 0xff) & 0x10; 1295 } 1296 1297 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status) 1298 { 1299 *status = 0; 1300 *status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0; 1301 *status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0; 1302 if (!in_free_run(sd) && no_lock_cp(sd)) 1303 *status |= is_digital_input(sd) ? 1304 V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK; 1305 1306 v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status); 1307 1308 return 0; 1309 } 1310 1311 /* ----------------------------------------------------------------------- */ 1312 1313 struct stdi_readback { 1314 u16 bl, lcf, lcvs; 1315 u8 hs_pol, vs_pol; 1316 bool interlaced; 1317 }; 1318 1319 static int stdi2dv_timings(struct v4l2_subdev *sd, 1320 struct stdi_readback *stdi, 1321 struct v4l2_dv_timings *timings) 1322 { 1323 struct adv76xx_state *state = to_state(sd); 1324 u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl; 1325 u32 pix_clk; 1326 int i; 1327 1328 for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) { 1329 const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt; 1330 1331 if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i], 1332 adv76xx_get_dv_timings_cap(sd), 1333 adv76xx_check_dv_timings, NULL)) 1334 continue; 1335 if (vtotal(bt) != stdi->lcf + 1) 1336 continue; 1337 if (bt->vsync != stdi->lcvs) 1338 continue; 1339 1340 pix_clk = hfreq * htotal(bt); 1341 1342 if ((pix_clk < bt->pixelclock + 1000000) && 1343 (pix_clk > bt->pixelclock - 1000000)) { 1344 *timings = v4l2_dv_timings_presets[i]; 1345 return 0; 1346 } 1347 } 1348 1349 if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0, 1350 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) | 1351 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0), 1352 false, timings)) 1353 return 0; 1354 if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs, 1355 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) | 1356 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0), 1357 false, state->aspect_ratio, timings)) 1358 return 0; 1359 1360 v4l2_dbg(2, debug, sd, 1361 "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n", 1362 __func__, stdi->lcvs, stdi->lcf, stdi->bl, 1363 stdi->hs_pol, stdi->vs_pol); 1364 return -1; 1365 } 1366 1367 1368 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi) 1369 { 1370 struct adv76xx_state *state = to_state(sd); 1371 const struct adv76xx_chip_info *info = state->info; 1372 u8 polarity; 1373 1374 if (no_lock_stdi(sd) || no_lock_sspd(sd)) { 1375 v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__); 1376 return -1; 1377 } 1378 1379 /* read STDI */ 1380 stdi->bl = cp_read16(sd, 0xb1, 0x3fff); 1381 stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff); 1382 stdi->lcvs = cp_read(sd, 0xb3) >> 3; 1383 stdi->interlaced = io_read(sd, 0x12) & 0x10; 1384 1385 if (adv76xx_has_afe(state)) { 1386 /* read SSPD */ 1387 polarity = cp_read(sd, 0xb5); 1388 if ((polarity & 0x03) == 0x01) { 1389 stdi->hs_pol = polarity & 0x10 1390 ? (polarity & 0x08 ? '+' : '-') : 'x'; 1391 stdi->vs_pol = polarity & 0x40 1392 ? (polarity & 0x20 ? '+' : '-') : 'x'; 1393 } else { 1394 stdi->hs_pol = 'x'; 1395 stdi->vs_pol = 'x'; 1396 } 1397 } else { 1398 polarity = hdmi_read(sd, 0x05); 1399 stdi->hs_pol = polarity & 0x20 ? '+' : '-'; 1400 stdi->vs_pol = polarity & 0x10 ? '+' : '-'; 1401 } 1402 1403 if (no_lock_stdi(sd) || no_lock_sspd(sd)) { 1404 v4l2_dbg(2, debug, sd, 1405 "%s: signal lost during readout of STDI/SSPD\n", __func__); 1406 return -1; 1407 } 1408 1409 if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) { 1410 v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__); 1411 memset(stdi, 0, sizeof(struct stdi_readback)); 1412 return -1; 1413 } 1414 1415 v4l2_dbg(2, debug, sd, 1416 "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n", 1417 __func__, stdi->lcf, stdi->bl, stdi->lcvs, 1418 stdi->hs_pol, stdi->vs_pol, 1419 stdi->interlaced ? "interlaced" : "progressive"); 1420 1421 return 0; 1422 } 1423 1424 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd, 1425 struct v4l2_enum_dv_timings *timings) 1426 { 1427 struct adv76xx_state *state = to_state(sd); 1428 1429 if (timings->pad >= state->source_pad) 1430 return -EINVAL; 1431 1432 return v4l2_enum_dv_timings_cap(timings, 1433 adv76xx_get_dv_timings_cap(sd), adv76xx_check_dv_timings, NULL); 1434 } 1435 1436 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd, 1437 struct v4l2_dv_timings_cap *cap) 1438 { 1439 struct adv76xx_state *state = to_state(sd); 1440 1441 if (cap->pad >= state->source_pad) 1442 return -EINVAL; 1443 1444 *cap = *adv76xx_get_dv_timings_cap(sd); 1445 return 0; 1446 } 1447 1448 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings 1449 if the format is listed in adv76xx_timings[] */ 1450 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd, 1451 struct v4l2_dv_timings *timings) 1452 { 1453 v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd), 1454 is_digital_input(sd) ? 250000 : 1000000, 1455 adv76xx_check_dv_timings, NULL); 1456 } 1457 1458 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd) 1459 { 1460 unsigned int freq; 1461 int a, b; 1462 1463 a = hdmi_read(sd, 0x06); 1464 b = hdmi_read(sd, 0x3b); 1465 if (a < 0 || b < 0) 1466 return 0; 1467 freq = a * 1000000 + ((b & 0x30) >> 4) * 250000; 1468 1469 if (is_hdmi(sd)) { 1470 /* adjust for deep color mode */ 1471 unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8; 1472 1473 freq = freq * 8 / bits_per_channel; 1474 } 1475 1476 return freq; 1477 } 1478 1479 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd) 1480 { 1481 int a, b; 1482 1483 a = hdmi_read(sd, 0x51); 1484 b = hdmi_read(sd, 0x52); 1485 if (a < 0 || b < 0) 1486 return 0; 1487 return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128; 1488 } 1489 1490 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd, 1491 struct v4l2_dv_timings *timings) 1492 { 1493 struct adv76xx_state *state = to_state(sd); 1494 const struct adv76xx_chip_info *info = state->info; 1495 struct v4l2_bt_timings *bt = &timings->bt; 1496 struct stdi_readback stdi; 1497 1498 if (!timings) 1499 return -EINVAL; 1500 1501 memset(timings, 0, sizeof(struct v4l2_dv_timings)); 1502 1503 if (no_signal(sd)) { 1504 state->restart_stdi_once = true; 1505 v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__); 1506 return -ENOLINK; 1507 } 1508 1509 /* read STDI */ 1510 if (read_stdi(sd, &stdi)) { 1511 v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__); 1512 return -ENOLINK; 1513 } 1514 bt->interlaced = stdi.interlaced ? 1515 V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE; 1516 1517 if (is_digital_input(sd)) { 1518 timings->type = V4L2_DV_BT_656_1120; 1519 1520 bt->width = hdmi_read16(sd, 0x07, info->linewidth_mask); 1521 bt->height = hdmi_read16(sd, 0x09, info->field0_height_mask); 1522 bt->pixelclock = info->read_hdmi_pixelclock(sd); 1523 bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask); 1524 bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask); 1525 bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask); 1526 bt->vfrontporch = hdmi_read16(sd, 0x2a, 1527 info->field0_vfrontporch_mask) / 2; 1528 bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2; 1529 bt->vbackporch = hdmi_read16(sd, 0x32, 1530 info->field0_vbackporch_mask) / 2; 1531 bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) | 1532 ((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0); 1533 if (bt->interlaced == V4L2_DV_INTERLACED) { 1534 bt->height += hdmi_read16(sd, 0x0b, 1535 info->field1_height_mask); 1536 bt->il_vfrontporch = hdmi_read16(sd, 0x2c, 1537 info->field1_vfrontporch_mask) / 2; 1538 bt->il_vsync = hdmi_read16(sd, 0x30, 1539 info->field1_vsync_mask) / 2; 1540 bt->il_vbackporch = hdmi_read16(sd, 0x34, 1541 info->field1_vbackporch_mask) / 2; 1542 } 1543 adv76xx_fill_optional_dv_timings_fields(sd, timings); 1544 } else { 1545 /* find format 1546 * Since LCVS values are inaccurate [REF_03, p. 275-276], 1547 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails. 1548 */ 1549 if (!stdi2dv_timings(sd, &stdi, timings)) 1550 goto found; 1551 stdi.lcvs += 1; 1552 v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs); 1553 if (!stdi2dv_timings(sd, &stdi, timings)) 1554 goto found; 1555 stdi.lcvs -= 2; 1556 v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs); 1557 if (stdi2dv_timings(sd, &stdi, timings)) { 1558 /* 1559 * The STDI block may measure wrong values, especially 1560 * for lcvs and lcf. If the driver can not find any 1561 * valid timing, the STDI block is restarted to measure 1562 * the video timings again. The function will return an 1563 * error, but the restart of STDI will generate a new 1564 * STDI interrupt and the format detection process will 1565 * restart. 1566 */ 1567 if (state->restart_stdi_once) { 1568 v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__); 1569 /* TODO restart STDI for Sync Channel 2 */ 1570 /* enter one-shot mode */ 1571 cp_write_clr_set(sd, 0x86, 0x06, 0x00); 1572 /* trigger STDI restart */ 1573 cp_write_clr_set(sd, 0x86, 0x06, 0x04); 1574 /* reset to continuous mode */ 1575 cp_write_clr_set(sd, 0x86, 0x06, 0x02); 1576 state->restart_stdi_once = false; 1577 return -ENOLINK; 1578 } 1579 v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__); 1580 return -ERANGE; 1581 } 1582 state->restart_stdi_once = true; 1583 } 1584 found: 1585 1586 if (no_signal(sd)) { 1587 v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__); 1588 memset(timings, 0, sizeof(struct v4l2_dv_timings)); 1589 return -ENOLINK; 1590 } 1591 1592 if ((is_analog_input(sd) && bt->pixelclock > 170000000) || 1593 (is_digital_input(sd) && bt->pixelclock > 225000000)) { 1594 v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n", 1595 __func__, (u32)bt->pixelclock); 1596 return -ERANGE; 1597 } 1598 1599 if (debug > 1) 1600 v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ", 1601 timings, true); 1602 1603 return 0; 1604 } 1605 1606 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd, 1607 struct v4l2_dv_timings *timings) 1608 { 1609 struct adv76xx_state *state = to_state(sd); 1610 struct v4l2_bt_timings *bt; 1611 int err; 1612 1613 if (!timings) 1614 return -EINVAL; 1615 1616 if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) { 1617 v4l2_dbg(1, debug, sd, "%s: no change\n", __func__); 1618 return 0; 1619 } 1620 1621 bt = &timings->bt; 1622 1623 if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd), 1624 adv76xx_check_dv_timings, NULL)) 1625 return -ERANGE; 1626 1627 adv76xx_fill_optional_dv_timings_fields(sd, timings); 1628 1629 state->timings = *timings; 1630 1631 cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00); 1632 1633 /* Use prim_mode and vid_std when available */ 1634 err = configure_predefined_video_timings(sd, timings); 1635 if (err) { 1636 /* custom settings when the video format 1637 does not have prim_mode/vid_std */ 1638 configure_custom_video_timings(sd, bt); 1639 } 1640 1641 set_rgb_quantization_range(sd); 1642 1643 if (debug > 1) 1644 v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ", 1645 timings, true); 1646 return 0; 1647 } 1648 1649 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd, 1650 struct v4l2_dv_timings *timings) 1651 { 1652 struct adv76xx_state *state = to_state(sd); 1653 1654 *timings = state->timings; 1655 return 0; 1656 } 1657 1658 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable) 1659 { 1660 hdmi_write(sd, 0x01, enable ? 0x00 : 0x78); 1661 } 1662 1663 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable) 1664 { 1665 hdmi_write(sd, 0x83, enable ? 0xfe : 0xff); 1666 } 1667 1668 static void enable_input(struct v4l2_subdev *sd) 1669 { 1670 struct adv76xx_state *state = to_state(sd); 1671 1672 if (is_analog_input(sd)) { 1673 io_write(sd, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */ 1674 } else if (is_digital_input(sd)) { 1675 hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input); 1676 state->info->set_termination(sd, true); 1677 io_write(sd, 0x15, 0xa0); /* Disable Tristate of Pins */ 1678 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */ 1679 } else { 1680 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 1681 __func__, state->selected_input); 1682 } 1683 } 1684 1685 static void disable_input(struct v4l2_subdev *sd) 1686 { 1687 struct adv76xx_state *state = to_state(sd); 1688 1689 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */ 1690 msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */ 1691 io_write(sd, 0x15, 0xbe); /* Tristate all outputs from video core */ 1692 state->info->set_termination(sd, false); 1693 } 1694 1695 static void select_input(struct v4l2_subdev *sd) 1696 { 1697 struct adv76xx_state *state = to_state(sd); 1698 const struct adv76xx_chip_info *info = state->info; 1699 1700 if (is_analog_input(sd)) { 1701 adv76xx_write_reg_seq(sd, info->recommended_settings[0]); 1702 1703 afe_write(sd, 0x00, 0x08); /* power up ADC */ 1704 afe_write(sd, 0x01, 0x06); /* power up Analog Front End */ 1705 afe_write(sd, 0xc8, 0x00); /* phase control */ 1706 } else if (is_digital_input(sd)) { 1707 hdmi_write(sd, 0x00, state->selected_input & 0x03); 1708 1709 adv76xx_write_reg_seq(sd, info->recommended_settings[1]); 1710 1711 if (adv76xx_has_afe(state)) { 1712 afe_write(sd, 0x00, 0xff); /* power down ADC */ 1713 afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */ 1714 afe_write(sd, 0xc8, 0x40); /* phase control */ 1715 } 1716 1717 cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */ 1718 cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */ 1719 cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */ 1720 } else { 1721 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 1722 __func__, state->selected_input); 1723 } 1724 } 1725 1726 static int adv76xx_s_routing(struct v4l2_subdev *sd, 1727 u32 input, u32 output, u32 config) 1728 { 1729 struct adv76xx_state *state = to_state(sd); 1730 1731 v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d", 1732 __func__, input, state->selected_input); 1733 1734 if (input == state->selected_input) 1735 return 0; 1736 1737 if (input > state->info->max_port) 1738 return -EINVAL; 1739 1740 state->selected_input = input; 1741 1742 disable_input(sd); 1743 select_input(sd); 1744 enable_input(sd); 1745 1746 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt); 1747 1748 return 0; 1749 } 1750 1751 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd, 1752 struct v4l2_subdev_pad_config *cfg, 1753 struct v4l2_subdev_mbus_code_enum *code) 1754 { 1755 struct adv76xx_state *state = to_state(sd); 1756 1757 if (code->index >= state->info->nformats) 1758 return -EINVAL; 1759 1760 code->code = state->info->formats[code->index].code; 1761 1762 return 0; 1763 } 1764 1765 static void adv76xx_fill_format(struct adv76xx_state *state, 1766 struct v4l2_mbus_framefmt *format) 1767 { 1768 memset(format, 0, sizeof(*format)); 1769 1770 format->width = state->timings.bt.width; 1771 format->height = state->timings.bt.height; 1772 format->field = V4L2_FIELD_NONE; 1773 format->colorspace = V4L2_COLORSPACE_SRGB; 1774 1775 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) 1776 format->colorspace = (state->timings.bt.height <= 576) ? 1777 V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709; 1778 } 1779 1780 /* 1781 * Compute the op_ch_sel value required to obtain on the bus the component order 1782 * corresponding to the selected format taking into account bus reordering 1783 * applied by the board at the output of the device. 1784 * 1785 * The following table gives the op_ch_value from the format component order 1786 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as 1787 * adv76xx_bus_order value in row). 1788 * 1789 * | GBR(0) GRB(1) BGR(2) RGB(3) BRG(4) RBG(5) 1790 * ----------+------------------------------------------------- 1791 * RGB (NOP) | GBR GRB BGR RGB BRG RBG 1792 * GRB (1-2) | BGR RGB GBR GRB RBG BRG 1793 * RBG (2-3) | GRB GBR BRG RBG BGR RGB 1794 * BGR (1-3) | RBG BRG RGB BGR GRB GBR 1795 * BRG (ROR) | BRG RBG GRB GBR RGB BGR 1796 * GBR (ROL) | RGB BGR RBG BRG GBR GRB 1797 */ 1798 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state) 1799 { 1800 #define _SEL(a,b,c,d,e,f) { \ 1801 ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \ 1802 ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f } 1803 #define _BUS(x) [ADV7604_BUS_ORDER_##x] 1804 1805 static const unsigned int op_ch_sel[6][6] = { 1806 _BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG), 1807 _BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG), 1808 _BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB), 1809 _BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR), 1810 _BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR), 1811 _BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB), 1812 }; 1813 1814 return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5]; 1815 } 1816 1817 static void adv76xx_setup_format(struct adv76xx_state *state) 1818 { 1819 struct v4l2_subdev *sd = &state->sd; 1820 1821 io_write_clr_set(sd, 0x02, 0x02, 1822 state->format->rgb_out ? ADV76XX_RGB_OUT : 0); 1823 io_write(sd, 0x03, state->format->op_format_sel | 1824 state->pdata.op_format_mode_sel); 1825 io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state)); 1826 io_write_clr_set(sd, 0x05, 0x01, 1827 state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0); 1828 } 1829 1830 static int adv76xx_get_format(struct v4l2_subdev *sd, 1831 struct v4l2_subdev_pad_config *cfg, 1832 struct v4l2_subdev_format *format) 1833 { 1834 struct adv76xx_state *state = to_state(sd); 1835 1836 if (format->pad != state->source_pad) 1837 return -EINVAL; 1838 1839 adv76xx_fill_format(state, &format->format); 1840 1841 if (format->which == V4L2_SUBDEV_FORMAT_TRY) { 1842 struct v4l2_mbus_framefmt *fmt; 1843 1844 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad); 1845 format->format.code = fmt->code; 1846 } else { 1847 format->format.code = state->format->code; 1848 } 1849 1850 return 0; 1851 } 1852 1853 static int adv76xx_get_selection(struct v4l2_subdev *sd, 1854 struct v4l2_subdev_pad_config *cfg, 1855 struct v4l2_subdev_selection *sel) 1856 { 1857 struct adv76xx_state *state = to_state(sd); 1858 1859 if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE) 1860 return -EINVAL; 1861 /* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */ 1862 if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS) 1863 return -EINVAL; 1864 1865 sel->r.left = 0; 1866 sel->r.top = 0; 1867 sel->r.width = state->timings.bt.width; 1868 sel->r.height = state->timings.bt.height; 1869 1870 return 0; 1871 } 1872 1873 static int adv76xx_set_format(struct v4l2_subdev *sd, 1874 struct v4l2_subdev_pad_config *cfg, 1875 struct v4l2_subdev_format *format) 1876 { 1877 struct adv76xx_state *state = to_state(sd); 1878 const struct adv76xx_format_info *info; 1879 1880 if (format->pad != state->source_pad) 1881 return -EINVAL; 1882 1883 info = adv76xx_format_info(state, format->format.code); 1884 if (info == NULL) 1885 info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8); 1886 1887 adv76xx_fill_format(state, &format->format); 1888 format->format.code = info->code; 1889 1890 if (format->which == V4L2_SUBDEV_FORMAT_TRY) { 1891 struct v4l2_mbus_framefmt *fmt; 1892 1893 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad); 1894 fmt->code = format->format.code; 1895 } else { 1896 state->format = info; 1897 adv76xx_setup_format(state); 1898 } 1899 1900 return 0; 1901 } 1902 1903 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled) 1904 { 1905 struct adv76xx_state *state = to_state(sd); 1906 const struct adv76xx_chip_info *info = state->info; 1907 const u8 irq_reg_0x43 = io_read(sd, 0x43); 1908 const u8 irq_reg_0x6b = io_read(sd, 0x6b); 1909 const u8 irq_reg_0x70 = io_read(sd, 0x70); 1910 u8 fmt_change_digital; 1911 u8 fmt_change; 1912 u8 tx_5v; 1913 1914 if (irq_reg_0x43) 1915 io_write(sd, 0x44, irq_reg_0x43); 1916 if (irq_reg_0x70) 1917 io_write(sd, 0x71, irq_reg_0x70); 1918 if (irq_reg_0x6b) 1919 io_write(sd, 0x6c, irq_reg_0x6b); 1920 1921 v4l2_dbg(2, debug, sd, "%s: ", __func__); 1922 1923 /* format change */ 1924 fmt_change = irq_reg_0x43 & 0x98; 1925 fmt_change_digital = is_digital_input(sd) 1926 ? irq_reg_0x6b & info->fmt_change_digital_mask 1927 : 0; 1928 1929 if (fmt_change || fmt_change_digital) { 1930 v4l2_dbg(1, debug, sd, 1931 "%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n", 1932 __func__, fmt_change, fmt_change_digital); 1933 1934 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt); 1935 1936 if (handled) 1937 *handled = true; 1938 } 1939 /* HDMI/DVI mode */ 1940 if (irq_reg_0x6b & 0x01) { 1941 v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__, 1942 (io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI"); 1943 set_rgb_quantization_range(sd); 1944 if (handled) 1945 *handled = true; 1946 } 1947 1948 /* tx 5v detect */ 1949 tx_5v = io_read(sd, 0x70) & info->cable_det_mask; 1950 if (tx_5v) { 1951 v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v); 1952 io_write(sd, 0x71, tx_5v); 1953 adv76xx_s_detect_tx_5v_ctrl(sd); 1954 if (handled) 1955 *handled = true; 1956 } 1957 return 0; 1958 } 1959 1960 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid) 1961 { 1962 struct adv76xx_state *state = to_state(sd); 1963 u8 *data = NULL; 1964 1965 memset(edid->reserved, 0, sizeof(edid->reserved)); 1966 1967 switch (edid->pad) { 1968 case ADV76XX_PAD_HDMI_PORT_A: 1969 case ADV7604_PAD_HDMI_PORT_B: 1970 case ADV7604_PAD_HDMI_PORT_C: 1971 case ADV7604_PAD_HDMI_PORT_D: 1972 if (state->edid.present & (1 << edid->pad)) 1973 data = state->edid.edid; 1974 break; 1975 default: 1976 return -EINVAL; 1977 } 1978 1979 if (edid->start_block == 0 && edid->blocks == 0) { 1980 edid->blocks = data ? state->edid.blocks : 0; 1981 return 0; 1982 } 1983 1984 if (data == NULL) 1985 return -ENODATA; 1986 1987 if (edid->start_block >= state->edid.blocks) 1988 return -EINVAL; 1989 1990 if (edid->start_block + edid->blocks > state->edid.blocks) 1991 edid->blocks = state->edid.blocks - edid->start_block; 1992 1993 memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128); 1994 1995 return 0; 1996 } 1997 1998 static int get_edid_spa_location(const u8 *edid) 1999 { 2000 u8 d; 2001 2002 if ((edid[0x7e] != 1) || 2003 (edid[0x80] != 0x02) || 2004 (edid[0x81] != 0x03)) { 2005 return -1; 2006 } 2007 2008 /* search Vendor Specific Data Block (tag 3) */ 2009 d = edid[0x82] & 0x7f; 2010 if (d > 4) { 2011 int i = 0x84; 2012 int end = 0x80 + d; 2013 2014 do { 2015 u8 tag = edid[i] >> 5; 2016 u8 len = edid[i] & 0x1f; 2017 2018 if ((tag == 3) && (len >= 5)) 2019 return i + 4; 2020 i += len + 1; 2021 } while (i < end); 2022 } 2023 return -1; 2024 } 2025 2026 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid) 2027 { 2028 struct adv76xx_state *state = to_state(sd); 2029 const struct adv76xx_chip_info *info = state->info; 2030 int spa_loc; 2031 int err; 2032 int i; 2033 2034 memset(edid->reserved, 0, sizeof(edid->reserved)); 2035 2036 if (edid->pad > ADV7604_PAD_HDMI_PORT_D) 2037 return -EINVAL; 2038 if (edid->start_block != 0) 2039 return -EINVAL; 2040 if (edid->blocks == 0) { 2041 /* Disable hotplug and I2C access to EDID RAM from DDC port */ 2042 state->edid.present &= ~(1 << edid->pad); 2043 adv76xx_set_hpd(state, state->edid.present); 2044 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present); 2045 2046 /* Fall back to a 16:9 aspect ratio */ 2047 state->aspect_ratio.numerator = 16; 2048 state->aspect_ratio.denominator = 9; 2049 2050 if (!state->edid.present) 2051 state->edid.blocks = 0; 2052 2053 v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n", 2054 __func__, edid->pad, state->edid.present); 2055 return 0; 2056 } 2057 if (edid->blocks > 2) { 2058 edid->blocks = 2; 2059 return -E2BIG; 2060 } 2061 2062 v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n", 2063 __func__, edid->pad, state->edid.present); 2064 2065 /* Disable hotplug and I2C access to EDID RAM from DDC port */ 2066 cancel_delayed_work_sync(&state->delayed_work_enable_hotplug); 2067 adv76xx_set_hpd(state, 0); 2068 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00); 2069 2070 spa_loc = get_edid_spa_location(edid->edid); 2071 if (spa_loc < 0) 2072 spa_loc = 0xc0; /* Default value [REF_02, p. 116] */ 2073 2074 switch (edid->pad) { 2075 case ADV76XX_PAD_HDMI_PORT_A: 2076 state->spa_port_a[0] = edid->edid[spa_loc]; 2077 state->spa_port_a[1] = edid->edid[spa_loc + 1]; 2078 break; 2079 case ADV7604_PAD_HDMI_PORT_B: 2080 rep_write(sd, 0x70, edid->edid[spa_loc]); 2081 rep_write(sd, 0x71, edid->edid[spa_loc + 1]); 2082 break; 2083 case ADV7604_PAD_HDMI_PORT_C: 2084 rep_write(sd, 0x72, edid->edid[spa_loc]); 2085 rep_write(sd, 0x73, edid->edid[spa_loc + 1]); 2086 break; 2087 case ADV7604_PAD_HDMI_PORT_D: 2088 rep_write(sd, 0x74, edid->edid[spa_loc]); 2089 rep_write(sd, 0x75, edid->edid[spa_loc + 1]); 2090 break; 2091 default: 2092 return -EINVAL; 2093 } 2094 2095 if (info->type == ADV7604) { 2096 rep_write(sd, 0x76, spa_loc & 0xff); 2097 rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2); 2098 } else { 2099 /* FIXME: Where is the SPA location LSB register ? */ 2100 rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8); 2101 } 2102 2103 edid->edid[spa_loc] = state->spa_port_a[0]; 2104 edid->edid[spa_loc + 1] = state->spa_port_a[1]; 2105 2106 memcpy(state->edid.edid, edid->edid, 128 * edid->blocks); 2107 state->edid.blocks = edid->blocks; 2108 state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15], 2109 edid->edid[0x16]); 2110 state->edid.present |= 1 << edid->pad; 2111 2112 err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid); 2113 if (err < 0) { 2114 v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad); 2115 return err; 2116 } 2117 2118 /* adv76xx calculates the checksums and enables I2C access to internal 2119 EDID RAM from DDC port. */ 2120 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present); 2121 2122 for (i = 0; i < 1000; i++) { 2123 if (rep_read(sd, info->edid_status_reg) & state->edid.present) 2124 break; 2125 mdelay(1); 2126 } 2127 if (i == 1000) { 2128 v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present); 2129 return -EIO; 2130 } 2131 2132 /* enable hotplug after 100 ms */ 2133 queue_delayed_work(state->work_queues, 2134 &state->delayed_work_enable_hotplug, HZ / 10); 2135 return 0; 2136 } 2137 2138 /*********** avi info frame CEA-861-E **************/ 2139 2140 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = { 2141 { "AVI", 0x01, 0xe0, 0x00 }, 2142 { "Audio", 0x02, 0xe3, 0x1c }, 2143 { "SDP", 0x04, 0xe6, 0x2a }, 2144 { "Vendor", 0x10, 0xec, 0x54 } 2145 }; 2146 2147 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index, 2148 union hdmi_infoframe *frame) 2149 { 2150 uint8_t buffer[32]; 2151 u8 len; 2152 int i; 2153 2154 if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) { 2155 v4l2_info(sd, "%s infoframe not received\n", 2156 adv76xx_cri[index].desc); 2157 return -ENOENT; 2158 } 2159 2160 for (i = 0; i < 3; i++) 2161 buffer[i] = infoframe_read(sd, 2162 adv76xx_cri[index].head_addr + i); 2163 2164 len = buffer[2] + 1; 2165 2166 if (len + 3 > sizeof(buffer)) { 2167 v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__, 2168 adv76xx_cri[index].desc, len); 2169 return -ENOENT; 2170 } 2171 2172 for (i = 0; i < len; i++) 2173 buffer[i + 3] = infoframe_read(sd, 2174 adv76xx_cri[index].payload_addr + i); 2175 2176 if (hdmi_infoframe_unpack(frame, buffer) < 0) { 2177 v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__, 2178 adv76xx_cri[index].desc); 2179 return -ENOENT; 2180 } 2181 return 0; 2182 } 2183 2184 static void adv76xx_log_infoframes(struct v4l2_subdev *sd) 2185 { 2186 int i; 2187 2188 if (!is_hdmi(sd)) { 2189 v4l2_info(sd, "receive DVI-D signal, no infoframes\n"); 2190 return; 2191 } 2192 2193 for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) { 2194 union hdmi_infoframe frame; 2195 struct i2c_client *client = v4l2_get_subdevdata(sd); 2196 2197 if (adv76xx_read_infoframe(sd, i, &frame)) 2198 return; 2199 hdmi_infoframe_log(KERN_INFO, &client->dev, &frame); 2200 } 2201 } 2202 2203 static int adv76xx_log_status(struct v4l2_subdev *sd) 2204 { 2205 struct adv76xx_state *state = to_state(sd); 2206 const struct adv76xx_chip_info *info = state->info; 2207 struct v4l2_dv_timings timings; 2208 struct stdi_readback stdi; 2209 u8 reg_io_0x02 = io_read(sd, 0x02); 2210 u8 edid_enabled; 2211 u8 cable_det; 2212 2213 static const char * const csc_coeff_sel_rb[16] = { 2214 "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB", 2215 "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709", 2216 "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709", 2217 "reserved", "reserved", "reserved", "reserved", "manual" 2218 }; 2219 static const char * const input_color_space_txt[16] = { 2220 "RGB limited range (16-235)", "RGB full range (0-255)", 2221 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)", 2222 "xvYCC Bt.601", "xvYCC Bt.709", 2223 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)", 2224 "invalid", "invalid", "invalid", "invalid", "invalid", 2225 "invalid", "invalid", "automatic" 2226 }; 2227 static const char * const hdmi_color_space_txt[16] = { 2228 "RGB limited range (16-235)", "RGB full range (0-255)", 2229 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)", 2230 "xvYCC Bt.601", "xvYCC Bt.709", 2231 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)", 2232 "sYCC", "Adobe YCC 601", "AdobeRGB", "invalid", "invalid", 2233 "invalid", "invalid", "invalid" 2234 }; 2235 static const char * const rgb_quantization_range_txt[] = { 2236 "Automatic", 2237 "RGB limited range (16-235)", 2238 "RGB full range (0-255)", 2239 }; 2240 static const char * const deep_color_mode_txt[4] = { 2241 "8-bits per channel", 2242 "10-bits per channel", 2243 "12-bits per channel", 2244 "16-bits per channel (not supported)" 2245 }; 2246 2247 v4l2_info(sd, "-----Chip status-----\n"); 2248 v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on"); 2249 edid_enabled = rep_read(sd, info->edid_status_reg); 2250 v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n", 2251 ((edid_enabled & 0x01) ? "Yes" : "No"), 2252 ((edid_enabled & 0x02) ? "Yes" : "No"), 2253 ((edid_enabled & 0x04) ? "Yes" : "No"), 2254 ((edid_enabled & 0x08) ? "Yes" : "No")); 2255 v4l2_info(sd, "CEC: %s\n", !!(cec_read(sd, 0x2a) & 0x01) ? 2256 "enabled" : "disabled"); 2257 2258 v4l2_info(sd, "-----Signal status-----\n"); 2259 cable_det = info->read_cable_det(sd); 2260 v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n", 2261 ((cable_det & 0x01) ? "Yes" : "No"), 2262 ((cable_det & 0x02) ? "Yes" : "No"), 2263 ((cable_det & 0x04) ? "Yes" : "No"), 2264 ((cable_det & 0x08) ? "Yes" : "No")); 2265 v4l2_info(sd, "TMDS signal detected: %s\n", 2266 no_signal_tmds(sd) ? "false" : "true"); 2267 v4l2_info(sd, "TMDS signal locked: %s\n", 2268 no_lock_tmds(sd) ? "false" : "true"); 2269 v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true"); 2270 v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true"); 2271 v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true"); 2272 v4l2_info(sd, "CP free run: %s\n", 2273 (in_free_run(sd)) ? "on" : "off"); 2274 v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n", 2275 io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f, 2276 (io_read(sd, 0x01) & 0x70) >> 4); 2277 2278 v4l2_info(sd, "-----Video Timings-----\n"); 2279 if (read_stdi(sd, &stdi)) 2280 v4l2_info(sd, "STDI: not locked\n"); 2281 else 2282 v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n", 2283 stdi.lcf, stdi.bl, stdi.lcvs, 2284 stdi.interlaced ? "interlaced" : "progressive", 2285 stdi.hs_pol, stdi.vs_pol); 2286 if (adv76xx_query_dv_timings(sd, &timings)) 2287 v4l2_info(sd, "No video detected\n"); 2288 else 2289 v4l2_print_dv_timings(sd->name, "Detected format: ", 2290 &timings, true); 2291 v4l2_print_dv_timings(sd->name, "Configured format: ", 2292 &state->timings, true); 2293 2294 if (no_signal(sd)) 2295 return 0; 2296 2297 v4l2_info(sd, "-----Color space-----\n"); 2298 v4l2_info(sd, "RGB quantization range ctrl: %s\n", 2299 rgb_quantization_range_txt[state->rgb_quantization_range]); 2300 v4l2_info(sd, "Input color space: %s\n", 2301 input_color_space_txt[reg_io_0x02 >> 4]); 2302 v4l2_info(sd, "Output color space: %s %s, saturator %s, alt-gamma %s\n", 2303 (reg_io_0x02 & 0x02) ? "RGB" : "YCbCr", 2304 (reg_io_0x02 & 0x04) ? "(16-235)" : "(0-255)", 2305 (((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ? 2306 "enabled" : "disabled", 2307 (reg_io_0x02 & 0x08) ? "enabled" : "disabled"); 2308 v4l2_info(sd, "Color space conversion: %s\n", 2309 csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]); 2310 2311 if (!is_digital_input(sd)) 2312 return 0; 2313 2314 v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D"); 2315 v4l2_info(sd, "Digital video port selected: %c\n", 2316 (hdmi_read(sd, 0x00) & 0x03) + 'A'); 2317 v4l2_info(sd, "HDCP encrypted content: %s\n", 2318 (hdmi_read(sd, 0x05) & 0x40) ? "true" : "false"); 2319 v4l2_info(sd, "HDCP keys read: %s%s\n", 2320 (hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no", 2321 (hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : ""); 2322 if (is_hdmi(sd)) { 2323 bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01; 2324 bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01; 2325 bool audio_mute = io_read(sd, 0x65) & 0x40; 2326 2327 v4l2_info(sd, "Audio: pll %s, samples %s, %s\n", 2328 audio_pll_locked ? "locked" : "not locked", 2329 audio_sample_packet_detect ? "detected" : "not detected", 2330 audio_mute ? "muted" : "enabled"); 2331 if (audio_pll_locked && audio_sample_packet_detect) { 2332 v4l2_info(sd, "Audio format: %s\n", 2333 (hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo"); 2334 } 2335 v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) + 2336 (hdmi_read(sd, 0x5c) << 8) + 2337 (hdmi_read(sd, 0x5d) & 0xf0)); 2338 v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) + 2339 (hdmi_read(sd, 0x5e) << 8) + 2340 hdmi_read(sd, 0x5f)); 2341 v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off"); 2342 2343 v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]); 2344 v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]); 2345 2346 adv76xx_log_infoframes(sd); 2347 } 2348 2349 return 0; 2350 } 2351 2352 static int adv76xx_subscribe_event(struct v4l2_subdev *sd, 2353 struct v4l2_fh *fh, 2354 struct v4l2_event_subscription *sub) 2355 { 2356 switch (sub->type) { 2357 case V4L2_EVENT_SOURCE_CHANGE: 2358 return v4l2_src_change_event_subdev_subscribe(sd, fh, sub); 2359 case V4L2_EVENT_CTRL: 2360 return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub); 2361 default: 2362 return -EINVAL; 2363 } 2364 } 2365 2366 /* ----------------------------------------------------------------------- */ 2367 2368 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = { 2369 .s_ctrl = adv76xx_s_ctrl, 2370 .g_volatile_ctrl = adv76xx_g_volatile_ctrl, 2371 }; 2372 2373 static const struct v4l2_subdev_core_ops adv76xx_core_ops = { 2374 .log_status = adv76xx_log_status, 2375 .interrupt_service_routine = adv76xx_isr, 2376 .subscribe_event = adv76xx_subscribe_event, 2377 .unsubscribe_event = v4l2_event_subdev_unsubscribe, 2378 #ifdef CONFIG_VIDEO_ADV_DEBUG 2379 .g_register = adv76xx_g_register, 2380 .s_register = adv76xx_s_register, 2381 #endif 2382 }; 2383 2384 static const struct v4l2_subdev_video_ops adv76xx_video_ops = { 2385 .s_routing = adv76xx_s_routing, 2386 .g_input_status = adv76xx_g_input_status, 2387 .s_dv_timings = adv76xx_s_dv_timings, 2388 .g_dv_timings = adv76xx_g_dv_timings, 2389 .query_dv_timings = adv76xx_query_dv_timings, 2390 }; 2391 2392 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = { 2393 .enum_mbus_code = adv76xx_enum_mbus_code, 2394 .get_selection = adv76xx_get_selection, 2395 .get_fmt = adv76xx_get_format, 2396 .set_fmt = adv76xx_set_format, 2397 .get_edid = adv76xx_get_edid, 2398 .set_edid = adv76xx_set_edid, 2399 .dv_timings_cap = adv76xx_dv_timings_cap, 2400 .enum_dv_timings = adv76xx_enum_dv_timings, 2401 }; 2402 2403 static const struct v4l2_subdev_ops adv76xx_ops = { 2404 .core = &adv76xx_core_ops, 2405 .video = &adv76xx_video_ops, 2406 .pad = &adv76xx_pad_ops, 2407 }; 2408 2409 /* -------------------------- custom ctrls ---------------------------------- */ 2410 2411 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = { 2412 .ops = &adv76xx_ctrl_ops, 2413 .id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE, 2414 .name = "Analog Sampling Phase", 2415 .type = V4L2_CTRL_TYPE_INTEGER, 2416 .min = 0, 2417 .max = 0x1f, 2418 .step = 1, 2419 .def = 0, 2420 }; 2421 2422 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = { 2423 .ops = &adv76xx_ctrl_ops, 2424 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL, 2425 .name = "Free Running Color, Manual", 2426 .type = V4L2_CTRL_TYPE_BOOLEAN, 2427 .min = false, 2428 .max = true, 2429 .step = 1, 2430 .def = false, 2431 }; 2432 2433 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = { 2434 .ops = &adv76xx_ctrl_ops, 2435 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR, 2436 .name = "Free Running Color", 2437 .type = V4L2_CTRL_TYPE_INTEGER, 2438 .min = 0x0, 2439 .max = 0xffffff, 2440 .step = 0x1, 2441 .def = 0x0, 2442 }; 2443 2444 /* ----------------------------------------------------------------------- */ 2445 2446 static int adv76xx_core_init(struct v4l2_subdev *sd) 2447 { 2448 struct adv76xx_state *state = to_state(sd); 2449 const struct adv76xx_chip_info *info = state->info; 2450 struct adv76xx_platform_data *pdata = &state->pdata; 2451 2452 hdmi_write(sd, 0x48, 2453 (pdata->disable_pwrdnb ? 0x80 : 0) | 2454 (pdata->disable_cable_det_rst ? 0x40 : 0)); 2455 2456 disable_input(sd); 2457 2458 if (pdata->default_input >= 0 && 2459 pdata->default_input < state->source_pad) { 2460 state->selected_input = pdata->default_input; 2461 select_input(sd); 2462 enable_input(sd); 2463 } 2464 2465 /* power */ 2466 io_write(sd, 0x0c, 0x42); /* Power up part and power down VDP */ 2467 io_write(sd, 0x0b, 0x44); /* Power down ESDP block */ 2468 cp_write(sd, 0xcf, 0x01); /* Power down macrovision */ 2469 2470 /* video format */ 2471 io_write_clr_set(sd, 0x02, 0x0f, 2472 pdata->alt_gamma << 3 | 2473 pdata->op_656_range << 2 | 2474 pdata->alt_data_sat << 0); 2475 io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 | 2476 pdata->insert_av_codes << 2 | 2477 pdata->replicate_av_codes << 1); 2478 adv76xx_setup_format(state); 2479 2480 cp_write(sd, 0x69, 0x30); /* Enable CP CSC */ 2481 2482 /* VS, HS polarities */ 2483 io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 | 2484 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol); 2485 2486 /* Adjust drive strength */ 2487 io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 | 2488 pdata->dr_str_clk << 2 | 2489 pdata->dr_str_sync); 2490 2491 cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */ 2492 cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */ 2493 cp_write(sd, 0xf9, 0x23); /* STDI ch. 1 - LCVS change threshold - 2494 ADI recommended setting [REF_01, c. 2.3.3] */ 2495 cp_write(sd, 0x45, 0x23); /* STDI ch. 2 - LCVS change threshold - 2496 ADI recommended setting [REF_01, c. 2.3.3] */ 2497 cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution 2498 for digital formats */ 2499 2500 /* HDMI audio */ 2501 hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */ 2502 hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */ 2503 hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */ 2504 2505 /* TODO from platform data */ 2506 afe_write(sd, 0xb5, 0x01); /* Setting MCLK to 256Fs */ 2507 2508 if (adv76xx_has_afe(state)) { 2509 afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */ 2510 io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4); 2511 } 2512 2513 /* interrupts */ 2514 io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */ 2515 io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */ 2516 io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */ 2517 io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */ 2518 info->setup_irqs(sd); 2519 2520 return v4l2_ctrl_handler_setup(sd->ctrl_handler); 2521 } 2522 2523 static void adv7604_setup_irqs(struct v4l2_subdev *sd) 2524 { 2525 io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */ 2526 } 2527 2528 static void adv7611_setup_irqs(struct v4l2_subdev *sd) 2529 { 2530 io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */ 2531 } 2532 2533 static void adv7612_setup_irqs(struct v4l2_subdev *sd) 2534 { 2535 io_write(sd, 0x41, 0xd0); /* disable INT2 */ 2536 } 2537 2538 static void adv76xx_unregister_clients(struct adv76xx_state *state) 2539 { 2540 unsigned int i; 2541 2542 for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) { 2543 if (state->i2c_clients[i]) 2544 i2c_unregister_device(state->i2c_clients[i]); 2545 } 2546 } 2547 2548 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd, 2549 u8 addr, u8 io_reg) 2550 { 2551 struct i2c_client *client = v4l2_get_subdevdata(sd); 2552 2553 if (addr) 2554 io_write(sd, io_reg, addr << 1); 2555 return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1); 2556 } 2557 2558 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = { 2559 /* reset ADI recommended settings for HDMI: */ 2560 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */ 2561 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */ 2562 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */ 2563 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */ 2564 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */ 2565 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */ 2566 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */ 2567 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */ 2568 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */ 2569 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */ 2570 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */ 2571 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */ 2572 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */ 2573 2574 /* set ADI recommended settings for digitizer */ 2575 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */ 2576 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */ 2577 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */ 2578 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */ 2579 { ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */ 2580 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */ 2581 2582 { ADV76XX_REG_SEQ_TERM, 0 }, 2583 }; 2584 2585 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = { 2586 /* set ADI recommended settings for HDMI: */ 2587 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */ 2588 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */ 2589 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */ 2590 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */ 2591 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */ 2592 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */ 2593 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */ 2594 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */ 2595 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */ 2596 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */ 2597 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */ 2598 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */ 2599 2600 /* reset ADI recommended settings for digitizer */ 2601 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */ 2602 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */ 2603 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */ 2604 2605 { ADV76XX_REG_SEQ_TERM, 0 }, 2606 }; 2607 2608 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = { 2609 /* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */ 2610 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 }, 2611 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 }, 2612 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 }, 2613 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f }, 2614 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 }, 2615 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda }, 2616 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 }, 2617 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 }, 2618 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 }, 2619 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 }, 2620 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e }, 2621 2622 { ADV76XX_REG_SEQ_TERM, 0 }, 2623 }; 2624 2625 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = { 2626 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 }, 2627 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 }, 2628 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 }, 2629 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f }, 2630 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 }, 2631 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda }, 2632 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 }, 2633 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 }, 2634 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 }, 2635 { ADV76XX_REG_SEQ_TERM, 0 }, 2636 }; 2637 2638 static const struct adv76xx_chip_info adv76xx_chip_info[] = { 2639 [ADV7604] = { 2640 .type = ADV7604, 2641 .has_afe = true, 2642 .max_port = ADV7604_PAD_VGA_COMP, 2643 .num_dv_ports = 4, 2644 .edid_enable_reg = 0x77, 2645 .edid_status_reg = 0x7d, 2646 .lcf_reg = 0xb3, 2647 .tdms_lock_mask = 0xe0, 2648 .cable_det_mask = 0x1e, 2649 .fmt_change_digital_mask = 0xc1, 2650 .cp_csc = 0xfc, 2651 .formats = adv7604_formats, 2652 .nformats = ARRAY_SIZE(adv7604_formats), 2653 .set_termination = adv7604_set_termination, 2654 .setup_irqs = adv7604_setup_irqs, 2655 .read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock, 2656 .read_cable_det = adv7604_read_cable_det, 2657 .recommended_settings = { 2658 [0] = adv7604_recommended_settings_afe, 2659 [1] = adv7604_recommended_settings_hdmi, 2660 }, 2661 .num_recommended_settings = { 2662 [0] = ARRAY_SIZE(adv7604_recommended_settings_afe), 2663 [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi), 2664 }, 2665 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) | 2666 BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) | 2667 BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) | 2668 BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) | 2669 BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) | 2670 BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) | 2671 BIT(ADV7604_PAGE_VDP), 2672 .linewidth_mask = 0xfff, 2673 .field0_height_mask = 0xfff, 2674 .field1_height_mask = 0xfff, 2675 .hfrontporch_mask = 0x3ff, 2676 .hsync_mask = 0x3ff, 2677 .hbackporch_mask = 0x3ff, 2678 .field0_vfrontporch_mask = 0x1fff, 2679 .field0_vsync_mask = 0x1fff, 2680 .field0_vbackporch_mask = 0x1fff, 2681 .field1_vfrontporch_mask = 0x1fff, 2682 .field1_vsync_mask = 0x1fff, 2683 .field1_vbackporch_mask = 0x1fff, 2684 }, 2685 [ADV7611] = { 2686 .type = ADV7611, 2687 .has_afe = false, 2688 .max_port = ADV76XX_PAD_HDMI_PORT_A, 2689 .num_dv_ports = 1, 2690 .edid_enable_reg = 0x74, 2691 .edid_status_reg = 0x76, 2692 .lcf_reg = 0xa3, 2693 .tdms_lock_mask = 0x43, 2694 .cable_det_mask = 0x01, 2695 .fmt_change_digital_mask = 0x03, 2696 .cp_csc = 0xf4, 2697 .formats = adv7611_formats, 2698 .nformats = ARRAY_SIZE(adv7611_formats), 2699 .set_termination = adv7611_set_termination, 2700 .setup_irqs = adv7611_setup_irqs, 2701 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock, 2702 .read_cable_det = adv7611_read_cable_det, 2703 .recommended_settings = { 2704 [1] = adv7611_recommended_settings_hdmi, 2705 }, 2706 .num_recommended_settings = { 2707 [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi), 2708 }, 2709 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) | 2710 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) | 2711 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) | 2712 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP), 2713 .linewidth_mask = 0x1fff, 2714 .field0_height_mask = 0x1fff, 2715 .field1_height_mask = 0x1fff, 2716 .hfrontporch_mask = 0x1fff, 2717 .hsync_mask = 0x1fff, 2718 .hbackporch_mask = 0x1fff, 2719 .field0_vfrontporch_mask = 0x3fff, 2720 .field0_vsync_mask = 0x3fff, 2721 .field0_vbackporch_mask = 0x3fff, 2722 .field1_vfrontporch_mask = 0x3fff, 2723 .field1_vsync_mask = 0x3fff, 2724 .field1_vbackporch_mask = 0x3fff, 2725 }, 2726 [ADV7612] = { 2727 .type = ADV7612, 2728 .has_afe = false, 2729 .max_port = ADV76XX_PAD_HDMI_PORT_A, /* B not supported */ 2730 .num_dv_ports = 1, /* normally 2 */ 2731 .edid_enable_reg = 0x74, 2732 .edid_status_reg = 0x76, 2733 .lcf_reg = 0xa3, 2734 .tdms_lock_mask = 0x43, 2735 .cable_det_mask = 0x01, 2736 .fmt_change_digital_mask = 0x03, 2737 .cp_csc = 0xf4, 2738 .formats = adv7612_formats, 2739 .nformats = ARRAY_SIZE(adv7612_formats), 2740 .set_termination = adv7611_set_termination, 2741 .setup_irqs = adv7612_setup_irqs, 2742 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock, 2743 .read_cable_det = adv7612_read_cable_det, 2744 .recommended_settings = { 2745 [1] = adv7612_recommended_settings_hdmi, 2746 }, 2747 .num_recommended_settings = { 2748 [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi), 2749 }, 2750 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) | 2751 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) | 2752 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) | 2753 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP), 2754 .linewidth_mask = 0x1fff, 2755 .field0_height_mask = 0x1fff, 2756 .field1_height_mask = 0x1fff, 2757 .hfrontporch_mask = 0x1fff, 2758 .hsync_mask = 0x1fff, 2759 .hbackporch_mask = 0x1fff, 2760 .field0_vfrontporch_mask = 0x3fff, 2761 .field0_vsync_mask = 0x3fff, 2762 .field0_vbackporch_mask = 0x3fff, 2763 .field1_vfrontporch_mask = 0x3fff, 2764 .field1_vsync_mask = 0x3fff, 2765 .field1_vbackporch_mask = 0x3fff, 2766 }, 2767 }; 2768 2769 static const struct i2c_device_id adv76xx_i2c_id[] = { 2770 { "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] }, 2771 { "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] }, 2772 { "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] }, 2773 { } 2774 }; 2775 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id); 2776 2777 static const struct of_device_id adv76xx_of_id[] __maybe_unused = { 2778 { .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] }, 2779 { .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] }, 2780 { } 2781 }; 2782 MODULE_DEVICE_TABLE(of, adv76xx_of_id); 2783 2784 static int adv76xx_parse_dt(struct adv76xx_state *state) 2785 { 2786 struct v4l2_of_endpoint bus_cfg; 2787 struct device_node *endpoint; 2788 struct device_node *np; 2789 unsigned int flags; 2790 int ret; 2791 u32 v; 2792 2793 np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node; 2794 2795 /* Parse the endpoint. */ 2796 endpoint = of_graph_get_next_endpoint(np, NULL); 2797 if (!endpoint) 2798 return -EINVAL; 2799 2800 ret = v4l2_of_parse_endpoint(endpoint, &bus_cfg); 2801 if (ret) { 2802 of_node_put(endpoint); 2803 return ret; 2804 } 2805 2806 if (!of_property_read_u32(endpoint, "default-input", &v)) 2807 state->pdata.default_input = v; 2808 else 2809 state->pdata.default_input = -1; 2810 2811 of_node_put(endpoint); 2812 2813 flags = bus_cfg.bus.parallel.flags; 2814 2815 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH) 2816 state->pdata.inv_hs_pol = 1; 2817 2818 if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH) 2819 state->pdata.inv_vs_pol = 1; 2820 2821 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING) 2822 state->pdata.inv_llc_pol = 1; 2823 2824 if (bus_cfg.bus_type == V4L2_MBUS_BT656) { 2825 state->pdata.insert_av_codes = 1; 2826 state->pdata.op_656_range = 1; 2827 } 2828 2829 /* Disable the interrupt for now as no DT-based board uses it. */ 2830 state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED; 2831 2832 /* Use the default I2C addresses. */ 2833 state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42; 2834 state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40; 2835 state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e; 2836 state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38; 2837 state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c; 2838 state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26; 2839 state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32; 2840 state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36; 2841 state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34; 2842 state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30; 2843 state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22; 2844 state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24; 2845 2846 /* Hardcode the remaining platform data fields. */ 2847 state->pdata.disable_pwrdnb = 0; 2848 state->pdata.disable_cable_det_rst = 0; 2849 state->pdata.blank_data = 1; 2850 state->pdata.alt_data_sat = 1; 2851 state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0; 2852 state->pdata.bus_order = ADV7604_BUS_ORDER_RGB; 2853 2854 return 0; 2855 } 2856 2857 static const struct regmap_config adv76xx_regmap_cnf[] = { 2858 { 2859 .name = "io", 2860 .reg_bits = 8, 2861 .val_bits = 8, 2862 2863 .max_register = 0xff, 2864 .cache_type = REGCACHE_NONE, 2865 }, 2866 { 2867 .name = "avlink", 2868 .reg_bits = 8, 2869 .val_bits = 8, 2870 2871 .max_register = 0xff, 2872 .cache_type = REGCACHE_NONE, 2873 }, 2874 { 2875 .name = "cec", 2876 .reg_bits = 8, 2877 .val_bits = 8, 2878 2879 .max_register = 0xff, 2880 .cache_type = REGCACHE_NONE, 2881 }, 2882 { 2883 .name = "infoframe", 2884 .reg_bits = 8, 2885 .val_bits = 8, 2886 2887 .max_register = 0xff, 2888 .cache_type = REGCACHE_NONE, 2889 }, 2890 { 2891 .name = "esdp", 2892 .reg_bits = 8, 2893 .val_bits = 8, 2894 2895 .max_register = 0xff, 2896 .cache_type = REGCACHE_NONE, 2897 }, 2898 { 2899 .name = "epp", 2900 .reg_bits = 8, 2901 .val_bits = 8, 2902 2903 .max_register = 0xff, 2904 .cache_type = REGCACHE_NONE, 2905 }, 2906 { 2907 .name = "afe", 2908 .reg_bits = 8, 2909 .val_bits = 8, 2910 2911 .max_register = 0xff, 2912 .cache_type = REGCACHE_NONE, 2913 }, 2914 { 2915 .name = "rep", 2916 .reg_bits = 8, 2917 .val_bits = 8, 2918 2919 .max_register = 0xff, 2920 .cache_type = REGCACHE_NONE, 2921 }, 2922 { 2923 .name = "edid", 2924 .reg_bits = 8, 2925 .val_bits = 8, 2926 2927 .max_register = 0xff, 2928 .cache_type = REGCACHE_NONE, 2929 }, 2930 2931 { 2932 .name = "hdmi", 2933 .reg_bits = 8, 2934 .val_bits = 8, 2935 2936 .max_register = 0xff, 2937 .cache_type = REGCACHE_NONE, 2938 }, 2939 { 2940 .name = "test", 2941 .reg_bits = 8, 2942 .val_bits = 8, 2943 2944 .max_register = 0xff, 2945 .cache_type = REGCACHE_NONE, 2946 }, 2947 { 2948 .name = "cp", 2949 .reg_bits = 8, 2950 .val_bits = 8, 2951 2952 .max_register = 0xff, 2953 .cache_type = REGCACHE_NONE, 2954 }, 2955 { 2956 .name = "vdp", 2957 .reg_bits = 8, 2958 .val_bits = 8, 2959 2960 .max_register = 0xff, 2961 .cache_type = REGCACHE_NONE, 2962 }, 2963 }; 2964 2965 static int configure_regmap(struct adv76xx_state *state, int region) 2966 { 2967 int err; 2968 2969 if (!state->i2c_clients[region]) 2970 return -ENODEV; 2971 2972 state->regmap[region] = 2973 devm_regmap_init_i2c(state->i2c_clients[region], 2974 &adv76xx_regmap_cnf[region]); 2975 2976 if (IS_ERR(state->regmap[region])) { 2977 err = PTR_ERR(state->regmap[region]); 2978 v4l_err(state->i2c_clients[region], 2979 "Error initializing regmap %d with error %d\n", 2980 region, err); 2981 return -EINVAL; 2982 } 2983 2984 return 0; 2985 } 2986 2987 static int configure_regmaps(struct adv76xx_state *state) 2988 { 2989 int i, err; 2990 2991 for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) { 2992 err = configure_regmap(state, i); 2993 if (err && (err != -ENODEV)) 2994 return err; 2995 } 2996 return 0; 2997 } 2998 2999 static int adv76xx_probe(struct i2c_client *client, 3000 const struct i2c_device_id *id) 3001 { 3002 static const struct v4l2_dv_timings cea640x480 = 3003 V4L2_DV_BT_CEA_640X480P59_94; 3004 struct adv76xx_state *state; 3005 struct v4l2_ctrl_handler *hdl; 3006 struct v4l2_ctrl *ctrl; 3007 struct v4l2_subdev *sd; 3008 unsigned int i; 3009 unsigned int val, val2; 3010 int err; 3011 3012 /* Check if the adapter supports the needed features */ 3013 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 3014 return -EIO; 3015 v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n", 3016 client->addr << 1); 3017 3018 state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL); 3019 if (!state) { 3020 v4l_err(client, "Could not allocate adv76xx_state memory!\n"); 3021 return -ENOMEM; 3022 } 3023 3024 state->i2c_clients[ADV76XX_PAGE_IO] = client; 3025 3026 /* initialize variables */ 3027 state->restart_stdi_once = true; 3028 state->selected_input = ~0; 3029 3030 if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) { 3031 const struct of_device_id *oid; 3032 3033 oid = of_match_node(adv76xx_of_id, client->dev.of_node); 3034 state->info = oid->data; 3035 3036 err = adv76xx_parse_dt(state); 3037 if (err < 0) { 3038 v4l_err(client, "DT parsing error\n"); 3039 return err; 3040 } 3041 } else if (client->dev.platform_data) { 3042 struct adv76xx_platform_data *pdata = client->dev.platform_data; 3043 3044 state->info = (const struct adv76xx_chip_info *)id->driver_data; 3045 state->pdata = *pdata; 3046 } else { 3047 v4l_err(client, "No platform data!\n"); 3048 return -ENODEV; 3049 } 3050 3051 /* Request GPIOs. */ 3052 for (i = 0; i < state->info->num_dv_ports; ++i) { 3053 state->hpd_gpio[i] = 3054 devm_gpiod_get_index_optional(&client->dev, "hpd", i, 3055 GPIOD_OUT_LOW); 3056 if (IS_ERR(state->hpd_gpio[i])) 3057 return PTR_ERR(state->hpd_gpio[i]); 3058 3059 if (state->hpd_gpio[i]) 3060 v4l_info(client, "Handling HPD %u GPIO\n", i); 3061 } 3062 3063 state->timings = cea640x480; 3064 state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8); 3065 3066 sd = &state->sd; 3067 v4l2_i2c_subdev_init(sd, client, &adv76xx_ops); 3068 snprintf(sd->name, sizeof(sd->name), "%s %d-%04x", 3069 id->name, i2c_adapter_id(client->adapter), 3070 client->addr); 3071 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS; 3072 3073 /* Configure IO Regmap region */ 3074 err = configure_regmap(state, ADV76XX_PAGE_IO); 3075 3076 if (err) { 3077 v4l2_err(sd, "Error configuring IO regmap region\n"); 3078 return -ENODEV; 3079 } 3080 3081 /* 3082 * Verify that the chip is present. On ADV7604 the RD_INFO register only 3083 * identifies the revision, while on ADV7611 it identifies the model as 3084 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611. 3085 */ 3086 switch (state->info->type) { 3087 case ADV7604: 3088 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val); 3089 if (err) { 3090 v4l2_err(sd, "Error %d reading IO Regmap\n", err); 3091 return -ENODEV; 3092 } 3093 if (val != 0x68) { 3094 v4l2_err(sd, "not an adv7604 on address 0x%x\n", 3095 client->addr << 1); 3096 return -ENODEV; 3097 } 3098 break; 3099 case ADV7611: 3100 case ADV7612: 3101 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 3102 0xea, 3103 &val); 3104 if (err) { 3105 v4l2_err(sd, "Error %d reading IO Regmap\n", err); 3106 return -ENODEV; 3107 } 3108 val2 = val << 8; 3109 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 3110 0xeb, 3111 &val); 3112 if (err) { 3113 v4l2_err(sd, "Error %d reading IO Regmap\n", err); 3114 return -ENODEV; 3115 } 3116 val |= val2; 3117 if ((state->info->type == ADV7611 && val != 0x2051) || 3118 (state->info->type == ADV7612 && val != 0x2041)) { 3119 v4l2_err(sd, "not an adv761x on address 0x%x\n", 3120 client->addr << 1); 3121 return -ENODEV; 3122 } 3123 break; 3124 } 3125 3126 /* control handlers */ 3127 hdl = &state->hdl; 3128 v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8); 3129 3130 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3131 V4L2_CID_BRIGHTNESS, -128, 127, 1, 0); 3132 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3133 V4L2_CID_CONTRAST, 0, 255, 1, 128); 3134 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3135 V4L2_CID_SATURATION, 0, 255, 1, 128); 3136 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3137 V4L2_CID_HUE, 0, 128, 1, 0); 3138 ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops, 3139 V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC, 3140 0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC); 3141 if (ctrl) 3142 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE; 3143 3144 /* private controls */ 3145 state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL, 3146 V4L2_CID_DV_RX_POWER_PRESENT, 0, 3147 (1 << state->info->num_dv_ports) - 1, 0, 0); 3148 state->rgb_quantization_range_ctrl = 3149 v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops, 3150 V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 3151 0, V4L2_DV_RGB_RANGE_AUTO); 3152 3153 /* custom controls */ 3154 if (adv76xx_has_afe(state)) 3155 state->analog_sampling_phase_ctrl = 3156 v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL); 3157 state->free_run_color_manual_ctrl = 3158 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL); 3159 state->free_run_color_ctrl = 3160 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL); 3161 3162 sd->ctrl_handler = hdl; 3163 if (hdl->error) { 3164 err = hdl->error; 3165 goto err_hdl; 3166 } 3167 state->detect_tx_5v_ctrl->is_private = true; 3168 state->rgb_quantization_range_ctrl->is_private = true; 3169 if (adv76xx_has_afe(state)) 3170 state->analog_sampling_phase_ctrl->is_private = true; 3171 state->free_run_color_manual_ctrl->is_private = true; 3172 state->free_run_color_ctrl->is_private = true; 3173 3174 if (adv76xx_s_detect_tx_5v_ctrl(sd)) { 3175 err = -ENODEV; 3176 goto err_hdl; 3177 } 3178 3179 for (i = 1; i < ADV76XX_PAGE_MAX; ++i) { 3180 if (!(BIT(i) & state->info->page_mask)) 3181 continue; 3182 3183 state->i2c_clients[i] = 3184 adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i], 3185 0xf2 + i); 3186 if (state->i2c_clients[i] == NULL) { 3187 err = -ENOMEM; 3188 v4l2_err(sd, "failed to create i2c client %u\n", i); 3189 goto err_i2c; 3190 } 3191 } 3192 3193 /* work queues */ 3194 state->work_queues = create_singlethread_workqueue(client->name); 3195 if (!state->work_queues) { 3196 v4l2_err(sd, "Could not create work queue\n"); 3197 err = -ENOMEM; 3198 goto err_i2c; 3199 } 3200 3201 INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug, 3202 adv76xx_delayed_work_enable_hotplug); 3203 3204 state->source_pad = state->info->num_dv_ports 3205 + (state->info->has_afe ? 2 : 0); 3206 for (i = 0; i < state->source_pad; ++i) 3207 state->pads[i].flags = MEDIA_PAD_FL_SINK; 3208 state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE; 3209 3210 err = media_entity_pads_init(&sd->entity, state->source_pad + 1, 3211 state->pads); 3212 if (err) 3213 goto err_work_queues; 3214 3215 /* Configure regmaps */ 3216 err = configure_regmaps(state); 3217 if (err) 3218 goto err_entity; 3219 3220 err = adv76xx_core_init(sd); 3221 if (err) 3222 goto err_entity; 3223 v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name, 3224 client->addr << 1, client->adapter->name); 3225 3226 err = v4l2_async_register_subdev(sd); 3227 if (err) 3228 goto err_entity; 3229 3230 return 0; 3231 3232 err_entity: 3233 media_entity_cleanup(&sd->entity); 3234 err_work_queues: 3235 cancel_delayed_work(&state->delayed_work_enable_hotplug); 3236 destroy_workqueue(state->work_queues); 3237 err_i2c: 3238 adv76xx_unregister_clients(state); 3239 err_hdl: 3240 v4l2_ctrl_handler_free(hdl); 3241 return err; 3242 } 3243 3244 /* ----------------------------------------------------------------------- */ 3245 3246 static int adv76xx_remove(struct i2c_client *client) 3247 { 3248 struct v4l2_subdev *sd = i2c_get_clientdata(client); 3249 struct adv76xx_state *state = to_state(sd); 3250 3251 cancel_delayed_work(&state->delayed_work_enable_hotplug); 3252 destroy_workqueue(state->work_queues); 3253 v4l2_async_unregister_subdev(sd); 3254 media_entity_cleanup(&sd->entity); 3255 adv76xx_unregister_clients(to_state(sd)); 3256 v4l2_ctrl_handler_free(sd->ctrl_handler); 3257 return 0; 3258 } 3259 3260 /* ----------------------------------------------------------------------- */ 3261 3262 static struct i2c_driver adv76xx_driver = { 3263 .driver = { 3264 .name = "adv7604", 3265 .of_match_table = of_match_ptr(adv76xx_of_id), 3266 }, 3267 .probe = adv76xx_probe, 3268 .remove = adv76xx_remove, 3269 .id_table = adv76xx_i2c_id, 3270 }; 3271 3272 module_i2c_driver(adv76xx_driver); 3273