1 /* 2 * adv7604 - Analog Devices ADV7604 video decoder driver 3 * 4 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved. 5 * 6 * This program is free software; you may redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; version 2 of the License. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 17 * SOFTWARE. 18 * 19 */ 20 21 /* 22 * References (c = chapter, p = page): 23 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations, 24 * Revision 2.5, June 2010 25 * REF_02 - Analog devices, Register map documentation, Documentation of 26 * the register maps, Software manual, Rev. F, June 2010 27 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010 28 */ 29 30 #include <linux/delay.h> 31 #include <linux/gpio/consumer.h> 32 #include <linux/hdmi.h> 33 #include <linux/i2c.h> 34 #include <linux/kernel.h> 35 #include <linux/module.h> 36 #include <linux/slab.h> 37 #include <linux/v4l2-dv-timings.h> 38 #include <linux/videodev2.h> 39 #include <linux/workqueue.h> 40 #include <linux/regmap.h> 41 42 #include <media/adv7604.h> 43 #include <media/v4l2-ctrls.h> 44 #include <media/v4l2-device.h> 45 #include <media/v4l2-event.h> 46 #include <media/v4l2-dv-timings.h> 47 #include <media/v4l2-of.h> 48 49 static int debug; 50 module_param(debug, int, 0644); 51 MODULE_PARM_DESC(debug, "debug level (0-2)"); 52 53 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver"); 54 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>"); 55 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>"); 56 MODULE_LICENSE("GPL"); 57 58 /* ADV7604 system clock frequency */ 59 #define ADV76XX_FSC (28636360) 60 61 #define ADV76XX_RGB_OUT (1 << 1) 62 63 #define ADV76XX_OP_FORMAT_SEL_8BIT (0 << 0) 64 #define ADV7604_OP_FORMAT_SEL_10BIT (1 << 0) 65 #define ADV76XX_OP_FORMAT_SEL_12BIT (2 << 0) 66 67 #define ADV76XX_OP_MODE_SEL_SDR_422 (0 << 5) 68 #define ADV7604_OP_MODE_SEL_DDR_422 (1 << 5) 69 #define ADV76XX_OP_MODE_SEL_SDR_444 (2 << 5) 70 #define ADV7604_OP_MODE_SEL_DDR_444 (3 << 5) 71 #define ADV76XX_OP_MODE_SEL_SDR_422_2X (4 << 5) 72 #define ADV7604_OP_MODE_SEL_ADI_CM (5 << 5) 73 74 #define ADV76XX_OP_CH_SEL_GBR (0 << 5) 75 #define ADV76XX_OP_CH_SEL_GRB (1 << 5) 76 #define ADV76XX_OP_CH_SEL_BGR (2 << 5) 77 #define ADV76XX_OP_CH_SEL_RGB (3 << 5) 78 #define ADV76XX_OP_CH_SEL_BRG (4 << 5) 79 #define ADV76XX_OP_CH_SEL_RBG (5 << 5) 80 81 #define ADV76XX_OP_SWAP_CB_CR (1 << 0) 82 83 enum adv76xx_type { 84 ADV7604, 85 ADV7611, 86 ADV7612, 87 }; 88 89 struct adv76xx_reg_seq { 90 unsigned int reg; 91 u8 val; 92 }; 93 94 struct adv76xx_format_info { 95 u32 code; 96 u8 op_ch_sel; 97 bool rgb_out; 98 bool swap_cb_cr; 99 u8 op_format_sel; 100 }; 101 102 struct adv76xx_cfg_read_infoframe { 103 const char *desc; 104 u8 present_mask; 105 u8 head_addr; 106 u8 payload_addr; 107 }; 108 109 struct adv76xx_chip_info { 110 enum adv76xx_type type; 111 112 bool has_afe; 113 unsigned int max_port; 114 unsigned int num_dv_ports; 115 116 unsigned int edid_enable_reg; 117 unsigned int edid_status_reg; 118 unsigned int lcf_reg; 119 120 unsigned int cable_det_mask; 121 unsigned int tdms_lock_mask; 122 unsigned int fmt_change_digital_mask; 123 unsigned int cp_csc; 124 125 const struct adv76xx_format_info *formats; 126 unsigned int nformats; 127 128 void (*set_termination)(struct v4l2_subdev *sd, bool enable); 129 void (*setup_irqs)(struct v4l2_subdev *sd); 130 unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd); 131 unsigned int (*read_cable_det)(struct v4l2_subdev *sd); 132 133 /* 0 = AFE, 1 = HDMI */ 134 const struct adv76xx_reg_seq *recommended_settings[2]; 135 unsigned int num_recommended_settings[2]; 136 137 unsigned long page_mask; 138 139 /* Masks for timings */ 140 unsigned int linewidth_mask; 141 unsigned int field0_height_mask; 142 unsigned int field1_height_mask; 143 unsigned int hfrontporch_mask; 144 unsigned int hsync_mask; 145 unsigned int hbackporch_mask; 146 unsigned int field0_vfrontporch_mask; 147 unsigned int field1_vfrontporch_mask; 148 unsigned int field0_vsync_mask; 149 unsigned int field1_vsync_mask; 150 unsigned int field0_vbackporch_mask; 151 unsigned int field1_vbackporch_mask; 152 }; 153 154 /* 155 ********************************************************************** 156 * 157 * Arrays with configuration parameters for the ADV7604 158 * 159 ********************************************************************** 160 */ 161 162 struct adv76xx_state { 163 const struct adv76xx_chip_info *info; 164 struct adv76xx_platform_data pdata; 165 166 struct gpio_desc *hpd_gpio[4]; 167 168 struct v4l2_subdev sd; 169 struct media_pad pads[ADV76XX_PAD_MAX]; 170 unsigned int source_pad; 171 172 struct v4l2_ctrl_handler hdl; 173 174 enum adv76xx_pad selected_input; 175 176 struct v4l2_dv_timings timings; 177 const struct adv76xx_format_info *format; 178 179 struct { 180 u8 edid[256]; 181 u32 present; 182 unsigned blocks; 183 } edid; 184 u16 spa_port_a[2]; 185 struct v4l2_fract aspect_ratio; 186 u32 rgb_quantization_range; 187 struct workqueue_struct *work_queues; 188 struct delayed_work delayed_work_enable_hotplug; 189 bool restart_stdi_once; 190 191 /* i2c clients */ 192 struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX]; 193 194 /* Regmaps */ 195 struct regmap *regmap[ADV76XX_PAGE_MAX]; 196 197 /* controls */ 198 struct v4l2_ctrl *detect_tx_5v_ctrl; 199 struct v4l2_ctrl *analog_sampling_phase_ctrl; 200 struct v4l2_ctrl *free_run_color_manual_ctrl; 201 struct v4l2_ctrl *free_run_color_ctrl; 202 struct v4l2_ctrl *rgb_quantization_range_ctrl; 203 }; 204 205 static bool adv76xx_has_afe(struct adv76xx_state *state) 206 { 207 return state->info->has_afe; 208 } 209 210 /* Supported CEA and DMT timings */ 211 static const struct v4l2_dv_timings adv76xx_timings[] = { 212 V4L2_DV_BT_CEA_720X480P59_94, 213 V4L2_DV_BT_CEA_720X576P50, 214 V4L2_DV_BT_CEA_1280X720P24, 215 V4L2_DV_BT_CEA_1280X720P25, 216 V4L2_DV_BT_CEA_1280X720P50, 217 V4L2_DV_BT_CEA_1280X720P60, 218 V4L2_DV_BT_CEA_1920X1080P24, 219 V4L2_DV_BT_CEA_1920X1080P25, 220 V4L2_DV_BT_CEA_1920X1080P30, 221 V4L2_DV_BT_CEA_1920X1080P50, 222 V4L2_DV_BT_CEA_1920X1080P60, 223 224 /* sorted by DMT ID */ 225 V4L2_DV_BT_DMT_640X350P85, 226 V4L2_DV_BT_DMT_640X400P85, 227 V4L2_DV_BT_DMT_720X400P85, 228 V4L2_DV_BT_DMT_640X480P60, 229 V4L2_DV_BT_DMT_640X480P72, 230 V4L2_DV_BT_DMT_640X480P75, 231 V4L2_DV_BT_DMT_640X480P85, 232 V4L2_DV_BT_DMT_800X600P56, 233 V4L2_DV_BT_DMT_800X600P60, 234 V4L2_DV_BT_DMT_800X600P72, 235 V4L2_DV_BT_DMT_800X600P75, 236 V4L2_DV_BT_DMT_800X600P85, 237 V4L2_DV_BT_DMT_848X480P60, 238 V4L2_DV_BT_DMT_1024X768P60, 239 V4L2_DV_BT_DMT_1024X768P70, 240 V4L2_DV_BT_DMT_1024X768P75, 241 V4L2_DV_BT_DMT_1024X768P85, 242 V4L2_DV_BT_DMT_1152X864P75, 243 V4L2_DV_BT_DMT_1280X768P60_RB, 244 V4L2_DV_BT_DMT_1280X768P60, 245 V4L2_DV_BT_DMT_1280X768P75, 246 V4L2_DV_BT_DMT_1280X768P85, 247 V4L2_DV_BT_DMT_1280X800P60_RB, 248 V4L2_DV_BT_DMT_1280X800P60, 249 V4L2_DV_BT_DMT_1280X800P75, 250 V4L2_DV_BT_DMT_1280X800P85, 251 V4L2_DV_BT_DMT_1280X960P60, 252 V4L2_DV_BT_DMT_1280X960P85, 253 V4L2_DV_BT_DMT_1280X1024P60, 254 V4L2_DV_BT_DMT_1280X1024P75, 255 V4L2_DV_BT_DMT_1280X1024P85, 256 V4L2_DV_BT_DMT_1360X768P60, 257 V4L2_DV_BT_DMT_1400X1050P60_RB, 258 V4L2_DV_BT_DMT_1400X1050P60, 259 V4L2_DV_BT_DMT_1400X1050P75, 260 V4L2_DV_BT_DMT_1400X1050P85, 261 V4L2_DV_BT_DMT_1440X900P60_RB, 262 V4L2_DV_BT_DMT_1440X900P60, 263 V4L2_DV_BT_DMT_1600X1200P60, 264 V4L2_DV_BT_DMT_1680X1050P60_RB, 265 V4L2_DV_BT_DMT_1680X1050P60, 266 V4L2_DV_BT_DMT_1792X1344P60, 267 V4L2_DV_BT_DMT_1856X1392P60, 268 V4L2_DV_BT_DMT_1920X1200P60_RB, 269 V4L2_DV_BT_DMT_1366X768P60_RB, 270 V4L2_DV_BT_DMT_1366X768P60, 271 V4L2_DV_BT_DMT_1920X1080P60, 272 { }, 273 }; 274 275 struct adv76xx_video_standards { 276 struct v4l2_dv_timings timings; 277 u8 vid_std; 278 u8 v_freq; 279 }; 280 281 /* sorted by number of lines */ 282 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = { 283 /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */ 284 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 }, 285 { V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 }, 286 { V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 }, 287 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 }, 288 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 }, 289 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 }, 290 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 }, 291 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 }, 292 /* TODO add 1920x1080P60_RB (CVT timing) */ 293 { }, 294 }; 295 296 /* sorted by number of lines */ 297 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = { 298 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 }, 299 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 }, 300 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 }, 301 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 }, 302 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 }, 303 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 }, 304 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 }, 305 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 }, 306 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 }, 307 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 }, 308 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 }, 309 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 }, 310 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 }, 311 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 }, 312 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 }, 313 { V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 }, 314 { V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 }, 315 { V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 }, 316 { V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 }, 317 { V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */ 318 /* TODO add 1600X1200P60_RB (not a DMT timing) */ 319 { V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 }, 320 { V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */ 321 { }, 322 }; 323 324 /* sorted by number of lines */ 325 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = { 326 { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, 327 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 }, 328 { V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 }, 329 { V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 }, 330 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 }, 331 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 }, 332 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 }, 333 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 }, 334 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 }, 335 { }, 336 }; 337 338 /* sorted by number of lines */ 339 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = { 340 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 }, 341 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 }, 342 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 }, 343 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 }, 344 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 }, 345 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 }, 346 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 }, 347 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 }, 348 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 }, 349 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 }, 350 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 }, 351 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 }, 352 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 }, 353 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 }, 354 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 }, 355 { }, 356 }; 357 358 static const struct v4l2_event adv76xx_ev_fmt = { 359 .type = V4L2_EVENT_SOURCE_CHANGE, 360 .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION, 361 }; 362 363 /* ----------------------------------------------------------------------- */ 364 365 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd) 366 { 367 return container_of(sd, struct adv76xx_state, sd); 368 } 369 370 static inline unsigned htotal(const struct v4l2_bt_timings *t) 371 { 372 return V4L2_DV_BT_FRAME_WIDTH(t); 373 } 374 375 static inline unsigned vtotal(const struct v4l2_bt_timings *t) 376 { 377 return V4L2_DV_BT_FRAME_HEIGHT(t); 378 } 379 380 /* ----------------------------------------------------------------------- */ 381 382 static int adv76xx_read_check(struct adv76xx_state *state, 383 int client_page, u8 reg) 384 { 385 struct i2c_client *client = state->i2c_clients[client_page]; 386 int err; 387 unsigned int val; 388 389 err = regmap_read(state->regmap[client_page], reg, &val); 390 391 if (err) { 392 v4l_err(client, "error reading %02x, %02x\n", 393 client->addr, reg); 394 return err; 395 } 396 return val; 397 } 398 399 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX 400 * size to one or more registers. 401 * 402 * A value of zero will be returned on success, a negative errno will 403 * be returned in error cases. 404 */ 405 static int adv76xx_write_block(struct adv76xx_state *state, int client_page, 406 unsigned int init_reg, const void *val, 407 size_t val_len) 408 { 409 struct regmap *regmap = state->regmap[client_page]; 410 411 if (val_len > I2C_SMBUS_BLOCK_MAX) 412 val_len = I2C_SMBUS_BLOCK_MAX; 413 414 return regmap_raw_write(regmap, init_reg, val, val_len); 415 } 416 417 /* ----------------------------------------------------------------------- */ 418 419 static inline int io_read(struct v4l2_subdev *sd, u8 reg) 420 { 421 struct adv76xx_state *state = to_state(sd); 422 423 return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg); 424 } 425 426 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val) 427 { 428 struct adv76xx_state *state = to_state(sd); 429 430 return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val); 431 } 432 433 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 434 { 435 return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val); 436 } 437 438 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg) 439 { 440 struct adv76xx_state *state = to_state(sd); 441 442 return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg); 443 } 444 445 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val) 446 { 447 struct adv76xx_state *state = to_state(sd); 448 449 return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val); 450 } 451 452 static inline int cec_read(struct v4l2_subdev *sd, u8 reg) 453 { 454 struct adv76xx_state *state = to_state(sd); 455 456 return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg); 457 } 458 459 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val) 460 { 461 struct adv76xx_state *state = to_state(sd); 462 463 return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val); 464 } 465 466 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg) 467 { 468 struct adv76xx_state *state = to_state(sd); 469 470 return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg); 471 } 472 473 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val) 474 { 475 struct adv76xx_state *state = to_state(sd); 476 477 return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val); 478 } 479 480 static inline int afe_read(struct v4l2_subdev *sd, u8 reg) 481 { 482 struct adv76xx_state *state = to_state(sd); 483 484 return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg); 485 } 486 487 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val) 488 { 489 struct adv76xx_state *state = to_state(sd); 490 491 return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val); 492 } 493 494 static inline int rep_read(struct v4l2_subdev *sd, u8 reg) 495 { 496 struct adv76xx_state *state = to_state(sd); 497 498 return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg); 499 } 500 501 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val) 502 { 503 struct adv76xx_state *state = to_state(sd); 504 505 return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val); 506 } 507 508 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 509 { 510 return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val); 511 } 512 513 static inline int edid_read(struct v4l2_subdev *sd, u8 reg) 514 { 515 struct adv76xx_state *state = to_state(sd); 516 517 return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg); 518 } 519 520 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val) 521 { 522 struct adv76xx_state *state = to_state(sd); 523 524 return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val); 525 } 526 527 static inline int edid_write_block(struct v4l2_subdev *sd, 528 unsigned int total_len, const u8 *val) 529 { 530 struct adv76xx_state *state = to_state(sd); 531 int err = 0; 532 int i = 0; 533 int len = 0; 534 535 v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n", 536 __func__, total_len); 537 538 while (!err && i < total_len) { 539 len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ? 540 I2C_SMBUS_BLOCK_MAX : 541 (total_len - i); 542 543 err = adv76xx_write_block(state, ADV76XX_PAGE_EDID, 544 i, val + i, len); 545 i += len; 546 } 547 548 return err; 549 } 550 551 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd) 552 { 553 unsigned int i; 554 555 for (i = 0; i < state->info->num_dv_ports; ++i) 556 gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i)); 557 558 v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd); 559 } 560 561 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work) 562 { 563 struct delayed_work *dwork = to_delayed_work(work); 564 struct adv76xx_state *state = container_of(dwork, struct adv76xx_state, 565 delayed_work_enable_hotplug); 566 struct v4l2_subdev *sd = &state->sd; 567 568 v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__); 569 570 adv76xx_set_hpd(state, state->edid.present); 571 } 572 573 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg) 574 { 575 struct adv76xx_state *state = to_state(sd); 576 577 return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg); 578 } 579 580 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask) 581 { 582 return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask; 583 } 584 585 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val) 586 { 587 struct adv76xx_state *state = to_state(sd); 588 589 return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val); 590 } 591 592 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 593 { 594 return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val); 595 } 596 597 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val) 598 { 599 struct adv76xx_state *state = to_state(sd); 600 601 return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val); 602 } 603 604 static inline int cp_read(struct v4l2_subdev *sd, u8 reg) 605 { 606 struct adv76xx_state *state = to_state(sd); 607 608 return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg); 609 } 610 611 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask) 612 { 613 return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask; 614 } 615 616 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val) 617 { 618 struct adv76xx_state *state = to_state(sd); 619 620 return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val); 621 } 622 623 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) 624 { 625 return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val); 626 } 627 628 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg) 629 { 630 struct adv76xx_state *state = to_state(sd); 631 632 return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg); 633 } 634 635 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val) 636 { 637 struct adv76xx_state *state = to_state(sd); 638 639 return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val); 640 } 641 642 #define ADV76XX_REG(page, offset) (((page) << 8) | (offset)) 643 #define ADV76XX_REG_SEQ_TERM 0xffff 644 645 #ifdef CONFIG_VIDEO_ADV_DEBUG 646 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg) 647 { 648 struct adv76xx_state *state = to_state(sd); 649 unsigned int page = reg >> 8; 650 unsigned int val; 651 int err; 652 653 if (!(BIT(page) & state->info->page_mask)) 654 return -EINVAL; 655 656 reg &= 0xff; 657 err = regmap_read(state->regmap[page], reg, &val); 658 659 return err ? err : val; 660 } 661 #endif 662 663 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val) 664 { 665 struct adv76xx_state *state = to_state(sd); 666 unsigned int page = reg >> 8; 667 668 if (!(BIT(page) & state->info->page_mask)) 669 return -EINVAL; 670 671 reg &= 0xff; 672 673 return regmap_write(state->regmap[page], reg, val); 674 } 675 676 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd, 677 const struct adv76xx_reg_seq *reg_seq) 678 { 679 unsigned int i; 680 681 for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++) 682 adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val); 683 } 684 685 /* ----------------------------------------------------------------------------- 686 * Format helpers 687 */ 688 689 static const struct adv76xx_format_info adv7604_formats[] = { 690 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, 691 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, 692 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, 693 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 694 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, 695 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 696 { MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false, 697 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT }, 698 { MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true, 699 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT }, 700 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false, 701 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 702 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true, 703 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 704 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, 705 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 706 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, 707 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 708 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, 709 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 710 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, 711 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 712 { MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false, 713 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 714 { MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true, 715 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 716 { MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false, 717 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 718 { MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true, 719 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT }, 720 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false, 721 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 722 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true, 723 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 724 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false, 725 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 726 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true, 727 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 728 }; 729 730 static const struct adv76xx_format_info adv7611_formats[] = { 731 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, 732 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, 733 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, 734 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 735 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, 736 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 737 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false, 738 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 739 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true, 740 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT }, 741 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, 742 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 743 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, 744 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 745 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, 746 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 747 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, 748 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 749 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false, 750 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 751 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true, 752 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 753 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false, 754 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 755 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true, 756 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT }, 757 }; 758 759 static const struct adv76xx_format_info adv7612_formats[] = { 760 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false, 761 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT }, 762 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false, 763 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 764 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true, 765 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT }, 766 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false, 767 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 768 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true, 769 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 770 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false, 771 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 772 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true, 773 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT }, 774 }; 775 776 static const struct adv76xx_format_info * 777 adv76xx_format_info(struct adv76xx_state *state, u32 code) 778 { 779 unsigned int i; 780 781 for (i = 0; i < state->info->nformats; ++i) { 782 if (state->info->formats[i].code == code) 783 return &state->info->formats[i]; 784 } 785 786 return NULL; 787 } 788 789 /* ----------------------------------------------------------------------- */ 790 791 static inline bool is_analog_input(struct v4l2_subdev *sd) 792 { 793 struct adv76xx_state *state = to_state(sd); 794 795 return state->selected_input == ADV7604_PAD_VGA_RGB || 796 state->selected_input == ADV7604_PAD_VGA_COMP; 797 } 798 799 static inline bool is_digital_input(struct v4l2_subdev *sd) 800 { 801 struct adv76xx_state *state = to_state(sd); 802 803 return state->selected_input == ADV76XX_PAD_HDMI_PORT_A || 804 state->selected_input == ADV7604_PAD_HDMI_PORT_B || 805 state->selected_input == ADV7604_PAD_HDMI_PORT_C || 806 state->selected_input == ADV7604_PAD_HDMI_PORT_D; 807 } 808 809 /* ----------------------------------------------------------------------- */ 810 811 #ifdef CONFIG_VIDEO_ADV_DEBUG 812 static void adv76xx_inv_register(struct v4l2_subdev *sd) 813 { 814 v4l2_info(sd, "0x000-0x0ff: IO Map\n"); 815 v4l2_info(sd, "0x100-0x1ff: AVLink Map\n"); 816 v4l2_info(sd, "0x200-0x2ff: CEC Map\n"); 817 v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n"); 818 v4l2_info(sd, "0x400-0x4ff: ESDP Map\n"); 819 v4l2_info(sd, "0x500-0x5ff: DPP Map\n"); 820 v4l2_info(sd, "0x600-0x6ff: AFE Map\n"); 821 v4l2_info(sd, "0x700-0x7ff: Repeater Map\n"); 822 v4l2_info(sd, "0x800-0x8ff: EDID Map\n"); 823 v4l2_info(sd, "0x900-0x9ff: HDMI Map\n"); 824 v4l2_info(sd, "0xa00-0xaff: Test Map\n"); 825 v4l2_info(sd, "0xb00-0xbff: CP Map\n"); 826 v4l2_info(sd, "0xc00-0xcff: VDP Map\n"); 827 } 828 829 static int adv76xx_g_register(struct v4l2_subdev *sd, 830 struct v4l2_dbg_register *reg) 831 { 832 int ret; 833 834 ret = adv76xx_read_reg(sd, reg->reg); 835 if (ret < 0) { 836 v4l2_info(sd, "Register %03llx not supported\n", reg->reg); 837 adv76xx_inv_register(sd); 838 return ret; 839 } 840 841 reg->size = 1; 842 reg->val = ret; 843 844 return 0; 845 } 846 847 static int adv76xx_s_register(struct v4l2_subdev *sd, 848 const struct v4l2_dbg_register *reg) 849 { 850 int ret; 851 852 ret = adv76xx_write_reg(sd, reg->reg, reg->val); 853 if (ret < 0) { 854 v4l2_info(sd, "Register %03llx not supported\n", reg->reg); 855 adv76xx_inv_register(sd); 856 return ret; 857 } 858 859 return 0; 860 } 861 #endif 862 863 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd) 864 { 865 u8 value = io_read(sd, 0x6f); 866 867 return ((value & 0x10) >> 4) 868 | ((value & 0x08) >> 2) 869 | ((value & 0x04) << 0) 870 | ((value & 0x02) << 2); 871 } 872 873 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd) 874 { 875 u8 value = io_read(sd, 0x6f); 876 877 return value & 1; 878 } 879 880 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd) 881 { 882 /* Reads CABLE_DET_A_RAW. For input B support, need to 883 * account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW) 884 */ 885 u8 value = io_read(sd, 0x6f); 886 887 return value & 1; 888 } 889 890 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd) 891 { 892 struct adv76xx_state *state = to_state(sd); 893 const struct adv76xx_chip_info *info = state->info; 894 895 return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, 896 info->read_cable_det(sd)); 897 } 898 899 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd, 900 u8 prim_mode, 901 const struct adv76xx_video_standards *predef_vid_timings, 902 const struct v4l2_dv_timings *timings) 903 { 904 int i; 905 906 for (i = 0; predef_vid_timings[i].timings.bt.width; i++) { 907 if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings, 908 is_digital_input(sd) ? 250000 : 1000000)) 909 continue; 910 io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */ 911 io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) + 912 prim_mode); /* v_freq and prim mode */ 913 return 0; 914 } 915 916 return -1; 917 } 918 919 static int configure_predefined_video_timings(struct v4l2_subdev *sd, 920 struct v4l2_dv_timings *timings) 921 { 922 struct adv76xx_state *state = to_state(sd); 923 int err; 924 925 v4l2_dbg(1, debug, sd, "%s", __func__); 926 927 if (adv76xx_has_afe(state)) { 928 /* reset to default values */ 929 io_write(sd, 0x16, 0x43); 930 io_write(sd, 0x17, 0x5a); 931 } 932 /* disable embedded syncs for auto graphics mode */ 933 cp_write_clr_set(sd, 0x81, 0x10, 0x00); 934 cp_write(sd, 0x8f, 0x00); 935 cp_write(sd, 0x90, 0x00); 936 cp_write(sd, 0xa2, 0x00); 937 cp_write(sd, 0xa3, 0x00); 938 cp_write(sd, 0xa4, 0x00); 939 cp_write(sd, 0xa5, 0x00); 940 cp_write(sd, 0xa6, 0x00); 941 cp_write(sd, 0xa7, 0x00); 942 cp_write(sd, 0xab, 0x00); 943 cp_write(sd, 0xac, 0x00); 944 945 if (is_analog_input(sd)) { 946 err = find_and_set_predefined_video_timings(sd, 947 0x01, adv7604_prim_mode_comp, timings); 948 if (err) 949 err = find_and_set_predefined_video_timings(sd, 950 0x02, adv7604_prim_mode_gr, timings); 951 } else if (is_digital_input(sd)) { 952 err = find_and_set_predefined_video_timings(sd, 953 0x05, adv76xx_prim_mode_hdmi_comp, timings); 954 if (err) 955 err = find_and_set_predefined_video_timings(sd, 956 0x06, adv76xx_prim_mode_hdmi_gr, timings); 957 } else { 958 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 959 __func__, state->selected_input); 960 err = -1; 961 } 962 963 964 return err; 965 } 966 967 static void configure_custom_video_timings(struct v4l2_subdev *sd, 968 const struct v4l2_bt_timings *bt) 969 { 970 struct adv76xx_state *state = to_state(sd); 971 u32 width = htotal(bt); 972 u32 height = vtotal(bt); 973 u16 cp_start_sav = bt->hsync + bt->hbackporch - 4; 974 u16 cp_start_eav = width - bt->hfrontporch; 975 u16 cp_start_vbi = height - bt->vfrontporch; 976 u16 cp_end_vbi = bt->vsync + bt->vbackporch; 977 u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ? 978 ((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0; 979 const u8 pll[2] = { 980 0xc0 | ((width >> 8) & 0x1f), 981 width & 0xff 982 }; 983 984 v4l2_dbg(2, debug, sd, "%s\n", __func__); 985 986 if (is_analog_input(sd)) { 987 /* auto graphics */ 988 io_write(sd, 0x00, 0x07); /* video std */ 989 io_write(sd, 0x01, 0x02); /* prim mode */ 990 /* enable embedded syncs for auto graphics mode */ 991 cp_write_clr_set(sd, 0x81, 0x10, 0x10); 992 993 /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */ 994 /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */ 995 /* IO-map reg. 0x16 and 0x17 should be written in sequence */ 996 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO], 997 0x16, pll, 2)) 998 v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n"); 999 1000 /* active video - horizontal timing */ 1001 cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff); 1002 cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) | 1003 ((cp_start_eav >> 8) & 0x0f)); 1004 cp_write(sd, 0xa4, cp_start_eav & 0xff); 1005 1006 /* active video - vertical timing */ 1007 cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff); 1008 cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) | 1009 ((cp_end_vbi >> 8) & 0xf)); 1010 cp_write(sd, 0xa7, cp_end_vbi & 0xff); 1011 } else if (is_digital_input(sd)) { 1012 /* set default prim_mode/vid_std for HDMI 1013 according to [REF_03, c. 4.2] */ 1014 io_write(sd, 0x00, 0x02); /* video std */ 1015 io_write(sd, 0x01, 0x06); /* prim mode */ 1016 } else { 1017 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 1018 __func__, state->selected_input); 1019 } 1020 1021 cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7); 1022 cp_write(sd, 0x90, ch1_fr_ll & 0xff); 1023 cp_write(sd, 0xab, (height >> 4) & 0xff); 1024 cp_write(sd, 0xac, (height & 0x0f) << 4); 1025 } 1026 1027 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c) 1028 { 1029 struct adv76xx_state *state = to_state(sd); 1030 u8 offset_buf[4]; 1031 1032 if (auto_offset) { 1033 offset_a = 0x3ff; 1034 offset_b = 0x3ff; 1035 offset_c = 0x3ff; 1036 } 1037 1038 v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n", 1039 __func__, auto_offset ? "Auto" : "Manual", 1040 offset_a, offset_b, offset_c); 1041 1042 offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4); 1043 offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6); 1044 offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8); 1045 offset_buf[3] = offset_c & 0x0ff; 1046 1047 /* Registers must be written in this order with no i2c access in between */ 1048 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP], 1049 0x77, offset_buf, 4)) 1050 v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__); 1051 } 1052 1053 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c) 1054 { 1055 struct adv76xx_state *state = to_state(sd); 1056 u8 gain_buf[4]; 1057 u8 gain_man = 1; 1058 u8 agc_mode_man = 1; 1059 1060 if (auto_gain) { 1061 gain_man = 0; 1062 agc_mode_man = 0; 1063 gain_a = 0x100; 1064 gain_b = 0x100; 1065 gain_c = 0x100; 1066 } 1067 1068 v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n", 1069 __func__, auto_gain ? "Auto" : "Manual", 1070 gain_a, gain_b, gain_c); 1071 1072 gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4)); 1073 gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6)); 1074 gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8)); 1075 gain_buf[3] = ((gain_c & 0x0ff)); 1076 1077 /* Registers must be written in this order with no i2c access in between */ 1078 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP], 1079 0x73, gain_buf, 4)) 1080 v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__); 1081 } 1082 1083 static void set_rgb_quantization_range(struct v4l2_subdev *sd) 1084 { 1085 struct adv76xx_state *state = to_state(sd); 1086 bool rgb_output = io_read(sd, 0x02) & 0x02; 1087 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80; 1088 1089 v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n", 1090 __func__, state->rgb_quantization_range, 1091 rgb_output, hdmi_signal); 1092 1093 adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0); 1094 adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0); 1095 1096 switch (state->rgb_quantization_range) { 1097 case V4L2_DV_RGB_RANGE_AUTO: 1098 if (state->selected_input == ADV7604_PAD_VGA_RGB) { 1099 /* Receiving analog RGB signal 1100 * Set RGB full range (0-255) */ 1101 io_write_clr_set(sd, 0x02, 0xf0, 0x10); 1102 break; 1103 } 1104 1105 if (state->selected_input == ADV7604_PAD_VGA_COMP) { 1106 /* Receiving analog YPbPr signal 1107 * Set automode */ 1108 io_write_clr_set(sd, 0x02, 0xf0, 0xf0); 1109 break; 1110 } 1111 1112 if (hdmi_signal) { 1113 /* Receiving HDMI signal 1114 * Set automode */ 1115 io_write_clr_set(sd, 0x02, 0xf0, 0xf0); 1116 break; 1117 } 1118 1119 /* Receiving DVI-D signal 1120 * ADV7604 selects RGB limited range regardless of 1121 * input format (CE/IT) in automatic mode */ 1122 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) { 1123 /* RGB limited range (16-235) */ 1124 io_write_clr_set(sd, 0x02, 0xf0, 0x00); 1125 } else { 1126 /* RGB full range (0-255) */ 1127 io_write_clr_set(sd, 0x02, 0xf0, 0x10); 1128 1129 if (is_digital_input(sd) && rgb_output) { 1130 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40); 1131 } else { 1132 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0); 1133 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70); 1134 } 1135 } 1136 break; 1137 case V4L2_DV_RGB_RANGE_LIMITED: 1138 if (state->selected_input == ADV7604_PAD_VGA_COMP) { 1139 /* YCrCb limited range (16-235) */ 1140 io_write_clr_set(sd, 0x02, 0xf0, 0x20); 1141 break; 1142 } 1143 1144 /* RGB limited range (16-235) */ 1145 io_write_clr_set(sd, 0x02, 0xf0, 0x00); 1146 1147 break; 1148 case V4L2_DV_RGB_RANGE_FULL: 1149 if (state->selected_input == ADV7604_PAD_VGA_COMP) { 1150 /* YCrCb full range (0-255) */ 1151 io_write_clr_set(sd, 0x02, 0xf0, 0x60); 1152 break; 1153 } 1154 1155 /* RGB full range (0-255) */ 1156 io_write_clr_set(sd, 0x02, 0xf0, 0x10); 1157 1158 if (is_analog_input(sd) || hdmi_signal) 1159 break; 1160 1161 /* Adjust gain/offset for DVI-D signals only */ 1162 if (rgb_output) { 1163 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40); 1164 } else { 1165 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0); 1166 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70); 1167 } 1168 break; 1169 } 1170 } 1171 1172 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl) 1173 { 1174 struct v4l2_subdev *sd = 1175 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd; 1176 1177 struct adv76xx_state *state = to_state(sd); 1178 1179 switch (ctrl->id) { 1180 case V4L2_CID_BRIGHTNESS: 1181 cp_write(sd, 0x3c, ctrl->val); 1182 return 0; 1183 case V4L2_CID_CONTRAST: 1184 cp_write(sd, 0x3a, ctrl->val); 1185 return 0; 1186 case V4L2_CID_SATURATION: 1187 cp_write(sd, 0x3b, ctrl->val); 1188 return 0; 1189 case V4L2_CID_HUE: 1190 cp_write(sd, 0x3d, ctrl->val); 1191 return 0; 1192 case V4L2_CID_DV_RX_RGB_RANGE: 1193 state->rgb_quantization_range = ctrl->val; 1194 set_rgb_quantization_range(sd); 1195 return 0; 1196 case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE: 1197 if (!adv76xx_has_afe(state)) 1198 return -EINVAL; 1199 /* Set the analog sampling phase. This is needed to find the 1200 best sampling phase for analog video: an application or 1201 driver has to try a number of phases and analyze the picture 1202 quality before settling on the best performing phase. */ 1203 afe_write(sd, 0xc8, ctrl->val); 1204 return 0; 1205 case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL: 1206 /* Use the default blue color for free running mode, 1207 or supply your own. */ 1208 cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2); 1209 return 0; 1210 case V4L2_CID_ADV_RX_FREE_RUN_COLOR: 1211 cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16); 1212 cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8); 1213 cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff)); 1214 return 0; 1215 } 1216 return -EINVAL; 1217 } 1218 1219 /* ----------------------------------------------------------------------- */ 1220 1221 static inline bool no_power(struct v4l2_subdev *sd) 1222 { 1223 /* Entire chip or CP powered off */ 1224 return io_read(sd, 0x0c) & 0x24; 1225 } 1226 1227 static inline bool no_signal_tmds(struct v4l2_subdev *sd) 1228 { 1229 struct adv76xx_state *state = to_state(sd); 1230 1231 return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input)); 1232 } 1233 1234 static inline bool no_lock_tmds(struct v4l2_subdev *sd) 1235 { 1236 struct adv76xx_state *state = to_state(sd); 1237 const struct adv76xx_chip_info *info = state->info; 1238 1239 return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask; 1240 } 1241 1242 static inline bool is_hdmi(struct v4l2_subdev *sd) 1243 { 1244 return hdmi_read(sd, 0x05) & 0x80; 1245 } 1246 1247 static inline bool no_lock_sspd(struct v4l2_subdev *sd) 1248 { 1249 struct adv76xx_state *state = to_state(sd); 1250 1251 /* 1252 * Chips without a AFE don't expose registers for the SSPD, so just assume 1253 * that we have a lock. 1254 */ 1255 if (adv76xx_has_afe(state)) 1256 return false; 1257 1258 /* TODO channel 2 */ 1259 return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0); 1260 } 1261 1262 static inline bool no_lock_stdi(struct v4l2_subdev *sd) 1263 { 1264 /* TODO channel 2 */ 1265 return !(cp_read(sd, 0xb1) & 0x80); 1266 } 1267 1268 static inline bool no_signal(struct v4l2_subdev *sd) 1269 { 1270 bool ret; 1271 1272 ret = no_power(sd); 1273 1274 ret |= no_lock_stdi(sd); 1275 ret |= no_lock_sspd(sd); 1276 1277 if (is_digital_input(sd)) { 1278 ret |= no_lock_tmds(sd); 1279 ret |= no_signal_tmds(sd); 1280 } 1281 1282 return ret; 1283 } 1284 1285 static inline bool no_lock_cp(struct v4l2_subdev *sd) 1286 { 1287 struct adv76xx_state *state = to_state(sd); 1288 1289 if (!adv76xx_has_afe(state)) 1290 return false; 1291 1292 /* CP has detected a non standard number of lines on the incoming 1293 video compared to what it is configured to receive by s_dv_timings */ 1294 return io_read(sd, 0x12) & 0x01; 1295 } 1296 1297 static inline bool in_free_run(struct v4l2_subdev *sd) 1298 { 1299 return cp_read(sd, 0xff) & 0x10; 1300 } 1301 1302 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status) 1303 { 1304 *status = 0; 1305 *status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0; 1306 *status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0; 1307 if (!in_free_run(sd) && no_lock_cp(sd)) 1308 *status |= is_digital_input(sd) ? 1309 V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK; 1310 1311 v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status); 1312 1313 return 0; 1314 } 1315 1316 /* ----------------------------------------------------------------------- */ 1317 1318 struct stdi_readback { 1319 u16 bl, lcf, lcvs; 1320 u8 hs_pol, vs_pol; 1321 bool interlaced; 1322 }; 1323 1324 static int stdi2dv_timings(struct v4l2_subdev *sd, 1325 struct stdi_readback *stdi, 1326 struct v4l2_dv_timings *timings) 1327 { 1328 struct adv76xx_state *state = to_state(sd); 1329 u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl; 1330 u32 pix_clk; 1331 int i; 1332 1333 for (i = 0; adv76xx_timings[i].bt.height; i++) { 1334 if (vtotal(&adv76xx_timings[i].bt) != stdi->lcf + 1) 1335 continue; 1336 if (adv76xx_timings[i].bt.vsync != stdi->lcvs) 1337 continue; 1338 1339 pix_clk = hfreq * htotal(&adv76xx_timings[i].bt); 1340 1341 if ((pix_clk < adv76xx_timings[i].bt.pixelclock + 1000000) && 1342 (pix_clk > adv76xx_timings[i].bt.pixelclock - 1000000)) { 1343 *timings = adv76xx_timings[i]; 1344 return 0; 1345 } 1346 } 1347 1348 if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0, 1349 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) | 1350 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0), 1351 false, timings)) 1352 return 0; 1353 if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs, 1354 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) | 1355 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0), 1356 false, state->aspect_ratio, timings)) 1357 return 0; 1358 1359 v4l2_dbg(2, debug, sd, 1360 "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n", 1361 __func__, stdi->lcvs, stdi->lcf, stdi->bl, 1362 stdi->hs_pol, stdi->vs_pol); 1363 return -1; 1364 } 1365 1366 1367 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi) 1368 { 1369 struct adv76xx_state *state = to_state(sd); 1370 const struct adv76xx_chip_info *info = state->info; 1371 u8 polarity; 1372 1373 if (no_lock_stdi(sd) || no_lock_sspd(sd)) { 1374 v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__); 1375 return -1; 1376 } 1377 1378 /* read STDI */ 1379 stdi->bl = cp_read16(sd, 0xb1, 0x3fff); 1380 stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff); 1381 stdi->lcvs = cp_read(sd, 0xb3) >> 3; 1382 stdi->interlaced = io_read(sd, 0x12) & 0x10; 1383 1384 if (adv76xx_has_afe(state)) { 1385 /* read SSPD */ 1386 polarity = cp_read(sd, 0xb5); 1387 if ((polarity & 0x03) == 0x01) { 1388 stdi->hs_pol = polarity & 0x10 1389 ? (polarity & 0x08 ? '+' : '-') : 'x'; 1390 stdi->vs_pol = polarity & 0x40 1391 ? (polarity & 0x20 ? '+' : '-') : 'x'; 1392 } else { 1393 stdi->hs_pol = 'x'; 1394 stdi->vs_pol = 'x'; 1395 } 1396 } else { 1397 polarity = hdmi_read(sd, 0x05); 1398 stdi->hs_pol = polarity & 0x20 ? '+' : '-'; 1399 stdi->vs_pol = polarity & 0x10 ? '+' : '-'; 1400 } 1401 1402 if (no_lock_stdi(sd) || no_lock_sspd(sd)) { 1403 v4l2_dbg(2, debug, sd, 1404 "%s: signal lost during readout of STDI/SSPD\n", __func__); 1405 return -1; 1406 } 1407 1408 if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) { 1409 v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__); 1410 memset(stdi, 0, sizeof(struct stdi_readback)); 1411 return -1; 1412 } 1413 1414 v4l2_dbg(2, debug, sd, 1415 "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n", 1416 __func__, stdi->lcf, stdi->bl, stdi->lcvs, 1417 stdi->hs_pol, stdi->vs_pol, 1418 stdi->interlaced ? "interlaced" : "progressive"); 1419 1420 return 0; 1421 } 1422 1423 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd, 1424 struct v4l2_enum_dv_timings *timings) 1425 { 1426 struct adv76xx_state *state = to_state(sd); 1427 1428 if (timings->index >= ARRAY_SIZE(adv76xx_timings) - 1) 1429 return -EINVAL; 1430 1431 if (timings->pad >= state->source_pad) 1432 return -EINVAL; 1433 1434 memset(timings->reserved, 0, sizeof(timings->reserved)); 1435 timings->timings = adv76xx_timings[timings->index]; 1436 return 0; 1437 } 1438 1439 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd, 1440 struct v4l2_dv_timings_cap *cap) 1441 { 1442 struct adv76xx_state *state = to_state(sd); 1443 1444 if (cap->pad >= state->source_pad) 1445 return -EINVAL; 1446 1447 cap->type = V4L2_DV_BT_656_1120; 1448 cap->bt.max_width = 1920; 1449 cap->bt.max_height = 1200; 1450 cap->bt.min_pixelclock = 25000000; 1451 1452 switch (cap->pad) { 1453 case ADV76XX_PAD_HDMI_PORT_A: 1454 case ADV7604_PAD_HDMI_PORT_B: 1455 case ADV7604_PAD_HDMI_PORT_C: 1456 case ADV7604_PAD_HDMI_PORT_D: 1457 cap->bt.max_pixelclock = 225000000; 1458 break; 1459 case ADV7604_PAD_VGA_RGB: 1460 case ADV7604_PAD_VGA_COMP: 1461 default: 1462 cap->bt.max_pixelclock = 170000000; 1463 break; 1464 } 1465 1466 cap->bt.standards = V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | 1467 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT; 1468 cap->bt.capabilities = V4L2_DV_BT_CAP_PROGRESSIVE | 1469 V4L2_DV_BT_CAP_REDUCED_BLANKING | V4L2_DV_BT_CAP_CUSTOM; 1470 return 0; 1471 } 1472 1473 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings 1474 if the format is listed in adv76xx_timings[] */ 1475 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd, 1476 struct v4l2_dv_timings *timings) 1477 { 1478 int i; 1479 1480 for (i = 0; adv76xx_timings[i].bt.width; i++) { 1481 if (v4l2_match_dv_timings(timings, &adv76xx_timings[i], 1482 is_digital_input(sd) ? 250000 : 1000000)) { 1483 *timings = adv76xx_timings[i]; 1484 break; 1485 } 1486 } 1487 } 1488 1489 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd) 1490 { 1491 unsigned int freq; 1492 int a, b; 1493 1494 a = hdmi_read(sd, 0x06); 1495 b = hdmi_read(sd, 0x3b); 1496 if (a < 0 || b < 0) 1497 return 0; 1498 freq = a * 1000000 + ((b & 0x30) >> 4) * 250000; 1499 1500 if (is_hdmi(sd)) { 1501 /* adjust for deep color mode */ 1502 unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8; 1503 1504 freq = freq * 8 / bits_per_channel; 1505 } 1506 1507 return freq; 1508 } 1509 1510 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd) 1511 { 1512 int a, b; 1513 1514 a = hdmi_read(sd, 0x51); 1515 b = hdmi_read(sd, 0x52); 1516 if (a < 0 || b < 0) 1517 return 0; 1518 return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128; 1519 } 1520 1521 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd, 1522 struct v4l2_dv_timings *timings) 1523 { 1524 struct adv76xx_state *state = to_state(sd); 1525 const struct adv76xx_chip_info *info = state->info; 1526 struct v4l2_bt_timings *bt = &timings->bt; 1527 struct stdi_readback stdi; 1528 1529 if (!timings) 1530 return -EINVAL; 1531 1532 memset(timings, 0, sizeof(struct v4l2_dv_timings)); 1533 1534 if (no_signal(sd)) { 1535 state->restart_stdi_once = true; 1536 v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__); 1537 return -ENOLINK; 1538 } 1539 1540 /* read STDI */ 1541 if (read_stdi(sd, &stdi)) { 1542 v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__); 1543 return -ENOLINK; 1544 } 1545 bt->interlaced = stdi.interlaced ? 1546 V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE; 1547 1548 if (is_digital_input(sd)) { 1549 timings->type = V4L2_DV_BT_656_1120; 1550 1551 bt->width = hdmi_read16(sd, 0x07, info->linewidth_mask); 1552 bt->height = hdmi_read16(sd, 0x09, info->field0_height_mask); 1553 bt->pixelclock = info->read_hdmi_pixelclock(sd); 1554 bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask); 1555 bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask); 1556 bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask); 1557 bt->vfrontporch = hdmi_read16(sd, 0x2a, 1558 info->field0_vfrontporch_mask) / 2; 1559 bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2; 1560 bt->vbackporch = hdmi_read16(sd, 0x32, 1561 info->field0_vbackporch_mask) / 2; 1562 bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) | 1563 ((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0); 1564 if (bt->interlaced == V4L2_DV_INTERLACED) { 1565 bt->height += hdmi_read16(sd, 0x0b, 1566 info->field1_height_mask); 1567 bt->il_vfrontporch = hdmi_read16(sd, 0x2c, 1568 info->field1_vfrontporch_mask) / 2; 1569 bt->il_vsync = hdmi_read16(sd, 0x30, 1570 info->field1_vsync_mask) / 2; 1571 bt->il_vbackporch = hdmi_read16(sd, 0x34, 1572 info->field1_vbackporch_mask) / 2; 1573 } 1574 adv76xx_fill_optional_dv_timings_fields(sd, timings); 1575 } else { 1576 /* find format 1577 * Since LCVS values are inaccurate [REF_03, p. 275-276], 1578 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails. 1579 */ 1580 if (!stdi2dv_timings(sd, &stdi, timings)) 1581 goto found; 1582 stdi.lcvs += 1; 1583 v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs); 1584 if (!stdi2dv_timings(sd, &stdi, timings)) 1585 goto found; 1586 stdi.lcvs -= 2; 1587 v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs); 1588 if (stdi2dv_timings(sd, &stdi, timings)) { 1589 /* 1590 * The STDI block may measure wrong values, especially 1591 * for lcvs and lcf. If the driver can not find any 1592 * valid timing, the STDI block is restarted to measure 1593 * the video timings again. The function will return an 1594 * error, but the restart of STDI will generate a new 1595 * STDI interrupt and the format detection process will 1596 * restart. 1597 */ 1598 if (state->restart_stdi_once) { 1599 v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__); 1600 /* TODO restart STDI for Sync Channel 2 */ 1601 /* enter one-shot mode */ 1602 cp_write_clr_set(sd, 0x86, 0x06, 0x00); 1603 /* trigger STDI restart */ 1604 cp_write_clr_set(sd, 0x86, 0x06, 0x04); 1605 /* reset to continuous mode */ 1606 cp_write_clr_set(sd, 0x86, 0x06, 0x02); 1607 state->restart_stdi_once = false; 1608 return -ENOLINK; 1609 } 1610 v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__); 1611 return -ERANGE; 1612 } 1613 state->restart_stdi_once = true; 1614 } 1615 found: 1616 1617 if (no_signal(sd)) { 1618 v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__); 1619 memset(timings, 0, sizeof(struct v4l2_dv_timings)); 1620 return -ENOLINK; 1621 } 1622 1623 if ((is_analog_input(sd) && bt->pixelclock > 170000000) || 1624 (is_digital_input(sd) && bt->pixelclock > 225000000)) { 1625 v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n", 1626 __func__, (u32)bt->pixelclock); 1627 return -ERANGE; 1628 } 1629 1630 if (debug > 1) 1631 v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ", 1632 timings, true); 1633 1634 return 0; 1635 } 1636 1637 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd, 1638 struct v4l2_dv_timings *timings) 1639 { 1640 struct adv76xx_state *state = to_state(sd); 1641 struct v4l2_bt_timings *bt; 1642 int err; 1643 1644 if (!timings) 1645 return -EINVAL; 1646 1647 if (v4l2_match_dv_timings(&state->timings, timings, 0)) { 1648 v4l2_dbg(1, debug, sd, "%s: no change\n", __func__); 1649 return 0; 1650 } 1651 1652 bt = &timings->bt; 1653 1654 if ((is_analog_input(sd) && bt->pixelclock > 170000000) || 1655 (is_digital_input(sd) && bt->pixelclock > 225000000)) { 1656 v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n", 1657 __func__, (u32)bt->pixelclock); 1658 return -ERANGE; 1659 } 1660 1661 adv76xx_fill_optional_dv_timings_fields(sd, timings); 1662 1663 state->timings = *timings; 1664 1665 cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00); 1666 1667 /* Use prim_mode and vid_std when available */ 1668 err = configure_predefined_video_timings(sd, timings); 1669 if (err) { 1670 /* custom settings when the video format 1671 does not have prim_mode/vid_std */ 1672 configure_custom_video_timings(sd, bt); 1673 } 1674 1675 set_rgb_quantization_range(sd); 1676 1677 if (debug > 1) 1678 v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ", 1679 timings, true); 1680 return 0; 1681 } 1682 1683 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd, 1684 struct v4l2_dv_timings *timings) 1685 { 1686 struct adv76xx_state *state = to_state(sd); 1687 1688 *timings = state->timings; 1689 return 0; 1690 } 1691 1692 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable) 1693 { 1694 hdmi_write(sd, 0x01, enable ? 0x00 : 0x78); 1695 } 1696 1697 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable) 1698 { 1699 hdmi_write(sd, 0x83, enable ? 0xfe : 0xff); 1700 } 1701 1702 static void enable_input(struct v4l2_subdev *sd) 1703 { 1704 struct adv76xx_state *state = to_state(sd); 1705 1706 if (is_analog_input(sd)) { 1707 io_write(sd, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */ 1708 } else if (is_digital_input(sd)) { 1709 hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input); 1710 state->info->set_termination(sd, true); 1711 io_write(sd, 0x15, 0xa0); /* Disable Tristate of Pins */ 1712 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */ 1713 } else { 1714 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 1715 __func__, state->selected_input); 1716 } 1717 } 1718 1719 static void disable_input(struct v4l2_subdev *sd) 1720 { 1721 struct adv76xx_state *state = to_state(sd); 1722 1723 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */ 1724 msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */ 1725 io_write(sd, 0x15, 0xbe); /* Tristate all outputs from video core */ 1726 state->info->set_termination(sd, false); 1727 } 1728 1729 static void select_input(struct v4l2_subdev *sd) 1730 { 1731 struct adv76xx_state *state = to_state(sd); 1732 const struct adv76xx_chip_info *info = state->info; 1733 1734 if (is_analog_input(sd)) { 1735 adv76xx_write_reg_seq(sd, info->recommended_settings[0]); 1736 1737 afe_write(sd, 0x00, 0x08); /* power up ADC */ 1738 afe_write(sd, 0x01, 0x06); /* power up Analog Front End */ 1739 afe_write(sd, 0xc8, 0x00); /* phase control */ 1740 } else if (is_digital_input(sd)) { 1741 hdmi_write(sd, 0x00, state->selected_input & 0x03); 1742 1743 adv76xx_write_reg_seq(sd, info->recommended_settings[1]); 1744 1745 if (adv76xx_has_afe(state)) { 1746 afe_write(sd, 0x00, 0xff); /* power down ADC */ 1747 afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */ 1748 afe_write(sd, 0xc8, 0x40); /* phase control */ 1749 } 1750 1751 cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */ 1752 cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */ 1753 cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */ 1754 } else { 1755 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n", 1756 __func__, state->selected_input); 1757 } 1758 } 1759 1760 static int adv76xx_s_routing(struct v4l2_subdev *sd, 1761 u32 input, u32 output, u32 config) 1762 { 1763 struct adv76xx_state *state = to_state(sd); 1764 1765 v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d", 1766 __func__, input, state->selected_input); 1767 1768 if (input == state->selected_input) 1769 return 0; 1770 1771 if (input > state->info->max_port) 1772 return -EINVAL; 1773 1774 state->selected_input = input; 1775 1776 disable_input(sd); 1777 select_input(sd); 1778 enable_input(sd); 1779 1780 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt); 1781 1782 return 0; 1783 } 1784 1785 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd, 1786 struct v4l2_subdev_pad_config *cfg, 1787 struct v4l2_subdev_mbus_code_enum *code) 1788 { 1789 struct adv76xx_state *state = to_state(sd); 1790 1791 if (code->index >= state->info->nformats) 1792 return -EINVAL; 1793 1794 code->code = state->info->formats[code->index].code; 1795 1796 return 0; 1797 } 1798 1799 static void adv76xx_fill_format(struct adv76xx_state *state, 1800 struct v4l2_mbus_framefmt *format) 1801 { 1802 memset(format, 0, sizeof(*format)); 1803 1804 format->width = state->timings.bt.width; 1805 format->height = state->timings.bt.height; 1806 format->field = V4L2_FIELD_NONE; 1807 format->colorspace = V4L2_COLORSPACE_SRGB; 1808 1809 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) 1810 format->colorspace = (state->timings.bt.height <= 576) ? 1811 V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709; 1812 } 1813 1814 /* 1815 * Compute the op_ch_sel value required to obtain on the bus the component order 1816 * corresponding to the selected format taking into account bus reordering 1817 * applied by the board at the output of the device. 1818 * 1819 * The following table gives the op_ch_value from the format component order 1820 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as 1821 * adv76xx_bus_order value in row). 1822 * 1823 * | GBR(0) GRB(1) BGR(2) RGB(3) BRG(4) RBG(5) 1824 * ----------+------------------------------------------------- 1825 * RGB (NOP) | GBR GRB BGR RGB BRG RBG 1826 * GRB (1-2) | BGR RGB GBR GRB RBG BRG 1827 * RBG (2-3) | GRB GBR BRG RBG BGR RGB 1828 * BGR (1-3) | RBG BRG RGB BGR GRB GBR 1829 * BRG (ROR) | BRG RBG GRB GBR RGB BGR 1830 * GBR (ROL) | RGB BGR RBG BRG GBR GRB 1831 */ 1832 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state) 1833 { 1834 #define _SEL(a,b,c,d,e,f) { \ 1835 ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \ 1836 ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f } 1837 #define _BUS(x) [ADV7604_BUS_ORDER_##x] 1838 1839 static const unsigned int op_ch_sel[6][6] = { 1840 _BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG), 1841 _BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG), 1842 _BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB), 1843 _BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR), 1844 _BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR), 1845 _BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB), 1846 }; 1847 1848 return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5]; 1849 } 1850 1851 static void adv76xx_setup_format(struct adv76xx_state *state) 1852 { 1853 struct v4l2_subdev *sd = &state->sd; 1854 1855 io_write_clr_set(sd, 0x02, 0x02, 1856 state->format->rgb_out ? ADV76XX_RGB_OUT : 0); 1857 io_write(sd, 0x03, state->format->op_format_sel | 1858 state->pdata.op_format_mode_sel); 1859 io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state)); 1860 io_write_clr_set(sd, 0x05, 0x01, 1861 state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0); 1862 } 1863 1864 static int adv76xx_get_format(struct v4l2_subdev *sd, 1865 struct v4l2_subdev_pad_config *cfg, 1866 struct v4l2_subdev_format *format) 1867 { 1868 struct adv76xx_state *state = to_state(sd); 1869 1870 if (format->pad != state->source_pad) 1871 return -EINVAL; 1872 1873 adv76xx_fill_format(state, &format->format); 1874 1875 if (format->which == V4L2_SUBDEV_FORMAT_TRY) { 1876 struct v4l2_mbus_framefmt *fmt; 1877 1878 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad); 1879 format->format.code = fmt->code; 1880 } else { 1881 format->format.code = state->format->code; 1882 } 1883 1884 return 0; 1885 } 1886 1887 static int adv76xx_set_format(struct v4l2_subdev *sd, 1888 struct v4l2_subdev_pad_config *cfg, 1889 struct v4l2_subdev_format *format) 1890 { 1891 struct adv76xx_state *state = to_state(sd); 1892 const struct adv76xx_format_info *info; 1893 1894 if (format->pad != state->source_pad) 1895 return -EINVAL; 1896 1897 info = adv76xx_format_info(state, format->format.code); 1898 if (info == NULL) 1899 info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8); 1900 1901 adv76xx_fill_format(state, &format->format); 1902 format->format.code = info->code; 1903 1904 if (format->which == V4L2_SUBDEV_FORMAT_TRY) { 1905 struct v4l2_mbus_framefmt *fmt; 1906 1907 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad); 1908 fmt->code = format->format.code; 1909 } else { 1910 state->format = info; 1911 adv76xx_setup_format(state); 1912 } 1913 1914 return 0; 1915 } 1916 1917 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled) 1918 { 1919 struct adv76xx_state *state = to_state(sd); 1920 const struct adv76xx_chip_info *info = state->info; 1921 const u8 irq_reg_0x43 = io_read(sd, 0x43); 1922 const u8 irq_reg_0x6b = io_read(sd, 0x6b); 1923 const u8 irq_reg_0x70 = io_read(sd, 0x70); 1924 u8 fmt_change_digital; 1925 u8 fmt_change; 1926 u8 tx_5v; 1927 1928 if (irq_reg_0x43) 1929 io_write(sd, 0x44, irq_reg_0x43); 1930 if (irq_reg_0x70) 1931 io_write(sd, 0x71, irq_reg_0x70); 1932 if (irq_reg_0x6b) 1933 io_write(sd, 0x6c, irq_reg_0x6b); 1934 1935 v4l2_dbg(2, debug, sd, "%s: ", __func__); 1936 1937 /* format change */ 1938 fmt_change = irq_reg_0x43 & 0x98; 1939 fmt_change_digital = is_digital_input(sd) 1940 ? irq_reg_0x6b & info->fmt_change_digital_mask 1941 : 0; 1942 1943 if (fmt_change || fmt_change_digital) { 1944 v4l2_dbg(1, debug, sd, 1945 "%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n", 1946 __func__, fmt_change, fmt_change_digital); 1947 1948 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt); 1949 1950 if (handled) 1951 *handled = true; 1952 } 1953 /* HDMI/DVI mode */ 1954 if (irq_reg_0x6b & 0x01) { 1955 v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__, 1956 (io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI"); 1957 set_rgb_quantization_range(sd); 1958 if (handled) 1959 *handled = true; 1960 } 1961 1962 /* tx 5v detect */ 1963 tx_5v = io_read(sd, 0x70) & info->cable_det_mask; 1964 if (tx_5v) { 1965 v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v); 1966 io_write(sd, 0x71, tx_5v); 1967 adv76xx_s_detect_tx_5v_ctrl(sd); 1968 if (handled) 1969 *handled = true; 1970 } 1971 return 0; 1972 } 1973 1974 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid) 1975 { 1976 struct adv76xx_state *state = to_state(sd); 1977 u8 *data = NULL; 1978 1979 memset(edid->reserved, 0, sizeof(edid->reserved)); 1980 1981 switch (edid->pad) { 1982 case ADV76XX_PAD_HDMI_PORT_A: 1983 case ADV7604_PAD_HDMI_PORT_B: 1984 case ADV7604_PAD_HDMI_PORT_C: 1985 case ADV7604_PAD_HDMI_PORT_D: 1986 if (state->edid.present & (1 << edid->pad)) 1987 data = state->edid.edid; 1988 break; 1989 default: 1990 return -EINVAL; 1991 } 1992 1993 if (edid->start_block == 0 && edid->blocks == 0) { 1994 edid->blocks = data ? state->edid.blocks : 0; 1995 return 0; 1996 } 1997 1998 if (data == NULL) 1999 return -ENODATA; 2000 2001 if (edid->start_block >= state->edid.blocks) 2002 return -EINVAL; 2003 2004 if (edid->start_block + edid->blocks > state->edid.blocks) 2005 edid->blocks = state->edid.blocks - edid->start_block; 2006 2007 memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128); 2008 2009 return 0; 2010 } 2011 2012 static int get_edid_spa_location(const u8 *edid) 2013 { 2014 u8 d; 2015 2016 if ((edid[0x7e] != 1) || 2017 (edid[0x80] != 0x02) || 2018 (edid[0x81] != 0x03)) { 2019 return -1; 2020 } 2021 2022 /* search Vendor Specific Data Block (tag 3) */ 2023 d = edid[0x82] & 0x7f; 2024 if (d > 4) { 2025 int i = 0x84; 2026 int end = 0x80 + d; 2027 2028 do { 2029 u8 tag = edid[i] >> 5; 2030 u8 len = edid[i] & 0x1f; 2031 2032 if ((tag == 3) && (len >= 5)) 2033 return i + 4; 2034 i += len + 1; 2035 } while (i < end); 2036 } 2037 return -1; 2038 } 2039 2040 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid) 2041 { 2042 struct adv76xx_state *state = to_state(sd); 2043 const struct adv76xx_chip_info *info = state->info; 2044 int spa_loc; 2045 int err; 2046 int i; 2047 2048 memset(edid->reserved, 0, sizeof(edid->reserved)); 2049 2050 if (edid->pad > ADV7604_PAD_HDMI_PORT_D) 2051 return -EINVAL; 2052 if (edid->start_block != 0) 2053 return -EINVAL; 2054 if (edid->blocks == 0) { 2055 /* Disable hotplug and I2C access to EDID RAM from DDC port */ 2056 state->edid.present &= ~(1 << edid->pad); 2057 adv76xx_set_hpd(state, state->edid.present); 2058 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present); 2059 2060 /* Fall back to a 16:9 aspect ratio */ 2061 state->aspect_ratio.numerator = 16; 2062 state->aspect_ratio.denominator = 9; 2063 2064 if (!state->edid.present) 2065 state->edid.blocks = 0; 2066 2067 v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n", 2068 __func__, edid->pad, state->edid.present); 2069 return 0; 2070 } 2071 if (edid->blocks > 2) { 2072 edid->blocks = 2; 2073 return -E2BIG; 2074 } 2075 2076 v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n", 2077 __func__, edid->pad, state->edid.present); 2078 2079 /* Disable hotplug and I2C access to EDID RAM from DDC port */ 2080 cancel_delayed_work_sync(&state->delayed_work_enable_hotplug); 2081 adv76xx_set_hpd(state, 0); 2082 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00); 2083 2084 spa_loc = get_edid_spa_location(edid->edid); 2085 if (spa_loc < 0) 2086 spa_loc = 0xc0; /* Default value [REF_02, p. 116] */ 2087 2088 switch (edid->pad) { 2089 case ADV76XX_PAD_HDMI_PORT_A: 2090 state->spa_port_a[0] = edid->edid[spa_loc]; 2091 state->spa_port_a[1] = edid->edid[spa_loc + 1]; 2092 break; 2093 case ADV7604_PAD_HDMI_PORT_B: 2094 rep_write(sd, 0x70, edid->edid[spa_loc]); 2095 rep_write(sd, 0x71, edid->edid[spa_loc + 1]); 2096 break; 2097 case ADV7604_PAD_HDMI_PORT_C: 2098 rep_write(sd, 0x72, edid->edid[spa_loc]); 2099 rep_write(sd, 0x73, edid->edid[spa_loc + 1]); 2100 break; 2101 case ADV7604_PAD_HDMI_PORT_D: 2102 rep_write(sd, 0x74, edid->edid[spa_loc]); 2103 rep_write(sd, 0x75, edid->edid[spa_loc + 1]); 2104 break; 2105 default: 2106 return -EINVAL; 2107 } 2108 2109 if (info->type == ADV7604) { 2110 rep_write(sd, 0x76, spa_loc & 0xff); 2111 rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2); 2112 } else { 2113 /* FIXME: Where is the SPA location LSB register ? */ 2114 rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8); 2115 } 2116 2117 edid->edid[spa_loc] = state->spa_port_a[0]; 2118 edid->edid[spa_loc + 1] = state->spa_port_a[1]; 2119 2120 memcpy(state->edid.edid, edid->edid, 128 * edid->blocks); 2121 state->edid.blocks = edid->blocks; 2122 state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15], 2123 edid->edid[0x16]); 2124 state->edid.present |= 1 << edid->pad; 2125 2126 err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid); 2127 if (err < 0) { 2128 v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad); 2129 return err; 2130 } 2131 2132 /* adv76xx calculates the checksums and enables I2C access to internal 2133 EDID RAM from DDC port. */ 2134 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present); 2135 2136 for (i = 0; i < 1000; i++) { 2137 if (rep_read(sd, info->edid_status_reg) & state->edid.present) 2138 break; 2139 mdelay(1); 2140 } 2141 if (i == 1000) { 2142 v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present); 2143 return -EIO; 2144 } 2145 2146 /* enable hotplug after 100 ms */ 2147 queue_delayed_work(state->work_queues, 2148 &state->delayed_work_enable_hotplug, HZ / 10); 2149 return 0; 2150 } 2151 2152 /*********** avi info frame CEA-861-E **************/ 2153 2154 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = { 2155 { "AVI", 0x01, 0xe0, 0x00 }, 2156 { "Audio", 0x02, 0xe3, 0x1c }, 2157 { "SDP", 0x04, 0xe6, 0x2a }, 2158 { "Vendor", 0x10, 0xec, 0x54 } 2159 }; 2160 2161 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index, 2162 union hdmi_infoframe *frame) 2163 { 2164 uint8_t buffer[32]; 2165 u8 len; 2166 int i; 2167 2168 if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) { 2169 v4l2_info(sd, "%s infoframe not received\n", 2170 adv76xx_cri[index].desc); 2171 return -ENOENT; 2172 } 2173 2174 for (i = 0; i < 3; i++) 2175 buffer[i] = infoframe_read(sd, 2176 adv76xx_cri[index].head_addr + i); 2177 2178 len = buffer[2] + 1; 2179 2180 if (len + 3 > sizeof(buffer)) { 2181 v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__, 2182 adv76xx_cri[index].desc, len); 2183 return -ENOENT; 2184 } 2185 2186 for (i = 0; i < len; i++) 2187 buffer[i + 3] = infoframe_read(sd, 2188 adv76xx_cri[index].payload_addr + i); 2189 2190 if (hdmi_infoframe_unpack(frame, buffer) < 0) { 2191 v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__, 2192 adv76xx_cri[index].desc); 2193 return -ENOENT; 2194 } 2195 return 0; 2196 } 2197 2198 static void adv76xx_log_infoframes(struct v4l2_subdev *sd) 2199 { 2200 int i; 2201 2202 if (!is_hdmi(sd)) { 2203 v4l2_info(sd, "receive DVI-D signal, no infoframes\n"); 2204 return; 2205 } 2206 2207 for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) { 2208 union hdmi_infoframe frame; 2209 struct i2c_client *client = v4l2_get_subdevdata(sd); 2210 2211 if (adv76xx_read_infoframe(sd, i, &frame)) 2212 return; 2213 hdmi_infoframe_log(KERN_INFO, &client->dev, &frame); 2214 } 2215 } 2216 2217 static int adv76xx_log_status(struct v4l2_subdev *sd) 2218 { 2219 struct adv76xx_state *state = to_state(sd); 2220 const struct adv76xx_chip_info *info = state->info; 2221 struct v4l2_dv_timings timings; 2222 struct stdi_readback stdi; 2223 u8 reg_io_0x02 = io_read(sd, 0x02); 2224 u8 edid_enabled; 2225 u8 cable_det; 2226 2227 static const char * const csc_coeff_sel_rb[16] = { 2228 "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB", 2229 "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709", 2230 "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709", 2231 "reserved", "reserved", "reserved", "reserved", "manual" 2232 }; 2233 static const char * const input_color_space_txt[16] = { 2234 "RGB limited range (16-235)", "RGB full range (0-255)", 2235 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)", 2236 "xvYCC Bt.601", "xvYCC Bt.709", 2237 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)", 2238 "invalid", "invalid", "invalid", "invalid", "invalid", 2239 "invalid", "invalid", "automatic" 2240 }; 2241 static const char * const hdmi_color_space_txt[16] = { 2242 "RGB limited range (16-235)", "RGB full range (0-255)", 2243 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)", 2244 "xvYCC Bt.601", "xvYCC Bt.709", 2245 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)", 2246 "sYCC", "Adobe YCC 601", "AdobeRGB", "invalid", "invalid", 2247 "invalid", "invalid", "invalid" 2248 }; 2249 static const char * const rgb_quantization_range_txt[] = { 2250 "Automatic", 2251 "RGB limited range (16-235)", 2252 "RGB full range (0-255)", 2253 }; 2254 static const char * const deep_color_mode_txt[4] = { 2255 "8-bits per channel", 2256 "10-bits per channel", 2257 "12-bits per channel", 2258 "16-bits per channel (not supported)" 2259 }; 2260 2261 v4l2_info(sd, "-----Chip status-----\n"); 2262 v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on"); 2263 edid_enabled = rep_read(sd, info->edid_status_reg); 2264 v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n", 2265 ((edid_enabled & 0x01) ? "Yes" : "No"), 2266 ((edid_enabled & 0x02) ? "Yes" : "No"), 2267 ((edid_enabled & 0x04) ? "Yes" : "No"), 2268 ((edid_enabled & 0x08) ? "Yes" : "No")); 2269 v4l2_info(sd, "CEC: %s\n", !!(cec_read(sd, 0x2a) & 0x01) ? 2270 "enabled" : "disabled"); 2271 2272 v4l2_info(sd, "-----Signal status-----\n"); 2273 cable_det = info->read_cable_det(sd); 2274 v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n", 2275 ((cable_det & 0x01) ? "Yes" : "No"), 2276 ((cable_det & 0x02) ? "Yes" : "No"), 2277 ((cable_det & 0x04) ? "Yes" : "No"), 2278 ((cable_det & 0x08) ? "Yes" : "No")); 2279 v4l2_info(sd, "TMDS signal detected: %s\n", 2280 no_signal_tmds(sd) ? "false" : "true"); 2281 v4l2_info(sd, "TMDS signal locked: %s\n", 2282 no_lock_tmds(sd) ? "false" : "true"); 2283 v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true"); 2284 v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true"); 2285 v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true"); 2286 v4l2_info(sd, "CP free run: %s\n", 2287 (in_free_run(sd)) ? "on" : "off"); 2288 v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n", 2289 io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f, 2290 (io_read(sd, 0x01) & 0x70) >> 4); 2291 2292 v4l2_info(sd, "-----Video Timings-----\n"); 2293 if (read_stdi(sd, &stdi)) 2294 v4l2_info(sd, "STDI: not locked\n"); 2295 else 2296 v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n", 2297 stdi.lcf, stdi.bl, stdi.lcvs, 2298 stdi.interlaced ? "interlaced" : "progressive", 2299 stdi.hs_pol, stdi.vs_pol); 2300 if (adv76xx_query_dv_timings(sd, &timings)) 2301 v4l2_info(sd, "No video detected\n"); 2302 else 2303 v4l2_print_dv_timings(sd->name, "Detected format: ", 2304 &timings, true); 2305 v4l2_print_dv_timings(sd->name, "Configured format: ", 2306 &state->timings, true); 2307 2308 if (no_signal(sd)) 2309 return 0; 2310 2311 v4l2_info(sd, "-----Color space-----\n"); 2312 v4l2_info(sd, "RGB quantization range ctrl: %s\n", 2313 rgb_quantization_range_txt[state->rgb_quantization_range]); 2314 v4l2_info(sd, "Input color space: %s\n", 2315 input_color_space_txt[reg_io_0x02 >> 4]); 2316 v4l2_info(sd, "Output color space: %s %s, saturator %s, alt-gamma %s\n", 2317 (reg_io_0x02 & 0x02) ? "RGB" : "YCbCr", 2318 (reg_io_0x02 & 0x04) ? "(16-235)" : "(0-255)", 2319 (((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ? 2320 "enabled" : "disabled", 2321 (reg_io_0x02 & 0x08) ? "enabled" : "disabled"); 2322 v4l2_info(sd, "Color space conversion: %s\n", 2323 csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]); 2324 2325 if (!is_digital_input(sd)) 2326 return 0; 2327 2328 v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D"); 2329 v4l2_info(sd, "Digital video port selected: %c\n", 2330 (hdmi_read(sd, 0x00) & 0x03) + 'A'); 2331 v4l2_info(sd, "HDCP encrypted content: %s\n", 2332 (hdmi_read(sd, 0x05) & 0x40) ? "true" : "false"); 2333 v4l2_info(sd, "HDCP keys read: %s%s\n", 2334 (hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no", 2335 (hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : ""); 2336 if (is_hdmi(sd)) { 2337 bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01; 2338 bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01; 2339 bool audio_mute = io_read(sd, 0x65) & 0x40; 2340 2341 v4l2_info(sd, "Audio: pll %s, samples %s, %s\n", 2342 audio_pll_locked ? "locked" : "not locked", 2343 audio_sample_packet_detect ? "detected" : "not detected", 2344 audio_mute ? "muted" : "enabled"); 2345 if (audio_pll_locked && audio_sample_packet_detect) { 2346 v4l2_info(sd, "Audio format: %s\n", 2347 (hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo"); 2348 } 2349 v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) + 2350 (hdmi_read(sd, 0x5c) << 8) + 2351 (hdmi_read(sd, 0x5d) & 0xf0)); 2352 v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) + 2353 (hdmi_read(sd, 0x5e) << 8) + 2354 hdmi_read(sd, 0x5f)); 2355 v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off"); 2356 2357 v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]); 2358 v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]); 2359 2360 adv76xx_log_infoframes(sd); 2361 } 2362 2363 return 0; 2364 } 2365 2366 static int adv76xx_subscribe_event(struct v4l2_subdev *sd, 2367 struct v4l2_fh *fh, 2368 struct v4l2_event_subscription *sub) 2369 { 2370 switch (sub->type) { 2371 case V4L2_EVENT_SOURCE_CHANGE: 2372 return v4l2_src_change_event_subdev_subscribe(sd, fh, sub); 2373 case V4L2_EVENT_CTRL: 2374 return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub); 2375 default: 2376 return -EINVAL; 2377 } 2378 } 2379 2380 /* ----------------------------------------------------------------------- */ 2381 2382 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = { 2383 .s_ctrl = adv76xx_s_ctrl, 2384 }; 2385 2386 static const struct v4l2_subdev_core_ops adv76xx_core_ops = { 2387 .log_status = adv76xx_log_status, 2388 .interrupt_service_routine = adv76xx_isr, 2389 .subscribe_event = adv76xx_subscribe_event, 2390 .unsubscribe_event = v4l2_event_subdev_unsubscribe, 2391 #ifdef CONFIG_VIDEO_ADV_DEBUG 2392 .g_register = adv76xx_g_register, 2393 .s_register = adv76xx_s_register, 2394 #endif 2395 }; 2396 2397 static const struct v4l2_subdev_video_ops adv76xx_video_ops = { 2398 .s_routing = adv76xx_s_routing, 2399 .g_input_status = adv76xx_g_input_status, 2400 .s_dv_timings = adv76xx_s_dv_timings, 2401 .g_dv_timings = adv76xx_g_dv_timings, 2402 .query_dv_timings = adv76xx_query_dv_timings, 2403 }; 2404 2405 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = { 2406 .enum_mbus_code = adv76xx_enum_mbus_code, 2407 .get_fmt = adv76xx_get_format, 2408 .set_fmt = adv76xx_set_format, 2409 .get_edid = adv76xx_get_edid, 2410 .set_edid = adv76xx_set_edid, 2411 .dv_timings_cap = adv76xx_dv_timings_cap, 2412 .enum_dv_timings = adv76xx_enum_dv_timings, 2413 }; 2414 2415 static const struct v4l2_subdev_ops adv76xx_ops = { 2416 .core = &adv76xx_core_ops, 2417 .video = &adv76xx_video_ops, 2418 .pad = &adv76xx_pad_ops, 2419 }; 2420 2421 /* -------------------------- custom ctrls ---------------------------------- */ 2422 2423 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = { 2424 .ops = &adv76xx_ctrl_ops, 2425 .id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE, 2426 .name = "Analog Sampling Phase", 2427 .type = V4L2_CTRL_TYPE_INTEGER, 2428 .min = 0, 2429 .max = 0x1f, 2430 .step = 1, 2431 .def = 0, 2432 }; 2433 2434 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = { 2435 .ops = &adv76xx_ctrl_ops, 2436 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL, 2437 .name = "Free Running Color, Manual", 2438 .type = V4L2_CTRL_TYPE_BOOLEAN, 2439 .min = false, 2440 .max = true, 2441 .step = 1, 2442 .def = false, 2443 }; 2444 2445 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = { 2446 .ops = &adv76xx_ctrl_ops, 2447 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR, 2448 .name = "Free Running Color", 2449 .type = V4L2_CTRL_TYPE_INTEGER, 2450 .min = 0x0, 2451 .max = 0xffffff, 2452 .step = 0x1, 2453 .def = 0x0, 2454 }; 2455 2456 /* ----------------------------------------------------------------------- */ 2457 2458 static int adv76xx_core_init(struct v4l2_subdev *sd) 2459 { 2460 struct adv76xx_state *state = to_state(sd); 2461 const struct adv76xx_chip_info *info = state->info; 2462 struct adv76xx_platform_data *pdata = &state->pdata; 2463 2464 hdmi_write(sd, 0x48, 2465 (pdata->disable_pwrdnb ? 0x80 : 0) | 2466 (pdata->disable_cable_det_rst ? 0x40 : 0)); 2467 2468 disable_input(sd); 2469 2470 if (pdata->default_input >= 0 && 2471 pdata->default_input < state->source_pad) { 2472 state->selected_input = pdata->default_input; 2473 select_input(sd); 2474 enable_input(sd); 2475 } 2476 2477 /* power */ 2478 io_write(sd, 0x0c, 0x42); /* Power up part and power down VDP */ 2479 io_write(sd, 0x0b, 0x44); /* Power down ESDP block */ 2480 cp_write(sd, 0xcf, 0x01); /* Power down macrovision */ 2481 2482 /* video format */ 2483 io_write_clr_set(sd, 0x02, 0x0f, 2484 pdata->alt_gamma << 3 | 2485 pdata->op_656_range << 2 | 2486 pdata->alt_data_sat << 0); 2487 io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 | 2488 pdata->insert_av_codes << 2 | 2489 pdata->replicate_av_codes << 1); 2490 adv76xx_setup_format(state); 2491 2492 cp_write(sd, 0x69, 0x30); /* Enable CP CSC */ 2493 2494 /* VS, HS polarities */ 2495 io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 | 2496 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol); 2497 2498 /* Adjust drive strength */ 2499 io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 | 2500 pdata->dr_str_clk << 2 | 2501 pdata->dr_str_sync); 2502 2503 cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */ 2504 cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */ 2505 cp_write(sd, 0xf9, 0x23); /* STDI ch. 1 - LCVS change threshold - 2506 ADI recommended setting [REF_01, c. 2.3.3] */ 2507 cp_write(sd, 0x45, 0x23); /* STDI ch. 2 - LCVS change threshold - 2508 ADI recommended setting [REF_01, c. 2.3.3] */ 2509 cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution 2510 for digital formats */ 2511 2512 /* HDMI audio */ 2513 hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */ 2514 hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */ 2515 hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */ 2516 2517 /* TODO from platform data */ 2518 afe_write(sd, 0xb5, 0x01); /* Setting MCLK to 256Fs */ 2519 2520 if (adv76xx_has_afe(state)) { 2521 afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */ 2522 io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4); 2523 } 2524 2525 /* interrupts */ 2526 io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */ 2527 io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */ 2528 io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */ 2529 io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */ 2530 info->setup_irqs(sd); 2531 2532 return v4l2_ctrl_handler_setup(sd->ctrl_handler); 2533 } 2534 2535 static void adv7604_setup_irqs(struct v4l2_subdev *sd) 2536 { 2537 io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */ 2538 } 2539 2540 static void adv7611_setup_irqs(struct v4l2_subdev *sd) 2541 { 2542 io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */ 2543 } 2544 2545 static void adv7612_setup_irqs(struct v4l2_subdev *sd) 2546 { 2547 io_write(sd, 0x41, 0xd0); /* disable INT2 */ 2548 } 2549 2550 static void adv76xx_unregister_clients(struct adv76xx_state *state) 2551 { 2552 unsigned int i; 2553 2554 for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) { 2555 if (state->i2c_clients[i]) 2556 i2c_unregister_device(state->i2c_clients[i]); 2557 } 2558 } 2559 2560 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd, 2561 u8 addr, u8 io_reg) 2562 { 2563 struct i2c_client *client = v4l2_get_subdevdata(sd); 2564 2565 if (addr) 2566 io_write(sd, io_reg, addr << 1); 2567 return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1); 2568 } 2569 2570 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = { 2571 /* reset ADI recommended settings for HDMI: */ 2572 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */ 2573 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */ 2574 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */ 2575 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */ 2576 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */ 2577 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */ 2578 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */ 2579 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */ 2580 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */ 2581 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */ 2582 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */ 2583 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */ 2584 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */ 2585 2586 /* set ADI recommended settings for digitizer */ 2587 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */ 2588 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */ 2589 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */ 2590 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */ 2591 { ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */ 2592 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */ 2593 2594 { ADV76XX_REG_SEQ_TERM, 0 }, 2595 }; 2596 2597 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = { 2598 /* set ADI recommended settings for HDMI: */ 2599 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */ 2600 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */ 2601 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */ 2602 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */ 2603 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */ 2604 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */ 2605 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */ 2606 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */ 2607 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */ 2608 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */ 2609 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */ 2610 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */ 2611 2612 /* reset ADI recommended settings for digitizer */ 2613 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */ 2614 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */ 2615 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */ 2616 2617 { ADV76XX_REG_SEQ_TERM, 0 }, 2618 }; 2619 2620 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = { 2621 /* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */ 2622 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 }, 2623 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 }, 2624 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 }, 2625 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f }, 2626 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 }, 2627 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda }, 2628 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 }, 2629 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 }, 2630 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 }, 2631 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 }, 2632 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e }, 2633 2634 { ADV76XX_REG_SEQ_TERM, 0 }, 2635 }; 2636 2637 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = { 2638 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 }, 2639 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 }, 2640 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 }, 2641 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f }, 2642 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 }, 2643 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda }, 2644 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 }, 2645 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 }, 2646 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 }, 2647 { ADV76XX_REG_SEQ_TERM, 0 }, 2648 }; 2649 2650 static const struct adv76xx_chip_info adv76xx_chip_info[] = { 2651 [ADV7604] = { 2652 .type = ADV7604, 2653 .has_afe = true, 2654 .max_port = ADV7604_PAD_VGA_COMP, 2655 .num_dv_ports = 4, 2656 .edid_enable_reg = 0x77, 2657 .edid_status_reg = 0x7d, 2658 .lcf_reg = 0xb3, 2659 .tdms_lock_mask = 0xe0, 2660 .cable_det_mask = 0x1e, 2661 .fmt_change_digital_mask = 0xc1, 2662 .cp_csc = 0xfc, 2663 .formats = adv7604_formats, 2664 .nformats = ARRAY_SIZE(adv7604_formats), 2665 .set_termination = adv7604_set_termination, 2666 .setup_irqs = adv7604_setup_irqs, 2667 .read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock, 2668 .read_cable_det = adv7604_read_cable_det, 2669 .recommended_settings = { 2670 [0] = adv7604_recommended_settings_afe, 2671 [1] = adv7604_recommended_settings_hdmi, 2672 }, 2673 .num_recommended_settings = { 2674 [0] = ARRAY_SIZE(adv7604_recommended_settings_afe), 2675 [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi), 2676 }, 2677 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) | 2678 BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) | 2679 BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) | 2680 BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) | 2681 BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) | 2682 BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) | 2683 BIT(ADV7604_PAGE_VDP), 2684 .linewidth_mask = 0xfff, 2685 .field0_height_mask = 0xfff, 2686 .field1_height_mask = 0xfff, 2687 .hfrontporch_mask = 0x3ff, 2688 .hsync_mask = 0x3ff, 2689 .hbackporch_mask = 0x3ff, 2690 .field0_vfrontporch_mask = 0x1fff, 2691 .field0_vsync_mask = 0x1fff, 2692 .field0_vbackporch_mask = 0x1fff, 2693 .field1_vfrontporch_mask = 0x1fff, 2694 .field1_vsync_mask = 0x1fff, 2695 .field1_vbackporch_mask = 0x1fff, 2696 }, 2697 [ADV7611] = { 2698 .type = ADV7611, 2699 .has_afe = false, 2700 .max_port = ADV76XX_PAD_HDMI_PORT_A, 2701 .num_dv_ports = 1, 2702 .edid_enable_reg = 0x74, 2703 .edid_status_reg = 0x76, 2704 .lcf_reg = 0xa3, 2705 .tdms_lock_mask = 0x43, 2706 .cable_det_mask = 0x01, 2707 .fmt_change_digital_mask = 0x03, 2708 .cp_csc = 0xf4, 2709 .formats = adv7611_formats, 2710 .nformats = ARRAY_SIZE(adv7611_formats), 2711 .set_termination = adv7611_set_termination, 2712 .setup_irqs = adv7611_setup_irqs, 2713 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock, 2714 .read_cable_det = adv7611_read_cable_det, 2715 .recommended_settings = { 2716 [1] = adv7611_recommended_settings_hdmi, 2717 }, 2718 .num_recommended_settings = { 2719 [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi), 2720 }, 2721 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) | 2722 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) | 2723 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) | 2724 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP), 2725 .linewidth_mask = 0x1fff, 2726 .field0_height_mask = 0x1fff, 2727 .field1_height_mask = 0x1fff, 2728 .hfrontporch_mask = 0x1fff, 2729 .hsync_mask = 0x1fff, 2730 .hbackporch_mask = 0x1fff, 2731 .field0_vfrontporch_mask = 0x3fff, 2732 .field0_vsync_mask = 0x3fff, 2733 .field0_vbackporch_mask = 0x3fff, 2734 .field1_vfrontporch_mask = 0x3fff, 2735 .field1_vsync_mask = 0x3fff, 2736 .field1_vbackporch_mask = 0x3fff, 2737 }, 2738 [ADV7612] = { 2739 .type = ADV7612, 2740 .has_afe = false, 2741 .max_port = ADV76XX_PAD_HDMI_PORT_A, /* B not supported */ 2742 .num_dv_ports = 1, /* normally 2 */ 2743 .edid_enable_reg = 0x74, 2744 .edid_status_reg = 0x76, 2745 .lcf_reg = 0xa3, 2746 .tdms_lock_mask = 0x43, 2747 .cable_det_mask = 0x01, 2748 .fmt_change_digital_mask = 0x03, 2749 .cp_csc = 0xf4, 2750 .formats = adv7612_formats, 2751 .nformats = ARRAY_SIZE(adv7612_formats), 2752 .set_termination = adv7611_set_termination, 2753 .setup_irqs = adv7612_setup_irqs, 2754 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock, 2755 .read_cable_det = adv7612_read_cable_det, 2756 .recommended_settings = { 2757 [1] = adv7612_recommended_settings_hdmi, 2758 }, 2759 .num_recommended_settings = { 2760 [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi), 2761 }, 2762 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) | 2763 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) | 2764 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) | 2765 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP), 2766 .linewidth_mask = 0x1fff, 2767 .field0_height_mask = 0x1fff, 2768 .field1_height_mask = 0x1fff, 2769 .hfrontporch_mask = 0x1fff, 2770 .hsync_mask = 0x1fff, 2771 .hbackporch_mask = 0x1fff, 2772 .field0_vfrontporch_mask = 0x3fff, 2773 .field0_vsync_mask = 0x3fff, 2774 .field0_vbackporch_mask = 0x3fff, 2775 .field1_vfrontporch_mask = 0x3fff, 2776 .field1_vsync_mask = 0x3fff, 2777 .field1_vbackporch_mask = 0x3fff, 2778 }, 2779 }; 2780 2781 static const struct i2c_device_id adv76xx_i2c_id[] = { 2782 { "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] }, 2783 { "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] }, 2784 { "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] }, 2785 { } 2786 }; 2787 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id); 2788 2789 static const struct of_device_id adv76xx_of_id[] __maybe_unused = { 2790 { .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] }, 2791 { .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] }, 2792 { } 2793 }; 2794 MODULE_DEVICE_TABLE(of, adv76xx_of_id); 2795 2796 static int adv76xx_parse_dt(struct adv76xx_state *state) 2797 { 2798 struct v4l2_of_endpoint bus_cfg; 2799 struct device_node *endpoint; 2800 struct device_node *np; 2801 unsigned int flags; 2802 u32 v; 2803 2804 np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node; 2805 2806 /* Parse the endpoint. */ 2807 endpoint = of_graph_get_next_endpoint(np, NULL); 2808 if (!endpoint) 2809 return -EINVAL; 2810 2811 v4l2_of_parse_endpoint(endpoint, &bus_cfg); 2812 2813 if (!of_property_read_u32(endpoint, "default-input", &v)) 2814 state->pdata.default_input = v; 2815 else 2816 state->pdata.default_input = -1; 2817 2818 of_node_put(endpoint); 2819 2820 flags = bus_cfg.bus.parallel.flags; 2821 2822 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH) 2823 state->pdata.inv_hs_pol = 1; 2824 2825 if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH) 2826 state->pdata.inv_vs_pol = 1; 2827 2828 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING) 2829 state->pdata.inv_llc_pol = 1; 2830 2831 if (bus_cfg.bus_type == V4L2_MBUS_BT656) { 2832 state->pdata.insert_av_codes = 1; 2833 state->pdata.op_656_range = 1; 2834 } 2835 2836 /* Disable the interrupt for now as no DT-based board uses it. */ 2837 state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED; 2838 2839 /* Use the default I2C addresses. */ 2840 state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42; 2841 state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40; 2842 state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e; 2843 state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38; 2844 state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c; 2845 state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26; 2846 state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32; 2847 state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36; 2848 state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34; 2849 state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30; 2850 state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22; 2851 state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24; 2852 2853 /* Hardcode the remaining platform data fields. */ 2854 state->pdata.disable_pwrdnb = 0; 2855 state->pdata.disable_cable_det_rst = 0; 2856 state->pdata.blank_data = 1; 2857 state->pdata.alt_data_sat = 1; 2858 state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0; 2859 state->pdata.bus_order = ADV7604_BUS_ORDER_RGB; 2860 2861 return 0; 2862 } 2863 2864 static const struct regmap_config adv76xx_regmap_cnf[] = { 2865 { 2866 .name = "io", 2867 .reg_bits = 8, 2868 .val_bits = 8, 2869 2870 .max_register = 0xff, 2871 .cache_type = REGCACHE_NONE, 2872 }, 2873 { 2874 .name = "avlink", 2875 .reg_bits = 8, 2876 .val_bits = 8, 2877 2878 .max_register = 0xff, 2879 .cache_type = REGCACHE_NONE, 2880 }, 2881 { 2882 .name = "cec", 2883 .reg_bits = 8, 2884 .val_bits = 8, 2885 2886 .max_register = 0xff, 2887 .cache_type = REGCACHE_NONE, 2888 }, 2889 { 2890 .name = "infoframe", 2891 .reg_bits = 8, 2892 .val_bits = 8, 2893 2894 .max_register = 0xff, 2895 .cache_type = REGCACHE_NONE, 2896 }, 2897 { 2898 .name = "esdp", 2899 .reg_bits = 8, 2900 .val_bits = 8, 2901 2902 .max_register = 0xff, 2903 .cache_type = REGCACHE_NONE, 2904 }, 2905 { 2906 .name = "epp", 2907 .reg_bits = 8, 2908 .val_bits = 8, 2909 2910 .max_register = 0xff, 2911 .cache_type = REGCACHE_NONE, 2912 }, 2913 { 2914 .name = "afe", 2915 .reg_bits = 8, 2916 .val_bits = 8, 2917 2918 .max_register = 0xff, 2919 .cache_type = REGCACHE_NONE, 2920 }, 2921 { 2922 .name = "rep", 2923 .reg_bits = 8, 2924 .val_bits = 8, 2925 2926 .max_register = 0xff, 2927 .cache_type = REGCACHE_NONE, 2928 }, 2929 { 2930 .name = "edid", 2931 .reg_bits = 8, 2932 .val_bits = 8, 2933 2934 .max_register = 0xff, 2935 .cache_type = REGCACHE_NONE, 2936 }, 2937 2938 { 2939 .name = "hdmi", 2940 .reg_bits = 8, 2941 .val_bits = 8, 2942 2943 .max_register = 0xff, 2944 .cache_type = REGCACHE_NONE, 2945 }, 2946 { 2947 .name = "test", 2948 .reg_bits = 8, 2949 .val_bits = 8, 2950 2951 .max_register = 0xff, 2952 .cache_type = REGCACHE_NONE, 2953 }, 2954 { 2955 .name = "cp", 2956 .reg_bits = 8, 2957 .val_bits = 8, 2958 2959 .max_register = 0xff, 2960 .cache_type = REGCACHE_NONE, 2961 }, 2962 { 2963 .name = "vdp", 2964 .reg_bits = 8, 2965 .val_bits = 8, 2966 2967 .max_register = 0xff, 2968 .cache_type = REGCACHE_NONE, 2969 }, 2970 }; 2971 2972 static int configure_regmap(struct adv76xx_state *state, int region) 2973 { 2974 int err; 2975 2976 if (!state->i2c_clients[region]) 2977 return -ENODEV; 2978 2979 state->regmap[region] = 2980 devm_regmap_init_i2c(state->i2c_clients[region], 2981 &adv76xx_regmap_cnf[region]); 2982 2983 if (IS_ERR(state->regmap[region])) { 2984 err = PTR_ERR(state->regmap[region]); 2985 v4l_err(state->i2c_clients[region], 2986 "Error initializing regmap %d with error %d\n", 2987 region, err); 2988 return -EINVAL; 2989 } 2990 2991 return 0; 2992 } 2993 2994 static int configure_regmaps(struct adv76xx_state *state) 2995 { 2996 int i, err; 2997 2998 for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) { 2999 err = configure_regmap(state, i); 3000 if (err && (err != -ENODEV)) 3001 return err; 3002 } 3003 return 0; 3004 } 3005 3006 static int adv76xx_probe(struct i2c_client *client, 3007 const struct i2c_device_id *id) 3008 { 3009 static const struct v4l2_dv_timings cea640x480 = 3010 V4L2_DV_BT_CEA_640X480P59_94; 3011 struct adv76xx_state *state; 3012 struct v4l2_ctrl_handler *hdl; 3013 struct v4l2_subdev *sd; 3014 unsigned int i; 3015 unsigned int val, val2; 3016 int err; 3017 3018 /* Check if the adapter supports the needed features */ 3019 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 3020 return -EIO; 3021 v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n", 3022 client->addr << 1); 3023 3024 state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL); 3025 if (!state) { 3026 v4l_err(client, "Could not allocate adv76xx_state memory!\n"); 3027 return -ENOMEM; 3028 } 3029 3030 state->i2c_clients[ADV76XX_PAGE_IO] = client; 3031 3032 /* initialize variables */ 3033 state->restart_stdi_once = true; 3034 state->selected_input = ~0; 3035 3036 if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) { 3037 const struct of_device_id *oid; 3038 3039 oid = of_match_node(adv76xx_of_id, client->dev.of_node); 3040 state->info = oid->data; 3041 3042 err = adv76xx_parse_dt(state); 3043 if (err < 0) { 3044 v4l_err(client, "DT parsing error\n"); 3045 return err; 3046 } 3047 } else if (client->dev.platform_data) { 3048 struct adv76xx_platform_data *pdata = client->dev.platform_data; 3049 3050 state->info = (const struct adv76xx_chip_info *)id->driver_data; 3051 state->pdata = *pdata; 3052 } else { 3053 v4l_err(client, "No platform data!\n"); 3054 return -ENODEV; 3055 } 3056 3057 /* Request GPIOs. */ 3058 for (i = 0; i < state->info->num_dv_ports; ++i) { 3059 state->hpd_gpio[i] = 3060 devm_gpiod_get_index_optional(&client->dev, "hpd", i, 3061 GPIOD_OUT_LOW); 3062 if (IS_ERR(state->hpd_gpio[i])) 3063 return PTR_ERR(state->hpd_gpio[i]); 3064 3065 if (state->hpd_gpio[i]) 3066 v4l_info(client, "Handling HPD %u GPIO\n", i); 3067 } 3068 3069 state->timings = cea640x480; 3070 state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8); 3071 3072 sd = &state->sd; 3073 v4l2_i2c_subdev_init(sd, client, &adv76xx_ops); 3074 snprintf(sd->name, sizeof(sd->name), "%s %d-%04x", 3075 id->name, i2c_adapter_id(client->adapter), 3076 client->addr); 3077 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS; 3078 3079 /* Configure IO Regmap region */ 3080 err = configure_regmap(state, ADV76XX_PAGE_IO); 3081 3082 if (err) { 3083 v4l2_err(sd, "Error configuring IO regmap region\n"); 3084 return -ENODEV; 3085 } 3086 3087 /* 3088 * Verify that the chip is present. On ADV7604 the RD_INFO register only 3089 * identifies the revision, while on ADV7611 it identifies the model as 3090 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611. 3091 */ 3092 switch (state->info->type) { 3093 case ADV7604: 3094 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val); 3095 if (err) { 3096 v4l2_err(sd, "Error %d reading IO Regmap\n", err); 3097 return -ENODEV; 3098 } 3099 if (val != 0x68) { 3100 v4l2_err(sd, "not an adv7604 on address 0x%x\n", 3101 client->addr << 1); 3102 return -ENODEV; 3103 } 3104 break; 3105 case ADV7611: 3106 case ADV7612: 3107 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 3108 0xea, 3109 &val); 3110 if (err) { 3111 v4l2_err(sd, "Error %d reading IO Regmap\n", err); 3112 return -ENODEV; 3113 } 3114 val2 = val << 8; 3115 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 3116 0xeb, 3117 &val); 3118 if (err) { 3119 v4l2_err(sd, "Error %d reading IO Regmap\n", err); 3120 return -ENODEV; 3121 } 3122 val |= val2; 3123 if ((state->info->type == ADV7611 && val != 0x2051) || 3124 (state->info->type == ADV7612 && val != 0x2041)) { 3125 v4l2_err(sd, "not an adv761x on address 0x%x\n", 3126 client->addr << 1); 3127 return -ENODEV; 3128 } 3129 break; 3130 } 3131 3132 /* control handlers */ 3133 hdl = &state->hdl; 3134 v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8); 3135 3136 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3137 V4L2_CID_BRIGHTNESS, -128, 127, 1, 0); 3138 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3139 V4L2_CID_CONTRAST, 0, 255, 1, 128); 3140 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3141 V4L2_CID_SATURATION, 0, 255, 1, 128); 3142 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops, 3143 V4L2_CID_HUE, 0, 128, 1, 0); 3144 3145 /* private controls */ 3146 state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL, 3147 V4L2_CID_DV_RX_POWER_PRESENT, 0, 3148 (1 << state->info->num_dv_ports) - 1, 0, 0); 3149 state->rgb_quantization_range_ctrl = 3150 v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops, 3151 V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 3152 0, V4L2_DV_RGB_RANGE_AUTO); 3153 3154 /* custom controls */ 3155 if (adv76xx_has_afe(state)) 3156 state->analog_sampling_phase_ctrl = 3157 v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL); 3158 state->free_run_color_manual_ctrl = 3159 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL); 3160 state->free_run_color_ctrl = 3161 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL); 3162 3163 sd->ctrl_handler = hdl; 3164 if (hdl->error) { 3165 err = hdl->error; 3166 goto err_hdl; 3167 } 3168 state->detect_tx_5v_ctrl->is_private = true; 3169 state->rgb_quantization_range_ctrl->is_private = true; 3170 if (adv76xx_has_afe(state)) 3171 state->analog_sampling_phase_ctrl->is_private = true; 3172 state->free_run_color_manual_ctrl->is_private = true; 3173 state->free_run_color_ctrl->is_private = true; 3174 3175 if (adv76xx_s_detect_tx_5v_ctrl(sd)) { 3176 err = -ENODEV; 3177 goto err_hdl; 3178 } 3179 3180 for (i = 1; i < ADV76XX_PAGE_MAX; ++i) { 3181 if (!(BIT(i) & state->info->page_mask)) 3182 continue; 3183 3184 state->i2c_clients[i] = 3185 adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i], 3186 0xf2 + i); 3187 if (state->i2c_clients[i] == NULL) { 3188 err = -ENOMEM; 3189 v4l2_err(sd, "failed to create i2c client %u\n", i); 3190 goto err_i2c; 3191 } 3192 } 3193 3194 /* work queues */ 3195 state->work_queues = create_singlethread_workqueue(client->name); 3196 if (!state->work_queues) { 3197 v4l2_err(sd, "Could not create work queue\n"); 3198 err = -ENOMEM; 3199 goto err_i2c; 3200 } 3201 3202 INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug, 3203 adv76xx_delayed_work_enable_hotplug); 3204 3205 state->source_pad = state->info->num_dv_ports 3206 + (state->info->has_afe ? 2 : 0); 3207 for (i = 0; i < state->source_pad; ++i) 3208 state->pads[i].flags = MEDIA_PAD_FL_SINK; 3209 state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE; 3210 3211 err = media_entity_init(&sd->entity, state->source_pad + 1, 3212 state->pads, 0); 3213 if (err) 3214 goto err_work_queues; 3215 3216 /* Configure regmaps */ 3217 err = configure_regmaps(state); 3218 if (err) 3219 goto err_entity; 3220 3221 err = adv76xx_core_init(sd); 3222 if (err) 3223 goto err_entity; 3224 v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name, 3225 client->addr << 1, client->adapter->name); 3226 3227 err = v4l2_async_register_subdev(sd); 3228 if (err) 3229 goto err_entity; 3230 3231 return 0; 3232 3233 err_entity: 3234 media_entity_cleanup(&sd->entity); 3235 err_work_queues: 3236 cancel_delayed_work(&state->delayed_work_enable_hotplug); 3237 destroy_workqueue(state->work_queues); 3238 err_i2c: 3239 adv76xx_unregister_clients(state); 3240 err_hdl: 3241 v4l2_ctrl_handler_free(hdl); 3242 return err; 3243 } 3244 3245 /* ----------------------------------------------------------------------- */ 3246 3247 static int adv76xx_remove(struct i2c_client *client) 3248 { 3249 struct v4l2_subdev *sd = i2c_get_clientdata(client); 3250 struct adv76xx_state *state = to_state(sd); 3251 3252 cancel_delayed_work(&state->delayed_work_enable_hotplug); 3253 destroy_workqueue(state->work_queues); 3254 v4l2_async_unregister_subdev(sd); 3255 media_entity_cleanup(&sd->entity); 3256 adv76xx_unregister_clients(to_state(sd)); 3257 v4l2_ctrl_handler_free(sd->ctrl_handler); 3258 return 0; 3259 } 3260 3261 /* ----------------------------------------------------------------------- */ 3262 3263 static struct i2c_driver adv76xx_driver = { 3264 .driver = { 3265 .name = "adv7604", 3266 .of_match_table = of_match_ptr(adv76xx_of_id), 3267 }, 3268 .probe = adv76xx_probe, 3269 .remove = adv76xx_remove, 3270 .id_table = adv76xx_i2c_id, 3271 }; 3272 3273 module_i2c_driver(adv76xx_driver); 3274