xref: /openbmc/linux/drivers/media/i2c/adv7604.c (revision 8365a898)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * adv7604 - Analog Devices ADV7604 video decoder driver
4  *
5  * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  *
7  */
8 
9 /*
10  * References (c = chapter, p = page):
11  * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
12  *		Revision 2.5, June 2010
13  * REF_02 - Analog devices, Register map documentation, Documentation of
14  *		the register maps, Software manual, Rev. F, June 2010
15  * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
16  */
17 
18 #include <linux/delay.h>
19 #include <linux/gpio/consumer.h>
20 #include <linux/hdmi.h>
21 #include <linux/i2c.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of_graph.h>
25 #include <linux/slab.h>
26 #include <linux/v4l2-dv-timings.h>
27 #include <linux/videodev2.h>
28 #include <linux/workqueue.h>
29 #include <linux/regmap.h>
30 #include <linux/interrupt.h>
31 
32 #include <media/i2c/adv7604.h>
33 #include <media/cec.h>
34 #include <media/v4l2-ctrls.h>
35 #include <media/v4l2-device.h>
36 #include <media/v4l2-event.h>
37 #include <media/v4l2-dv-timings.h>
38 #include <media/v4l2-fwnode.h>
39 
40 static int debug;
41 module_param(debug, int, 0644);
42 MODULE_PARM_DESC(debug, "debug level (0-2)");
43 
44 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
45 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
46 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
47 MODULE_LICENSE("GPL");
48 
49 /* ADV7604 system clock frequency */
50 #define ADV76XX_FSC (28636360)
51 
52 #define ADV76XX_RGB_OUT					(1 << 1)
53 
54 #define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
55 #define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
56 #define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
57 
58 #define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
59 #define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
60 #define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
61 #define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
62 #define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
63 #define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)
64 
65 #define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
66 #define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
67 #define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
68 #define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
69 #define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
70 #define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
71 
72 #define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
73 
74 #define ADV76XX_MAX_ADDRS (3)
75 
76 enum adv76xx_type {
77 	ADV7604,
78 	ADV7611,
79 	ADV7612,
80 };
81 
82 struct adv76xx_reg_seq {
83 	unsigned int reg;
84 	u8 val;
85 };
86 
87 struct adv76xx_format_info {
88 	u32 code;
89 	u8 op_ch_sel;
90 	bool rgb_out;
91 	bool swap_cb_cr;
92 	u8 op_format_sel;
93 };
94 
95 struct adv76xx_cfg_read_infoframe {
96 	const char *desc;
97 	u8 present_mask;
98 	u8 head_addr;
99 	u8 payload_addr;
100 };
101 
102 struct adv76xx_chip_info {
103 	enum adv76xx_type type;
104 
105 	bool has_afe;
106 	unsigned int max_port;
107 	unsigned int num_dv_ports;
108 
109 	unsigned int edid_enable_reg;
110 	unsigned int edid_status_reg;
111 	unsigned int lcf_reg;
112 
113 	unsigned int cable_det_mask;
114 	unsigned int tdms_lock_mask;
115 	unsigned int fmt_change_digital_mask;
116 	unsigned int cp_csc;
117 
118 	unsigned int cec_irq_status;
119 	unsigned int cec_rx_enable;
120 	unsigned int cec_rx_enable_mask;
121 	bool cec_irq_swap;
122 
123 	const struct adv76xx_format_info *formats;
124 	unsigned int nformats;
125 
126 	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
127 	void (*setup_irqs)(struct v4l2_subdev *sd);
128 	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
129 	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
130 
131 	/* 0 = AFE, 1 = HDMI */
132 	const struct adv76xx_reg_seq *recommended_settings[2];
133 	unsigned int num_recommended_settings[2];
134 
135 	unsigned long page_mask;
136 
137 	/* Masks for timings */
138 	unsigned int linewidth_mask;
139 	unsigned int field0_height_mask;
140 	unsigned int field1_height_mask;
141 	unsigned int hfrontporch_mask;
142 	unsigned int hsync_mask;
143 	unsigned int hbackporch_mask;
144 	unsigned int field0_vfrontporch_mask;
145 	unsigned int field1_vfrontporch_mask;
146 	unsigned int field0_vsync_mask;
147 	unsigned int field1_vsync_mask;
148 	unsigned int field0_vbackporch_mask;
149 	unsigned int field1_vbackporch_mask;
150 };
151 
152 /*
153  **********************************************************************
154  *
155  *  Arrays with configuration parameters for the ADV7604
156  *
157  **********************************************************************
158  */
159 
160 struct adv76xx_state {
161 	const struct adv76xx_chip_info *info;
162 	struct adv76xx_platform_data pdata;
163 
164 	struct gpio_desc *hpd_gpio[4];
165 	struct gpio_desc *reset_gpio;
166 
167 	struct v4l2_subdev sd;
168 	struct media_pad pads[ADV76XX_PAD_MAX];
169 	unsigned int source_pad;
170 
171 	struct v4l2_ctrl_handler hdl;
172 
173 	enum adv76xx_pad selected_input;
174 
175 	struct v4l2_dv_timings timings;
176 	const struct adv76xx_format_info *format;
177 
178 	struct {
179 		u8 edid[256];
180 		u32 present;
181 		unsigned blocks;
182 	} edid;
183 	u16 spa_port_a[2];
184 	struct v4l2_fract aspect_ratio;
185 	u32 rgb_quantization_range;
186 	struct delayed_work delayed_work_enable_hotplug;
187 	bool restart_stdi_once;
188 
189 	/* CEC */
190 	struct cec_adapter *cec_adap;
191 	u8   cec_addr[ADV76XX_MAX_ADDRS];
192 	u8   cec_valid_addrs;
193 	bool cec_enabled_adap;
194 
195 	/* i2c clients */
196 	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
197 
198 	/* Regmaps */
199 	struct regmap *regmap[ADV76XX_PAGE_MAX];
200 
201 	/* controls */
202 	struct v4l2_ctrl *detect_tx_5v_ctrl;
203 	struct v4l2_ctrl *analog_sampling_phase_ctrl;
204 	struct v4l2_ctrl *free_run_color_manual_ctrl;
205 	struct v4l2_ctrl *free_run_color_ctrl;
206 	struct v4l2_ctrl *rgb_quantization_range_ctrl;
207 };
208 
209 static bool adv76xx_has_afe(struct adv76xx_state *state)
210 {
211 	return state->info->has_afe;
212 }
213 
214 /* Unsupported timings. This device cannot support 720p30. */
215 static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
216 	V4L2_DV_BT_CEA_1280X720P30,
217 	{ }
218 };
219 
220 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
221 {
222 	int i;
223 
224 	for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
225 		if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
226 			return false;
227 	return true;
228 }
229 
230 struct adv76xx_video_standards {
231 	struct v4l2_dv_timings timings;
232 	u8 vid_std;
233 	u8 v_freq;
234 };
235 
236 /* sorted by number of lines */
237 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
238 	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
239 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
240 	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
241 	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
242 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
243 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
244 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
245 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
246 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
247 	/* TODO add 1920x1080P60_RB (CVT timing) */
248 	{ },
249 };
250 
251 /* sorted by number of lines */
252 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
253 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
254 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
255 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
256 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
257 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
258 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
259 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
260 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
261 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
262 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
263 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
264 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
265 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
266 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
267 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
268 	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
269 	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
270 	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
271 	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
272 	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
273 	/* TODO add 1600X1200P60_RB (not a DMT timing) */
274 	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
275 	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
276 	{ },
277 };
278 
279 /* sorted by number of lines */
280 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
281 	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
282 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
283 	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
284 	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
285 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
286 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
287 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
288 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
289 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
290 	{ },
291 };
292 
293 /* sorted by number of lines */
294 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
295 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
296 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
297 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
298 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
299 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
300 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
301 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
302 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
303 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
304 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
305 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
306 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
307 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
308 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
309 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
310 	{ },
311 };
312 
313 static const struct v4l2_event adv76xx_ev_fmt = {
314 	.type = V4L2_EVENT_SOURCE_CHANGE,
315 	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
316 };
317 
318 /* ----------------------------------------------------------------------- */
319 
320 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
321 {
322 	return container_of(sd, struct adv76xx_state, sd);
323 }
324 
325 static inline unsigned htotal(const struct v4l2_bt_timings *t)
326 {
327 	return V4L2_DV_BT_FRAME_WIDTH(t);
328 }
329 
330 static inline unsigned vtotal(const struct v4l2_bt_timings *t)
331 {
332 	return V4L2_DV_BT_FRAME_HEIGHT(t);
333 }
334 
335 /* ----------------------------------------------------------------------- */
336 
337 static int adv76xx_read_check(struct adv76xx_state *state,
338 			     int client_page, u8 reg)
339 {
340 	struct i2c_client *client = state->i2c_clients[client_page];
341 	int err;
342 	unsigned int val;
343 
344 	err = regmap_read(state->regmap[client_page], reg, &val);
345 
346 	if (err) {
347 		v4l_err(client, "error reading %02x, %02x\n",
348 				client->addr, reg);
349 		return err;
350 	}
351 	return val;
352 }
353 
354 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
355  * size to one or more registers.
356  *
357  * A value of zero will be returned on success, a negative errno will
358  * be returned in error cases.
359  */
360 static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
361 			      unsigned int init_reg, const void *val,
362 			      size_t val_len)
363 {
364 	struct regmap *regmap = state->regmap[client_page];
365 
366 	if (val_len > I2C_SMBUS_BLOCK_MAX)
367 		val_len = I2C_SMBUS_BLOCK_MAX;
368 
369 	return regmap_raw_write(regmap, init_reg, val, val_len);
370 }
371 
372 /* ----------------------------------------------------------------------- */
373 
374 static inline int io_read(struct v4l2_subdev *sd, u8 reg)
375 {
376 	struct adv76xx_state *state = to_state(sd);
377 
378 	return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
379 }
380 
381 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
382 {
383 	struct adv76xx_state *state = to_state(sd);
384 
385 	return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
386 }
387 
388 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
389 				   u8 val)
390 {
391 	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
392 }
393 
394 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
395 {
396 	struct adv76xx_state *state = to_state(sd);
397 
398 	return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
399 }
400 
401 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
402 {
403 	struct adv76xx_state *state = to_state(sd);
404 
405 	return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
406 }
407 
408 static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
409 {
410 	struct adv76xx_state *state = to_state(sd);
411 
412 	return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
413 }
414 
415 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
416 {
417 	struct adv76xx_state *state = to_state(sd);
418 
419 	return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
420 }
421 
422 static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
423 				   u8 val)
424 {
425 	return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val);
426 }
427 
428 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
429 {
430 	struct adv76xx_state *state = to_state(sd);
431 
432 	return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
433 }
434 
435 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
436 {
437 	struct adv76xx_state *state = to_state(sd);
438 
439 	return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
440 }
441 
442 static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
443 {
444 	struct adv76xx_state *state = to_state(sd);
445 
446 	return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
447 }
448 
449 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
450 {
451 	struct adv76xx_state *state = to_state(sd);
452 
453 	return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
454 }
455 
456 static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
457 {
458 	struct adv76xx_state *state = to_state(sd);
459 
460 	return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
461 }
462 
463 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
464 {
465 	struct adv76xx_state *state = to_state(sd);
466 
467 	return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
468 }
469 
470 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
471 {
472 	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
473 }
474 
475 static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
476 {
477 	struct adv76xx_state *state = to_state(sd);
478 
479 	return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
480 }
481 
482 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
483 {
484 	struct adv76xx_state *state = to_state(sd);
485 
486 	return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
487 }
488 
489 static inline int edid_write_block(struct v4l2_subdev *sd,
490 					unsigned int total_len, const u8 *val)
491 {
492 	struct adv76xx_state *state = to_state(sd);
493 	int err = 0;
494 	int i = 0;
495 	int len = 0;
496 
497 	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
498 				__func__, total_len);
499 
500 	while (!err && i < total_len) {
501 		len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
502 				I2C_SMBUS_BLOCK_MAX :
503 				(total_len - i);
504 
505 		err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
506 				i, val + i, len);
507 		i += len;
508 	}
509 
510 	return err;
511 }
512 
513 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
514 {
515 	unsigned int i;
516 
517 	for (i = 0; i < state->info->num_dv_ports; ++i)
518 		gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
519 
520 	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
521 }
522 
523 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
524 {
525 	struct delayed_work *dwork = to_delayed_work(work);
526 	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
527 						delayed_work_enable_hotplug);
528 	struct v4l2_subdev *sd = &state->sd;
529 
530 	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
531 
532 	adv76xx_set_hpd(state, state->edid.present);
533 }
534 
535 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
536 {
537 	struct adv76xx_state *state = to_state(sd);
538 
539 	return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
540 }
541 
542 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
543 {
544 	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
545 }
546 
547 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
548 {
549 	struct adv76xx_state *state = to_state(sd);
550 
551 	return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
552 }
553 
554 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
555 {
556 	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
557 }
558 
559 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
560 {
561 	struct adv76xx_state *state = to_state(sd);
562 
563 	return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
564 }
565 
566 static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
567 {
568 	struct adv76xx_state *state = to_state(sd);
569 
570 	return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
571 }
572 
573 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
574 {
575 	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
576 }
577 
578 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
579 {
580 	struct adv76xx_state *state = to_state(sd);
581 
582 	return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
583 }
584 
585 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
586 {
587 	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
588 }
589 
590 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
591 {
592 	struct adv76xx_state *state = to_state(sd);
593 
594 	return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
595 }
596 
597 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
598 {
599 	struct adv76xx_state *state = to_state(sd);
600 
601 	return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
602 }
603 
604 #define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
605 #define ADV76XX_REG_SEQ_TERM		0xffff
606 
607 #ifdef CONFIG_VIDEO_ADV_DEBUG
608 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
609 {
610 	struct adv76xx_state *state = to_state(sd);
611 	unsigned int page = reg >> 8;
612 	unsigned int val;
613 	int err;
614 
615 	if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
616 		return -EINVAL;
617 
618 	reg &= 0xff;
619 	err = regmap_read(state->regmap[page], reg, &val);
620 
621 	return err ? err : val;
622 }
623 #endif
624 
625 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
626 {
627 	struct adv76xx_state *state = to_state(sd);
628 	unsigned int page = reg >> 8;
629 
630 	if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
631 		return -EINVAL;
632 
633 	reg &= 0xff;
634 
635 	return regmap_write(state->regmap[page], reg, val);
636 }
637 
638 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
639 				  const struct adv76xx_reg_seq *reg_seq)
640 {
641 	unsigned int i;
642 
643 	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
644 		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
645 }
646 
647 /* -----------------------------------------------------------------------------
648  * Format helpers
649  */
650 
651 static const struct adv76xx_format_info adv7604_formats[] = {
652 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
653 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
654 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
655 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
656 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
657 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
658 	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
659 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
660 	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
661 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
662 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
663 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
664 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
665 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
666 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
667 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
668 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
669 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
670 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
671 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
672 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
673 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
674 	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
675 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
676 	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
677 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
678 	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
679 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
680 	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
681 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
682 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
683 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
684 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
685 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
686 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
687 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
688 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
689 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
690 };
691 
692 static const struct adv76xx_format_info adv7611_formats[] = {
693 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
694 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
695 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
696 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
697 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
698 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
699 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
700 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
701 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
702 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
703 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
704 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
705 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
706 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
707 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
708 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
709 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
710 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
711 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
712 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
713 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
714 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
715 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
716 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
717 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
718 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
719 };
720 
721 static const struct adv76xx_format_info adv7612_formats[] = {
722 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
723 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
724 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
725 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
726 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
727 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
728 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
729 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
730 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
731 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
732 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
733 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
734 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
735 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
736 };
737 
738 static const struct adv76xx_format_info *
739 adv76xx_format_info(struct adv76xx_state *state, u32 code)
740 {
741 	unsigned int i;
742 
743 	for (i = 0; i < state->info->nformats; ++i) {
744 		if (state->info->formats[i].code == code)
745 			return &state->info->formats[i];
746 	}
747 
748 	return NULL;
749 }
750 
751 /* ----------------------------------------------------------------------- */
752 
753 static inline bool is_analog_input(struct v4l2_subdev *sd)
754 {
755 	struct adv76xx_state *state = to_state(sd);
756 
757 	return state->selected_input == ADV7604_PAD_VGA_RGB ||
758 	       state->selected_input == ADV7604_PAD_VGA_COMP;
759 }
760 
761 static inline bool is_digital_input(struct v4l2_subdev *sd)
762 {
763 	struct adv76xx_state *state = to_state(sd);
764 
765 	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
766 	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
767 	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
768 	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
769 }
770 
771 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
772 	.type = V4L2_DV_BT_656_1120,
773 	/* keep this initialization for compatibility with GCC < 4.4.6 */
774 	.reserved = { 0 },
775 	V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 170000000,
776 		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
777 			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
778 		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
779 			V4L2_DV_BT_CAP_CUSTOM)
780 };
781 
782 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
783 	.type = V4L2_DV_BT_656_1120,
784 	/* keep this initialization for compatibility with GCC < 4.4.6 */
785 	.reserved = { 0 },
786 	V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 225000000,
787 		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
788 			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
789 		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
790 			V4L2_DV_BT_CAP_CUSTOM)
791 };
792 
793 /*
794  * Return the DV timings capabilities for the requested sink pad. As a special
795  * case, pad value -1 returns the capabilities for the currently selected input.
796  */
797 static const struct v4l2_dv_timings_cap *
798 adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
799 {
800 	if (pad == -1) {
801 		struct adv76xx_state *state = to_state(sd);
802 
803 		pad = state->selected_input;
804 	}
805 
806 	switch (pad) {
807 	case ADV76XX_PAD_HDMI_PORT_A:
808 	case ADV7604_PAD_HDMI_PORT_B:
809 	case ADV7604_PAD_HDMI_PORT_C:
810 	case ADV7604_PAD_HDMI_PORT_D:
811 		return &adv76xx_timings_cap_digital;
812 
813 	case ADV7604_PAD_VGA_RGB:
814 	case ADV7604_PAD_VGA_COMP:
815 	default:
816 		return &adv7604_timings_cap_analog;
817 	}
818 }
819 
820 
821 /* ----------------------------------------------------------------------- */
822 
823 #ifdef CONFIG_VIDEO_ADV_DEBUG
824 static void adv76xx_inv_register(struct v4l2_subdev *sd)
825 {
826 	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
827 	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
828 	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
829 	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
830 	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
831 	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
832 	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
833 	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
834 	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
835 	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
836 	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
837 	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
838 	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
839 }
840 
841 static int adv76xx_g_register(struct v4l2_subdev *sd,
842 					struct v4l2_dbg_register *reg)
843 {
844 	int ret;
845 
846 	ret = adv76xx_read_reg(sd, reg->reg);
847 	if (ret < 0) {
848 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
849 		adv76xx_inv_register(sd);
850 		return ret;
851 	}
852 
853 	reg->size = 1;
854 	reg->val = ret;
855 
856 	return 0;
857 }
858 
859 static int adv76xx_s_register(struct v4l2_subdev *sd,
860 					const struct v4l2_dbg_register *reg)
861 {
862 	int ret;
863 
864 	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
865 	if (ret < 0) {
866 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
867 		adv76xx_inv_register(sd);
868 		return ret;
869 	}
870 
871 	return 0;
872 }
873 #endif
874 
875 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
876 {
877 	u8 value = io_read(sd, 0x6f);
878 
879 	return ((value & 0x10) >> 4)
880 	     | ((value & 0x08) >> 2)
881 	     | ((value & 0x04) << 0)
882 	     | ((value & 0x02) << 2);
883 }
884 
885 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
886 {
887 	u8 value = io_read(sd, 0x6f);
888 
889 	return value & 1;
890 }
891 
892 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
893 {
894 	/*  Reads CABLE_DET_A_RAW. For input B support, need to
895 	 *  account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
896 	 */
897 	u8 value = io_read(sd, 0x6f);
898 
899 	return value & 1;
900 }
901 
902 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
903 {
904 	struct adv76xx_state *state = to_state(sd);
905 	const struct adv76xx_chip_info *info = state->info;
906 	u16 cable_det = info->read_cable_det(sd);
907 
908 	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det);
909 }
910 
911 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
912 		u8 prim_mode,
913 		const struct adv76xx_video_standards *predef_vid_timings,
914 		const struct v4l2_dv_timings *timings)
915 {
916 	int i;
917 
918 	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
919 		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
920 				is_digital_input(sd) ? 250000 : 1000000, false))
921 			continue;
922 		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
923 		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
924 				prim_mode); /* v_freq and prim mode */
925 		return 0;
926 	}
927 
928 	return -1;
929 }
930 
931 static int configure_predefined_video_timings(struct v4l2_subdev *sd,
932 		struct v4l2_dv_timings *timings)
933 {
934 	struct adv76xx_state *state = to_state(sd);
935 	int err;
936 
937 	v4l2_dbg(1, debug, sd, "%s", __func__);
938 
939 	if (adv76xx_has_afe(state)) {
940 		/* reset to default values */
941 		io_write(sd, 0x16, 0x43);
942 		io_write(sd, 0x17, 0x5a);
943 	}
944 	/* disable embedded syncs for auto graphics mode */
945 	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
946 	cp_write(sd, 0x8f, 0x00);
947 	cp_write(sd, 0x90, 0x00);
948 	cp_write(sd, 0xa2, 0x00);
949 	cp_write(sd, 0xa3, 0x00);
950 	cp_write(sd, 0xa4, 0x00);
951 	cp_write(sd, 0xa5, 0x00);
952 	cp_write(sd, 0xa6, 0x00);
953 	cp_write(sd, 0xa7, 0x00);
954 	cp_write(sd, 0xab, 0x00);
955 	cp_write(sd, 0xac, 0x00);
956 
957 	if (is_analog_input(sd)) {
958 		err = find_and_set_predefined_video_timings(sd,
959 				0x01, adv7604_prim_mode_comp, timings);
960 		if (err)
961 			err = find_and_set_predefined_video_timings(sd,
962 					0x02, adv7604_prim_mode_gr, timings);
963 	} else if (is_digital_input(sd)) {
964 		err = find_and_set_predefined_video_timings(sd,
965 				0x05, adv76xx_prim_mode_hdmi_comp, timings);
966 		if (err)
967 			err = find_and_set_predefined_video_timings(sd,
968 					0x06, adv76xx_prim_mode_hdmi_gr, timings);
969 	} else {
970 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
971 				__func__, state->selected_input);
972 		err = -1;
973 	}
974 
975 
976 	return err;
977 }
978 
979 static void configure_custom_video_timings(struct v4l2_subdev *sd,
980 		const struct v4l2_bt_timings *bt)
981 {
982 	struct adv76xx_state *state = to_state(sd);
983 	u32 width = htotal(bt);
984 	u32 height = vtotal(bt);
985 	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
986 	u16 cp_start_eav = width - bt->hfrontporch;
987 	u16 cp_start_vbi = height - bt->vfrontporch;
988 	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
989 	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
990 		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
991 	const u8 pll[2] = {
992 		0xc0 | ((width >> 8) & 0x1f),
993 		width & 0xff
994 	};
995 
996 	v4l2_dbg(2, debug, sd, "%s\n", __func__);
997 
998 	if (is_analog_input(sd)) {
999 		/* auto graphics */
1000 		io_write(sd, 0x00, 0x07); /* video std */
1001 		io_write(sd, 0x01, 0x02); /* prim mode */
1002 		/* enable embedded syncs for auto graphics mode */
1003 		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
1004 
1005 		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1006 		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
1007 		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
1008 		if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
1009 					0x16, pll, 2))
1010 			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
1011 
1012 		/* active video - horizontal timing */
1013 		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1014 		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1015 				   ((cp_start_eav >> 8) & 0x0f));
1016 		cp_write(sd, 0xa4, cp_start_eav & 0xff);
1017 
1018 		/* active video - vertical timing */
1019 		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1020 		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1021 				   ((cp_end_vbi >> 8) & 0xf));
1022 		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1023 	} else if (is_digital_input(sd)) {
1024 		/* set default prim_mode/vid_std for HDMI
1025 		   according to [REF_03, c. 4.2] */
1026 		io_write(sd, 0x00, 0x02); /* video std */
1027 		io_write(sd, 0x01, 0x06); /* prim mode */
1028 	} else {
1029 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1030 				__func__, state->selected_input);
1031 	}
1032 
1033 	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1034 	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1035 	cp_write(sd, 0xab, (height >> 4) & 0xff);
1036 	cp_write(sd, 0xac, (height & 0x0f) << 4);
1037 }
1038 
1039 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1040 {
1041 	struct adv76xx_state *state = to_state(sd);
1042 	u8 offset_buf[4];
1043 
1044 	if (auto_offset) {
1045 		offset_a = 0x3ff;
1046 		offset_b = 0x3ff;
1047 		offset_c = 0x3ff;
1048 	}
1049 
1050 	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1051 			__func__, auto_offset ? "Auto" : "Manual",
1052 			offset_a, offset_b, offset_c);
1053 
1054 	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1055 	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1056 	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1057 	offset_buf[3] = offset_c & 0x0ff;
1058 
1059 	/* Registers must be written in this order with no i2c access in between */
1060 	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1061 			0x77, offset_buf, 4))
1062 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1063 }
1064 
1065 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1066 {
1067 	struct adv76xx_state *state = to_state(sd);
1068 	u8 gain_buf[4];
1069 	u8 gain_man = 1;
1070 	u8 agc_mode_man = 1;
1071 
1072 	if (auto_gain) {
1073 		gain_man = 0;
1074 		agc_mode_man = 0;
1075 		gain_a = 0x100;
1076 		gain_b = 0x100;
1077 		gain_c = 0x100;
1078 	}
1079 
1080 	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1081 			__func__, auto_gain ? "Auto" : "Manual",
1082 			gain_a, gain_b, gain_c);
1083 
1084 	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1085 	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1086 	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1087 	gain_buf[3] = ((gain_c & 0x0ff));
1088 
1089 	/* Registers must be written in this order with no i2c access in between */
1090 	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1091 			     0x73, gain_buf, 4))
1092 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1093 }
1094 
1095 static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1096 {
1097 	struct adv76xx_state *state = to_state(sd);
1098 	bool rgb_output = io_read(sd, 0x02) & 0x02;
1099 	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1100 	u8 y = HDMI_COLORSPACE_RGB;
1101 
1102 	if (hdmi_signal && (io_read(sd, 0x60) & 1))
1103 		y = infoframe_read(sd, 0x01) >> 5;
1104 
1105 	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1106 			__func__, state->rgb_quantization_range,
1107 			rgb_output, hdmi_signal);
1108 
1109 	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1110 	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1111 	io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4);
1112 
1113 	switch (state->rgb_quantization_range) {
1114 	case V4L2_DV_RGB_RANGE_AUTO:
1115 		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1116 			/* Receiving analog RGB signal
1117 			 * Set RGB full range (0-255) */
1118 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1119 			break;
1120 		}
1121 
1122 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1123 			/* Receiving analog YPbPr signal
1124 			 * Set automode */
1125 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1126 			break;
1127 		}
1128 
1129 		if (hdmi_signal) {
1130 			/* Receiving HDMI signal
1131 			 * Set automode */
1132 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1133 			break;
1134 		}
1135 
1136 		/* Receiving DVI-D signal
1137 		 * ADV7604 selects RGB limited range regardless of
1138 		 * input format (CE/IT) in automatic mode */
1139 		if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1140 			/* RGB limited range (16-235) */
1141 			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1142 		} else {
1143 			/* RGB full range (0-255) */
1144 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1145 
1146 			if (is_digital_input(sd) && rgb_output) {
1147 				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1148 			} else {
1149 				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1150 				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1151 			}
1152 		}
1153 		break;
1154 	case V4L2_DV_RGB_RANGE_LIMITED:
1155 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1156 			/* YCrCb limited range (16-235) */
1157 			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1158 			break;
1159 		}
1160 
1161 		if (y != HDMI_COLORSPACE_RGB)
1162 			break;
1163 
1164 		/* RGB limited range (16-235) */
1165 		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1166 
1167 		break;
1168 	case V4L2_DV_RGB_RANGE_FULL:
1169 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1170 			/* YCrCb full range (0-255) */
1171 			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1172 			break;
1173 		}
1174 
1175 		if (y != HDMI_COLORSPACE_RGB)
1176 			break;
1177 
1178 		/* RGB full range (0-255) */
1179 		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1180 
1181 		if (is_analog_input(sd) || hdmi_signal)
1182 			break;
1183 
1184 		/* Adjust gain/offset for DVI-D signals only */
1185 		if (rgb_output) {
1186 			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1187 		} else {
1188 			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1189 			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1190 		}
1191 		break;
1192 	}
1193 }
1194 
1195 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1196 {
1197 	struct v4l2_subdev *sd =
1198 		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1199 
1200 	struct adv76xx_state *state = to_state(sd);
1201 
1202 	switch (ctrl->id) {
1203 	case V4L2_CID_BRIGHTNESS:
1204 		cp_write(sd, 0x3c, ctrl->val);
1205 		return 0;
1206 	case V4L2_CID_CONTRAST:
1207 		cp_write(sd, 0x3a, ctrl->val);
1208 		return 0;
1209 	case V4L2_CID_SATURATION:
1210 		cp_write(sd, 0x3b, ctrl->val);
1211 		return 0;
1212 	case V4L2_CID_HUE:
1213 		cp_write(sd, 0x3d, ctrl->val);
1214 		return 0;
1215 	case  V4L2_CID_DV_RX_RGB_RANGE:
1216 		state->rgb_quantization_range = ctrl->val;
1217 		set_rgb_quantization_range(sd);
1218 		return 0;
1219 	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1220 		if (!adv76xx_has_afe(state))
1221 			return -EINVAL;
1222 		/* Set the analog sampling phase. This is needed to find the
1223 		   best sampling phase for analog video: an application or
1224 		   driver has to try a number of phases and analyze the picture
1225 		   quality before settling on the best performing phase. */
1226 		afe_write(sd, 0xc8, ctrl->val);
1227 		return 0;
1228 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1229 		/* Use the default blue color for free running mode,
1230 		   or supply your own. */
1231 		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1232 		return 0;
1233 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1234 		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1235 		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1236 		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1237 		return 0;
1238 	}
1239 	return -EINVAL;
1240 }
1241 
1242 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1243 {
1244 	struct v4l2_subdev *sd =
1245 		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1246 
1247 	if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
1248 		ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
1249 		if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
1250 			ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
1251 		return 0;
1252 	}
1253 	return -EINVAL;
1254 }
1255 
1256 /* ----------------------------------------------------------------------- */
1257 
1258 static inline bool no_power(struct v4l2_subdev *sd)
1259 {
1260 	/* Entire chip or CP powered off */
1261 	return io_read(sd, 0x0c) & 0x24;
1262 }
1263 
1264 static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1265 {
1266 	struct adv76xx_state *state = to_state(sd);
1267 
1268 	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1269 }
1270 
1271 static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1272 {
1273 	struct adv76xx_state *state = to_state(sd);
1274 	const struct adv76xx_chip_info *info = state->info;
1275 
1276 	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1277 }
1278 
1279 static inline bool is_hdmi(struct v4l2_subdev *sd)
1280 {
1281 	return hdmi_read(sd, 0x05) & 0x80;
1282 }
1283 
1284 static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1285 {
1286 	struct adv76xx_state *state = to_state(sd);
1287 
1288 	/*
1289 	 * Chips without a AFE don't expose registers for the SSPD, so just assume
1290 	 * that we have a lock.
1291 	 */
1292 	if (adv76xx_has_afe(state))
1293 		return false;
1294 
1295 	/* TODO channel 2 */
1296 	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1297 }
1298 
1299 static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1300 {
1301 	/* TODO channel 2 */
1302 	return !(cp_read(sd, 0xb1) & 0x80);
1303 }
1304 
1305 static inline bool no_signal(struct v4l2_subdev *sd)
1306 {
1307 	bool ret;
1308 
1309 	ret = no_power(sd);
1310 
1311 	ret |= no_lock_stdi(sd);
1312 	ret |= no_lock_sspd(sd);
1313 
1314 	if (is_digital_input(sd)) {
1315 		ret |= no_lock_tmds(sd);
1316 		ret |= no_signal_tmds(sd);
1317 	}
1318 
1319 	return ret;
1320 }
1321 
1322 static inline bool no_lock_cp(struct v4l2_subdev *sd)
1323 {
1324 	struct adv76xx_state *state = to_state(sd);
1325 
1326 	if (!adv76xx_has_afe(state))
1327 		return false;
1328 
1329 	/* CP has detected a non standard number of lines on the incoming
1330 	   video compared to what it is configured to receive by s_dv_timings */
1331 	return io_read(sd, 0x12) & 0x01;
1332 }
1333 
1334 static inline bool in_free_run(struct v4l2_subdev *sd)
1335 {
1336 	return cp_read(sd, 0xff) & 0x10;
1337 }
1338 
1339 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1340 {
1341 	*status = 0;
1342 	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1343 	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1344 	if (!in_free_run(sd) && no_lock_cp(sd))
1345 		*status |= is_digital_input(sd) ?
1346 			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1347 
1348 	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1349 
1350 	return 0;
1351 }
1352 
1353 /* ----------------------------------------------------------------------- */
1354 
1355 struct stdi_readback {
1356 	u16 bl, lcf, lcvs;
1357 	u8 hs_pol, vs_pol;
1358 	bool interlaced;
1359 };
1360 
1361 static int stdi2dv_timings(struct v4l2_subdev *sd,
1362 		struct stdi_readback *stdi,
1363 		struct v4l2_dv_timings *timings)
1364 {
1365 	struct adv76xx_state *state = to_state(sd);
1366 	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1367 	u32 pix_clk;
1368 	int i;
1369 
1370 	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1371 		const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
1372 
1373 		if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1374 					   adv76xx_get_dv_timings_cap(sd, -1),
1375 					   adv76xx_check_dv_timings, NULL))
1376 			continue;
1377 		if (vtotal(bt) != stdi->lcf + 1)
1378 			continue;
1379 		if (bt->vsync != stdi->lcvs)
1380 			continue;
1381 
1382 		pix_clk = hfreq * htotal(bt);
1383 
1384 		if ((pix_clk < bt->pixelclock + 1000000) &&
1385 		    (pix_clk > bt->pixelclock - 1000000)) {
1386 			*timings = v4l2_dv_timings_presets[i];
1387 			return 0;
1388 		}
1389 	}
1390 
1391 	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1392 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1393 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1394 			false, timings))
1395 		return 0;
1396 	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1397 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1398 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1399 			false, state->aspect_ratio, timings))
1400 		return 0;
1401 
1402 	v4l2_dbg(2, debug, sd,
1403 		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1404 		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
1405 		stdi->hs_pol, stdi->vs_pol);
1406 	return -1;
1407 }
1408 
1409 
1410 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1411 {
1412 	struct adv76xx_state *state = to_state(sd);
1413 	const struct adv76xx_chip_info *info = state->info;
1414 	u8 polarity;
1415 
1416 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1417 		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1418 		return -1;
1419 	}
1420 
1421 	/* read STDI */
1422 	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1423 	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1424 	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1425 	stdi->interlaced = io_read(sd, 0x12) & 0x10;
1426 
1427 	if (adv76xx_has_afe(state)) {
1428 		/* read SSPD */
1429 		polarity = cp_read(sd, 0xb5);
1430 		if ((polarity & 0x03) == 0x01) {
1431 			stdi->hs_pol = polarity & 0x10
1432 				     ? (polarity & 0x08 ? '+' : '-') : 'x';
1433 			stdi->vs_pol = polarity & 0x40
1434 				     ? (polarity & 0x20 ? '+' : '-') : 'x';
1435 		} else {
1436 			stdi->hs_pol = 'x';
1437 			stdi->vs_pol = 'x';
1438 		}
1439 	} else {
1440 		polarity = hdmi_read(sd, 0x05);
1441 		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1442 		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1443 	}
1444 
1445 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1446 		v4l2_dbg(2, debug, sd,
1447 			"%s: signal lost during readout of STDI/SSPD\n", __func__);
1448 		return -1;
1449 	}
1450 
1451 	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1452 		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1453 		memset(stdi, 0, sizeof(struct stdi_readback));
1454 		return -1;
1455 	}
1456 
1457 	v4l2_dbg(2, debug, sd,
1458 		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1459 		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
1460 		stdi->hs_pol, stdi->vs_pol,
1461 		stdi->interlaced ? "interlaced" : "progressive");
1462 
1463 	return 0;
1464 }
1465 
1466 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1467 			struct v4l2_enum_dv_timings *timings)
1468 {
1469 	struct adv76xx_state *state = to_state(sd);
1470 
1471 	if (timings->pad >= state->source_pad)
1472 		return -EINVAL;
1473 
1474 	return v4l2_enum_dv_timings_cap(timings,
1475 		adv76xx_get_dv_timings_cap(sd, timings->pad),
1476 		adv76xx_check_dv_timings, NULL);
1477 }
1478 
1479 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1480 			struct v4l2_dv_timings_cap *cap)
1481 {
1482 	struct adv76xx_state *state = to_state(sd);
1483 	unsigned int pad = cap->pad;
1484 
1485 	if (cap->pad >= state->source_pad)
1486 		return -EINVAL;
1487 
1488 	*cap = *adv76xx_get_dv_timings_cap(sd, pad);
1489 	cap->pad = pad;
1490 
1491 	return 0;
1492 }
1493 
1494 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1495    if the format is listed in adv76xx_timings[] */
1496 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1497 		struct v4l2_dv_timings *timings)
1498 {
1499 	v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
1500 				 is_digital_input(sd) ? 250000 : 1000000,
1501 				 adv76xx_check_dv_timings, NULL);
1502 }
1503 
1504 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1505 {
1506 	int a, b;
1507 
1508 	a = hdmi_read(sd, 0x06);
1509 	b = hdmi_read(sd, 0x3b);
1510 	if (a < 0 || b < 0)
1511 		return 0;
1512 
1513 	return a * 1000000 + ((b & 0x30) >> 4) * 250000;
1514 }
1515 
1516 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1517 {
1518 	int a, b;
1519 
1520 	a = hdmi_read(sd, 0x51);
1521 	b = hdmi_read(sd, 0x52);
1522 	if (a < 0 || b < 0)
1523 		return 0;
1524 
1525 	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1526 }
1527 
1528 static unsigned int adv76xx_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1529 {
1530 	struct adv76xx_state *state = to_state(sd);
1531 	const struct adv76xx_chip_info *info = state->info;
1532 	unsigned int freq, bits_per_channel, pixelrepetition;
1533 
1534 	freq = info->read_hdmi_pixelclock(sd);
1535 	if (is_hdmi(sd)) {
1536 		/* adjust for deep color mode and pixel repetition */
1537 		bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1538 		pixelrepetition = (hdmi_read(sd, 0x05) & 0x0f) + 1;
1539 
1540 		freq = freq * 8 / bits_per_channel / pixelrepetition;
1541 	}
1542 
1543 	return freq;
1544 }
1545 
1546 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1547 			struct v4l2_dv_timings *timings)
1548 {
1549 	struct adv76xx_state *state = to_state(sd);
1550 	const struct adv76xx_chip_info *info = state->info;
1551 	struct v4l2_bt_timings *bt = &timings->bt;
1552 	struct stdi_readback stdi;
1553 
1554 	if (!timings)
1555 		return -EINVAL;
1556 
1557 	memset(timings, 0, sizeof(struct v4l2_dv_timings));
1558 
1559 	if (no_signal(sd)) {
1560 		state->restart_stdi_once = true;
1561 		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1562 		return -ENOLINK;
1563 	}
1564 
1565 	/* read STDI */
1566 	if (read_stdi(sd, &stdi)) {
1567 		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1568 		return -ENOLINK;
1569 	}
1570 	bt->interlaced = stdi.interlaced ?
1571 		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1572 
1573 	if (is_digital_input(sd)) {
1574 		bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1575 		u8 vic = 0;
1576 		u32 w, h;
1577 
1578 		w = hdmi_read16(sd, 0x07, info->linewidth_mask);
1579 		h = hdmi_read16(sd, 0x09, info->field0_height_mask);
1580 
1581 		if (hdmi_signal && (io_read(sd, 0x60) & 1))
1582 			vic = infoframe_read(sd, 0x04);
1583 
1584 		if (vic && v4l2_find_dv_timings_cea861_vic(timings, vic) &&
1585 		    bt->width == w && bt->height == h)
1586 			goto found;
1587 
1588 		timings->type = V4L2_DV_BT_656_1120;
1589 
1590 		bt->width = w;
1591 		bt->height = h;
1592 		bt->pixelclock = adv76xx_read_hdmi_pixelclock(sd);
1593 		bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1594 		bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1595 		bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1596 		bt->vfrontporch = hdmi_read16(sd, 0x2a,
1597 			info->field0_vfrontporch_mask) / 2;
1598 		bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1599 		bt->vbackporch = hdmi_read16(sd, 0x32,
1600 			info->field0_vbackporch_mask) / 2;
1601 		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1602 			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1603 		if (bt->interlaced == V4L2_DV_INTERLACED) {
1604 			bt->height += hdmi_read16(sd, 0x0b,
1605 				info->field1_height_mask);
1606 			bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1607 				info->field1_vfrontporch_mask) / 2;
1608 			bt->il_vsync = hdmi_read16(sd, 0x30,
1609 				info->field1_vsync_mask) / 2;
1610 			bt->il_vbackporch = hdmi_read16(sd, 0x34,
1611 				info->field1_vbackporch_mask) / 2;
1612 		}
1613 		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1614 	} else {
1615 		/* find format
1616 		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1617 		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1618 		 */
1619 		if (!stdi2dv_timings(sd, &stdi, timings))
1620 			goto found;
1621 		stdi.lcvs += 1;
1622 		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1623 		if (!stdi2dv_timings(sd, &stdi, timings))
1624 			goto found;
1625 		stdi.lcvs -= 2;
1626 		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1627 		if (stdi2dv_timings(sd, &stdi, timings)) {
1628 			/*
1629 			 * The STDI block may measure wrong values, especially
1630 			 * for lcvs and lcf. If the driver can not find any
1631 			 * valid timing, the STDI block is restarted to measure
1632 			 * the video timings again. The function will return an
1633 			 * error, but the restart of STDI will generate a new
1634 			 * STDI interrupt and the format detection process will
1635 			 * restart.
1636 			 */
1637 			if (state->restart_stdi_once) {
1638 				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1639 				/* TODO restart STDI for Sync Channel 2 */
1640 				/* enter one-shot mode */
1641 				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1642 				/* trigger STDI restart */
1643 				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1644 				/* reset to continuous mode */
1645 				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1646 				state->restart_stdi_once = false;
1647 				return -ENOLINK;
1648 			}
1649 			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1650 			return -ERANGE;
1651 		}
1652 		state->restart_stdi_once = true;
1653 	}
1654 found:
1655 
1656 	if (no_signal(sd)) {
1657 		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1658 		memset(timings, 0, sizeof(struct v4l2_dv_timings));
1659 		return -ENOLINK;
1660 	}
1661 
1662 	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1663 			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1664 		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1665 				__func__, (u32)bt->pixelclock);
1666 		return -ERANGE;
1667 	}
1668 
1669 	if (debug > 1)
1670 		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1671 				      timings, true);
1672 
1673 	return 0;
1674 }
1675 
1676 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1677 		struct v4l2_dv_timings *timings)
1678 {
1679 	struct adv76xx_state *state = to_state(sd);
1680 	struct v4l2_bt_timings *bt;
1681 	int err;
1682 
1683 	if (!timings)
1684 		return -EINVAL;
1685 
1686 	if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1687 		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1688 		return 0;
1689 	}
1690 
1691 	bt = &timings->bt;
1692 
1693 	if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1694 				   adv76xx_check_dv_timings, NULL))
1695 		return -ERANGE;
1696 
1697 	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1698 
1699 	state->timings = *timings;
1700 
1701 	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1702 
1703 	/* Use prim_mode and vid_std when available */
1704 	err = configure_predefined_video_timings(sd, timings);
1705 	if (err) {
1706 		/* custom settings when the video format
1707 		 does not have prim_mode/vid_std */
1708 		configure_custom_video_timings(sd, bt);
1709 	}
1710 
1711 	set_rgb_quantization_range(sd);
1712 
1713 	if (debug > 1)
1714 		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1715 				      timings, true);
1716 	return 0;
1717 }
1718 
1719 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1720 		struct v4l2_dv_timings *timings)
1721 {
1722 	struct adv76xx_state *state = to_state(sd);
1723 
1724 	*timings = state->timings;
1725 	return 0;
1726 }
1727 
1728 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1729 {
1730 	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1731 }
1732 
1733 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1734 {
1735 	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1736 }
1737 
1738 static void enable_input(struct v4l2_subdev *sd)
1739 {
1740 	struct adv76xx_state *state = to_state(sd);
1741 
1742 	if (is_analog_input(sd)) {
1743 		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1744 	} else if (is_digital_input(sd)) {
1745 		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1746 		state->info->set_termination(sd, true);
1747 		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1748 		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1749 	} else {
1750 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1751 				__func__, state->selected_input);
1752 	}
1753 }
1754 
1755 static void disable_input(struct v4l2_subdev *sd)
1756 {
1757 	struct adv76xx_state *state = to_state(sd);
1758 
1759 	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1760 	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1761 	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1762 	state->info->set_termination(sd, false);
1763 }
1764 
1765 static void select_input(struct v4l2_subdev *sd)
1766 {
1767 	struct adv76xx_state *state = to_state(sd);
1768 	const struct adv76xx_chip_info *info = state->info;
1769 
1770 	if (is_analog_input(sd)) {
1771 		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1772 
1773 		afe_write(sd, 0x00, 0x08); /* power up ADC */
1774 		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1775 		afe_write(sd, 0xc8, 0x00); /* phase control */
1776 	} else if (is_digital_input(sd)) {
1777 		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1778 
1779 		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1780 
1781 		if (adv76xx_has_afe(state)) {
1782 			afe_write(sd, 0x00, 0xff); /* power down ADC */
1783 			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1784 			afe_write(sd, 0xc8, 0x40); /* phase control */
1785 		}
1786 
1787 		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1788 		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1789 		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1790 	} else {
1791 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1792 				__func__, state->selected_input);
1793 	}
1794 }
1795 
1796 static int adv76xx_s_routing(struct v4l2_subdev *sd,
1797 		u32 input, u32 output, u32 config)
1798 {
1799 	struct adv76xx_state *state = to_state(sd);
1800 
1801 	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1802 			__func__, input, state->selected_input);
1803 
1804 	if (input == state->selected_input)
1805 		return 0;
1806 
1807 	if (input > state->info->max_port)
1808 		return -EINVAL;
1809 
1810 	state->selected_input = input;
1811 
1812 	disable_input(sd);
1813 	select_input(sd);
1814 	enable_input(sd);
1815 
1816 	v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1817 
1818 	return 0;
1819 }
1820 
1821 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1822 				  struct v4l2_subdev_pad_config *cfg,
1823 				  struct v4l2_subdev_mbus_code_enum *code)
1824 {
1825 	struct adv76xx_state *state = to_state(sd);
1826 
1827 	if (code->index >= state->info->nformats)
1828 		return -EINVAL;
1829 
1830 	code->code = state->info->formats[code->index].code;
1831 
1832 	return 0;
1833 }
1834 
1835 static void adv76xx_fill_format(struct adv76xx_state *state,
1836 				struct v4l2_mbus_framefmt *format)
1837 {
1838 	memset(format, 0, sizeof(*format));
1839 
1840 	format->width = state->timings.bt.width;
1841 	format->height = state->timings.bt.height;
1842 	format->field = V4L2_FIELD_NONE;
1843 	format->colorspace = V4L2_COLORSPACE_SRGB;
1844 
1845 	if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1846 		format->colorspace = (state->timings.bt.height <= 576) ?
1847 			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1848 }
1849 
1850 /*
1851  * Compute the op_ch_sel value required to obtain on the bus the component order
1852  * corresponding to the selected format taking into account bus reordering
1853  * applied by the board at the output of the device.
1854  *
1855  * The following table gives the op_ch_value from the format component order
1856  * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1857  * adv76xx_bus_order value in row).
1858  *
1859  *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
1860  * ----------+-------------------------------------------------
1861  * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
1862  * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
1863  * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
1864  * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
1865  * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
1866  * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
1867  */
1868 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1869 {
1870 #define _SEL(a,b,c,d,e,f)	{ \
1871 	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1872 	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1873 #define _BUS(x)			[ADV7604_BUS_ORDER_##x]
1874 
1875 	static const unsigned int op_ch_sel[6][6] = {
1876 		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1877 		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1878 		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1879 		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1880 		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1881 		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1882 	};
1883 
1884 	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1885 }
1886 
1887 static void adv76xx_setup_format(struct adv76xx_state *state)
1888 {
1889 	struct v4l2_subdev *sd = &state->sd;
1890 
1891 	io_write_clr_set(sd, 0x02, 0x02,
1892 			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1893 	io_write(sd, 0x03, state->format->op_format_sel |
1894 		 state->pdata.op_format_mode_sel);
1895 	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1896 	io_write_clr_set(sd, 0x05, 0x01,
1897 			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1898 	set_rgb_quantization_range(sd);
1899 }
1900 
1901 static int adv76xx_get_format(struct v4l2_subdev *sd,
1902 			      struct v4l2_subdev_pad_config *cfg,
1903 			      struct v4l2_subdev_format *format)
1904 {
1905 	struct adv76xx_state *state = to_state(sd);
1906 
1907 	if (format->pad != state->source_pad)
1908 		return -EINVAL;
1909 
1910 	adv76xx_fill_format(state, &format->format);
1911 
1912 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1913 		struct v4l2_mbus_framefmt *fmt;
1914 
1915 		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1916 		format->format.code = fmt->code;
1917 	} else {
1918 		format->format.code = state->format->code;
1919 	}
1920 
1921 	return 0;
1922 }
1923 
1924 static int adv76xx_get_selection(struct v4l2_subdev *sd,
1925 				 struct v4l2_subdev_pad_config *cfg,
1926 				 struct v4l2_subdev_selection *sel)
1927 {
1928 	struct adv76xx_state *state = to_state(sd);
1929 
1930 	if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1931 		return -EINVAL;
1932 	/* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1933 	if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
1934 		return -EINVAL;
1935 
1936 	sel->r.left	= 0;
1937 	sel->r.top	= 0;
1938 	sel->r.width	= state->timings.bt.width;
1939 	sel->r.height	= state->timings.bt.height;
1940 
1941 	return 0;
1942 }
1943 
1944 static int adv76xx_set_format(struct v4l2_subdev *sd,
1945 			      struct v4l2_subdev_pad_config *cfg,
1946 			      struct v4l2_subdev_format *format)
1947 {
1948 	struct adv76xx_state *state = to_state(sd);
1949 	const struct adv76xx_format_info *info;
1950 
1951 	if (format->pad != state->source_pad)
1952 		return -EINVAL;
1953 
1954 	info = adv76xx_format_info(state, format->format.code);
1955 	if (!info)
1956 		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1957 
1958 	adv76xx_fill_format(state, &format->format);
1959 	format->format.code = info->code;
1960 
1961 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1962 		struct v4l2_mbus_framefmt *fmt;
1963 
1964 		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1965 		fmt->code = format->format.code;
1966 	} else {
1967 		state->format = info;
1968 		adv76xx_setup_format(state);
1969 	}
1970 
1971 	return 0;
1972 }
1973 
1974 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
1975 static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status)
1976 {
1977 	struct adv76xx_state *state = to_state(sd);
1978 
1979 	if ((cec_read(sd, 0x11) & 0x01) == 0) {
1980 		v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__);
1981 		return;
1982 	}
1983 
1984 	if (tx_raw_status & 0x02) {
1985 		v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n",
1986 			 __func__);
1987 		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST,
1988 				  1, 0, 0, 0);
1989 		return;
1990 	}
1991 	if (tx_raw_status & 0x04) {
1992 		u8 status;
1993 		u8 nack_cnt;
1994 		u8 low_drive_cnt;
1995 
1996 		v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__);
1997 		/*
1998 		 * We set this status bit since this hardware performs
1999 		 * retransmissions.
2000 		 */
2001 		status = CEC_TX_STATUS_MAX_RETRIES;
2002 		nack_cnt = cec_read(sd, 0x14) & 0xf;
2003 		if (nack_cnt)
2004 			status |= CEC_TX_STATUS_NACK;
2005 		low_drive_cnt = cec_read(sd, 0x14) >> 4;
2006 		if (low_drive_cnt)
2007 			status |= CEC_TX_STATUS_LOW_DRIVE;
2008 		cec_transmit_done(state->cec_adap, status,
2009 				  0, nack_cnt, low_drive_cnt, 0);
2010 		return;
2011 	}
2012 	if (tx_raw_status & 0x01) {
2013 		v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__);
2014 		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0);
2015 		return;
2016 	}
2017 }
2018 
2019 static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled)
2020 {
2021 	struct adv76xx_state *state = to_state(sd);
2022 	const struct adv76xx_chip_info *info = state->info;
2023 	u8 cec_irq;
2024 
2025 	/* cec controller */
2026 	cec_irq = io_read(sd, info->cec_irq_status) & 0x0f;
2027 	if (!cec_irq)
2028 		return;
2029 
2030 	v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq);
2031 	adv76xx_cec_tx_raw_status(sd, cec_irq);
2032 	if (cec_irq & 0x08) {
2033 		struct cec_msg msg;
2034 
2035 		msg.len = cec_read(sd, 0x25) & 0x1f;
2036 		if (msg.len > 16)
2037 			msg.len = 16;
2038 
2039 		if (msg.len) {
2040 			u8 i;
2041 
2042 			for (i = 0; i < msg.len; i++)
2043 				msg.msg[i] = cec_read(sd, i + 0x15);
2044 			cec_write(sd, info->cec_rx_enable,
2045 				  info->cec_rx_enable_mask); /* re-enable rx */
2046 			cec_received_msg(state->cec_adap, &msg);
2047 		}
2048 	}
2049 
2050 	if (info->cec_irq_swap) {
2051 		/*
2052 		 * Note: the bit order is swapped between 0x4d and 0x4e
2053 		 * on adv7604
2054 		 */
2055 		cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) |
2056 			  ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3);
2057 	}
2058 	io_write(sd, info->cec_irq_status + 1, cec_irq);
2059 
2060 	if (handled)
2061 		*handled = true;
2062 }
2063 
2064 static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable)
2065 {
2066 	struct adv76xx_state *state = cec_get_drvdata(adap);
2067 	const struct adv76xx_chip_info *info = state->info;
2068 	struct v4l2_subdev *sd = &state->sd;
2069 
2070 	if (!state->cec_enabled_adap && enable) {
2071 		cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */
2072 		cec_write(sd, 0x2c, 0x01);	/* cec soft reset */
2073 		cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */
2074 		/* enabled irqs: */
2075 		/* tx: ready */
2076 		/* tx: arbitration lost */
2077 		/* tx: retry timeout */
2078 		/* rx: ready */
2079 		io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x0f);
2080 		cec_write(sd, info->cec_rx_enable, info->cec_rx_enable_mask);
2081 	} else if (state->cec_enabled_adap && !enable) {
2082 		/* disable cec interrupts */
2083 		io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x00);
2084 		/* disable address mask 1-3 */
2085 		cec_write_clr_set(sd, 0x27, 0x70, 0x00);
2086 		/* power down cec section */
2087 		cec_write_clr_set(sd, 0x2a, 0x01, 0x00);
2088 		state->cec_valid_addrs = 0;
2089 	}
2090 	state->cec_enabled_adap = enable;
2091 	adv76xx_s_detect_tx_5v_ctrl(sd);
2092 	return 0;
2093 }
2094 
2095 static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
2096 {
2097 	struct adv76xx_state *state = cec_get_drvdata(adap);
2098 	struct v4l2_subdev *sd = &state->sd;
2099 	unsigned int i, free_idx = ADV76XX_MAX_ADDRS;
2100 
2101 	if (!state->cec_enabled_adap)
2102 		return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;
2103 
2104 	if (addr == CEC_LOG_ADDR_INVALID) {
2105 		cec_write_clr_set(sd, 0x27, 0x70, 0);
2106 		state->cec_valid_addrs = 0;
2107 		return 0;
2108 	}
2109 
2110 	for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2111 		bool is_valid = state->cec_valid_addrs & (1 << i);
2112 
2113 		if (free_idx == ADV76XX_MAX_ADDRS && !is_valid)
2114 			free_idx = i;
2115 		if (is_valid && state->cec_addr[i] == addr)
2116 			return 0;
2117 	}
2118 	if (i == ADV76XX_MAX_ADDRS) {
2119 		i = free_idx;
2120 		if (i == ADV76XX_MAX_ADDRS)
2121 			return -ENXIO;
2122 	}
2123 	state->cec_addr[i] = addr;
2124 	state->cec_valid_addrs |= 1 << i;
2125 
2126 	switch (i) {
2127 	case 0:
2128 		/* enable address mask 0 */
2129 		cec_write_clr_set(sd, 0x27, 0x10, 0x10);
2130 		/* set address for mask 0 */
2131 		cec_write_clr_set(sd, 0x28, 0x0f, addr);
2132 		break;
2133 	case 1:
2134 		/* enable address mask 1 */
2135 		cec_write_clr_set(sd, 0x27, 0x20, 0x20);
2136 		/* set address for mask 1 */
2137 		cec_write_clr_set(sd, 0x28, 0xf0, addr << 4);
2138 		break;
2139 	case 2:
2140 		/* enable address mask 2 */
2141 		cec_write_clr_set(sd, 0x27, 0x40, 0x40);
2142 		/* set address for mask 1 */
2143 		cec_write_clr_set(sd, 0x29, 0x0f, addr);
2144 		break;
2145 	}
2146 	return 0;
2147 }
2148 
2149 static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
2150 				     u32 signal_free_time, struct cec_msg *msg)
2151 {
2152 	struct adv76xx_state *state = cec_get_drvdata(adap);
2153 	struct v4l2_subdev *sd = &state->sd;
2154 	u8 len = msg->len;
2155 	unsigned int i;
2156 
2157 	/*
2158 	 * The number of retries is the number of attempts - 1, but retry
2159 	 * at least once. It's not clear if a value of 0 is allowed, so
2160 	 * let's do at least one retry.
2161 	 */
2162 	cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4);
2163 
2164 	if (len > 16) {
2165 		v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len);
2166 		return -EINVAL;
2167 	}
2168 
2169 	/* write data */
2170 	for (i = 0; i < len; i++)
2171 		cec_write(sd, i, msg->msg[i]);
2172 
2173 	/* set length (data + header) */
2174 	cec_write(sd, 0x10, len);
2175 	/* start transmit, enable tx */
2176 	cec_write(sd, 0x11, 0x01);
2177 	return 0;
2178 }
2179 
2180 static const struct cec_adap_ops adv76xx_cec_adap_ops = {
2181 	.adap_enable = adv76xx_cec_adap_enable,
2182 	.adap_log_addr = adv76xx_cec_adap_log_addr,
2183 	.adap_transmit = adv76xx_cec_adap_transmit,
2184 };
2185 #endif
2186 
2187 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
2188 {
2189 	struct adv76xx_state *state = to_state(sd);
2190 	const struct adv76xx_chip_info *info = state->info;
2191 	const u8 irq_reg_0x43 = io_read(sd, 0x43);
2192 	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
2193 	const u8 irq_reg_0x70 = io_read(sd, 0x70);
2194 	u8 fmt_change_digital;
2195 	u8 fmt_change;
2196 	u8 tx_5v;
2197 
2198 	if (irq_reg_0x43)
2199 		io_write(sd, 0x44, irq_reg_0x43);
2200 	if (irq_reg_0x70)
2201 		io_write(sd, 0x71, irq_reg_0x70);
2202 	if (irq_reg_0x6b)
2203 		io_write(sd, 0x6c, irq_reg_0x6b);
2204 
2205 	v4l2_dbg(2, debug, sd, "%s: ", __func__);
2206 
2207 	/* format change */
2208 	fmt_change = irq_reg_0x43 & 0x98;
2209 	fmt_change_digital = is_digital_input(sd)
2210 			   ? irq_reg_0x6b & info->fmt_change_digital_mask
2211 			   : 0;
2212 
2213 	if (fmt_change || fmt_change_digital) {
2214 		v4l2_dbg(1, debug, sd,
2215 			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2216 			__func__, fmt_change, fmt_change_digital);
2217 
2218 		v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
2219 
2220 		if (handled)
2221 			*handled = true;
2222 	}
2223 	/* HDMI/DVI mode */
2224 	if (irq_reg_0x6b & 0x01) {
2225 		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
2226 			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
2227 		set_rgb_quantization_range(sd);
2228 		if (handled)
2229 			*handled = true;
2230 	}
2231 
2232 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
2233 	/* cec */
2234 	adv76xx_cec_isr(sd, handled);
2235 #endif
2236 
2237 	/* tx 5v detect */
2238 	tx_5v = irq_reg_0x70 & info->cable_det_mask;
2239 	if (tx_5v) {
2240 		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
2241 		adv76xx_s_detect_tx_5v_ctrl(sd);
2242 		if (handled)
2243 			*handled = true;
2244 	}
2245 	return 0;
2246 }
2247 
2248 static irqreturn_t adv76xx_irq_handler(int irq, void *dev_id)
2249 {
2250 	struct adv76xx_state *state = dev_id;
2251 	bool handled = false;
2252 
2253 	adv76xx_isr(&state->sd, 0, &handled);
2254 
2255 	return handled ? IRQ_HANDLED : IRQ_NONE;
2256 }
2257 
2258 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2259 {
2260 	struct adv76xx_state *state = to_state(sd);
2261 	u8 *data = NULL;
2262 
2263 	memset(edid->reserved, 0, sizeof(edid->reserved));
2264 
2265 	switch (edid->pad) {
2266 	case ADV76XX_PAD_HDMI_PORT_A:
2267 	case ADV7604_PAD_HDMI_PORT_B:
2268 	case ADV7604_PAD_HDMI_PORT_C:
2269 	case ADV7604_PAD_HDMI_PORT_D:
2270 		if (state->edid.present & (1 << edid->pad))
2271 			data = state->edid.edid;
2272 		break;
2273 	default:
2274 		return -EINVAL;
2275 	}
2276 
2277 	if (edid->start_block == 0 && edid->blocks == 0) {
2278 		edid->blocks = data ? state->edid.blocks : 0;
2279 		return 0;
2280 	}
2281 
2282 	if (!data)
2283 		return -ENODATA;
2284 
2285 	if (edid->start_block >= state->edid.blocks)
2286 		return -EINVAL;
2287 
2288 	if (edid->start_block + edid->blocks > state->edid.blocks)
2289 		edid->blocks = state->edid.blocks - edid->start_block;
2290 
2291 	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2292 
2293 	return 0;
2294 }
2295 
2296 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2297 {
2298 	struct adv76xx_state *state = to_state(sd);
2299 	const struct adv76xx_chip_info *info = state->info;
2300 	unsigned int spa_loc;
2301 	u16 pa;
2302 	int err;
2303 	int i;
2304 
2305 	memset(edid->reserved, 0, sizeof(edid->reserved));
2306 
2307 	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2308 		return -EINVAL;
2309 	if (edid->start_block != 0)
2310 		return -EINVAL;
2311 	if (edid->blocks == 0) {
2312 		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2313 		state->edid.present &= ~(1 << edid->pad);
2314 		adv76xx_set_hpd(state, state->edid.present);
2315 		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2316 
2317 		/* Fall back to a 16:9 aspect ratio */
2318 		state->aspect_ratio.numerator = 16;
2319 		state->aspect_ratio.denominator = 9;
2320 
2321 		if (!state->edid.present) {
2322 			state->edid.blocks = 0;
2323 			cec_phys_addr_invalidate(state->cec_adap);
2324 		}
2325 
2326 		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2327 				__func__, edid->pad, state->edid.present);
2328 		return 0;
2329 	}
2330 	if (edid->blocks > 2) {
2331 		edid->blocks = 2;
2332 		return -E2BIG;
2333 	}
2334 	pa = v4l2_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc);
2335 	err = v4l2_phys_addr_validate(pa, &pa, NULL);
2336 	if (err)
2337 		return err;
2338 
2339 	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2340 			__func__, edid->pad, state->edid.present);
2341 
2342 	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2343 	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2344 	adv76xx_set_hpd(state, 0);
2345 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2346 
2347 	/*
2348 	 * Return an error if no location of the source physical address
2349 	 * was found.
2350 	 */
2351 	if (spa_loc == 0)
2352 		return -EINVAL;
2353 
2354 	switch (edid->pad) {
2355 	case ADV76XX_PAD_HDMI_PORT_A:
2356 		state->spa_port_a[0] = edid->edid[spa_loc];
2357 		state->spa_port_a[1] = edid->edid[spa_loc + 1];
2358 		break;
2359 	case ADV7604_PAD_HDMI_PORT_B:
2360 		rep_write(sd, 0x70, edid->edid[spa_loc]);
2361 		rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2362 		break;
2363 	case ADV7604_PAD_HDMI_PORT_C:
2364 		rep_write(sd, 0x72, edid->edid[spa_loc]);
2365 		rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2366 		break;
2367 	case ADV7604_PAD_HDMI_PORT_D:
2368 		rep_write(sd, 0x74, edid->edid[spa_loc]);
2369 		rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2370 		break;
2371 	default:
2372 		return -EINVAL;
2373 	}
2374 
2375 	if (info->type == ADV7604) {
2376 		rep_write(sd, 0x76, spa_loc & 0xff);
2377 		rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2378 	} else {
2379 		/* ADV7612 Software Manual Rev. A, p. 15 */
2380 		rep_write(sd, 0x70, spa_loc & 0xff);
2381 		rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2382 	}
2383 
2384 	edid->edid[spa_loc] = state->spa_port_a[0];
2385 	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2386 
2387 	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2388 	state->edid.blocks = edid->blocks;
2389 	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2390 			edid->edid[0x16]);
2391 	state->edid.present |= 1 << edid->pad;
2392 
2393 	err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
2394 	if (err < 0) {
2395 		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2396 		return err;
2397 	}
2398 
2399 	/* adv76xx calculates the checksums and enables I2C access to internal
2400 	   EDID RAM from DDC port. */
2401 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2402 
2403 	for (i = 0; i < 1000; i++) {
2404 		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2405 			break;
2406 		mdelay(1);
2407 	}
2408 	if (i == 1000) {
2409 		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2410 		return -EIO;
2411 	}
2412 	cec_s_phys_addr(state->cec_adap, pa, false);
2413 
2414 	/* enable hotplug after 100 ms */
2415 	schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
2416 	return 0;
2417 }
2418 
2419 /*********** avi info frame CEA-861-E **************/
2420 
2421 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2422 	{ "AVI", 0x01, 0xe0, 0x00 },
2423 	{ "Audio", 0x02, 0xe3, 0x1c },
2424 	{ "SDP", 0x04, 0xe6, 0x2a },
2425 	{ "Vendor", 0x10, 0xec, 0x54 }
2426 };
2427 
2428 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2429 				  union hdmi_infoframe *frame)
2430 {
2431 	uint8_t buffer[32];
2432 	u8 len;
2433 	int i;
2434 
2435 	if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2436 		v4l2_info(sd, "%s infoframe not received\n",
2437 			  adv76xx_cri[index].desc);
2438 		return -ENOENT;
2439 	}
2440 
2441 	for (i = 0; i < 3; i++)
2442 		buffer[i] = infoframe_read(sd,
2443 					   adv76xx_cri[index].head_addr + i);
2444 
2445 	len = buffer[2] + 1;
2446 
2447 	if (len + 3 > sizeof(buffer)) {
2448 		v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2449 			 adv76xx_cri[index].desc, len);
2450 		return -ENOENT;
2451 	}
2452 
2453 	for (i = 0; i < len; i++)
2454 		buffer[i + 3] = infoframe_read(sd,
2455 				       adv76xx_cri[index].payload_addr + i);
2456 
2457 	if (hdmi_infoframe_unpack(frame, buffer, sizeof(buffer)) < 0) {
2458 		v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2459 			 adv76xx_cri[index].desc);
2460 		return -ENOENT;
2461 	}
2462 	return 0;
2463 }
2464 
2465 static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2466 {
2467 	int i;
2468 
2469 	if (!is_hdmi(sd)) {
2470 		v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2471 		return;
2472 	}
2473 
2474 	for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2475 		union hdmi_infoframe frame;
2476 		struct i2c_client *client = v4l2_get_subdevdata(sd);
2477 
2478 		if (adv76xx_read_infoframe(sd, i, &frame))
2479 			return;
2480 		hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2481 	}
2482 }
2483 
2484 static int adv76xx_log_status(struct v4l2_subdev *sd)
2485 {
2486 	struct adv76xx_state *state = to_state(sd);
2487 	const struct adv76xx_chip_info *info = state->info;
2488 	struct v4l2_dv_timings timings;
2489 	struct stdi_readback stdi;
2490 	u8 reg_io_0x02 = io_read(sd, 0x02);
2491 	u8 edid_enabled;
2492 	u8 cable_det;
2493 
2494 	static const char * const csc_coeff_sel_rb[16] = {
2495 		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2496 		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2497 		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2498 		"reserved", "reserved", "reserved", "reserved", "manual"
2499 	};
2500 	static const char * const input_color_space_txt[16] = {
2501 		"RGB limited range (16-235)", "RGB full range (0-255)",
2502 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2503 		"xvYCC Bt.601", "xvYCC Bt.709",
2504 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2505 		"invalid", "invalid", "invalid", "invalid", "invalid",
2506 		"invalid", "invalid", "automatic"
2507 	};
2508 	static const char * const hdmi_color_space_txt[16] = {
2509 		"RGB limited range (16-235)", "RGB full range (0-255)",
2510 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2511 		"xvYCC Bt.601", "xvYCC Bt.709",
2512 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2513 		"sYCC", "opYCC 601", "opRGB", "invalid", "invalid",
2514 		"invalid", "invalid", "invalid"
2515 	};
2516 	static const char * const rgb_quantization_range_txt[] = {
2517 		"Automatic",
2518 		"RGB limited range (16-235)",
2519 		"RGB full range (0-255)",
2520 	};
2521 	static const char * const deep_color_mode_txt[4] = {
2522 		"8-bits per channel",
2523 		"10-bits per channel",
2524 		"12-bits per channel",
2525 		"16-bits per channel (not supported)"
2526 	};
2527 
2528 	v4l2_info(sd, "-----Chip status-----\n");
2529 	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2530 	edid_enabled = rep_read(sd, info->edid_status_reg);
2531 	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2532 			((edid_enabled & 0x01) ? "Yes" : "No"),
2533 			((edid_enabled & 0x02) ? "Yes" : "No"),
2534 			((edid_enabled & 0x04) ? "Yes" : "No"),
2535 			((edid_enabled & 0x08) ? "Yes" : "No"));
2536 	v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ?
2537 			"enabled" : "disabled");
2538 	if (state->cec_enabled_adap) {
2539 		int i;
2540 
2541 		for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2542 			bool is_valid = state->cec_valid_addrs & (1 << i);
2543 
2544 			if (is_valid)
2545 				v4l2_info(sd, "CEC Logical Address: 0x%x\n",
2546 					  state->cec_addr[i]);
2547 		}
2548 	}
2549 
2550 	v4l2_info(sd, "-----Signal status-----\n");
2551 	cable_det = info->read_cable_det(sd);
2552 	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2553 			((cable_det & 0x01) ? "Yes" : "No"),
2554 			((cable_det & 0x02) ? "Yes" : "No"),
2555 			((cable_det & 0x04) ? "Yes" : "No"),
2556 			((cable_det & 0x08) ? "Yes" : "No"));
2557 	v4l2_info(sd, "TMDS signal detected: %s\n",
2558 			no_signal_tmds(sd) ? "false" : "true");
2559 	v4l2_info(sd, "TMDS signal locked: %s\n",
2560 			no_lock_tmds(sd) ? "false" : "true");
2561 	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2562 	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2563 	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2564 	v4l2_info(sd, "CP free run: %s\n",
2565 			(in_free_run(sd)) ? "on" : "off");
2566 	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2567 			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2568 			(io_read(sd, 0x01) & 0x70) >> 4);
2569 
2570 	v4l2_info(sd, "-----Video Timings-----\n");
2571 	if (read_stdi(sd, &stdi))
2572 		v4l2_info(sd, "STDI: not locked\n");
2573 	else
2574 		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2575 				stdi.lcf, stdi.bl, stdi.lcvs,
2576 				stdi.interlaced ? "interlaced" : "progressive",
2577 				stdi.hs_pol, stdi.vs_pol);
2578 	if (adv76xx_query_dv_timings(sd, &timings))
2579 		v4l2_info(sd, "No video detected\n");
2580 	else
2581 		v4l2_print_dv_timings(sd->name, "Detected format: ",
2582 				      &timings, true);
2583 	v4l2_print_dv_timings(sd->name, "Configured format: ",
2584 			      &state->timings, true);
2585 
2586 	if (no_signal(sd))
2587 		return 0;
2588 
2589 	v4l2_info(sd, "-----Color space-----\n");
2590 	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2591 			rgb_quantization_range_txt[state->rgb_quantization_range]);
2592 	v4l2_info(sd, "Input color space: %s\n",
2593 			input_color_space_txt[reg_io_0x02 >> 4]);
2594 	v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n",
2595 			(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2596 			(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2597 				"(16-235)" : "(0-255)",
2598 			(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2599 	v4l2_info(sd, "Color space conversion: %s\n",
2600 			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2601 
2602 	if (!is_digital_input(sd))
2603 		return 0;
2604 
2605 	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2606 	v4l2_info(sd, "Digital video port selected: %c\n",
2607 			(hdmi_read(sd, 0x00) & 0x03) + 'A');
2608 	v4l2_info(sd, "HDCP encrypted content: %s\n",
2609 			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2610 	v4l2_info(sd, "HDCP keys read: %s%s\n",
2611 			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2612 			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2613 	if (is_hdmi(sd)) {
2614 		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2615 		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2616 		bool audio_mute = io_read(sd, 0x65) & 0x40;
2617 
2618 		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2619 				audio_pll_locked ? "locked" : "not locked",
2620 				audio_sample_packet_detect ? "detected" : "not detected",
2621 				audio_mute ? "muted" : "enabled");
2622 		if (audio_pll_locked && audio_sample_packet_detect) {
2623 			v4l2_info(sd, "Audio format: %s\n",
2624 					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2625 		}
2626 		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2627 				(hdmi_read(sd, 0x5c) << 8) +
2628 				(hdmi_read(sd, 0x5d) & 0xf0));
2629 		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2630 				(hdmi_read(sd, 0x5e) << 8) +
2631 				hdmi_read(sd, 0x5f));
2632 		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2633 
2634 		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2635 		v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2636 
2637 		adv76xx_log_infoframes(sd);
2638 	}
2639 
2640 	return 0;
2641 }
2642 
2643 static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2644 				   struct v4l2_fh *fh,
2645 				   struct v4l2_event_subscription *sub)
2646 {
2647 	switch (sub->type) {
2648 	case V4L2_EVENT_SOURCE_CHANGE:
2649 		return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2650 	case V4L2_EVENT_CTRL:
2651 		return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2652 	default:
2653 		return -EINVAL;
2654 	}
2655 }
2656 
2657 static int adv76xx_registered(struct v4l2_subdev *sd)
2658 {
2659 	struct adv76xx_state *state = to_state(sd);
2660 	struct i2c_client *client = v4l2_get_subdevdata(sd);
2661 	int err;
2662 
2663 	err = cec_register_adapter(state->cec_adap, &client->dev);
2664 	if (err)
2665 		cec_delete_adapter(state->cec_adap);
2666 	return err;
2667 }
2668 
2669 static void adv76xx_unregistered(struct v4l2_subdev *sd)
2670 {
2671 	struct adv76xx_state *state = to_state(sd);
2672 
2673 	cec_unregister_adapter(state->cec_adap);
2674 }
2675 
2676 /* ----------------------------------------------------------------------- */
2677 
2678 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2679 	.s_ctrl = adv76xx_s_ctrl,
2680 	.g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2681 };
2682 
2683 static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2684 	.log_status = adv76xx_log_status,
2685 	.interrupt_service_routine = adv76xx_isr,
2686 	.subscribe_event = adv76xx_subscribe_event,
2687 	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2688 #ifdef CONFIG_VIDEO_ADV_DEBUG
2689 	.g_register = adv76xx_g_register,
2690 	.s_register = adv76xx_s_register,
2691 #endif
2692 };
2693 
2694 static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2695 	.s_routing = adv76xx_s_routing,
2696 	.g_input_status = adv76xx_g_input_status,
2697 	.s_dv_timings = adv76xx_s_dv_timings,
2698 	.g_dv_timings = adv76xx_g_dv_timings,
2699 	.query_dv_timings = adv76xx_query_dv_timings,
2700 };
2701 
2702 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2703 	.enum_mbus_code = adv76xx_enum_mbus_code,
2704 	.get_selection = adv76xx_get_selection,
2705 	.get_fmt = adv76xx_get_format,
2706 	.set_fmt = adv76xx_set_format,
2707 	.get_edid = adv76xx_get_edid,
2708 	.set_edid = adv76xx_set_edid,
2709 	.dv_timings_cap = adv76xx_dv_timings_cap,
2710 	.enum_dv_timings = adv76xx_enum_dv_timings,
2711 };
2712 
2713 static const struct v4l2_subdev_ops adv76xx_ops = {
2714 	.core = &adv76xx_core_ops,
2715 	.video = &adv76xx_video_ops,
2716 	.pad = &adv76xx_pad_ops,
2717 };
2718 
2719 static const struct v4l2_subdev_internal_ops adv76xx_int_ops = {
2720 	.registered = adv76xx_registered,
2721 	.unregistered = adv76xx_unregistered,
2722 };
2723 
2724 /* -------------------------- custom ctrls ---------------------------------- */
2725 
2726 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2727 	.ops = &adv76xx_ctrl_ops,
2728 	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2729 	.name = "Analog Sampling Phase",
2730 	.type = V4L2_CTRL_TYPE_INTEGER,
2731 	.min = 0,
2732 	.max = 0x1f,
2733 	.step = 1,
2734 	.def = 0,
2735 };
2736 
2737 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2738 	.ops = &adv76xx_ctrl_ops,
2739 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2740 	.name = "Free Running Color, Manual",
2741 	.type = V4L2_CTRL_TYPE_BOOLEAN,
2742 	.min = false,
2743 	.max = true,
2744 	.step = 1,
2745 	.def = false,
2746 };
2747 
2748 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2749 	.ops = &adv76xx_ctrl_ops,
2750 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2751 	.name = "Free Running Color",
2752 	.type = V4L2_CTRL_TYPE_INTEGER,
2753 	.min = 0x0,
2754 	.max = 0xffffff,
2755 	.step = 0x1,
2756 	.def = 0x0,
2757 };
2758 
2759 /* ----------------------------------------------------------------------- */
2760 
2761 struct adv76xx_register_map {
2762 	const char *name;
2763 	u8 default_addr;
2764 };
2765 
2766 static const struct adv76xx_register_map adv76xx_default_addresses[] = {
2767 	[ADV76XX_PAGE_IO] = { "main", 0x4c },
2768 	[ADV7604_PAGE_AVLINK] = { "avlink", 0x42 },
2769 	[ADV76XX_PAGE_CEC] = { "cec", 0x40 },
2770 	[ADV76XX_PAGE_INFOFRAME] = { "infoframe", 0x3e },
2771 	[ADV7604_PAGE_ESDP] = { "esdp", 0x38 },
2772 	[ADV7604_PAGE_DPP] = { "dpp", 0x3c },
2773 	[ADV76XX_PAGE_AFE] = { "afe", 0x26 },
2774 	[ADV76XX_PAGE_REP] = { "rep", 0x32 },
2775 	[ADV76XX_PAGE_EDID] = { "edid", 0x36 },
2776 	[ADV76XX_PAGE_HDMI] = { "hdmi", 0x34 },
2777 	[ADV76XX_PAGE_TEST] = { "test", 0x30 },
2778 	[ADV76XX_PAGE_CP] = { "cp", 0x22 },
2779 	[ADV7604_PAGE_VDP] = { "vdp", 0x24 },
2780 };
2781 
2782 static int adv76xx_core_init(struct v4l2_subdev *sd)
2783 {
2784 	struct adv76xx_state *state = to_state(sd);
2785 	const struct adv76xx_chip_info *info = state->info;
2786 	struct adv76xx_platform_data *pdata = &state->pdata;
2787 
2788 	hdmi_write(sd, 0x48,
2789 		(pdata->disable_pwrdnb ? 0x80 : 0) |
2790 		(pdata->disable_cable_det_rst ? 0x40 : 0));
2791 
2792 	disable_input(sd);
2793 
2794 	if (pdata->default_input >= 0 &&
2795 	    pdata->default_input < state->source_pad) {
2796 		state->selected_input = pdata->default_input;
2797 		select_input(sd);
2798 		enable_input(sd);
2799 	}
2800 
2801 	/* power */
2802 	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
2803 	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
2804 	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */
2805 
2806 	/* video format */
2807 	io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3);
2808 	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2809 			pdata->insert_av_codes << 2 |
2810 			pdata->replicate_av_codes << 1);
2811 	adv76xx_setup_format(state);
2812 
2813 	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2814 
2815 	/* VS, HS polarities */
2816 	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2817 		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2818 
2819 	/* Adjust drive strength */
2820 	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2821 				pdata->dr_str_clk << 2 |
2822 				pdata->dr_str_sync);
2823 
2824 	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2825 	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2826 	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
2827 				      ADI recommended setting [REF_01, c. 2.3.3] */
2828 	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
2829 				      ADI recommended setting [REF_01, c. 2.3.3] */
2830 	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2831 				     for digital formats */
2832 
2833 	/* HDMI audio */
2834 	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2835 	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2836 	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2837 
2838 	/* TODO from platform data */
2839 	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */
2840 
2841 	if (adv76xx_has_afe(state)) {
2842 		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2843 		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2844 	}
2845 
2846 	/* interrupts */
2847 	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2848 	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2849 	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2850 	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2851 	info->setup_irqs(sd);
2852 
2853 	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2854 }
2855 
2856 static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2857 {
2858 	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2859 }
2860 
2861 static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2862 {
2863 	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2864 }
2865 
2866 static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2867 {
2868 	io_write(sd, 0x41, 0xd0); /* disable INT2 */
2869 }
2870 
2871 static void adv76xx_unregister_clients(struct adv76xx_state *state)
2872 {
2873 	unsigned int i;
2874 
2875 	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i)
2876 		i2c_unregister_device(state->i2c_clients[i]);
2877 }
2878 
2879 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2880 					       unsigned int page)
2881 {
2882 	struct i2c_client *client = v4l2_get_subdevdata(sd);
2883 	struct adv76xx_state *state = to_state(sd);
2884 	struct adv76xx_platform_data *pdata = &state->pdata;
2885 	unsigned int io_reg = 0xf2 + page;
2886 	struct i2c_client *new_client;
2887 
2888 	if (pdata && pdata->i2c_addresses[page])
2889 		new_client = i2c_new_dummy_device(client->adapter,
2890 					   pdata->i2c_addresses[page]);
2891 	else
2892 		new_client = i2c_new_ancillary_device(client,
2893 				adv76xx_default_addresses[page].name,
2894 				adv76xx_default_addresses[page].default_addr);
2895 
2896 	if (!IS_ERR(new_client))
2897 		io_write(sd, io_reg, new_client->addr << 1);
2898 
2899 	return new_client;
2900 }
2901 
2902 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2903 	/* reset ADI recommended settings for HDMI: */
2904 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2905 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2906 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2907 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2908 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2909 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2910 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2911 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2912 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2913 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2914 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2915 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2916 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2917 
2918 	/* set ADI recommended settings for digitizer */
2919 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2920 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2921 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2922 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2923 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2924 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2925 
2926 	{ ADV76XX_REG_SEQ_TERM, 0 },
2927 };
2928 
2929 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2930 	/* set ADI recommended settings for HDMI: */
2931 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2932 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2933 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2934 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2935 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2936 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2937 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2938 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2939 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2940 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2941 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2942 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2943 
2944 	/* reset ADI recommended settings for digitizer */
2945 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2946 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2947 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2948 
2949 	{ ADV76XX_REG_SEQ_TERM, 0 },
2950 };
2951 
2952 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2953 	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2954 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2955 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2956 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2957 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2958 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2959 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2960 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2961 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2962 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2963 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
2964 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
2965 
2966 	{ ADV76XX_REG_SEQ_TERM, 0 },
2967 };
2968 
2969 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
2970 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2971 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2972 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2973 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2974 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2975 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2976 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2977 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2978 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2979 	{ ADV76XX_REG_SEQ_TERM, 0 },
2980 };
2981 
2982 static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2983 	[ADV7604] = {
2984 		.type = ADV7604,
2985 		.has_afe = true,
2986 		.max_port = ADV7604_PAD_VGA_COMP,
2987 		.num_dv_ports = 4,
2988 		.edid_enable_reg = 0x77,
2989 		.edid_status_reg = 0x7d,
2990 		.lcf_reg = 0xb3,
2991 		.tdms_lock_mask = 0xe0,
2992 		.cable_det_mask = 0x1e,
2993 		.fmt_change_digital_mask = 0xc1,
2994 		.cp_csc = 0xfc,
2995 		.cec_irq_status = 0x4d,
2996 		.cec_rx_enable = 0x26,
2997 		.cec_rx_enable_mask = 0x01,
2998 		.cec_irq_swap = true,
2999 		.formats = adv7604_formats,
3000 		.nformats = ARRAY_SIZE(adv7604_formats),
3001 		.set_termination = adv7604_set_termination,
3002 		.setup_irqs = adv7604_setup_irqs,
3003 		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
3004 		.read_cable_det = adv7604_read_cable_det,
3005 		.recommended_settings = {
3006 		    [0] = adv7604_recommended_settings_afe,
3007 		    [1] = adv7604_recommended_settings_hdmi,
3008 		},
3009 		.num_recommended_settings = {
3010 		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
3011 		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
3012 		},
3013 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
3014 			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
3015 			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
3016 			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
3017 			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
3018 			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
3019 			BIT(ADV7604_PAGE_VDP),
3020 		.linewidth_mask = 0xfff,
3021 		.field0_height_mask = 0xfff,
3022 		.field1_height_mask = 0xfff,
3023 		.hfrontporch_mask = 0x3ff,
3024 		.hsync_mask = 0x3ff,
3025 		.hbackporch_mask = 0x3ff,
3026 		.field0_vfrontporch_mask = 0x1fff,
3027 		.field0_vsync_mask = 0x1fff,
3028 		.field0_vbackporch_mask = 0x1fff,
3029 		.field1_vfrontporch_mask = 0x1fff,
3030 		.field1_vsync_mask = 0x1fff,
3031 		.field1_vbackporch_mask = 0x1fff,
3032 	},
3033 	[ADV7611] = {
3034 		.type = ADV7611,
3035 		.has_afe = false,
3036 		.max_port = ADV76XX_PAD_HDMI_PORT_A,
3037 		.num_dv_ports = 1,
3038 		.edid_enable_reg = 0x74,
3039 		.edid_status_reg = 0x76,
3040 		.lcf_reg = 0xa3,
3041 		.tdms_lock_mask = 0x43,
3042 		.cable_det_mask = 0x01,
3043 		.fmt_change_digital_mask = 0x03,
3044 		.cp_csc = 0xf4,
3045 		.cec_irq_status = 0x93,
3046 		.cec_rx_enable = 0x2c,
3047 		.cec_rx_enable_mask = 0x02,
3048 		.formats = adv7611_formats,
3049 		.nformats = ARRAY_SIZE(adv7611_formats),
3050 		.set_termination = adv7611_set_termination,
3051 		.setup_irqs = adv7611_setup_irqs,
3052 		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3053 		.read_cable_det = adv7611_read_cable_det,
3054 		.recommended_settings = {
3055 		    [1] = adv7611_recommended_settings_hdmi,
3056 		},
3057 		.num_recommended_settings = {
3058 		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
3059 		},
3060 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3061 			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3062 			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3063 			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3064 		.linewidth_mask = 0x1fff,
3065 		.field0_height_mask = 0x1fff,
3066 		.field1_height_mask = 0x1fff,
3067 		.hfrontporch_mask = 0x1fff,
3068 		.hsync_mask = 0x1fff,
3069 		.hbackporch_mask = 0x1fff,
3070 		.field0_vfrontporch_mask = 0x3fff,
3071 		.field0_vsync_mask = 0x3fff,
3072 		.field0_vbackporch_mask = 0x3fff,
3073 		.field1_vfrontporch_mask = 0x3fff,
3074 		.field1_vsync_mask = 0x3fff,
3075 		.field1_vbackporch_mask = 0x3fff,
3076 	},
3077 	[ADV7612] = {
3078 		.type = ADV7612,
3079 		.has_afe = false,
3080 		.max_port = ADV76XX_PAD_HDMI_PORT_A,	/* B not supported */
3081 		.num_dv_ports = 1,			/* normally 2 */
3082 		.edid_enable_reg = 0x74,
3083 		.edid_status_reg = 0x76,
3084 		.lcf_reg = 0xa3,
3085 		.tdms_lock_mask = 0x43,
3086 		.cable_det_mask = 0x01,
3087 		.fmt_change_digital_mask = 0x03,
3088 		.cp_csc = 0xf4,
3089 		.cec_irq_status = 0x93,
3090 		.cec_rx_enable = 0x2c,
3091 		.cec_rx_enable_mask = 0x02,
3092 		.formats = adv7612_formats,
3093 		.nformats = ARRAY_SIZE(adv7612_formats),
3094 		.set_termination = adv7611_set_termination,
3095 		.setup_irqs = adv7612_setup_irqs,
3096 		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3097 		.read_cable_det = adv7612_read_cable_det,
3098 		.recommended_settings = {
3099 		    [1] = adv7612_recommended_settings_hdmi,
3100 		},
3101 		.num_recommended_settings = {
3102 		    [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
3103 		},
3104 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3105 			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3106 			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3107 			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3108 		.linewidth_mask = 0x1fff,
3109 		.field0_height_mask = 0x1fff,
3110 		.field1_height_mask = 0x1fff,
3111 		.hfrontporch_mask = 0x1fff,
3112 		.hsync_mask = 0x1fff,
3113 		.hbackporch_mask = 0x1fff,
3114 		.field0_vfrontporch_mask = 0x3fff,
3115 		.field0_vsync_mask = 0x3fff,
3116 		.field0_vbackporch_mask = 0x3fff,
3117 		.field1_vfrontporch_mask = 0x3fff,
3118 		.field1_vsync_mask = 0x3fff,
3119 		.field1_vbackporch_mask = 0x3fff,
3120 	},
3121 };
3122 
3123 static const struct i2c_device_id adv76xx_i2c_id[] = {
3124 	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
3125 	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3126 	{ "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
3127 	{ }
3128 };
3129 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
3130 
3131 static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
3132 	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
3133 	{ .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
3134 	{ }
3135 };
3136 MODULE_DEVICE_TABLE(of, adv76xx_of_id);
3137 
3138 static int adv76xx_parse_dt(struct adv76xx_state *state)
3139 {
3140 	struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
3141 	struct device_node *endpoint;
3142 	struct device_node *np;
3143 	unsigned int flags;
3144 	int ret;
3145 	u32 v;
3146 
3147 	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
3148 
3149 	/* Parse the endpoint. */
3150 	endpoint = of_graph_get_next_endpoint(np, NULL);
3151 	if (!endpoint)
3152 		return -EINVAL;
3153 
3154 	ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), &bus_cfg);
3155 	of_node_put(endpoint);
3156 	if (ret)
3157 		return ret;
3158 
3159 	if (!of_property_read_u32(np, "default-input", &v))
3160 		state->pdata.default_input = v;
3161 	else
3162 		state->pdata.default_input = -1;
3163 
3164 	flags = bus_cfg.bus.parallel.flags;
3165 
3166 	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
3167 		state->pdata.inv_hs_pol = 1;
3168 
3169 	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
3170 		state->pdata.inv_vs_pol = 1;
3171 
3172 	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
3173 		state->pdata.inv_llc_pol = 1;
3174 
3175 	if (bus_cfg.bus_type == V4L2_MBUS_BT656)
3176 		state->pdata.insert_av_codes = 1;
3177 
3178 	/* Disable the interrupt for now as no DT-based board uses it. */
3179 	state->pdata.int1_config = ADV76XX_INT1_CONFIG_ACTIVE_HIGH;
3180 
3181 	/* Hardcode the remaining platform data fields. */
3182 	state->pdata.disable_pwrdnb = 0;
3183 	state->pdata.disable_cable_det_rst = 0;
3184 	state->pdata.blank_data = 1;
3185 	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
3186 	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
3187 	state->pdata.dr_str_data = ADV76XX_DR_STR_MEDIUM_HIGH;
3188 	state->pdata.dr_str_clk = ADV76XX_DR_STR_MEDIUM_HIGH;
3189 	state->pdata.dr_str_sync = ADV76XX_DR_STR_MEDIUM_HIGH;
3190 
3191 	return 0;
3192 }
3193 
3194 static const struct regmap_config adv76xx_regmap_cnf[] = {
3195 	{
3196 		.name			= "io",
3197 		.reg_bits		= 8,
3198 		.val_bits		= 8,
3199 
3200 		.max_register		= 0xff,
3201 		.cache_type		= REGCACHE_NONE,
3202 	},
3203 	{
3204 		.name			= "avlink",
3205 		.reg_bits		= 8,
3206 		.val_bits		= 8,
3207 
3208 		.max_register		= 0xff,
3209 		.cache_type		= REGCACHE_NONE,
3210 	},
3211 	{
3212 		.name			= "cec",
3213 		.reg_bits		= 8,
3214 		.val_bits		= 8,
3215 
3216 		.max_register		= 0xff,
3217 		.cache_type		= REGCACHE_NONE,
3218 	},
3219 	{
3220 		.name			= "infoframe",
3221 		.reg_bits		= 8,
3222 		.val_bits		= 8,
3223 
3224 		.max_register		= 0xff,
3225 		.cache_type		= REGCACHE_NONE,
3226 	},
3227 	{
3228 		.name			= "esdp",
3229 		.reg_bits		= 8,
3230 		.val_bits		= 8,
3231 
3232 		.max_register		= 0xff,
3233 		.cache_type		= REGCACHE_NONE,
3234 	},
3235 	{
3236 		.name			= "epp",
3237 		.reg_bits		= 8,
3238 		.val_bits		= 8,
3239 
3240 		.max_register		= 0xff,
3241 		.cache_type		= REGCACHE_NONE,
3242 	},
3243 	{
3244 		.name			= "afe",
3245 		.reg_bits		= 8,
3246 		.val_bits		= 8,
3247 
3248 		.max_register		= 0xff,
3249 		.cache_type		= REGCACHE_NONE,
3250 	},
3251 	{
3252 		.name			= "rep",
3253 		.reg_bits		= 8,
3254 		.val_bits		= 8,
3255 
3256 		.max_register		= 0xff,
3257 		.cache_type		= REGCACHE_NONE,
3258 	},
3259 	{
3260 		.name			= "edid",
3261 		.reg_bits		= 8,
3262 		.val_bits		= 8,
3263 
3264 		.max_register		= 0xff,
3265 		.cache_type		= REGCACHE_NONE,
3266 	},
3267 
3268 	{
3269 		.name			= "hdmi",
3270 		.reg_bits		= 8,
3271 		.val_bits		= 8,
3272 
3273 		.max_register		= 0xff,
3274 		.cache_type		= REGCACHE_NONE,
3275 	},
3276 	{
3277 		.name			= "test",
3278 		.reg_bits		= 8,
3279 		.val_bits		= 8,
3280 
3281 		.max_register		= 0xff,
3282 		.cache_type		= REGCACHE_NONE,
3283 	},
3284 	{
3285 		.name			= "cp",
3286 		.reg_bits		= 8,
3287 		.val_bits		= 8,
3288 
3289 		.max_register		= 0xff,
3290 		.cache_type		= REGCACHE_NONE,
3291 	},
3292 	{
3293 		.name			= "vdp",
3294 		.reg_bits		= 8,
3295 		.val_bits		= 8,
3296 
3297 		.max_register		= 0xff,
3298 		.cache_type		= REGCACHE_NONE,
3299 	},
3300 };
3301 
3302 static int configure_regmap(struct adv76xx_state *state, int region)
3303 {
3304 	int err;
3305 
3306 	if (!state->i2c_clients[region])
3307 		return -ENODEV;
3308 
3309 	state->regmap[region] =
3310 		devm_regmap_init_i2c(state->i2c_clients[region],
3311 				     &adv76xx_regmap_cnf[region]);
3312 
3313 	if (IS_ERR(state->regmap[region])) {
3314 		err = PTR_ERR(state->regmap[region]);
3315 		v4l_err(state->i2c_clients[region],
3316 			"Error initializing regmap %d with error %d\n",
3317 			region, err);
3318 		return -EINVAL;
3319 	}
3320 
3321 	return 0;
3322 }
3323 
3324 static int configure_regmaps(struct adv76xx_state *state)
3325 {
3326 	int i, err;
3327 
3328 	for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
3329 		err = configure_regmap(state, i);
3330 		if (err && (err != -ENODEV))
3331 			return err;
3332 	}
3333 	return 0;
3334 }
3335 
3336 static void adv76xx_reset(struct adv76xx_state *state)
3337 {
3338 	if (state->reset_gpio) {
3339 		/* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
3340 		gpiod_set_value_cansleep(state->reset_gpio, 0);
3341 		usleep_range(5000, 10000);
3342 		gpiod_set_value_cansleep(state->reset_gpio, 1);
3343 		/* It is recommended to wait 5 ms after the low pulse before */
3344 		/* an I2C write is performed to the ADV76XX. */
3345 		usleep_range(5000, 10000);
3346 	}
3347 }
3348 
3349 static int adv76xx_probe(struct i2c_client *client,
3350 			 const struct i2c_device_id *id)
3351 {
3352 	static const struct v4l2_dv_timings cea640x480 =
3353 		V4L2_DV_BT_CEA_640X480P59_94;
3354 	struct adv76xx_state *state;
3355 	struct v4l2_ctrl_handler *hdl;
3356 	struct v4l2_ctrl *ctrl;
3357 	struct v4l2_subdev *sd;
3358 	unsigned int i;
3359 	unsigned int val, val2;
3360 	int err;
3361 
3362 	/* Check if the adapter supports the needed features */
3363 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3364 		return -EIO;
3365 	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3366 			client->addr << 1);
3367 
3368 	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3369 	if (!state)
3370 		return -ENOMEM;
3371 
3372 	state->i2c_clients[ADV76XX_PAGE_IO] = client;
3373 
3374 	/* initialize variables */
3375 	state->restart_stdi_once = true;
3376 	state->selected_input = ~0;
3377 
3378 	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3379 		const struct of_device_id *oid;
3380 
3381 		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3382 		state->info = oid->data;
3383 
3384 		err = adv76xx_parse_dt(state);
3385 		if (err < 0) {
3386 			v4l_err(client, "DT parsing error\n");
3387 			return err;
3388 		}
3389 	} else if (client->dev.platform_data) {
3390 		struct adv76xx_platform_data *pdata = client->dev.platform_data;
3391 
3392 		state->info = (const struct adv76xx_chip_info *)id->driver_data;
3393 		state->pdata = *pdata;
3394 	} else {
3395 		v4l_err(client, "No platform data!\n");
3396 		return -ENODEV;
3397 	}
3398 
3399 	/* Request GPIOs. */
3400 	for (i = 0; i < state->info->num_dv_ports; ++i) {
3401 		state->hpd_gpio[i] =
3402 			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3403 						      GPIOD_OUT_LOW);
3404 		if (IS_ERR(state->hpd_gpio[i]))
3405 			return PTR_ERR(state->hpd_gpio[i]);
3406 
3407 		if (state->hpd_gpio[i])
3408 			v4l_info(client, "Handling HPD %u GPIO\n", i);
3409 	}
3410 	state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
3411 								GPIOD_OUT_HIGH);
3412 	if (IS_ERR(state->reset_gpio))
3413 		return PTR_ERR(state->reset_gpio);
3414 
3415 	adv76xx_reset(state);
3416 
3417 	state->timings = cea640x480;
3418 	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3419 
3420 	sd = &state->sd;
3421 	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3422 	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3423 		id->name, i2c_adapter_id(client->adapter),
3424 		client->addr);
3425 	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3426 	sd->internal_ops = &adv76xx_int_ops;
3427 
3428 	/* Configure IO Regmap region */
3429 	err = configure_regmap(state, ADV76XX_PAGE_IO);
3430 
3431 	if (err) {
3432 		v4l2_err(sd, "Error configuring IO regmap region\n");
3433 		return -ENODEV;
3434 	}
3435 
3436 	/*
3437 	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3438 	 * identifies the revision, while on ADV7611 it identifies the model as
3439 	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3440 	 */
3441 	switch (state->info->type) {
3442 	case ADV7604:
3443 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3444 		if (err) {
3445 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3446 			return -ENODEV;
3447 		}
3448 		if (val != 0x68) {
3449 			v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3450 					client->addr << 1);
3451 			return -ENODEV;
3452 		}
3453 		break;
3454 	case ADV7611:
3455 	case ADV7612:
3456 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3457 				0xea,
3458 				&val);
3459 		if (err) {
3460 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3461 			return -ENODEV;
3462 		}
3463 		val2 = val << 8;
3464 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3465 			    0xeb,
3466 			    &val);
3467 		if (err) {
3468 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3469 			return -ENODEV;
3470 		}
3471 		val |= val2;
3472 		if ((state->info->type == ADV7611 && val != 0x2051) ||
3473 			(state->info->type == ADV7612 && val != 0x2041)) {
3474 			v4l2_err(sd, "not an adv761x on address 0x%x\n",
3475 					client->addr << 1);
3476 			return -ENODEV;
3477 		}
3478 		break;
3479 	}
3480 
3481 	/* control handlers */
3482 	hdl = &state->hdl;
3483 	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3484 
3485 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3486 			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3487 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3488 			V4L2_CID_CONTRAST, 0, 255, 1, 128);
3489 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3490 			V4L2_CID_SATURATION, 0, 255, 1, 128);
3491 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3492 			V4L2_CID_HUE, 0, 128, 1, 0);
3493 	ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3494 			V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
3495 			0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
3496 	if (ctrl)
3497 		ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3498 
3499 	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3500 			V4L2_CID_DV_RX_POWER_PRESENT, 0,
3501 			(1 << state->info->num_dv_ports) - 1, 0, 0);
3502 	state->rgb_quantization_range_ctrl =
3503 		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3504 			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3505 			0, V4L2_DV_RGB_RANGE_AUTO);
3506 
3507 	/* custom controls */
3508 	if (adv76xx_has_afe(state))
3509 		state->analog_sampling_phase_ctrl =
3510 			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3511 	state->free_run_color_manual_ctrl =
3512 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3513 	state->free_run_color_ctrl =
3514 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3515 
3516 	sd->ctrl_handler = hdl;
3517 	if (hdl->error) {
3518 		err = hdl->error;
3519 		goto err_hdl;
3520 	}
3521 	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3522 		err = -ENODEV;
3523 		goto err_hdl;
3524 	}
3525 
3526 	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3527 		struct i2c_client *dummy_client;
3528 
3529 		if (!(BIT(i) & state->info->page_mask))
3530 			continue;
3531 
3532 		dummy_client = adv76xx_dummy_client(sd, i);
3533 		if (IS_ERR(dummy_client)) {
3534 			err = PTR_ERR(dummy_client);
3535 			v4l2_err(sd, "failed to create i2c client %u\n", i);
3536 			goto err_i2c;
3537 		}
3538 
3539 		state->i2c_clients[i] = dummy_client;
3540 	}
3541 
3542 	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3543 			adv76xx_delayed_work_enable_hotplug);
3544 
3545 	state->source_pad = state->info->num_dv_ports
3546 			  + (state->info->has_afe ? 2 : 0);
3547 	for (i = 0; i < state->source_pad; ++i)
3548 		state->pads[i].flags = MEDIA_PAD_FL_SINK;
3549 	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3550 	sd->entity.function = MEDIA_ENT_F_DV_DECODER;
3551 
3552 	err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3553 				state->pads);
3554 	if (err)
3555 		goto err_work_queues;
3556 
3557 	/* Configure regmaps */
3558 	err = configure_regmaps(state);
3559 	if (err)
3560 		goto err_entity;
3561 
3562 	err = adv76xx_core_init(sd);
3563 	if (err)
3564 		goto err_entity;
3565 
3566 	if (client->irq) {
3567 		err = devm_request_threaded_irq(&client->dev,
3568 						client->irq,
3569 						NULL, adv76xx_irq_handler,
3570 						IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
3571 						client->name, state);
3572 		if (err)
3573 			goto err_entity;
3574 	}
3575 
3576 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
3577 	state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops,
3578 		state, dev_name(&client->dev),
3579 		CEC_CAP_DEFAULTS, ADV76XX_MAX_ADDRS);
3580 	err = PTR_ERR_OR_ZERO(state->cec_adap);
3581 	if (err)
3582 		goto err_entity;
3583 #endif
3584 
3585 	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3586 			client->addr << 1, client->adapter->name);
3587 
3588 	err = v4l2_async_register_subdev(sd);
3589 	if (err)
3590 		goto err_entity;
3591 
3592 	return 0;
3593 
3594 err_entity:
3595 	media_entity_cleanup(&sd->entity);
3596 err_work_queues:
3597 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3598 err_i2c:
3599 	adv76xx_unregister_clients(state);
3600 err_hdl:
3601 	v4l2_ctrl_handler_free(hdl);
3602 	return err;
3603 }
3604 
3605 /* ----------------------------------------------------------------------- */
3606 
3607 static int adv76xx_remove(struct i2c_client *client)
3608 {
3609 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3610 	struct adv76xx_state *state = to_state(sd);
3611 
3612 	/* disable interrupts */
3613 	io_write(sd, 0x40, 0);
3614 	io_write(sd, 0x41, 0);
3615 	io_write(sd, 0x46, 0);
3616 	io_write(sd, 0x6e, 0);
3617 	io_write(sd, 0x73, 0);
3618 
3619 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3620 	v4l2_async_unregister_subdev(sd);
3621 	media_entity_cleanup(&sd->entity);
3622 	adv76xx_unregister_clients(to_state(sd));
3623 	v4l2_ctrl_handler_free(sd->ctrl_handler);
3624 	return 0;
3625 }
3626 
3627 /* ----------------------------------------------------------------------- */
3628 
3629 static struct i2c_driver adv76xx_driver = {
3630 	.driver = {
3631 		.name = "adv7604",
3632 		.of_match_table = of_match_ptr(adv76xx_of_id),
3633 	},
3634 	.probe = adv76xx_probe,
3635 	.remove = adv76xx_remove,
3636 	.id_table = adv76xx_i2c_id,
3637 };
3638 
3639 module_i2c_driver(adv76xx_driver);
3640