xref: /openbmc/linux/drivers/media/i2c/adv7604.c (revision 293d5b43)
1 /*
2  * adv7604 - Analog Devices ADV7604 video decoder driver
3  *
4  * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
5  *
6  * This program is free software; you may redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17  * SOFTWARE.
18  *
19  */
20 
21 /*
22  * References (c = chapter, p = page):
23  * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
24  *		Revision 2.5, June 2010
25  * REF_02 - Analog devices, Register map documentation, Documentation of
26  *		the register maps, Software manual, Rev. F, June 2010
27  * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
28  */
29 
30 #include <linux/delay.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/slab.h>
37 #include <linux/v4l2-dv-timings.h>
38 #include <linux/videodev2.h>
39 #include <linux/workqueue.h>
40 #include <linux/regmap.h>
41 
42 #include <media/i2c/adv7604.h>
43 #include <media/cec.h>
44 #include <media/v4l2-ctrls.h>
45 #include <media/v4l2-device.h>
46 #include <media/v4l2-event.h>
47 #include <media/v4l2-dv-timings.h>
48 #include <media/v4l2-of.h>
49 
50 static int debug;
51 module_param(debug, int, 0644);
52 MODULE_PARM_DESC(debug, "debug level (0-2)");
53 
54 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
55 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
56 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
57 MODULE_LICENSE("GPL");
58 
59 /* ADV7604 system clock frequency */
60 #define ADV76XX_FSC (28636360)
61 
62 #define ADV76XX_RGB_OUT					(1 << 1)
63 
64 #define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
65 #define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
66 #define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
67 
68 #define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
69 #define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
70 #define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
71 #define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
72 #define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
73 #define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)
74 
75 #define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
76 #define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
77 #define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
78 #define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
79 #define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
80 #define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
81 
82 #define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
83 
84 #define ADV76XX_MAX_ADDRS (3)
85 
86 enum adv76xx_type {
87 	ADV7604,
88 	ADV7611,
89 	ADV7612,
90 };
91 
92 struct adv76xx_reg_seq {
93 	unsigned int reg;
94 	u8 val;
95 };
96 
97 struct adv76xx_format_info {
98 	u32 code;
99 	u8 op_ch_sel;
100 	bool rgb_out;
101 	bool swap_cb_cr;
102 	u8 op_format_sel;
103 };
104 
105 struct adv76xx_cfg_read_infoframe {
106 	const char *desc;
107 	u8 present_mask;
108 	u8 head_addr;
109 	u8 payload_addr;
110 };
111 
112 struct adv76xx_chip_info {
113 	enum adv76xx_type type;
114 
115 	bool has_afe;
116 	unsigned int max_port;
117 	unsigned int num_dv_ports;
118 
119 	unsigned int edid_enable_reg;
120 	unsigned int edid_status_reg;
121 	unsigned int lcf_reg;
122 
123 	unsigned int cable_det_mask;
124 	unsigned int tdms_lock_mask;
125 	unsigned int fmt_change_digital_mask;
126 	unsigned int cp_csc;
127 
128 	const struct adv76xx_format_info *formats;
129 	unsigned int nformats;
130 
131 	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
132 	void (*setup_irqs)(struct v4l2_subdev *sd);
133 	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
134 	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
135 
136 	/* 0 = AFE, 1 = HDMI */
137 	const struct adv76xx_reg_seq *recommended_settings[2];
138 	unsigned int num_recommended_settings[2];
139 
140 	unsigned long page_mask;
141 
142 	/* Masks for timings */
143 	unsigned int linewidth_mask;
144 	unsigned int field0_height_mask;
145 	unsigned int field1_height_mask;
146 	unsigned int hfrontporch_mask;
147 	unsigned int hsync_mask;
148 	unsigned int hbackporch_mask;
149 	unsigned int field0_vfrontporch_mask;
150 	unsigned int field1_vfrontporch_mask;
151 	unsigned int field0_vsync_mask;
152 	unsigned int field1_vsync_mask;
153 	unsigned int field0_vbackporch_mask;
154 	unsigned int field1_vbackporch_mask;
155 };
156 
157 /*
158  **********************************************************************
159  *
160  *  Arrays with configuration parameters for the ADV7604
161  *
162  **********************************************************************
163  */
164 
165 struct adv76xx_state {
166 	const struct adv76xx_chip_info *info;
167 	struct adv76xx_platform_data pdata;
168 
169 	struct gpio_desc *hpd_gpio[4];
170 	struct gpio_desc *reset_gpio;
171 
172 	struct v4l2_subdev sd;
173 	struct media_pad pads[ADV76XX_PAD_MAX];
174 	unsigned int source_pad;
175 
176 	struct v4l2_ctrl_handler hdl;
177 
178 	enum adv76xx_pad selected_input;
179 
180 	struct v4l2_dv_timings timings;
181 	const struct adv76xx_format_info *format;
182 
183 	struct {
184 		u8 edid[256];
185 		u32 present;
186 		unsigned blocks;
187 	} edid;
188 	u16 spa_port_a[2];
189 	struct v4l2_fract aspect_ratio;
190 	u32 rgb_quantization_range;
191 	struct delayed_work delayed_work_enable_hotplug;
192 	bool restart_stdi_once;
193 
194 	/* CEC */
195 	struct cec_adapter *cec_adap;
196 	u8   cec_addr[ADV76XX_MAX_ADDRS];
197 	u8   cec_valid_addrs;
198 	bool cec_enabled_adap;
199 
200 	/* i2c clients */
201 	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
202 
203 	/* Regmaps */
204 	struct regmap *regmap[ADV76XX_PAGE_MAX];
205 
206 	/* controls */
207 	struct v4l2_ctrl *detect_tx_5v_ctrl;
208 	struct v4l2_ctrl *analog_sampling_phase_ctrl;
209 	struct v4l2_ctrl *free_run_color_manual_ctrl;
210 	struct v4l2_ctrl *free_run_color_ctrl;
211 	struct v4l2_ctrl *rgb_quantization_range_ctrl;
212 };
213 
214 static bool adv76xx_has_afe(struct adv76xx_state *state)
215 {
216 	return state->info->has_afe;
217 }
218 
219 /* Unsupported timings. This device cannot support 720p30. */
220 static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
221 	V4L2_DV_BT_CEA_1280X720P30,
222 	{ }
223 };
224 
225 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
226 {
227 	int i;
228 
229 	for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
230 		if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
231 			return false;
232 	return true;
233 }
234 
235 struct adv76xx_video_standards {
236 	struct v4l2_dv_timings timings;
237 	u8 vid_std;
238 	u8 v_freq;
239 };
240 
241 /* sorted by number of lines */
242 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
243 	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
244 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
245 	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
246 	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
247 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
248 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
249 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
250 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
251 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
252 	/* TODO add 1920x1080P60_RB (CVT timing) */
253 	{ },
254 };
255 
256 /* sorted by number of lines */
257 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
258 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
259 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
260 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
261 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
262 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
263 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
264 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
265 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
266 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
267 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
268 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
269 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
270 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
271 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
272 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
273 	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
274 	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
275 	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
276 	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
277 	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
278 	/* TODO add 1600X1200P60_RB (not a DMT timing) */
279 	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
280 	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
281 	{ },
282 };
283 
284 /* sorted by number of lines */
285 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
286 	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
287 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
288 	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
289 	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
290 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
291 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
292 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
293 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
294 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
295 	{ },
296 };
297 
298 /* sorted by number of lines */
299 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
300 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
301 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
302 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
303 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
304 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
305 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
306 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
307 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
308 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
309 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
310 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
311 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
312 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
313 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
314 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
315 	{ },
316 };
317 
318 static const struct v4l2_event adv76xx_ev_fmt = {
319 	.type = V4L2_EVENT_SOURCE_CHANGE,
320 	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
321 };
322 
323 /* ----------------------------------------------------------------------- */
324 
325 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
326 {
327 	return container_of(sd, struct adv76xx_state, sd);
328 }
329 
330 static inline unsigned htotal(const struct v4l2_bt_timings *t)
331 {
332 	return V4L2_DV_BT_FRAME_WIDTH(t);
333 }
334 
335 static inline unsigned vtotal(const struct v4l2_bt_timings *t)
336 {
337 	return V4L2_DV_BT_FRAME_HEIGHT(t);
338 }
339 
340 /* ----------------------------------------------------------------------- */
341 
342 static int adv76xx_read_check(struct adv76xx_state *state,
343 			     int client_page, u8 reg)
344 {
345 	struct i2c_client *client = state->i2c_clients[client_page];
346 	int err;
347 	unsigned int val;
348 
349 	err = regmap_read(state->regmap[client_page], reg, &val);
350 
351 	if (err) {
352 		v4l_err(client, "error reading %02x, %02x\n",
353 				client->addr, reg);
354 		return err;
355 	}
356 	return val;
357 }
358 
359 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
360  * size to one or more registers.
361  *
362  * A value of zero will be returned on success, a negative errno will
363  * be returned in error cases.
364  */
365 static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
366 			      unsigned int init_reg, const void *val,
367 			      size_t val_len)
368 {
369 	struct regmap *regmap = state->regmap[client_page];
370 
371 	if (val_len > I2C_SMBUS_BLOCK_MAX)
372 		val_len = I2C_SMBUS_BLOCK_MAX;
373 
374 	return regmap_raw_write(regmap, init_reg, val, val_len);
375 }
376 
377 /* ----------------------------------------------------------------------- */
378 
379 static inline int io_read(struct v4l2_subdev *sd, u8 reg)
380 {
381 	struct adv76xx_state *state = to_state(sd);
382 
383 	return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
384 }
385 
386 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
387 {
388 	struct adv76xx_state *state = to_state(sd);
389 
390 	return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
391 }
392 
393 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
394 				   u8 val)
395 {
396 	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
397 }
398 
399 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
400 {
401 	struct adv76xx_state *state = to_state(sd);
402 
403 	return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
404 }
405 
406 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
407 {
408 	struct adv76xx_state *state = to_state(sd);
409 
410 	return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
411 }
412 
413 static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
414 {
415 	struct adv76xx_state *state = to_state(sd);
416 
417 	return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
418 }
419 
420 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
421 {
422 	struct adv76xx_state *state = to_state(sd);
423 
424 	return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
425 }
426 
427 static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
428 				   u8 val)
429 {
430 	return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val);
431 }
432 
433 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
434 {
435 	struct adv76xx_state *state = to_state(sd);
436 
437 	return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
438 }
439 
440 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
441 {
442 	struct adv76xx_state *state = to_state(sd);
443 
444 	return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
445 }
446 
447 static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
448 {
449 	struct adv76xx_state *state = to_state(sd);
450 
451 	return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
452 }
453 
454 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
455 {
456 	struct adv76xx_state *state = to_state(sd);
457 
458 	return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
459 }
460 
461 static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
462 {
463 	struct adv76xx_state *state = to_state(sd);
464 
465 	return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
466 }
467 
468 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
469 {
470 	struct adv76xx_state *state = to_state(sd);
471 
472 	return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
473 }
474 
475 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
476 {
477 	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
478 }
479 
480 static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
481 {
482 	struct adv76xx_state *state = to_state(sd);
483 
484 	return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
485 }
486 
487 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
488 {
489 	struct adv76xx_state *state = to_state(sd);
490 
491 	return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
492 }
493 
494 static inline int edid_write_block(struct v4l2_subdev *sd,
495 					unsigned int total_len, const u8 *val)
496 {
497 	struct adv76xx_state *state = to_state(sd);
498 	int err = 0;
499 	int i = 0;
500 	int len = 0;
501 
502 	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
503 				__func__, total_len);
504 
505 	while (!err && i < total_len) {
506 		len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
507 				I2C_SMBUS_BLOCK_MAX :
508 				(total_len - i);
509 
510 		err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
511 				i, val + i, len);
512 		i += len;
513 	}
514 
515 	return err;
516 }
517 
518 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
519 {
520 	unsigned int i;
521 
522 	for (i = 0; i < state->info->num_dv_ports; ++i)
523 		gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
524 
525 	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
526 }
527 
528 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
529 {
530 	struct delayed_work *dwork = to_delayed_work(work);
531 	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
532 						delayed_work_enable_hotplug);
533 	struct v4l2_subdev *sd = &state->sd;
534 
535 	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
536 
537 	adv76xx_set_hpd(state, state->edid.present);
538 }
539 
540 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
541 {
542 	struct adv76xx_state *state = to_state(sd);
543 
544 	return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
545 }
546 
547 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
548 {
549 	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
550 }
551 
552 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
553 {
554 	struct adv76xx_state *state = to_state(sd);
555 
556 	return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
557 }
558 
559 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
560 {
561 	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
562 }
563 
564 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
565 {
566 	struct adv76xx_state *state = to_state(sd);
567 
568 	return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
569 }
570 
571 static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
572 {
573 	struct adv76xx_state *state = to_state(sd);
574 
575 	return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
576 }
577 
578 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
579 {
580 	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
581 }
582 
583 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
584 {
585 	struct adv76xx_state *state = to_state(sd);
586 
587 	return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
588 }
589 
590 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
591 {
592 	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
593 }
594 
595 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
596 {
597 	struct adv76xx_state *state = to_state(sd);
598 
599 	return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
600 }
601 
602 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
603 {
604 	struct adv76xx_state *state = to_state(sd);
605 
606 	return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
607 }
608 
609 #define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
610 #define ADV76XX_REG_SEQ_TERM		0xffff
611 
612 #ifdef CONFIG_VIDEO_ADV_DEBUG
613 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
614 {
615 	struct adv76xx_state *state = to_state(sd);
616 	unsigned int page = reg >> 8;
617 	unsigned int val;
618 	int err;
619 
620 	if (!(BIT(page) & state->info->page_mask))
621 		return -EINVAL;
622 
623 	reg &= 0xff;
624 	err = regmap_read(state->regmap[page], reg, &val);
625 
626 	return err ? err : val;
627 }
628 #endif
629 
630 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
631 {
632 	struct adv76xx_state *state = to_state(sd);
633 	unsigned int page = reg >> 8;
634 
635 	if (!(BIT(page) & state->info->page_mask))
636 		return -EINVAL;
637 
638 	reg &= 0xff;
639 
640 	return regmap_write(state->regmap[page], reg, val);
641 }
642 
643 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
644 				  const struct adv76xx_reg_seq *reg_seq)
645 {
646 	unsigned int i;
647 
648 	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
649 		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
650 }
651 
652 /* -----------------------------------------------------------------------------
653  * Format helpers
654  */
655 
656 static const struct adv76xx_format_info adv7604_formats[] = {
657 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
658 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
659 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
660 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
661 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
662 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
663 	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
664 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
665 	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
666 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
667 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
668 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
669 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
670 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
671 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
672 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
673 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
674 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
675 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
676 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
677 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
678 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
679 	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
680 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
681 	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
682 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
683 	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
684 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
685 	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
686 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
687 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
688 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
689 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
690 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
691 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
692 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
693 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
694 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
695 };
696 
697 static const struct adv76xx_format_info adv7611_formats[] = {
698 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
699 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
700 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
701 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
702 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
703 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
704 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
705 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
706 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
707 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
708 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
709 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
710 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
711 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
712 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
713 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
714 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
715 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
716 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
717 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
718 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
719 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
720 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
721 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
722 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
723 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
724 };
725 
726 static const struct adv76xx_format_info adv7612_formats[] = {
727 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
728 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
729 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
730 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
731 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
732 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
733 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
734 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
735 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
736 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
737 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
738 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
739 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
740 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
741 };
742 
743 static const struct adv76xx_format_info *
744 adv76xx_format_info(struct adv76xx_state *state, u32 code)
745 {
746 	unsigned int i;
747 
748 	for (i = 0; i < state->info->nformats; ++i) {
749 		if (state->info->formats[i].code == code)
750 			return &state->info->formats[i];
751 	}
752 
753 	return NULL;
754 }
755 
756 /* ----------------------------------------------------------------------- */
757 
758 static inline bool is_analog_input(struct v4l2_subdev *sd)
759 {
760 	struct adv76xx_state *state = to_state(sd);
761 
762 	return state->selected_input == ADV7604_PAD_VGA_RGB ||
763 	       state->selected_input == ADV7604_PAD_VGA_COMP;
764 }
765 
766 static inline bool is_digital_input(struct v4l2_subdev *sd)
767 {
768 	struct adv76xx_state *state = to_state(sd);
769 
770 	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
771 	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
772 	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
773 	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
774 }
775 
776 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
777 	.type = V4L2_DV_BT_656_1120,
778 	/* keep this initialization for compatibility with GCC < 4.4.6 */
779 	.reserved = { 0 },
780 	V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000,
781 		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
782 			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
783 		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
784 			V4L2_DV_BT_CAP_CUSTOM)
785 };
786 
787 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
788 	.type = V4L2_DV_BT_656_1120,
789 	/* keep this initialization for compatibility with GCC < 4.4.6 */
790 	.reserved = { 0 },
791 	V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 225000000,
792 		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
793 			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
794 		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
795 			V4L2_DV_BT_CAP_CUSTOM)
796 };
797 
798 /*
799  * Return the DV timings capabilities for the requested sink pad. As a special
800  * case, pad value -1 returns the capabilities for the currently selected input.
801  */
802 static const struct v4l2_dv_timings_cap *
803 adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
804 {
805 	if (pad == -1) {
806 		struct adv76xx_state *state = to_state(sd);
807 
808 		pad = state->selected_input;
809 	}
810 
811 	switch (pad) {
812 	case ADV76XX_PAD_HDMI_PORT_A:
813 	case ADV7604_PAD_HDMI_PORT_B:
814 	case ADV7604_PAD_HDMI_PORT_C:
815 	case ADV7604_PAD_HDMI_PORT_D:
816 		return &adv76xx_timings_cap_digital;
817 
818 	case ADV7604_PAD_VGA_RGB:
819 	case ADV7604_PAD_VGA_COMP:
820 	default:
821 		return &adv7604_timings_cap_analog;
822 	}
823 }
824 
825 
826 /* ----------------------------------------------------------------------- */
827 
828 #ifdef CONFIG_VIDEO_ADV_DEBUG
829 static void adv76xx_inv_register(struct v4l2_subdev *sd)
830 {
831 	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
832 	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
833 	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
834 	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
835 	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
836 	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
837 	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
838 	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
839 	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
840 	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
841 	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
842 	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
843 	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
844 }
845 
846 static int adv76xx_g_register(struct v4l2_subdev *sd,
847 					struct v4l2_dbg_register *reg)
848 {
849 	int ret;
850 
851 	ret = adv76xx_read_reg(sd, reg->reg);
852 	if (ret < 0) {
853 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
854 		adv76xx_inv_register(sd);
855 		return ret;
856 	}
857 
858 	reg->size = 1;
859 	reg->val = ret;
860 
861 	return 0;
862 }
863 
864 static int adv76xx_s_register(struct v4l2_subdev *sd,
865 					const struct v4l2_dbg_register *reg)
866 {
867 	int ret;
868 
869 	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
870 	if (ret < 0) {
871 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
872 		adv76xx_inv_register(sd);
873 		return ret;
874 	}
875 
876 	return 0;
877 }
878 #endif
879 
880 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
881 {
882 	u8 value = io_read(sd, 0x6f);
883 
884 	return ((value & 0x10) >> 4)
885 	     | ((value & 0x08) >> 2)
886 	     | ((value & 0x04) << 0)
887 	     | ((value & 0x02) << 2);
888 }
889 
890 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
891 {
892 	u8 value = io_read(sd, 0x6f);
893 
894 	return value & 1;
895 }
896 
897 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
898 {
899 	/*  Reads CABLE_DET_A_RAW. For input B support, need to
900 	 *  account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
901 	 */
902 	u8 value = io_read(sd, 0x6f);
903 
904 	return value & 1;
905 }
906 
907 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
908 {
909 	struct adv76xx_state *state = to_state(sd);
910 	const struct adv76xx_chip_info *info = state->info;
911 	u16 cable_det = info->read_cable_det(sd);
912 
913 	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det);
914 }
915 
916 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
917 		u8 prim_mode,
918 		const struct adv76xx_video_standards *predef_vid_timings,
919 		const struct v4l2_dv_timings *timings)
920 {
921 	int i;
922 
923 	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
924 		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
925 				is_digital_input(sd) ? 250000 : 1000000, false))
926 			continue;
927 		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
928 		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
929 				prim_mode); /* v_freq and prim mode */
930 		return 0;
931 	}
932 
933 	return -1;
934 }
935 
936 static int configure_predefined_video_timings(struct v4l2_subdev *sd,
937 		struct v4l2_dv_timings *timings)
938 {
939 	struct adv76xx_state *state = to_state(sd);
940 	int err;
941 
942 	v4l2_dbg(1, debug, sd, "%s", __func__);
943 
944 	if (adv76xx_has_afe(state)) {
945 		/* reset to default values */
946 		io_write(sd, 0x16, 0x43);
947 		io_write(sd, 0x17, 0x5a);
948 	}
949 	/* disable embedded syncs for auto graphics mode */
950 	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
951 	cp_write(sd, 0x8f, 0x00);
952 	cp_write(sd, 0x90, 0x00);
953 	cp_write(sd, 0xa2, 0x00);
954 	cp_write(sd, 0xa3, 0x00);
955 	cp_write(sd, 0xa4, 0x00);
956 	cp_write(sd, 0xa5, 0x00);
957 	cp_write(sd, 0xa6, 0x00);
958 	cp_write(sd, 0xa7, 0x00);
959 	cp_write(sd, 0xab, 0x00);
960 	cp_write(sd, 0xac, 0x00);
961 
962 	if (is_analog_input(sd)) {
963 		err = find_and_set_predefined_video_timings(sd,
964 				0x01, adv7604_prim_mode_comp, timings);
965 		if (err)
966 			err = find_and_set_predefined_video_timings(sd,
967 					0x02, adv7604_prim_mode_gr, timings);
968 	} else if (is_digital_input(sd)) {
969 		err = find_and_set_predefined_video_timings(sd,
970 				0x05, adv76xx_prim_mode_hdmi_comp, timings);
971 		if (err)
972 			err = find_and_set_predefined_video_timings(sd,
973 					0x06, adv76xx_prim_mode_hdmi_gr, timings);
974 	} else {
975 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
976 				__func__, state->selected_input);
977 		err = -1;
978 	}
979 
980 
981 	return err;
982 }
983 
984 static void configure_custom_video_timings(struct v4l2_subdev *sd,
985 		const struct v4l2_bt_timings *bt)
986 {
987 	struct adv76xx_state *state = to_state(sd);
988 	u32 width = htotal(bt);
989 	u32 height = vtotal(bt);
990 	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
991 	u16 cp_start_eav = width - bt->hfrontporch;
992 	u16 cp_start_vbi = height - bt->vfrontporch;
993 	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
994 	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
995 		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
996 	const u8 pll[2] = {
997 		0xc0 | ((width >> 8) & 0x1f),
998 		width & 0xff
999 	};
1000 
1001 	v4l2_dbg(2, debug, sd, "%s\n", __func__);
1002 
1003 	if (is_analog_input(sd)) {
1004 		/* auto graphics */
1005 		io_write(sd, 0x00, 0x07); /* video std */
1006 		io_write(sd, 0x01, 0x02); /* prim mode */
1007 		/* enable embedded syncs for auto graphics mode */
1008 		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
1009 
1010 		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1011 		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
1012 		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
1013 		if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
1014 					0x16, pll, 2))
1015 			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
1016 
1017 		/* active video - horizontal timing */
1018 		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1019 		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1020 				   ((cp_start_eav >> 8) & 0x0f));
1021 		cp_write(sd, 0xa4, cp_start_eav & 0xff);
1022 
1023 		/* active video - vertical timing */
1024 		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1025 		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1026 				   ((cp_end_vbi >> 8) & 0xf));
1027 		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1028 	} else if (is_digital_input(sd)) {
1029 		/* set default prim_mode/vid_std for HDMI
1030 		   according to [REF_03, c. 4.2] */
1031 		io_write(sd, 0x00, 0x02); /* video std */
1032 		io_write(sd, 0x01, 0x06); /* prim mode */
1033 	} else {
1034 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1035 				__func__, state->selected_input);
1036 	}
1037 
1038 	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1039 	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1040 	cp_write(sd, 0xab, (height >> 4) & 0xff);
1041 	cp_write(sd, 0xac, (height & 0x0f) << 4);
1042 }
1043 
1044 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1045 {
1046 	struct adv76xx_state *state = to_state(sd);
1047 	u8 offset_buf[4];
1048 
1049 	if (auto_offset) {
1050 		offset_a = 0x3ff;
1051 		offset_b = 0x3ff;
1052 		offset_c = 0x3ff;
1053 	}
1054 
1055 	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1056 			__func__, auto_offset ? "Auto" : "Manual",
1057 			offset_a, offset_b, offset_c);
1058 
1059 	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1060 	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1061 	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1062 	offset_buf[3] = offset_c & 0x0ff;
1063 
1064 	/* Registers must be written in this order with no i2c access in between */
1065 	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1066 			0x77, offset_buf, 4))
1067 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1068 }
1069 
1070 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1071 {
1072 	struct adv76xx_state *state = to_state(sd);
1073 	u8 gain_buf[4];
1074 	u8 gain_man = 1;
1075 	u8 agc_mode_man = 1;
1076 
1077 	if (auto_gain) {
1078 		gain_man = 0;
1079 		agc_mode_man = 0;
1080 		gain_a = 0x100;
1081 		gain_b = 0x100;
1082 		gain_c = 0x100;
1083 	}
1084 
1085 	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1086 			__func__, auto_gain ? "Auto" : "Manual",
1087 			gain_a, gain_b, gain_c);
1088 
1089 	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1090 	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1091 	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1092 	gain_buf[3] = ((gain_c & 0x0ff));
1093 
1094 	/* Registers must be written in this order with no i2c access in between */
1095 	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1096 			     0x73, gain_buf, 4))
1097 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1098 }
1099 
1100 static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1101 {
1102 	struct adv76xx_state *state = to_state(sd);
1103 	bool rgb_output = io_read(sd, 0x02) & 0x02;
1104 	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1105 	u8 y = HDMI_COLORSPACE_RGB;
1106 
1107 	if (hdmi_signal && (io_read(sd, 0x60) & 1))
1108 		y = infoframe_read(sd, 0x01) >> 5;
1109 
1110 	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1111 			__func__, state->rgb_quantization_range,
1112 			rgb_output, hdmi_signal);
1113 
1114 	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1115 	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1116 	io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4);
1117 
1118 	switch (state->rgb_quantization_range) {
1119 	case V4L2_DV_RGB_RANGE_AUTO:
1120 		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1121 			/* Receiving analog RGB signal
1122 			 * Set RGB full range (0-255) */
1123 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1124 			break;
1125 		}
1126 
1127 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1128 			/* Receiving analog YPbPr signal
1129 			 * Set automode */
1130 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1131 			break;
1132 		}
1133 
1134 		if (hdmi_signal) {
1135 			/* Receiving HDMI signal
1136 			 * Set automode */
1137 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1138 			break;
1139 		}
1140 
1141 		/* Receiving DVI-D signal
1142 		 * ADV7604 selects RGB limited range regardless of
1143 		 * input format (CE/IT) in automatic mode */
1144 		if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1145 			/* RGB limited range (16-235) */
1146 			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1147 		} else {
1148 			/* RGB full range (0-255) */
1149 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1150 
1151 			if (is_digital_input(sd) && rgb_output) {
1152 				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1153 			} else {
1154 				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1155 				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1156 			}
1157 		}
1158 		break;
1159 	case V4L2_DV_RGB_RANGE_LIMITED:
1160 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1161 			/* YCrCb limited range (16-235) */
1162 			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1163 			break;
1164 		}
1165 
1166 		if (y != HDMI_COLORSPACE_RGB)
1167 			break;
1168 
1169 		/* RGB limited range (16-235) */
1170 		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1171 
1172 		break;
1173 	case V4L2_DV_RGB_RANGE_FULL:
1174 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1175 			/* YCrCb full range (0-255) */
1176 			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1177 			break;
1178 		}
1179 
1180 		if (y != HDMI_COLORSPACE_RGB)
1181 			break;
1182 
1183 		/* RGB full range (0-255) */
1184 		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1185 
1186 		if (is_analog_input(sd) || hdmi_signal)
1187 			break;
1188 
1189 		/* Adjust gain/offset for DVI-D signals only */
1190 		if (rgb_output) {
1191 			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1192 		} else {
1193 			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1194 			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1195 		}
1196 		break;
1197 	}
1198 }
1199 
1200 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1201 {
1202 	struct v4l2_subdev *sd =
1203 		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1204 
1205 	struct adv76xx_state *state = to_state(sd);
1206 
1207 	switch (ctrl->id) {
1208 	case V4L2_CID_BRIGHTNESS:
1209 		cp_write(sd, 0x3c, ctrl->val);
1210 		return 0;
1211 	case V4L2_CID_CONTRAST:
1212 		cp_write(sd, 0x3a, ctrl->val);
1213 		return 0;
1214 	case V4L2_CID_SATURATION:
1215 		cp_write(sd, 0x3b, ctrl->val);
1216 		return 0;
1217 	case V4L2_CID_HUE:
1218 		cp_write(sd, 0x3d, ctrl->val);
1219 		return 0;
1220 	case  V4L2_CID_DV_RX_RGB_RANGE:
1221 		state->rgb_quantization_range = ctrl->val;
1222 		set_rgb_quantization_range(sd);
1223 		return 0;
1224 	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1225 		if (!adv76xx_has_afe(state))
1226 			return -EINVAL;
1227 		/* Set the analog sampling phase. This is needed to find the
1228 		   best sampling phase for analog video: an application or
1229 		   driver has to try a number of phases and analyze the picture
1230 		   quality before settling on the best performing phase. */
1231 		afe_write(sd, 0xc8, ctrl->val);
1232 		return 0;
1233 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1234 		/* Use the default blue color for free running mode,
1235 		   or supply your own. */
1236 		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1237 		return 0;
1238 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1239 		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1240 		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1241 		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1242 		return 0;
1243 	}
1244 	return -EINVAL;
1245 }
1246 
1247 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1248 {
1249 	struct v4l2_subdev *sd =
1250 		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1251 
1252 	if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
1253 		ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
1254 		if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
1255 			ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
1256 		return 0;
1257 	}
1258 	return -EINVAL;
1259 }
1260 
1261 /* ----------------------------------------------------------------------- */
1262 
1263 static inline bool no_power(struct v4l2_subdev *sd)
1264 {
1265 	/* Entire chip or CP powered off */
1266 	return io_read(sd, 0x0c) & 0x24;
1267 }
1268 
1269 static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1270 {
1271 	struct adv76xx_state *state = to_state(sd);
1272 
1273 	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1274 }
1275 
1276 static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1277 {
1278 	struct adv76xx_state *state = to_state(sd);
1279 	const struct adv76xx_chip_info *info = state->info;
1280 
1281 	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1282 }
1283 
1284 static inline bool is_hdmi(struct v4l2_subdev *sd)
1285 {
1286 	return hdmi_read(sd, 0x05) & 0x80;
1287 }
1288 
1289 static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1290 {
1291 	struct adv76xx_state *state = to_state(sd);
1292 
1293 	/*
1294 	 * Chips without a AFE don't expose registers for the SSPD, so just assume
1295 	 * that we have a lock.
1296 	 */
1297 	if (adv76xx_has_afe(state))
1298 		return false;
1299 
1300 	/* TODO channel 2 */
1301 	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1302 }
1303 
1304 static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1305 {
1306 	/* TODO channel 2 */
1307 	return !(cp_read(sd, 0xb1) & 0x80);
1308 }
1309 
1310 static inline bool no_signal(struct v4l2_subdev *sd)
1311 {
1312 	bool ret;
1313 
1314 	ret = no_power(sd);
1315 
1316 	ret |= no_lock_stdi(sd);
1317 	ret |= no_lock_sspd(sd);
1318 
1319 	if (is_digital_input(sd)) {
1320 		ret |= no_lock_tmds(sd);
1321 		ret |= no_signal_tmds(sd);
1322 	}
1323 
1324 	return ret;
1325 }
1326 
1327 static inline bool no_lock_cp(struct v4l2_subdev *sd)
1328 {
1329 	struct adv76xx_state *state = to_state(sd);
1330 
1331 	if (!adv76xx_has_afe(state))
1332 		return false;
1333 
1334 	/* CP has detected a non standard number of lines on the incoming
1335 	   video compared to what it is configured to receive by s_dv_timings */
1336 	return io_read(sd, 0x12) & 0x01;
1337 }
1338 
1339 static inline bool in_free_run(struct v4l2_subdev *sd)
1340 {
1341 	return cp_read(sd, 0xff) & 0x10;
1342 }
1343 
1344 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1345 {
1346 	*status = 0;
1347 	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1348 	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1349 	if (!in_free_run(sd) && no_lock_cp(sd))
1350 		*status |= is_digital_input(sd) ?
1351 			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1352 
1353 	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1354 
1355 	return 0;
1356 }
1357 
1358 /* ----------------------------------------------------------------------- */
1359 
1360 struct stdi_readback {
1361 	u16 bl, lcf, lcvs;
1362 	u8 hs_pol, vs_pol;
1363 	bool interlaced;
1364 };
1365 
1366 static int stdi2dv_timings(struct v4l2_subdev *sd,
1367 		struct stdi_readback *stdi,
1368 		struct v4l2_dv_timings *timings)
1369 {
1370 	struct adv76xx_state *state = to_state(sd);
1371 	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1372 	u32 pix_clk;
1373 	int i;
1374 
1375 	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1376 		const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
1377 
1378 		if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1379 					   adv76xx_get_dv_timings_cap(sd, -1),
1380 					   adv76xx_check_dv_timings, NULL))
1381 			continue;
1382 		if (vtotal(bt) != stdi->lcf + 1)
1383 			continue;
1384 		if (bt->vsync != stdi->lcvs)
1385 			continue;
1386 
1387 		pix_clk = hfreq * htotal(bt);
1388 
1389 		if ((pix_clk < bt->pixelclock + 1000000) &&
1390 		    (pix_clk > bt->pixelclock - 1000000)) {
1391 			*timings = v4l2_dv_timings_presets[i];
1392 			return 0;
1393 		}
1394 	}
1395 
1396 	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1397 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1398 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1399 			false, timings))
1400 		return 0;
1401 	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1402 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1403 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1404 			false, state->aspect_ratio, timings))
1405 		return 0;
1406 
1407 	v4l2_dbg(2, debug, sd,
1408 		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1409 		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
1410 		stdi->hs_pol, stdi->vs_pol);
1411 	return -1;
1412 }
1413 
1414 
1415 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1416 {
1417 	struct adv76xx_state *state = to_state(sd);
1418 	const struct adv76xx_chip_info *info = state->info;
1419 	u8 polarity;
1420 
1421 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1422 		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1423 		return -1;
1424 	}
1425 
1426 	/* read STDI */
1427 	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1428 	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1429 	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1430 	stdi->interlaced = io_read(sd, 0x12) & 0x10;
1431 
1432 	if (adv76xx_has_afe(state)) {
1433 		/* read SSPD */
1434 		polarity = cp_read(sd, 0xb5);
1435 		if ((polarity & 0x03) == 0x01) {
1436 			stdi->hs_pol = polarity & 0x10
1437 				     ? (polarity & 0x08 ? '+' : '-') : 'x';
1438 			stdi->vs_pol = polarity & 0x40
1439 				     ? (polarity & 0x20 ? '+' : '-') : 'x';
1440 		} else {
1441 			stdi->hs_pol = 'x';
1442 			stdi->vs_pol = 'x';
1443 		}
1444 	} else {
1445 		polarity = hdmi_read(sd, 0x05);
1446 		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1447 		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1448 	}
1449 
1450 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1451 		v4l2_dbg(2, debug, sd,
1452 			"%s: signal lost during readout of STDI/SSPD\n", __func__);
1453 		return -1;
1454 	}
1455 
1456 	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1457 		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1458 		memset(stdi, 0, sizeof(struct stdi_readback));
1459 		return -1;
1460 	}
1461 
1462 	v4l2_dbg(2, debug, sd,
1463 		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1464 		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
1465 		stdi->hs_pol, stdi->vs_pol,
1466 		stdi->interlaced ? "interlaced" : "progressive");
1467 
1468 	return 0;
1469 }
1470 
1471 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1472 			struct v4l2_enum_dv_timings *timings)
1473 {
1474 	struct adv76xx_state *state = to_state(sd);
1475 
1476 	if (timings->pad >= state->source_pad)
1477 		return -EINVAL;
1478 
1479 	return v4l2_enum_dv_timings_cap(timings,
1480 		adv76xx_get_dv_timings_cap(sd, timings->pad),
1481 		adv76xx_check_dv_timings, NULL);
1482 }
1483 
1484 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1485 			struct v4l2_dv_timings_cap *cap)
1486 {
1487 	struct adv76xx_state *state = to_state(sd);
1488 	unsigned int pad = cap->pad;
1489 
1490 	if (cap->pad >= state->source_pad)
1491 		return -EINVAL;
1492 
1493 	*cap = *adv76xx_get_dv_timings_cap(sd, pad);
1494 	cap->pad = pad;
1495 
1496 	return 0;
1497 }
1498 
1499 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1500    if the format is listed in adv76xx_timings[] */
1501 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1502 		struct v4l2_dv_timings *timings)
1503 {
1504 	v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
1505 				 is_digital_input(sd) ? 250000 : 1000000,
1506 				 adv76xx_check_dv_timings, NULL);
1507 }
1508 
1509 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1510 {
1511 	unsigned int freq;
1512 	int a, b;
1513 
1514 	a = hdmi_read(sd, 0x06);
1515 	b = hdmi_read(sd, 0x3b);
1516 	if (a < 0 || b < 0)
1517 		return 0;
1518 	freq =  a * 1000000 + ((b & 0x30) >> 4) * 250000;
1519 
1520 	if (is_hdmi(sd)) {
1521 		/* adjust for deep color mode */
1522 		unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1523 
1524 		freq = freq * 8 / bits_per_channel;
1525 	}
1526 
1527 	return freq;
1528 }
1529 
1530 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1531 {
1532 	int a, b;
1533 
1534 	a = hdmi_read(sd, 0x51);
1535 	b = hdmi_read(sd, 0x52);
1536 	if (a < 0 || b < 0)
1537 		return 0;
1538 	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1539 }
1540 
1541 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1542 			struct v4l2_dv_timings *timings)
1543 {
1544 	struct adv76xx_state *state = to_state(sd);
1545 	const struct adv76xx_chip_info *info = state->info;
1546 	struct v4l2_bt_timings *bt = &timings->bt;
1547 	struct stdi_readback stdi;
1548 
1549 	if (!timings)
1550 		return -EINVAL;
1551 
1552 	memset(timings, 0, sizeof(struct v4l2_dv_timings));
1553 
1554 	if (no_signal(sd)) {
1555 		state->restart_stdi_once = true;
1556 		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1557 		return -ENOLINK;
1558 	}
1559 
1560 	/* read STDI */
1561 	if (read_stdi(sd, &stdi)) {
1562 		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1563 		return -ENOLINK;
1564 	}
1565 	bt->interlaced = stdi.interlaced ?
1566 		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1567 
1568 	if (is_digital_input(sd)) {
1569 		timings->type = V4L2_DV_BT_656_1120;
1570 
1571 		bt->width = hdmi_read16(sd, 0x07, info->linewidth_mask);
1572 		bt->height = hdmi_read16(sd, 0x09, info->field0_height_mask);
1573 		bt->pixelclock = info->read_hdmi_pixelclock(sd);
1574 		bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1575 		bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1576 		bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1577 		bt->vfrontporch = hdmi_read16(sd, 0x2a,
1578 			info->field0_vfrontporch_mask) / 2;
1579 		bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1580 		bt->vbackporch = hdmi_read16(sd, 0x32,
1581 			info->field0_vbackporch_mask) / 2;
1582 		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1583 			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1584 		if (bt->interlaced == V4L2_DV_INTERLACED) {
1585 			bt->height += hdmi_read16(sd, 0x0b,
1586 				info->field1_height_mask);
1587 			bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1588 				info->field1_vfrontporch_mask) / 2;
1589 			bt->il_vsync = hdmi_read16(sd, 0x30,
1590 				info->field1_vsync_mask) / 2;
1591 			bt->il_vbackporch = hdmi_read16(sd, 0x34,
1592 				info->field1_vbackporch_mask) / 2;
1593 		}
1594 		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1595 	} else {
1596 		/* find format
1597 		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1598 		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1599 		 */
1600 		if (!stdi2dv_timings(sd, &stdi, timings))
1601 			goto found;
1602 		stdi.lcvs += 1;
1603 		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1604 		if (!stdi2dv_timings(sd, &stdi, timings))
1605 			goto found;
1606 		stdi.lcvs -= 2;
1607 		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1608 		if (stdi2dv_timings(sd, &stdi, timings)) {
1609 			/*
1610 			 * The STDI block may measure wrong values, especially
1611 			 * for lcvs and lcf. If the driver can not find any
1612 			 * valid timing, the STDI block is restarted to measure
1613 			 * the video timings again. The function will return an
1614 			 * error, but the restart of STDI will generate a new
1615 			 * STDI interrupt and the format detection process will
1616 			 * restart.
1617 			 */
1618 			if (state->restart_stdi_once) {
1619 				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1620 				/* TODO restart STDI for Sync Channel 2 */
1621 				/* enter one-shot mode */
1622 				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1623 				/* trigger STDI restart */
1624 				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1625 				/* reset to continuous mode */
1626 				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1627 				state->restart_stdi_once = false;
1628 				return -ENOLINK;
1629 			}
1630 			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1631 			return -ERANGE;
1632 		}
1633 		state->restart_stdi_once = true;
1634 	}
1635 found:
1636 
1637 	if (no_signal(sd)) {
1638 		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1639 		memset(timings, 0, sizeof(struct v4l2_dv_timings));
1640 		return -ENOLINK;
1641 	}
1642 
1643 	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1644 			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1645 		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1646 				__func__, (u32)bt->pixelclock);
1647 		return -ERANGE;
1648 	}
1649 
1650 	if (debug > 1)
1651 		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1652 				      timings, true);
1653 
1654 	return 0;
1655 }
1656 
1657 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1658 		struct v4l2_dv_timings *timings)
1659 {
1660 	struct adv76xx_state *state = to_state(sd);
1661 	struct v4l2_bt_timings *bt;
1662 	int err;
1663 
1664 	if (!timings)
1665 		return -EINVAL;
1666 
1667 	if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1668 		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1669 		return 0;
1670 	}
1671 
1672 	bt = &timings->bt;
1673 
1674 	if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1675 				   adv76xx_check_dv_timings, NULL))
1676 		return -ERANGE;
1677 
1678 	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1679 
1680 	state->timings = *timings;
1681 
1682 	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1683 
1684 	/* Use prim_mode and vid_std when available */
1685 	err = configure_predefined_video_timings(sd, timings);
1686 	if (err) {
1687 		/* custom settings when the video format
1688 		 does not have prim_mode/vid_std */
1689 		configure_custom_video_timings(sd, bt);
1690 	}
1691 
1692 	set_rgb_quantization_range(sd);
1693 
1694 	if (debug > 1)
1695 		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1696 				      timings, true);
1697 	return 0;
1698 }
1699 
1700 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1701 		struct v4l2_dv_timings *timings)
1702 {
1703 	struct adv76xx_state *state = to_state(sd);
1704 
1705 	*timings = state->timings;
1706 	return 0;
1707 }
1708 
1709 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1710 {
1711 	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1712 }
1713 
1714 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1715 {
1716 	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1717 }
1718 
1719 static void enable_input(struct v4l2_subdev *sd)
1720 {
1721 	struct adv76xx_state *state = to_state(sd);
1722 
1723 	if (is_analog_input(sd)) {
1724 		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1725 	} else if (is_digital_input(sd)) {
1726 		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1727 		state->info->set_termination(sd, true);
1728 		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1729 		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1730 	} else {
1731 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1732 				__func__, state->selected_input);
1733 	}
1734 }
1735 
1736 static void disable_input(struct v4l2_subdev *sd)
1737 {
1738 	struct adv76xx_state *state = to_state(sd);
1739 
1740 	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1741 	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1742 	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1743 	state->info->set_termination(sd, false);
1744 }
1745 
1746 static void select_input(struct v4l2_subdev *sd)
1747 {
1748 	struct adv76xx_state *state = to_state(sd);
1749 	const struct adv76xx_chip_info *info = state->info;
1750 
1751 	if (is_analog_input(sd)) {
1752 		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1753 
1754 		afe_write(sd, 0x00, 0x08); /* power up ADC */
1755 		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1756 		afe_write(sd, 0xc8, 0x00); /* phase control */
1757 	} else if (is_digital_input(sd)) {
1758 		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1759 
1760 		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1761 
1762 		if (adv76xx_has_afe(state)) {
1763 			afe_write(sd, 0x00, 0xff); /* power down ADC */
1764 			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1765 			afe_write(sd, 0xc8, 0x40); /* phase control */
1766 		}
1767 
1768 		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1769 		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1770 		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1771 	} else {
1772 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1773 				__func__, state->selected_input);
1774 	}
1775 }
1776 
1777 static int adv76xx_s_routing(struct v4l2_subdev *sd,
1778 		u32 input, u32 output, u32 config)
1779 {
1780 	struct adv76xx_state *state = to_state(sd);
1781 
1782 	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1783 			__func__, input, state->selected_input);
1784 
1785 	if (input == state->selected_input)
1786 		return 0;
1787 
1788 	if (input > state->info->max_port)
1789 		return -EINVAL;
1790 
1791 	state->selected_input = input;
1792 
1793 	disable_input(sd);
1794 	select_input(sd);
1795 	enable_input(sd);
1796 
1797 	v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1798 
1799 	return 0;
1800 }
1801 
1802 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1803 				  struct v4l2_subdev_pad_config *cfg,
1804 				  struct v4l2_subdev_mbus_code_enum *code)
1805 {
1806 	struct adv76xx_state *state = to_state(sd);
1807 
1808 	if (code->index >= state->info->nformats)
1809 		return -EINVAL;
1810 
1811 	code->code = state->info->formats[code->index].code;
1812 
1813 	return 0;
1814 }
1815 
1816 static void adv76xx_fill_format(struct adv76xx_state *state,
1817 				struct v4l2_mbus_framefmt *format)
1818 {
1819 	memset(format, 0, sizeof(*format));
1820 
1821 	format->width = state->timings.bt.width;
1822 	format->height = state->timings.bt.height;
1823 	format->field = V4L2_FIELD_NONE;
1824 	format->colorspace = V4L2_COLORSPACE_SRGB;
1825 
1826 	if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1827 		format->colorspace = (state->timings.bt.height <= 576) ?
1828 			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1829 }
1830 
1831 /*
1832  * Compute the op_ch_sel value required to obtain on the bus the component order
1833  * corresponding to the selected format taking into account bus reordering
1834  * applied by the board at the output of the device.
1835  *
1836  * The following table gives the op_ch_value from the format component order
1837  * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1838  * adv76xx_bus_order value in row).
1839  *
1840  *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
1841  * ----------+-------------------------------------------------
1842  * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
1843  * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
1844  * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
1845  * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
1846  * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
1847  * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
1848  */
1849 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1850 {
1851 #define _SEL(a,b,c,d,e,f)	{ \
1852 	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1853 	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1854 #define _BUS(x)			[ADV7604_BUS_ORDER_##x]
1855 
1856 	static const unsigned int op_ch_sel[6][6] = {
1857 		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1858 		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1859 		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1860 		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1861 		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1862 		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1863 	};
1864 
1865 	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1866 }
1867 
1868 static void adv76xx_setup_format(struct adv76xx_state *state)
1869 {
1870 	struct v4l2_subdev *sd = &state->sd;
1871 
1872 	io_write_clr_set(sd, 0x02, 0x02,
1873 			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1874 	io_write(sd, 0x03, state->format->op_format_sel |
1875 		 state->pdata.op_format_mode_sel);
1876 	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1877 	io_write_clr_set(sd, 0x05, 0x01,
1878 			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1879 	set_rgb_quantization_range(sd);
1880 }
1881 
1882 static int adv76xx_get_format(struct v4l2_subdev *sd,
1883 			      struct v4l2_subdev_pad_config *cfg,
1884 			      struct v4l2_subdev_format *format)
1885 {
1886 	struct adv76xx_state *state = to_state(sd);
1887 
1888 	if (format->pad != state->source_pad)
1889 		return -EINVAL;
1890 
1891 	adv76xx_fill_format(state, &format->format);
1892 
1893 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1894 		struct v4l2_mbus_framefmt *fmt;
1895 
1896 		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1897 		format->format.code = fmt->code;
1898 	} else {
1899 		format->format.code = state->format->code;
1900 	}
1901 
1902 	return 0;
1903 }
1904 
1905 static int adv76xx_get_selection(struct v4l2_subdev *sd,
1906 				 struct v4l2_subdev_pad_config *cfg,
1907 				 struct v4l2_subdev_selection *sel)
1908 {
1909 	struct adv76xx_state *state = to_state(sd);
1910 
1911 	if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1912 		return -EINVAL;
1913 	/* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1914 	if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
1915 		return -EINVAL;
1916 
1917 	sel->r.left	= 0;
1918 	sel->r.top	= 0;
1919 	sel->r.width	= state->timings.bt.width;
1920 	sel->r.height	= state->timings.bt.height;
1921 
1922 	return 0;
1923 }
1924 
1925 static int adv76xx_set_format(struct v4l2_subdev *sd,
1926 			      struct v4l2_subdev_pad_config *cfg,
1927 			      struct v4l2_subdev_format *format)
1928 {
1929 	struct adv76xx_state *state = to_state(sd);
1930 	const struct adv76xx_format_info *info;
1931 
1932 	if (format->pad != state->source_pad)
1933 		return -EINVAL;
1934 
1935 	info = adv76xx_format_info(state, format->format.code);
1936 	if (info == NULL)
1937 		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1938 
1939 	adv76xx_fill_format(state, &format->format);
1940 	format->format.code = info->code;
1941 
1942 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1943 		struct v4l2_mbus_framefmt *fmt;
1944 
1945 		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1946 		fmt->code = format->format.code;
1947 	} else {
1948 		state->format = info;
1949 		adv76xx_setup_format(state);
1950 	}
1951 
1952 	return 0;
1953 }
1954 
1955 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
1956 static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status)
1957 {
1958 	struct adv76xx_state *state = to_state(sd);
1959 
1960 	if ((cec_read(sd, 0x11) & 0x01) == 0) {
1961 		v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__);
1962 		return;
1963 	}
1964 
1965 	if (tx_raw_status & 0x02) {
1966 		v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n",
1967 			 __func__);
1968 		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST,
1969 				  1, 0, 0, 0);
1970 	}
1971 	if (tx_raw_status & 0x04) {
1972 		u8 status;
1973 		u8 nack_cnt;
1974 		u8 low_drive_cnt;
1975 
1976 		v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__);
1977 		/*
1978 		 * We set this status bit since this hardware performs
1979 		 * retransmissions.
1980 		 */
1981 		status = CEC_TX_STATUS_MAX_RETRIES;
1982 		nack_cnt = cec_read(sd, 0x14) & 0xf;
1983 		if (nack_cnt)
1984 			status |= CEC_TX_STATUS_NACK;
1985 		low_drive_cnt = cec_read(sd, 0x14) >> 4;
1986 		if (low_drive_cnt)
1987 			status |= CEC_TX_STATUS_LOW_DRIVE;
1988 		cec_transmit_done(state->cec_adap, status,
1989 				  0, nack_cnt, low_drive_cnt, 0);
1990 		return;
1991 	}
1992 	if (tx_raw_status & 0x01) {
1993 		v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__);
1994 		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0);
1995 		return;
1996 	}
1997 }
1998 
1999 static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled)
2000 {
2001 	struct adv76xx_state *state = to_state(sd);
2002 	u8 cec_irq;
2003 
2004 	/* cec controller */
2005 	cec_irq = io_read(sd, 0x4d) & 0x0f;
2006 	if (!cec_irq)
2007 		return;
2008 
2009 	v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq);
2010 	adv76xx_cec_tx_raw_status(sd, cec_irq);
2011 	if (cec_irq & 0x08) {
2012 		struct cec_msg msg;
2013 
2014 		msg.len = cec_read(sd, 0x25) & 0x1f;
2015 		if (msg.len > 16)
2016 			msg.len = 16;
2017 
2018 		if (msg.len) {
2019 			u8 i;
2020 
2021 			for (i = 0; i < msg.len; i++)
2022 				msg.msg[i] = cec_read(sd, i + 0x15);
2023 			cec_write(sd, 0x26, 0x01); /* re-enable rx */
2024 			cec_received_msg(state->cec_adap, &msg);
2025 		}
2026 	}
2027 
2028 	/* note: the bit order is swapped between 0x4d and 0x4e */
2029 	cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) |
2030 		  ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3);
2031 	io_write(sd, 0x4e, cec_irq);
2032 
2033 	if (handled)
2034 		*handled = true;
2035 }
2036 
2037 static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable)
2038 {
2039 	struct adv76xx_state *state = adap->priv;
2040 	struct v4l2_subdev *sd = &state->sd;
2041 
2042 	if (!state->cec_enabled_adap && enable) {
2043 		cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */
2044 		cec_write(sd, 0x2c, 0x01);	/* cec soft reset */
2045 		cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */
2046 		/* enabled irqs: */
2047 		/* tx: ready */
2048 		/* tx: arbitration lost */
2049 		/* tx: retry timeout */
2050 		/* rx: ready */
2051 		io_write_clr_set(sd, 0x50, 0x0f, 0x0f);
2052 		cec_write(sd, 0x26, 0x01);            /* enable rx */
2053 	} else if (state->cec_enabled_adap && !enable) {
2054 		/* disable cec interrupts */
2055 		io_write_clr_set(sd, 0x50, 0x0f, 0x00);
2056 		/* disable address mask 1-3 */
2057 		cec_write_clr_set(sd, 0x27, 0x70, 0x00);
2058 		/* power down cec section */
2059 		cec_write_clr_set(sd, 0x2a, 0x01, 0x00);
2060 		state->cec_valid_addrs = 0;
2061 	}
2062 	state->cec_enabled_adap = enable;
2063 	adv76xx_s_detect_tx_5v_ctrl(sd);
2064 	return 0;
2065 }
2066 
2067 static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
2068 {
2069 	struct adv76xx_state *state = adap->priv;
2070 	struct v4l2_subdev *sd = &state->sd;
2071 	unsigned int i, free_idx = ADV76XX_MAX_ADDRS;
2072 
2073 	if (!state->cec_enabled_adap)
2074 		return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;
2075 
2076 	if (addr == CEC_LOG_ADDR_INVALID) {
2077 		cec_write_clr_set(sd, 0x27, 0x70, 0);
2078 		state->cec_valid_addrs = 0;
2079 		return 0;
2080 	}
2081 
2082 	for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2083 		bool is_valid = state->cec_valid_addrs & (1 << i);
2084 
2085 		if (free_idx == ADV76XX_MAX_ADDRS && !is_valid)
2086 			free_idx = i;
2087 		if (is_valid && state->cec_addr[i] == addr)
2088 			return 0;
2089 	}
2090 	if (i == ADV76XX_MAX_ADDRS) {
2091 		i = free_idx;
2092 		if (i == ADV76XX_MAX_ADDRS)
2093 			return -ENXIO;
2094 	}
2095 	state->cec_addr[i] = addr;
2096 	state->cec_valid_addrs |= 1 << i;
2097 
2098 	switch (i) {
2099 	case 0:
2100 		/* enable address mask 0 */
2101 		cec_write_clr_set(sd, 0x27, 0x10, 0x10);
2102 		/* set address for mask 0 */
2103 		cec_write_clr_set(sd, 0x28, 0x0f, addr);
2104 		break;
2105 	case 1:
2106 		/* enable address mask 1 */
2107 		cec_write_clr_set(sd, 0x27, 0x20, 0x20);
2108 		/* set address for mask 1 */
2109 		cec_write_clr_set(sd, 0x28, 0xf0, addr << 4);
2110 		break;
2111 	case 2:
2112 		/* enable address mask 2 */
2113 		cec_write_clr_set(sd, 0x27, 0x40, 0x40);
2114 		/* set address for mask 1 */
2115 		cec_write_clr_set(sd, 0x29, 0x0f, addr);
2116 		break;
2117 	}
2118 	return 0;
2119 }
2120 
2121 static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
2122 				     u32 signal_free_time, struct cec_msg *msg)
2123 {
2124 	struct adv76xx_state *state = adap->priv;
2125 	struct v4l2_subdev *sd = &state->sd;
2126 	u8 len = msg->len;
2127 	unsigned int i;
2128 
2129 	/*
2130 	 * The number of retries is the number of attempts - 1, but retry
2131 	 * at least once. It's not clear if a value of 0 is allowed, so
2132 	 * let's do at least one retry.
2133 	 */
2134 	cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4);
2135 
2136 	if (len > 16) {
2137 		v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len);
2138 		return -EINVAL;
2139 	}
2140 
2141 	/* write data */
2142 	for (i = 0; i < len; i++)
2143 		cec_write(sd, i, msg->msg[i]);
2144 
2145 	/* set length (data + header) */
2146 	cec_write(sd, 0x10, len);
2147 	/* start transmit, enable tx */
2148 	cec_write(sd, 0x11, 0x01);
2149 	return 0;
2150 }
2151 
2152 static const struct cec_adap_ops adv76xx_cec_adap_ops = {
2153 	.adap_enable = adv76xx_cec_adap_enable,
2154 	.adap_log_addr = adv76xx_cec_adap_log_addr,
2155 	.adap_transmit = adv76xx_cec_adap_transmit,
2156 };
2157 #endif
2158 
2159 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
2160 {
2161 	struct adv76xx_state *state = to_state(sd);
2162 	const struct adv76xx_chip_info *info = state->info;
2163 	const u8 irq_reg_0x43 = io_read(sd, 0x43);
2164 	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
2165 	const u8 irq_reg_0x70 = io_read(sd, 0x70);
2166 	u8 fmt_change_digital;
2167 	u8 fmt_change;
2168 	u8 tx_5v;
2169 
2170 	if (irq_reg_0x43)
2171 		io_write(sd, 0x44, irq_reg_0x43);
2172 	if (irq_reg_0x70)
2173 		io_write(sd, 0x71, irq_reg_0x70);
2174 	if (irq_reg_0x6b)
2175 		io_write(sd, 0x6c, irq_reg_0x6b);
2176 
2177 	v4l2_dbg(2, debug, sd, "%s: ", __func__);
2178 
2179 	/* format change */
2180 	fmt_change = irq_reg_0x43 & 0x98;
2181 	fmt_change_digital = is_digital_input(sd)
2182 			   ? irq_reg_0x6b & info->fmt_change_digital_mask
2183 			   : 0;
2184 
2185 	if (fmt_change || fmt_change_digital) {
2186 		v4l2_dbg(1, debug, sd,
2187 			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2188 			__func__, fmt_change, fmt_change_digital);
2189 
2190 		v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
2191 
2192 		if (handled)
2193 			*handled = true;
2194 	}
2195 	/* HDMI/DVI mode */
2196 	if (irq_reg_0x6b & 0x01) {
2197 		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
2198 			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
2199 		set_rgb_quantization_range(sd);
2200 		if (handled)
2201 			*handled = true;
2202 	}
2203 
2204 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
2205 	/* cec */
2206 	adv76xx_cec_isr(sd, handled);
2207 #endif
2208 
2209 	/* tx 5v detect */
2210 	tx_5v = irq_reg_0x70 & info->cable_det_mask;
2211 	if (tx_5v) {
2212 		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
2213 		adv76xx_s_detect_tx_5v_ctrl(sd);
2214 		if (handled)
2215 			*handled = true;
2216 	}
2217 	return 0;
2218 }
2219 
2220 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2221 {
2222 	struct adv76xx_state *state = to_state(sd);
2223 	u8 *data = NULL;
2224 
2225 	memset(edid->reserved, 0, sizeof(edid->reserved));
2226 
2227 	switch (edid->pad) {
2228 	case ADV76XX_PAD_HDMI_PORT_A:
2229 	case ADV7604_PAD_HDMI_PORT_B:
2230 	case ADV7604_PAD_HDMI_PORT_C:
2231 	case ADV7604_PAD_HDMI_PORT_D:
2232 		if (state->edid.present & (1 << edid->pad))
2233 			data = state->edid.edid;
2234 		break;
2235 	default:
2236 		return -EINVAL;
2237 	}
2238 
2239 	if (edid->start_block == 0 && edid->blocks == 0) {
2240 		edid->blocks = data ? state->edid.blocks : 0;
2241 		return 0;
2242 	}
2243 
2244 	if (data == NULL)
2245 		return -ENODATA;
2246 
2247 	if (edid->start_block >= state->edid.blocks)
2248 		return -EINVAL;
2249 
2250 	if (edid->start_block + edid->blocks > state->edid.blocks)
2251 		edid->blocks = state->edid.blocks - edid->start_block;
2252 
2253 	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2254 
2255 	return 0;
2256 }
2257 
2258 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2259 {
2260 	struct adv76xx_state *state = to_state(sd);
2261 	const struct adv76xx_chip_info *info = state->info;
2262 	unsigned int spa_loc;
2263 	u16 pa;
2264 	int err;
2265 	int i;
2266 
2267 	memset(edid->reserved, 0, sizeof(edid->reserved));
2268 
2269 	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2270 		return -EINVAL;
2271 	if (edid->start_block != 0)
2272 		return -EINVAL;
2273 	if (edid->blocks == 0) {
2274 		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2275 		state->edid.present &= ~(1 << edid->pad);
2276 		adv76xx_set_hpd(state, state->edid.present);
2277 		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2278 
2279 		/* Fall back to a 16:9 aspect ratio */
2280 		state->aspect_ratio.numerator = 16;
2281 		state->aspect_ratio.denominator = 9;
2282 
2283 		if (!state->edid.present)
2284 			state->edid.blocks = 0;
2285 
2286 		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2287 				__func__, edid->pad, state->edid.present);
2288 		return 0;
2289 	}
2290 	if (edid->blocks > 2) {
2291 		edid->blocks = 2;
2292 		return -E2BIG;
2293 	}
2294 	pa = cec_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc);
2295 	err = cec_phys_addr_validate(pa, &pa, NULL);
2296 	if (err)
2297 		return err;
2298 
2299 	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2300 			__func__, edid->pad, state->edid.present);
2301 
2302 	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2303 	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2304 	adv76xx_set_hpd(state, 0);
2305 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2306 
2307 	/*
2308 	 * Return an error if no location of the source physical address
2309 	 * was found.
2310 	 */
2311 	if (spa_loc == 0)
2312 		return -EINVAL;
2313 
2314 	switch (edid->pad) {
2315 	case ADV76XX_PAD_HDMI_PORT_A:
2316 		state->spa_port_a[0] = edid->edid[spa_loc];
2317 		state->spa_port_a[1] = edid->edid[spa_loc + 1];
2318 		break;
2319 	case ADV7604_PAD_HDMI_PORT_B:
2320 		rep_write(sd, 0x70, edid->edid[spa_loc]);
2321 		rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2322 		break;
2323 	case ADV7604_PAD_HDMI_PORT_C:
2324 		rep_write(sd, 0x72, edid->edid[spa_loc]);
2325 		rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2326 		break;
2327 	case ADV7604_PAD_HDMI_PORT_D:
2328 		rep_write(sd, 0x74, edid->edid[spa_loc]);
2329 		rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2330 		break;
2331 	default:
2332 		return -EINVAL;
2333 	}
2334 
2335 	if (info->type == ADV7604) {
2336 		rep_write(sd, 0x76, spa_loc & 0xff);
2337 		rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2338 	} else {
2339 		/* ADV7612 Software Manual Rev. A, p. 15 */
2340 		rep_write(sd, 0x70, spa_loc & 0xff);
2341 		rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2342 	}
2343 
2344 	edid->edid[spa_loc] = state->spa_port_a[0];
2345 	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2346 
2347 	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2348 	state->edid.blocks = edid->blocks;
2349 	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2350 			edid->edid[0x16]);
2351 	state->edid.present |= 1 << edid->pad;
2352 
2353 	err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
2354 	if (err < 0) {
2355 		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2356 		return err;
2357 	}
2358 
2359 	/* adv76xx calculates the checksums and enables I2C access to internal
2360 	   EDID RAM from DDC port. */
2361 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2362 
2363 	for (i = 0; i < 1000; i++) {
2364 		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2365 			break;
2366 		mdelay(1);
2367 	}
2368 	if (i == 1000) {
2369 		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2370 		return -EIO;
2371 	}
2372 	cec_s_phys_addr(state->cec_adap, pa, false);
2373 
2374 	/* enable hotplug after 100 ms */
2375 	schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
2376 	return 0;
2377 }
2378 
2379 /*********** avi info frame CEA-861-E **************/
2380 
2381 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2382 	{ "AVI", 0x01, 0xe0, 0x00 },
2383 	{ "Audio", 0x02, 0xe3, 0x1c },
2384 	{ "SDP", 0x04, 0xe6, 0x2a },
2385 	{ "Vendor", 0x10, 0xec, 0x54 }
2386 };
2387 
2388 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2389 				  union hdmi_infoframe *frame)
2390 {
2391 	uint8_t buffer[32];
2392 	u8 len;
2393 	int i;
2394 
2395 	if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2396 		v4l2_info(sd, "%s infoframe not received\n",
2397 			  adv76xx_cri[index].desc);
2398 		return -ENOENT;
2399 	}
2400 
2401 	for (i = 0; i < 3; i++)
2402 		buffer[i] = infoframe_read(sd,
2403 					   adv76xx_cri[index].head_addr + i);
2404 
2405 	len = buffer[2] + 1;
2406 
2407 	if (len + 3 > sizeof(buffer)) {
2408 		v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2409 			 adv76xx_cri[index].desc, len);
2410 		return -ENOENT;
2411 	}
2412 
2413 	for (i = 0; i < len; i++)
2414 		buffer[i + 3] = infoframe_read(sd,
2415 				       adv76xx_cri[index].payload_addr + i);
2416 
2417 	if (hdmi_infoframe_unpack(frame, buffer) < 0) {
2418 		v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2419 			 adv76xx_cri[index].desc);
2420 		return -ENOENT;
2421 	}
2422 	return 0;
2423 }
2424 
2425 static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2426 {
2427 	int i;
2428 
2429 	if (!is_hdmi(sd)) {
2430 		v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2431 		return;
2432 	}
2433 
2434 	for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2435 		union hdmi_infoframe frame;
2436 		struct i2c_client *client = v4l2_get_subdevdata(sd);
2437 
2438 		if (adv76xx_read_infoframe(sd, i, &frame))
2439 			return;
2440 		hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2441 	}
2442 }
2443 
2444 static int adv76xx_log_status(struct v4l2_subdev *sd)
2445 {
2446 	struct adv76xx_state *state = to_state(sd);
2447 	const struct adv76xx_chip_info *info = state->info;
2448 	struct v4l2_dv_timings timings;
2449 	struct stdi_readback stdi;
2450 	u8 reg_io_0x02 = io_read(sd, 0x02);
2451 	u8 edid_enabled;
2452 	u8 cable_det;
2453 
2454 	static const char * const csc_coeff_sel_rb[16] = {
2455 		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2456 		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2457 		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2458 		"reserved", "reserved", "reserved", "reserved", "manual"
2459 	};
2460 	static const char * const input_color_space_txt[16] = {
2461 		"RGB limited range (16-235)", "RGB full range (0-255)",
2462 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2463 		"xvYCC Bt.601", "xvYCC Bt.709",
2464 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2465 		"invalid", "invalid", "invalid", "invalid", "invalid",
2466 		"invalid", "invalid", "automatic"
2467 	};
2468 	static const char * const hdmi_color_space_txt[16] = {
2469 		"RGB limited range (16-235)", "RGB full range (0-255)",
2470 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2471 		"xvYCC Bt.601", "xvYCC Bt.709",
2472 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2473 		"sYCC", "Adobe YCC 601", "AdobeRGB", "invalid", "invalid",
2474 		"invalid", "invalid", "invalid"
2475 	};
2476 	static const char * const rgb_quantization_range_txt[] = {
2477 		"Automatic",
2478 		"RGB limited range (16-235)",
2479 		"RGB full range (0-255)",
2480 	};
2481 	static const char * const deep_color_mode_txt[4] = {
2482 		"8-bits per channel",
2483 		"10-bits per channel",
2484 		"12-bits per channel",
2485 		"16-bits per channel (not supported)"
2486 	};
2487 
2488 	v4l2_info(sd, "-----Chip status-----\n");
2489 	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2490 	edid_enabled = rep_read(sd, info->edid_status_reg);
2491 	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2492 			((edid_enabled & 0x01) ? "Yes" : "No"),
2493 			((edid_enabled & 0x02) ? "Yes" : "No"),
2494 			((edid_enabled & 0x04) ? "Yes" : "No"),
2495 			((edid_enabled & 0x08) ? "Yes" : "No"));
2496 	v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ?
2497 			"enabled" : "disabled");
2498 	if (state->cec_enabled_adap) {
2499 		int i;
2500 
2501 		for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2502 			bool is_valid = state->cec_valid_addrs & (1 << i);
2503 
2504 			if (is_valid)
2505 				v4l2_info(sd, "CEC Logical Address: 0x%x\n",
2506 					  state->cec_addr[i]);
2507 		}
2508 	}
2509 
2510 	v4l2_info(sd, "-----Signal status-----\n");
2511 	cable_det = info->read_cable_det(sd);
2512 	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2513 			((cable_det & 0x01) ? "Yes" : "No"),
2514 			((cable_det & 0x02) ? "Yes" : "No"),
2515 			((cable_det & 0x04) ? "Yes" : "No"),
2516 			((cable_det & 0x08) ? "Yes" : "No"));
2517 	v4l2_info(sd, "TMDS signal detected: %s\n",
2518 			no_signal_tmds(sd) ? "false" : "true");
2519 	v4l2_info(sd, "TMDS signal locked: %s\n",
2520 			no_lock_tmds(sd) ? "false" : "true");
2521 	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2522 	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2523 	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2524 	v4l2_info(sd, "CP free run: %s\n",
2525 			(in_free_run(sd)) ? "on" : "off");
2526 	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2527 			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2528 			(io_read(sd, 0x01) & 0x70) >> 4);
2529 
2530 	v4l2_info(sd, "-----Video Timings-----\n");
2531 	if (read_stdi(sd, &stdi))
2532 		v4l2_info(sd, "STDI: not locked\n");
2533 	else
2534 		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2535 				stdi.lcf, stdi.bl, stdi.lcvs,
2536 				stdi.interlaced ? "interlaced" : "progressive",
2537 				stdi.hs_pol, stdi.vs_pol);
2538 	if (adv76xx_query_dv_timings(sd, &timings))
2539 		v4l2_info(sd, "No video detected\n");
2540 	else
2541 		v4l2_print_dv_timings(sd->name, "Detected format: ",
2542 				      &timings, true);
2543 	v4l2_print_dv_timings(sd->name, "Configured format: ",
2544 			      &state->timings, true);
2545 
2546 	if (no_signal(sd))
2547 		return 0;
2548 
2549 	v4l2_info(sd, "-----Color space-----\n");
2550 	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2551 			rgb_quantization_range_txt[state->rgb_quantization_range]);
2552 	v4l2_info(sd, "Input color space: %s\n",
2553 			input_color_space_txt[reg_io_0x02 >> 4]);
2554 	v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n",
2555 			(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2556 			(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2557 				"(16-235)" : "(0-255)",
2558 			(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2559 	v4l2_info(sd, "Color space conversion: %s\n",
2560 			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2561 
2562 	if (!is_digital_input(sd))
2563 		return 0;
2564 
2565 	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2566 	v4l2_info(sd, "Digital video port selected: %c\n",
2567 			(hdmi_read(sd, 0x00) & 0x03) + 'A');
2568 	v4l2_info(sd, "HDCP encrypted content: %s\n",
2569 			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2570 	v4l2_info(sd, "HDCP keys read: %s%s\n",
2571 			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2572 			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2573 	if (is_hdmi(sd)) {
2574 		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2575 		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2576 		bool audio_mute = io_read(sd, 0x65) & 0x40;
2577 
2578 		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2579 				audio_pll_locked ? "locked" : "not locked",
2580 				audio_sample_packet_detect ? "detected" : "not detected",
2581 				audio_mute ? "muted" : "enabled");
2582 		if (audio_pll_locked && audio_sample_packet_detect) {
2583 			v4l2_info(sd, "Audio format: %s\n",
2584 					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2585 		}
2586 		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2587 				(hdmi_read(sd, 0x5c) << 8) +
2588 				(hdmi_read(sd, 0x5d) & 0xf0));
2589 		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2590 				(hdmi_read(sd, 0x5e) << 8) +
2591 				hdmi_read(sd, 0x5f));
2592 		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2593 
2594 		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2595 		v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2596 
2597 		adv76xx_log_infoframes(sd);
2598 	}
2599 
2600 	return 0;
2601 }
2602 
2603 static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2604 				   struct v4l2_fh *fh,
2605 				   struct v4l2_event_subscription *sub)
2606 {
2607 	switch (sub->type) {
2608 	case V4L2_EVENT_SOURCE_CHANGE:
2609 		return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2610 	case V4L2_EVENT_CTRL:
2611 		return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2612 	default:
2613 		return -EINVAL;
2614 	}
2615 }
2616 
2617 static int adv76xx_registered(struct v4l2_subdev *sd)
2618 {
2619 	struct adv76xx_state *state = to_state(sd);
2620 	int err;
2621 
2622 	err = cec_register_adapter(state->cec_adap);
2623 	if (err)
2624 		cec_delete_adapter(state->cec_adap);
2625 	return err;
2626 }
2627 
2628 static void adv76xx_unregistered(struct v4l2_subdev *sd)
2629 {
2630 	struct adv76xx_state *state = to_state(sd);
2631 
2632 	cec_unregister_adapter(state->cec_adap);
2633 }
2634 
2635 /* ----------------------------------------------------------------------- */
2636 
2637 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2638 	.s_ctrl = adv76xx_s_ctrl,
2639 	.g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2640 };
2641 
2642 static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2643 	.log_status = adv76xx_log_status,
2644 	.interrupt_service_routine = adv76xx_isr,
2645 	.subscribe_event = adv76xx_subscribe_event,
2646 	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2647 #ifdef CONFIG_VIDEO_ADV_DEBUG
2648 	.g_register = adv76xx_g_register,
2649 	.s_register = adv76xx_s_register,
2650 #endif
2651 };
2652 
2653 static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2654 	.s_routing = adv76xx_s_routing,
2655 	.g_input_status = adv76xx_g_input_status,
2656 	.s_dv_timings = adv76xx_s_dv_timings,
2657 	.g_dv_timings = adv76xx_g_dv_timings,
2658 	.query_dv_timings = adv76xx_query_dv_timings,
2659 };
2660 
2661 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2662 	.enum_mbus_code = adv76xx_enum_mbus_code,
2663 	.get_selection = adv76xx_get_selection,
2664 	.get_fmt = adv76xx_get_format,
2665 	.set_fmt = adv76xx_set_format,
2666 	.get_edid = adv76xx_get_edid,
2667 	.set_edid = adv76xx_set_edid,
2668 	.dv_timings_cap = adv76xx_dv_timings_cap,
2669 	.enum_dv_timings = adv76xx_enum_dv_timings,
2670 };
2671 
2672 static const struct v4l2_subdev_ops adv76xx_ops = {
2673 	.core = &adv76xx_core_ops,
2674 	.video = &adv76xx_video_ops,
2675 	.pad = &adv76xx_pad_ops,
2676 };
2677 
2678 static const struct v4l2_subdev_internal_ops adv76xx_int_ops = {
2679 	.registered = adv76xx_registered,
2680 	.unregistered = adv76xx_unregistered,
2681 };
2682 
2683 /* -------------------------- custom ctrls ---------------------------------- */
2684 
2685 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2686 	.ops = &adv76xx_ctrl_ops,
2687 	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2688 	.name = "Analog Sampling Phase",
2689 	.type = V4L2_CTRL_TYPE_INTEGER,
2690 	.min = 0,
2691 	.max = 0x1f,
2692 	.step = 1,
2693 	.def = 0,
2694 };
2695 
2696 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2697 	.ops = &adv76xx_ctrl_ops,
2698 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2699 	.name = "Free Running Color, Manual",
2700 	.type = V4L2_CTRL_TYPE_BOOLEAN,
2701 	.min = false,
2702 	.max = true,
2703 	.step = 1,
2704 	.def = false,
2705 };
2706 
2707 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2708 	.ops = &adv76xx_ctrl_ops,
2709 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2710 	.name = "Free Running Color",
2711 	.type = V4L2_CTRL_TYPE_INTEGER,
2712 	.min = 0x0,
2713 	.max = 0xffffff,
2714 	.step = 0x1,
2715 	.def = 0x0,
2716 };
2717 
2718 /* ----------------------------------------------------------------------- */
2719 
2720 static int adv76xx_core_init(struct v4l2_subdev *sd)
2721 {
2722 	struct adv76xx_state *state = to_state(sd);
2723 	const struct adv76xx_chip_info *info = state->info;
2724 	struct adv76xx_platform_data *pdata = &state->pdata;
2725 
2726 	hdmi_write(sd, 0x48,
2727 		(pdata->disable_pwrdnb ? 0x80 : 0) |
2728 		(pdata->disable_cable_det_rst ? 0x40 : 0));
2729 
2730 	disable_input(sd);
2731 
2732 	if (pdata->default_input >= 0 &&
2733 	    pdata->default_input < state->source_pad) {
2734 		state->selected_input = pdata->default_input;
2735 		select_input(sd);
2736 		enable_input(sd);
2737 	}
2738 
2739 	/* power */
2740 	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
2741 	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
2742 	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */
2743 
2744 	/* video format */
2745 	io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3);
2746 	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2747 			pdata->insert_av_codes << 2 |
2748 			pdata->replicate_av_codes << 1);
2749 	adv76xx_setup_format(state);
2750 
2751 	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2752 
2753 	/* VS, HS polarities */
2754 	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2755 		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2756 
2757 	/* Adjust drive strength */
2758 	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2759 				pdata->dr_str_clk << 2 |
2760 				pdata->dr_str_sync);
2761 
2762 	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2763 	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2764 	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
2765 				      ADI recommended setting [REF_01, c. 2.3.3] */
2766 	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
2767 				      ADI recommended setting [REF_01, c. 2.3.3] */
2768 	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2769 				     for digital formats */
2770 
2771 	/* HDMI audio */
2772 	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2773 	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2774 	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2775 
2776 	/* TODO from platform data */
2777 	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */
2778 
2779 	if (adv76xx_has_afe(state)) {
2780 		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2781 		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2782 	}
2783 
2784 	/* interrupts */
2785 	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2786 	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2787 	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2788 	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2789 	info->setup_irqs(sd);
2790 
2791 	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2792 }
2793 
2794 static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2795 {
2796 	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2797 }
2798 
2799 static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2800 {
2801 	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2802 }
2803 
2804 static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2805 {
2806 	io_write(sd, 0x41, 0xd0); /* disable INT2 */
2807 }
2808 
2809 static void adv76xx_unregister_clients(struct adv76xx_state *state)
2810 {
2811 	unsigned int i;
2812 
2813 	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) {
2814 		if (state->i2c_clients[i])
2815 			i2c_unregister_device(state->i2c_clients[i]);
2816 	}
2817 }
2818 
2819 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2820 							u8 addr, u8 io_reg)
2821 {
2822 	struct i2c_client *client = v4l2_get_subdevdata(sd);
2823 
2824 	if (addr)
2825 		io_write(sd, io_reg, addr << 1);
2826 	return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1);
2827 }
2828 
2829 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2830 	/* reset ADI recommended settings for HDMI: */
2831 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2832 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2833 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2834 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2835 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2836 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2837 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2838 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2839 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2840 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2841 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2842 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2843 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2844 
2845 	/* set ADI recommended settings for digitizer */
2846 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2847 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2848 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2849 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2850 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2851 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2852 
2853 	{ ADV76XX_REG_SEQ_TERM, 0 },
2854 };
2855 
2856 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2857 	/* set ADI recommended settings for HDMI: */
2858 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2859 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2860 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2861 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2862 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2863 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2864 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2865 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2866 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2867 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2868 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2869 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2870 
2871 	/* reset ADI recommended settings for digitizer */
2872 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2873 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2874 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2875 
2876 	{ ADV76XX_REG_SEQ_TERM, 0 },
2877 };
2878 
2879 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2880 	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2881 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2882 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2883 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2884 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2885 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2886 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2887 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2888 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2889 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2890 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
2891 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
2892 
2893 	{ ADV76XX_REG_SEQ_TERM, 0 },
2894 };
2895 
2896 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
2897 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2898 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2899 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2900 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2901 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2902 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2903 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2904 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2905 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2906 	{ ADV76XX_REG_SEQ_TERM, 0 },
2907 };
2908 
2909 static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2910 	[ADV7604] = {
2911 		.type = ADV7604,
2912 		.has_afe = true,
2913 		.max_port = ADV7604_PAD_VGA_COMP,
2914 		.num_dv_ports = 4,
2915 		.edid_enable_reg = 0x77,
2916 		.edid_status_reg = 0x7d,
2917 		.lcf_reg = 0xb3,
2918 		.tdms_lock_mask = 0xe0,
2919 		.cable_det_mask = 0x1e,
2920 		.fmt_change_digital_mask = 0xc1,
2921 		.cp_csc = 0xfc,
2922 		.formats = adv7604_formats,
2923 		.nformats = ARRAY_SIZE(adv7604_formats),
2924 		.set_termination = adv7604_set_termination,
2925 		.setup_irqs = adv7604_setup_irqs,
2926 		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
2927 		.read_cable_det = adv7604_read_cable_det,
2928 		.recommended_settings = {
2929 		    [0] = adv7604_recommended_settings_afe,
2930 		    [1] = adv7604_recommended_settings_hdmi,
2931 		},
2932 		.num_recommended_settings = {
2933 		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
2934 		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
2935 		},
2936 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
2937 			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
2938 			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
2939 			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
2940 			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
2941 			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
2942 			BIT(ADV7604_PAGE_VDP),
2943 		.linewidth_mask = 0xfff,
2944 		.field0_height_mask = 0xfff,
2945 		.field1_height_mask = 0xfff,
2946 		.hfrontporch_mask = 0x3ff,
2947 		.hsync_mask = 0x3ff,
2948 		.hbackporch_mask = 0x3ff,
2949 		.field0_vfrontporch_mask = 0x1fff,
2950 		.field0_vsync_mask = 0x1fff,
2951 		.field0_vbackporch_mask = 0x1fff,
2952 		.field1_vfrontporch_mask = 0x1fff,
2953 		.field1_vsync_mask = 0x1fff,
2954 		.field1_vbackporch_mask = 0x1fff,
2955 	},
2956 	[ADV7611] = {
2957 		.type = ADV7611,
2958 		.has_afe = false,
2959 		.max_port = ADV76XX_PAD_HDMI_PORT_A,
2960 		.num_dv_ports = 1,
2961 		.edid_enable_reg = 0x74,
2962 		.edid_status_reg = 0x76,
2963 		.lcf_reg = 0xa3,
2964 		.tdms_lock_mask = 0x43,
2965 		.cable_det_mask = 0x01,
2966 		.fmt_change_digital_mask = 0x03,
2967 		.cp_csc = 0xf4,
2968 		.formats = adv7611_formats,
2969 		.nformats = ARRAY_SIZE(adv7611_formats),
2970 		.set_termination = adv7611_set_termination,
2971 		.setup_irqs = adv7611_setup_irqs,
2972 		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
2973 		.read_cable_det = adv7611_read_cable_det,
2974 		.recommended_settings = {
2975 		    [1] = adv7611_recommended_settings_hdmi,
2976 		},
2977 		.num_recommended_settings = {
2978 		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
2979 		},
2980 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
2981 			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
2982 			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
2983 			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
2984 		.linewidth_mask = 0x1fff,
2985 		.field0_height_mask = 0x1fff,
2986 		.field1_height_mask = 0x1fff,
2987 		.hfrontporch_mask = 0x1fff,
2988 		.hsync_mask = 0x1fff,
2989 		.hbackporch_mask = 0x1fff,
2990 		.field0_vfrontporch_mask = 0x3fff,
2991 		.field0_vsync_mask = 0x3fff,
2992 		.field0_vbackporch_mask = 0x3fff,
2993 		.field1_vfrontporch_mask = 0x3fff,
2994 		.field1_vsync_mask = 0x3fff,
2995 		.field1_vbackporch_mask = 0x3fff,
2996 	},
2997 	[ADV7612] = {
2998 		.type = ADV7612,
2999 		.has_afe = false,
3000 		.max_port = ADV76XX_PAD_HDMI_PORT_A,	/* B not supported */
3001 		.num_dv_ports = 1,			/* normally 2 */
3002 		.edid_enable_reg = 0x74,
3003 		.edid_status_reg = 0x76,
3004 		.lcf_reg = 0xa3,
3005 		.tdms_lock_mask = 0x43,
3006 		.cable_det_mask = 0x01,
3007 		.fmt_change_digital_mask = 0x03,
3008 		.cp_csc = 0xf4,
3009 		.formats = adv7612_formats,
3010 		.nformats = ARRAY_SIZE(adv7612_formats),
3011 		.set_termination = adv7611_set_termination,
3012 		.setup_irqs = adv7612_setup_irqs,
3013 		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3014 		.read_cable_det = adv7612_read_cable_det,
3015 		.recommended_settings = {
3016 		    [1] = adv7612_recommended_settings_hdmi,
3017 		},
3018 		.num_recommended_settings = {
3019 		    [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
3020 		},
3021 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3022 			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3023 			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3024 			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3025 		.linewidth_mask = 0x1fff,
3026 		.field0_height_mask = 0x1fff,
3027 		.field1_height_mask = 0x1fff,
3028 		.hfrontporch_mask = 0x1fff,
3029 		.hsync_mask = 0x1fff,
3030 		.hbackporch_mask = 0x1fff,
3031 		.field0_vfrontporch_mask = 0x3fff,
3032 		.field0_vsync_mask = 0x3fff,
3033 		.field0_vbackporch_mask = 0x3fff,
3034 		.field1_vfrontporch_mask = 0x3fff,
3035 		.field1_vsync_mask = 0x3fff,
3036 		.field1_vbackporch_mask = 0x3fff,
3037 	},
3038 };
3039 
3040 static const struct i2c_device_id adv76xx_i2c_id[] = {
3041 	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
3042 	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3043 	{ "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
3044 	{ }
3045 };
3046 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
3047 
3048 static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
3049 	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
3050 	{ .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
3051 	{ }
3052 };
3053 MODULE_DEVICE_TABLE(of, adv76xx_of_id);
3054 
3055 static int adv76xx_parse_dt(struct adv76xx_state *state)
3056 {
3057 	struct v4l2_of_endpoint bus_cfg;
3058 	struct device_node *endpoint;
3059 	struct device_node *np;
3060 	unsigned int flags;
3061 	int ret;
3062 	u32 v;
3063 
3064 	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
3065 
3066 	/* Parse the endpoint. */
3067 	endpoint = of_graph_get_next_endpoint(np, NULL);
3068 	if (!endpoint)
3069 		return -EINVAL;
3070 
3071 	ret = v4l2_of_parse_endpoint(endpoint, &bus_cfg);
3072 	if (ret) {
3073 		of_node_put(endpoint);
3074 		return ret;
3075 	}
3076 
3077 	if (!of_property_read_u32(endpoint, "default-input", &v))
3078 		state->pdata.default_input = v;
3079 	else
3080 		state->pdata.default_input = -1;
3081 
3082 	of_node_put(endpoint);
3083 
3084 	flags = bus_cfg.bus.parallel.flags;
3085 
3086 	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
3087 		state->pdata.inv_hs_pol = 1;
3088 
3089 	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
3090 		state->pdata.inv_vs_pol = 1;
3091 
3092 	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
3093 		state->pdata.inv_llc_pol = 1;
3094 
3095 	if (bus_cfg.bus_type == V4L2_MBUS_BT656)
3096 		state->pdata.insert_av_codes = 1;
3097 
3098 	/* Disable the interrupt for now as no DT-based board uses it. */
3099 	state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED;
3100 
3101 	/* Use the default I2C addresses. */
3102 	state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42;
3103 	state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40;
3104 	state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e;
3105 	state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38;
3106 	state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c;
3107 	state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26;
3108 	state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32;
3109 	state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36;
3110 	state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34;
3111 	state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30;
3112 	state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22;
3113 	state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24;
3114 
3115 	/* Hardcode the remaining platform data fields. */
3116 	state->pdata.disable_pwrdnb = 0;
3117 	state->pdata.disable_cable_det_rst = 0;
3118 	state->pdata.blank_data = 1;
3119 	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
3120 	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
3121 
3122 	return 0;
3123 }
3124 
3125 static const struct regmap_config adv76xx_regmap_cnf[] = {
3126 	{
3127 		.name			= "io",
3128 		.reg_bits		= 8,
3129 		.val_bits		= 8,
3130 
3131 		.max_register		= 0xff,
3132 		.cache_type		= REGCACHE_NONE,
3133 	},
3134 	{
3135 		.name			= "avlink",
3136 		.reg_bits		= 8,
3137 		.val_bits		= 8,
3138 
3139 		.max_register		= 0xff,
3140 		.cache_type		= REGCACHE_NONE,
3141 	},
3142 	{
3143 		.name			= "cec",
3144 		.reg_bits		= 8,
3145 		.val_bits		= 8,
3146 
3147 		.max_register		= 0xff,
3148 		.cache_type		= REGCACHE_NONE,
3149 	},
3150 	{
3151 		.name			= "infoframe",
3152 		.reg_bits		= 8,
3153 		.val_bits		= 8,
3154 
3155 		.max_register		= 0xff,
3156 		.cache_type		= REGCACHE_NONE,
3157 	},
3158 	{
3159 		.name			= "esdp",
3160 		.reg_bits		= 8,
3161 		.val_bits		= 8,
3162 
3163 		.max_register		= 0xff,
3164 		.cache_type		= REGCACHE_NONE,
3165 	},
3166 	{
3167 		.name			= "epp",
3168 		.reg_bits		= 8,
3169 		.val_bits		= 8,
3170 
3171 		.max_register		= 0xff,
3172 		.cache_type		= REGCACHE_NONE,
3173 	},
3174 	{
3175 		.name			= "afe",
3176 		.reg_bits		= 8,
3177 		.val_bits		= 8,
3178 
3179 		.max_register		= 0xff,
3180 		.cache_type		= REGCACHE_NONE,
3181 	},
3182 	{
3183 		.name			= "rep",
3184 		.reg_bits		= 8,
3185 		.val_bits		= 8,
3186 
3187 		.max_register		= 0xff,
3188 		.cache_type		= REGCACHE_NONE,
3189 	},
3190 	{
3191 		.name			= "edid",
3192 		.reg_bits		= 8,
3193 		.val_bits		= 8,
3194 
3195 		.max_register		= 0xff,
3196 		.cache_type		= REGCACHE_NONE,
3197 	},
3198 
3199 	{
3200 		.name			= "hdmi",
3201 		.reg_bits		= 8,
3202 		.val_bits		= 8,
3203 
3204 		.max_register		= 0xff,
3205 		.cache_type		= REGCACHE_NONE,
3206 	},
3207 	{
3208 		.name			= "test",
3209 		.reg_bits		= 8,
3210 		.val_bits		= 8,
3211 
3212 		.max_register		= 0xff,
3213 		.cache_type		= REGCACHE_NONE,
3214 	},
3215 	{
3216 		.name			= "cp",
3217 		.reg_bits		= 8,
3218 		.val_bits		= 8,
3219 
3220 		.max_register		= 0xff,
3221 		.cache_type		= REGCACHE_NONE,
3222 	},
3223 	{
3224 		.name			= "vdp",
3225 		.reg_bits		= 8,
3226 		.val_bits		= 8,
3227 
3228 		.max_register		= 0xff,
3229 		.cache_type		= REGCACHE_NONE,
3230 	},
3231 };
3232 
3233 static int configure_regmap(struct adv76xx_state *state, int region)
3234 {
3235 	int err;
3236 
3237 	if (!state->i2c_clients[region])
3238 		return -ENODEV;
3239 
3240 	state->regmap[region] =
3241 		devm_regmap_init_i2c(state->i2c_clients[region],
3242 				     &adv76xx_regmap_cnf[region]);
3243 
3244 	if (IS_ERR(state->regmap[region])) {
3245 		err = PTR_ERR(state->regmap[region]);
3246 		v4l_err(state->i2c_clients[region],
3247 			"Error initializing regmap %d with error %d\n",
3248 			region, err);
3249 		return -EINVAL;
3250 	}
3251 
3252 	return 0;
3253 }
3254 
3255 static int configure_regmaps(struct adv76xx_state *state)
3256 {
3257 	int i, err;
3258 
3259 	for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
3260 		err = configure_regmap(state, i);
3261 		if (err && (err != -ENODEV))
3262 			return err;
3263 	}
3264 	return 0;
3265 }
3266 
3267 static void adv76xx_reset(struct adv76xx_state *state)
3268 {
3269 	if (state->reset_gpio) {
3270 		/* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
3271 		gpiod_set_value_cansleep(state->reset_gpio, 0);
3272 		usleep_range(5000, 10000);
3273 		gpiod_set_value_cansleep(state->reset_gpio, 1);
3274 		/* It is recommended to wait 5 ms after the low pulse before */
3275 		/* an I2C write is performed to the ADV76XX. */
3276 		usleep_range(5000, 10000);
3277 	}
3278 }
3279 
3280 static int adv76xx_probe(struct i2c_client *client,
3281 			 const struct i2c_device_id *id)
3282 {
3283 	static const struct v4l2_dv_timings cea640x480 =
3284 		V4L2_DV_BT_CEA_640X480P59_94;
3285 	struct adv76xx_state *state;
3286 	struct v4l2_ctrl_handler *hdl;
3287 	struct v4l2_ctrl *ctrl;
3288 	struct v4l2_subdev *sd;
3289 	unsigned int i;
3290 	unsigned int val, val2;
3291 	int err;
3292 
3293 	/* Check if the adapter supports the needed features */
3294 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3295 		return -EIO;
3296 	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3297 			client->addr << 1);
3298 
3299 	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3300 	if (!state) {
3301 		v4l_err(client, "Could not allocate adv76xx_state memory!\n");
3302 		return -ENOMEM;
3303 	}
3304 
3305 	state->i2c_clients[ADV76XX_PAGE_IO] = client;
3306 
3307 	/* initialize variables */
3308 	state->restart_stdi_once = true;
3309 	state->selected_input = ~0;
3310 
3311 	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3312 		const struct of_device_id *oid;
3313 
3314 		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3315 		state->info = oid->data;
3316 
3317 		err = adv76xx_parse_dt(state);
3318 		if (err < 0) {
3319 			v4l_err(client, "DT parsing error\n");
3320 			return err;
3321 		}
3322 	} else if (client->dev.platform_data) {
3323 		struct adv76xx_platform_data *pdata = client->dev.platform_data;
3324 
3325 		state->info = (const struct adv76xx_chip_info *)id->driver_data;
3326 		state->pdata = *pdata;
3327 	} else {
3328 		v4l_err(client, "No platform data!\n");
3329 		return -ENODEV;
3330 	}
3331 
3332 	/* Request GPIOs. */
3333 	for (i = 0; i < state->info->num_dv_ports; ++i) {
3334 		state->hpd_gpio[i] =
3335 			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3336 						      GPIOD_OUT_LOW);
3337 		if (IS_ERR(state->hpd_gpio[i]))
3338 			return PTR_ERR(state->hpd_gpio[i]);
3339 
3340 		if (state->hpd_gpio[i])
3341 			v4l_info(client, "Handling HPD %u GPIO\n", i);
3342 	}
3343 	state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
3344 								GPIOD_OUT_HIGH);
3345 	if (IS_ERR(state->reset_gpio))
3346 		return PTR_ERR(state->reset_gpio);
3347 
3348 	adv76xx_reset(state);
3349 
3350 	state->timings = cea640x480;
3351 	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3352 
3353 	sd = &state->sd;
3354 	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3355 	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3356 		id->name, i2c_adapter_id(client->adapter),
3357 		client->addr);
3358 	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3359 	sd->internal_ops = &adv76xx_int_ops;
3360 
3361 	/* Configure IO Regmap region */
3362 	err = configure_regmap(state, ADV76XX_PAGE_IO);
3363 
3364 	if (err) {
3365 		v4l2_err(sd, "Error configuring IO regmap region\n");
3366 		return -ENODEV;
3367 	}
3368 
3369 	/*
3370 	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3371 	 * identifies the revision, while on ADV7611 it identifies the model as
3372 	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3373 	 */
3374 	switch (state->info->type) {
3375 	case ADV7604:
3376 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3377 		if (err) {
3378 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3379 			return -ENODEV;
3380 		}
3381 		if (val != 0x68) {
3382 			v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3383 					client->addr << 1);
3384 			return -ENODEV;
3385 		}
3386 		break;
3387 	case ADV7611:
3388 	case ADV7612:
3389 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3390 				0xea,
3391 				&val);
3392 		if (err) {
3393 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3394 			return -ENODEV;
3395 		}
3396 		val2 = val << 8;
3397 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3398 			    0xeb,
3399 			    &val);
3400 		if (err) {
3401 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3402 			return -ENODEV;
3403 		}
3404 		val |= val2;
3405 		if ((state->info->type == ADV7611 && val != 0x2051) ||
3406 			(state->info->type == ADV7612 && val != 0x2041)) {
3407 			v4l2_err(sd, "not an adv761x on address 0x%x\n",
3408 					client->addr << 1);
3409 			return -ENODEV;
3410 		}
3411 		break;
3412 	}
3413 
3414 	/* control handlers */
3415 	hdl = &state->hdl;
3416 	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3417 
3418 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3419 			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3420 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3421 			V4L2_CID_CONTRAST, 0, 255, 1, 128);
3422 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3423 			V4L2_CID_SATURATION, 0, 255, 1, 128);
3424 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3425 			V4L2_CID_HUE, 0, 128, 1, 0);
3426 	ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3427 			V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
3428 			0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
3429 	if (ctrl)
3430 		ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3431 
3432 	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3433 			V4L2_CID_DV_RX_POWER_PRESENT, 0,
3434 			(1 << state->info->num_dv_ports) - 1, 0, 0);
3435 	state->rgb_quantization_range_ctrl =
3436 		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3437 			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3438 			0, V4L2_DV_RGB_RANGE_AUTO);
3439 
3440 	/* custom controls */
3441 	if (adv76xx_has_afe(state))
3442 		state->analog_sampling_phase_ctrl =
3443 			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3444 	state->free_run_color_manual_ctrl =
3445 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3446 	state->free_run_color_ctrl =
3447 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3448 
3449 	sd->ctrl_handler = hdl;
3450 	if (hdl->error) {
3451 		err = hdl->error;
3452 		goto err_hdl;
3453 	}
3454 	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3455 		err = -ENODEV;
3456 		goto err_hdl;
3457 	}
3458 
3459 	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3460 		if (!(BIT(i) & state->info->page_mask))
3461 			continue;
3462 
3463 		state->i2c_clients[i] =
3464 			adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i],
3465 					     0xf2 + i);
3466 		if (state->i2c_clients[i] == NULL) {
3467 			err = -ENOMEM;
3468 			v4l2_err(sd, "failed to create i2c client %u\n", i);
3469 			goto err_i2c;
3470 		}
3471 	}
3472 
3473 	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3474 			adv76xx_delayed_work_enable_hotplug);
3475 
3476 	state->source_pad = state->info->num_dv_ports
3477 			  + (state->info->has_afe ? 2 : 0);
3478 	for (i = 0; i < state->source_pad; ++i)
3479 		state->pads[i].flags = MEDIA_PAD_FL_SINK;
3480 	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3481 
3482 	err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3483 				state->pads);
3484 	if (err)
3485 		goto err_work_queues;
3486 
3487 	/* Configure regmaps */
3488 	err = configure_regmaps(state);
3489 	if (err)
3490 		goto err_entity;
3491 
3492 	err = adv76xx_core_init(sd);
3493 	if (err)
3494 		goto err_entity;
3495 
3496 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
3497 	state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops,
3498 		state, dev_name(&client->dev),
3499 		CEC_CAP_TRANSMIT | CEC_CAP_LOG_ADDRS |
3500 		CEC_CAP_PASSTHROUGH | CEC_CAP_RC, ADV76XX_MAX_ADDRS,
3501 		&client->dev);
3502 	err = PTR_ERR_OR_ZERO(state->cec_adap);
3503 	if (err)
3504 		goto err_entity;
3505 #endif
3506 
3507 	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3508 			client->addr << 1, client->adapter->name);
3509 
3510 	err = v4l2_async_register_subdev(sd);
3511 	if (err)
3512 		goto err_entity;
3513 
3514 	return 0;
3515 
3516 err_entity:
3517 	media_entity_cleanup(&sd->entity);
3518 err_work_queues:
3519 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3520 err_i2c:
3521 	adv76xx_unregister_clients(state);
3522 err_hdl:
3523 	v4l2_ctrl_handler_free(hdl);
3524 	return err;
3525 }
3526 
3527 /* ----------------------------------------------------------------------- */
3528 
3529 static int adv76xx_remove(struct i2c_client *client)
3530 {
3531 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3532 	struct adv76xx_state *state = to_state(sd);
3533 
3534 	/* disable interrupts */
3535 	io_write(sd, 0x40, 0);
3536 	io_write(sd, 0x41, 0);
3537 	io_write(sd, 0x46, 0);
3538 	io_write(sd, 0x6e, 0);
3539 	io_write(sd, 0x73, 0);
3540 
3541 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3542 	v4l2_async_unregister_subdev(sd);
3543 	media_entity_cleanup(&sd->entity);
3544 	adv76xx_unregister_clients(to_state(sd));
3545 	v4l2_ctrl_handler_free(sd->ctrl_handler);
3546 	return 0;
3547 }
3548 
3549 /* ----------------------------------------------------------------------- */
3550 
3551 static struct i2c_driver adv76xx_driver = {
3552 	.driver = {
3553 		.name = "adv7604",
3554 		.of_match_table = of_match_ptr(adv76xx_of_id),
3555 	},
3556 	.probe = adv76xx_probe,
3557 	.remove = adv76xx_remove,
3558 	.id_table = adv76xx_i2c_id,
3559 };
3560 
3561 module_i2c_driver(adv76xx_driver);
3562