xref: /openbmc/linux/drivers/media/i2c/adv7604.c (revision 23c2b932)
1 /*
2  * adv7604 - Analog Devices ADV7604 video decoder driver
3  *
4  * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
5  *
6  * This program is free software; you may redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17  * SOFTWARE.
18  *
19  */
20 
21 /*
22  * References (c = chapter, p = page):
23  * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
24  *		Revision 2.5, June 2010
25  * REF_02 - Analog devices, Register map documentation, Documentation of
26  *		the register maps, Software manual, Rev. F, June 2010
27  * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
28  */
29 
30 #include <linux/delay.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/slab.h>
37 #include <linux/v4l2-dv-timings.h>
38 #include <linux/videodev2.h>
39 #include <linux/workqueue.h>
40 #include <linux/regmap.h>
41 
42 #include <media/i2c/adv7604.h>
43 #include <media/v4l2-ctrls.h>
44 #include <media/v4l2-device.h>
45 #include <media/v4l2-event.h>
46 #include <media/v4l2-dv-timings.h>
47 #include <media/v4l2-of.h>
48 
49 static int debug;
50 module_param(debug, int, 0644);
51 MODULE_PARM_DESC(debug, "debug level (0-2)");
52 
53 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
54 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
55 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
56 MODULE_LICENSE("GPL");
57 
58 /* ADV7604 system clock frequency */
59 #define ADV76XX_FSC (28636360)
60 
61 #define ADV76XX_RGB_OUT					(1 << 1)
62 
63 #define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
64 #define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
65 #define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
66 
67 #define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
68 #define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
69 #define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
70 #define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
71 #define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
72 #define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)
73 
74 #define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
75 #define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
76 #define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
77 #define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
78 #define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
79 #define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
80 
81 #define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
82 
83 enum adv76xx_type {
84 	ADV7604,
85 	ADV7611,
86 	ADV7612,
87 };
88 
89 struct adv76xx_reg_seq {
90 	unsigned int reg;
91 	u8 val;
92 };
93 
94 struct adv76xx_format_info {
95 	u32 code;
96 	u8 op_ch_sel;
97 	bool rgb_out;
98 	bool swap_cb_cr;
99 	u8 op_format_sel;
100 };
101 
102 struct adv76xx_cfg_read_infoframe {
103 	const char *desc;
104 	u8 present_mask;
105 	u8 head_addr;
106 	u8 payload_addr;
107 };
108 
109 struct adv76xx_chip_info {
110 	enum adv76xx_type type;
111 
112 	bool has_afe;
113 	unsigned int max_port;
114 	unsigned int num_dv_ports;
115 
116 	unsigned int edid_enable_reg;
117 	unsigned int edid_status_reg;
118 	unsigned int lcf_reg;
119 
120 	unsigned int cable_det_mask;
121 	unsigned int tdms_lock_mask;
122 	unsigned int fmt_change_digital_mask;
123 	unsigned int cp_csc;
124 
125 	const struct adv76xx_format_info *formats;
126 	unsigned int nformats;
127 
128 	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
129 	void (*setup_irqs)(struct v4l2_subdev *sd);
130 	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
131 	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
132 
133 	/* 0 = AFE, 1 = HDMI */
134 	const struct adv76xx_reg_seq *recommended_settings[2];
135 	unsigned int num_recommended_settings[2];
136 
137 	unsigned long page_mask;
138 
139 	/* Masks for timings */
140 	unsigned int linewidth_mask;
141 	unsigned int field0_height_mask;
142 	unsigned int field1_height_mask;
143 	unsigned int hfrontporch_mask;
144 	unsigned int hsync_mask;
145 	unsigned int hbackporch_mask;
146 	unsigned int field0_vfrontporch_mask;
147 	unsigned int field1_vfrontporch_mask;
148 	unsigned int field0_vsync_mask;
149 	unsigned int field1_vsync_mask;
150 	unsigned int field0_vbackporch_mask;
151 	unsigned int field1_vbackporch_mask;
152 };
153 
154 /*
155  **********************************************************************
156  *
157  *  Arrays with configuration parameters for the ADV7604
158  *
159  **********************************************************************
160  */
161 
162 struct adv76xx_state {
163 	const struct adv76xx_chip_info *info;
164 	struct adv76xx_platform_data pdata;
165 
166 	struct gpio_desc *hpd_gpio[4];
167 
168 	struct v4l2_subdev sd;
169 	struct media_pad pads[ADV76XX_PAD_MAX];
170 	unsigned int source_pad;
171 
172 	struct v4l2_ctrl_handler hdl;
173 
174 	enum adv76xx_pad selected_input;
175 
176 	struct v4l2_dv_timings timings;
177 	const struct adv76xx_format_info *format;
178 
179 	struct {
180 		u8 edid[256];
181 		u32 present;
182 		unsigned blocks;
183 	} edid;
184 	u16 spa_port_a[2];
185 	struct v4l2_fract aspect_ratio;
186 	u32 rgb_quantization_range;
187 	struct workqueue_struct *work_queues;
188 	struct delayed_work delayed_work_enable_hotplug;
189 	bool restart_stdi_once;
190 
191 	/* i2c clients */
192 	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
193 
194 	/* Regmaps */
195 	struct regmap *regmap[ADV76XX_PAGE_MAX];
196 
197 	/* controls */
198 	struct v4l2_ctrl *detect_tx_5v_ctrl;
199 	struct v4l2_ctrl *analog_sampling_phase_ctrl;
200 	struct v4l2_ctrl *free_run_color_manual_ctrl;
201 	struct v4l2_ctrl *free_run_color_ctrl;
202 	struct v4l2_ctrl *rgb_quantization_range_ctrl;
203 };
204 
205 static bool adv76xx_has_afe(struct adv76xx_state *state)
206 {
207 	return state->info->has_afe;
208 }
209 
210 /* Unsupported timings. This device cannot support 720p30. */
211 static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
212 	V4L2_DV_BT_CEA_1280X720P30,
213 	{ }
214 };
215 
216 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
217 {
218 	int i;
219 
220 	for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
221 		if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
222 			return false;
223 	return true;
224 }
225 
226 struct adv76xx_video_standards {
227 	struct v4l2_dv_timings timings;
228 	u8 vid_std;
229 	u8 v_freq;
230 };
231 
232 /* sorted by number of lines */
233 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
234 	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
235 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
236 	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
237 	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
238 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
239 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
240 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
241 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
242 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
243 	/* TODO add 1920x1080P60_RB (CVT timing) */
244 	{ },
245 };
246 
247 /* sorted by number of lines */
248 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
249 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
250 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
251 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
252 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
253 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
254 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
255 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
256 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
257 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
258 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
259 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
260 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
261 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
262 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
263 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
264 	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
265 	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
266 	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
267 	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
268 	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
269 	/* TODO add 1600X1200P60_RB (not a DMT timing) */
270 	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
271 	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
272 	{ },
273 };
274 
275 /* sorted by number of lines */
276 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
277 	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
278 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
279 	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
280 	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
281 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
282 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
283 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
284 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
285 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
286 	{ },
287 };
288 
289 /* sorted by number of lines */
290 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
291 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
292 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
293 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
294 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
295 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
296 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
297 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
298 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
299 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
300 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
301 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
302 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
303 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
304 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
305 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
306 	{ },
307 };
308 
309 static const struct v4l2_event adv76xx_ev_fmt = {
310 	.type = V4L2_EVENT_SOURCE_CHANGE,
311 	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
312 };
313 
314 /* ----------------------------------------------------------------------- */
315 
316 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
317 {
318 	return container_of(sd, struct adv76xx_state, sd);
319 }
320 
321 static inline unsigned htotal(const struct v4l2_bt_timings *t)
322 {
323 	return V4L2_DV_BT_FRAME_WIDTH(t);
324 }
325 
326 static inline unsigned vtotal(const struct v4l2_bt_timings *t)
327 {
328 	return V4L2_DV_BT_FRAME_HEIGHT(t);
329 }
330 
331 /* ----------------------------------------------------------------------- */
332 
333 static int adv76xx_read_check(struct adv76xx_state *state,
334 			     int client_page, u8 reg)
335 {
336 	struct i2c_client *client = state->i2c_clients[client_page];
337 	int err;
338 	unsigned int val;
339 
340 	err = regmap_read(state->regmap[client_page], reg, &val);
341 
342 	if (err) {
343 		v4l_err(client, "error reading %02x, %02x\n",
344 				client->addr, reg);
345 		return err;
346 	}
347 	return val;
348 }
349 
350 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
351  * size to one or more registers.
352  *
353  * A value of zero will be returned on success, a negative errno will
354  * be returned in error cases.
355  */
356 static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
357 			      unsigned int init_reg, const void *val,
358 			      size_t val_len)
359 {
360 	struct regmap *regmap = state->regmap[client_page];
361 
362 	if (val_len > I2C_SMBUS_BLOCK_MAX)
363 		val_len = I2C_SMBUS_BLOCK_MAX;
364 
365 	return regmap_raw_write(regmap, init_reg, val, val_len);
366 }
367 
368 /* ----------------------------------------------------------------------- */
369 
370 static inline int io_read(struct v4l2_subdev *sd, u8 reg)
371 {
372 	struct adv76xx_state *state = to_state(sd);
373 
374 	return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
375 }
376 
377 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
378 {
379 	struct adv76xx_state *state = to_state(sd);
380 
381 	return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
382 }
383 
384 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
385 {
386 	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
387 }
388 
389 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
390 {
391 	struct adv76xx_state *state = to_state(sd);
392 
393 	return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
394 }
395 
396 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
397 {
398 	struct adv76xx_state *state = to_state(sd);
399 
400 	return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
401 }
402 
403 static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
404 {
405 	struct adv76xx_state *state = to_state(sd);
406 
407 	return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
408 }
409 
410 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
411 {
412 	struct adv76xx_state *state = to_state(sd);
413 
414 	return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
415 }
416 
417 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
418 {
419 	struct adv76xx_state *state = to_state(sd);
420 
421 	return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
422 }
423 
424 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
425 {
426 	struct adv76xx_state *state = to_state(sd);
427 
428 	return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
429 }
430 
431 static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
432 {
433 	struct adv76xx_state *state = to_state(sd);
434 
435 	return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
436 }
437 
438 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
439 {
440 	struct adv76xx_state *state = to_state(sd);
441 
442 	return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
443 }
444 
445 static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
446 {
447 	struct adv76xx_state *state = to_state(sd);
448 
449 	return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
450 }
451 
452 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
453 {
454 	struct adv76xx_state *state = to_state(sd);
455 
456 	return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
457 }
458 
459 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
460 {
461 	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
462 }
463 
464 static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
465 {
466 	struct adv76xx_state *state = to_state(sd);
467 
468 	return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
469 }
470 
471 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
472 {
473 	struct adv76xx_state *state = to_state(sd);
474 
475 	return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
476 }
477 
478 static inline int edid_write_block(struct v4l2_subdev *sd,
479 					unsigned int total_len, const u8 *val)
480 {
481 	struct adv76xx_state *state = to_state(sd);
482 	int err = 0;
483 	int i = 0;
484 	int len = 0;
485 
486 	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
487 				__func__, total_len);
488 
489 	while (!err && i < total_len) {
490 		len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
491 				I2C_SMBUS_BLOCK_MAX :
492 				(total_len - i);
493 
494 		err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
495 				i, val + i, len);
496 		i += len;
497 	}
498 
499 	return err;
500 }
501 
502 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
503 {
504 	unsigned int i;
505 
506 	for (i = 0; i < state->info->num_dv_ports; ++i)
507 		gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
508 
509 	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
510 }
511 
512 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
513 {
514 	struct delayed_work *dwork = to_delayed_work(work);
515 	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
516 						delayed_work_enable_hotplug);
517 	struct v4l2_subdev *sd = &state->sd;
518 
519 	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
520 
521 	adv76xx_set_hpd(state, state->edid.present);
522 }
523 
524 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
525 {
526 	struct adv76xx_state *state = to_state(sd);
527 
528 	return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
529 }
530 
531 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
532 {
533 	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
534 }
535 
536 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
537 {
538 	struct adv76xx_state *state = to_state(sd);
539 
540 	return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
541 }
542 
543 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
544 {
545 	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
546 }
547 
548 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
549 {
550 	struct adv76xx_state *state = to_state(sd);
551 
552 	return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
553 }
554 
555 static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
556 {
557 	struct adv76xx_state *state = to_state(sd);
558 
559 	return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
560 }
561 
562 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
563 {
564 	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
565 }
566 
567 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
568 {
569 	struct adv76xx_state *state = to_state(sd);
570 
571 	return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
572 }
573 
574 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
575 {
576 	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
577 }
578 
579 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
580 {
581 	struct adv76xx_state *state = to_state(sd);
582 
583 	return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
584 }
585 
586 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
587 {
588 	struct adv76xx_state *state = to_state(sd);
589 
590 	return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
591 }
592 
593 #define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
594 #define ADV76XX_REG_SEQ_TERM		0xffff
595 
596 #ifdef CONFIG_VIDEO_ADV_DEBUG
597 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
598 {
599 	struct adv76xx_state *state = to_state(sd);
600 	unsigned int page = reg >> 8;
601 	unsigned int val;
602 	int err;
603 
604 	if (!(BIT(page) & state->info->page_mask))
605 		return -EINVAL;
606 
607 	reg &= 0xff;
608 	err = regmap_read(state->regmap[page], reg, &val);
609 
610 	return err ? err : val;
611 }
612 #endif
613 
614 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
615 {
616 	struct adv76xx_state *state = to_state(sd);
617 	unsigned int page = reg >> 8;
618 
619 	if (!(BIT(page) & state->info->page_mask))
620 		return -EINVAL;
621 
622 	reg &= 0xff;
623 
624 	return regmap_write(state->regmap[page], reg, val);
625 }
626 
627 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
628 				  const struct adv76xx_reg_seq *reg_seq)
629 {
630 	unsigned int i;
631 
632 	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
633 		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
634 }
635 
636 /* -----------------------------------------------------------------------------
637  * Format helpers
638  */
639 
640 static const struct adv76xx_format_info adv7604_formats[] = {
641 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
642 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
643 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
644 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
645 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
646 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
647 	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
648 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
649 	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
650 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
651 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
652 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
653 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
654 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
655 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
656 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
657 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
658 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
659 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
660 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
661 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
662 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
663 	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
664 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
665 	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
666 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
667 	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
668 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
669 	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
670 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
671 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
672 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
673 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
674 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
675 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
676 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
677 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
678 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
679 };
680 
681 static const struct adv76xx_format_info adv7611_formats[] = {
682 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
683 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
684 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
685 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
686 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
687 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
688 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
689 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
690 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
691 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
692 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
693 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
694 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
695 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
696 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
697 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
698 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
699 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
700 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
701 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
702 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
703 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
704 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
705 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
706 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
707 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
708 };
709 
710 static const struct adv76xx_format_info adv7612_formats[] = {
711 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
712 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
713 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
714 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
715 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
716 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
717 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
718 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
719 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
720 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
721 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
722 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
723 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
724 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
725 };
726 
727 static const struct adv76xx_format_info *
728 adv76xx_format_info(struct adv76xx_state *state, u32 code)
729 {
730 	unsigned int i;
731 
732 	for (i = 0; i < state->info->nformats; ++i) {
733 		if (state->info->formats[i].code == code)
734 			return &state->info->formats[i];
735 	}
736 
737 	return NULL;
738 }
739 
740 /* ----------------------------------------------------------------------- */
741 
742 static inline bool is_analog_input(struct v4l2_subdev *sd)
743 {
744 	struct adv76xx_state *state = to_state(sd);
745 
746 	return state->selected_input == ADV7604_PAD_VGA_RGB ||
747 	       state->selected_input == ADV7604_PAD_VGA_COMP;
748 }
749 
750 static inline bool is_digital_input(struct v4l2_subdev *sd)
751 {
752 	struct adv76xx_state *state = to_state(sd);
753 
754 	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
755 	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
756 	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
757 	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
758 }
759 
760 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
761 	.type = V4L2_DV_BT_656_1120,
762 	/* keep this initialization for compatibility with GCC < 4.4.6 */
763 	.reserved = { 0 },
764 	V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000,
765 		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
766 			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
767 		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
768 			V4L2_DV_BT_CAP_CUSTOM)
769 };
770 
771 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
772 	.type = V4L2_DV_BT_656_1120,
773 	/* keep this initialization for compatibility with GCC < 4.4.6 */
774 	.reserved = { 0 },
775 	V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 225000000,
776 		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
777 			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
778 		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
779 			V4L2_DV_BT_CAP_CUSTOM)
780 };
781 
782 /*
783  * Return the DV timings capabilities for the requested sink pad. As a special
784  * case, pad value -1 returns the capabilities for the currently selected input.
785  */
786 static const struct v4l2_dv_timings_cap *
787 adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
788 {
789 	if (pad == -1) {
790 		struct adv76xx_state *state = to_state(sd);
791 
792 		pad = state->selected_input;
793 	}
794 
795 	switch (pad) {
796 	case ADV76XX_PAD_HDMI_PORT_A:
797 	case ADV7604_PAD_HDMI_PORT_B:
798 	case ADV7604_PAD_HDMI_PORT_C:
799 	case ADV7604_PAD_HDMI_PORT_D:
800 		return &adv76xx_timings_cap_digital;
801 
802 	case ADV7604_PAD_VGA_RGB:
803 	case ADV7604_PAD_VGA_COMP:
804 	default:
805 		return &adv7604_timings_cap_analog;
806 	}
807 }
808 
809 
810 /* ----------------------------------------------------------------------- */
811 
812 #ifdef CONFIG_VIDEO_ADV_DEBUG
813 static void adv76xx_inv_register(struct v4l2_subdev *sd)
814 {
815 	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
816 	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
817 	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
818 	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
819 	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
820 	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
821 	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
822 	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
823 	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
824 	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
825 	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
826 	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
827 	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
828 }
829 
830 static int adv76xx_g_register(struct v4l2_subdev *sd,
831 					struct v4l2_dbg_register *reg)
832 {
833 	int ret;
834 
835 	ret = adv76xx_read_reg(sd, reg->reg);
836 	if (ret < 0) {
837 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
838 		adv76xx_inv_register(sd);
839 		return ret;
840 	}
841 
842 	reg->size = 1;
843 	reg->val = ret;
844 
845 	return 0;
846 }
847 
848 static int adv76xx_s_register(struct v4l2_subdev *sd,
849 					const struct v4l2_dbg_register *reg)
850 {
851 	int ret;
852 
853 	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
854 	if (ret < 0) {
855 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
856 		adv76xx_inv_register(sd);
857 		return ret;
858 	}
859 
860 	return 0;
861 }
862 #endif
863 
864 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
865 {
866 	u8 value = io_read(sd, 0x6f);
867 
868 	return ((value & 0x10) >> 4)
869 	     | ((value & 0x08) >> 2)
870 	     | ((value & 0x04) << 0)
871 	     | ((value & 0x02) << 2);
872 }
873 
874 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
875 {
876 	u8 value = io_read(sd, 0x6f);
877 
878 	return value & 1;
879 }
880 
881 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
882 {
883 	/*  Reads CABLE_DET_A_RAW. For input B support, need to
884 	 *  account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
885 	 */
886 	u8 value = io_read(sd, 0x6f);
887 
888 	return value & 1;
889 }
890 
891 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
892 {
893 	struct adv76xx_state *state = to_state(sd);
894 	const struct adv76xx_chip_info *info = state->info;
895 
896 	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
897 				info->read_cable_det(sd));
898 }
899 
900 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
901 		u8 prim_mode,
902 		const struct adv76xx_video_standards *predef_vid_timings,
903 		const struct v4l2_dv_timings *timings)
904 {
905 	int i;
906 
907 	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
908 		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
909 				is_digital_input(sd) ? 250000 : 1000000, false))
910 			continue;
911 		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
912 		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
913 				prim_mode); /* v_freq and prim mode */
914 		return 0;
915 	}
916 
917 	return -1;
918 }
919 
920 static int configure_predefined_video_timings(struct v4l2_subdev *sd,
921 		struct v4l2_dv_timings *timings)
922 {
923 	struct adv76xx_state *state = to_state(sd);
924 	int err;
925 
926 	v4l2_dbg(1, debug, sd, "%s", __func__);
927 
928 	if (adv76xx_has_afe(state)) {
929 		/* reset to default values */
930 		io_write(sd, 0x16, 0x43);
931 		io_write(sd, 0x17, 0x5a);
932 	}
933 	/* disable embedded syncs for auto graphics mode */
934 	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
935 	cp_write(sd, 0x8f, 0x00);
936 	cp_write(sd, 0x90, 0x00);
937 	cp_write(sd, 0xa2, 0x00);
938 	cp_write(sd, 0xa3, 0x00);
939 	cp_write(sd, 0xa4, 0x00);
940 	cp_write(sd, 0xa5, 0x00);
941 	cp_write(sd, 0xa6, 0x00);
942 	cp_write(sd, 0xa7, 0x00);
943 	cp_write(sd, 0xab, 0x00);
944 	cp_write(sd, 0xac, 0x00);
945 
946 	if (is_analog_input(sd)) {
947 		err = find_and_set_predefined_video_timings(sd,
948 				0x01, adv7604_prim_mode_comp, timings);
949 		if (err)
950 			err = find_and_set_predefined_video_timings(sd,
951 					0x02, adv7604_prim_mode_gr, timings);
952 	} else if (is_digital_input(sd)) {
953 		err = find_and_set_predefined_video_timings(sd,
954 				0x05, adv76xx_prim_mode_hdmi_comp, timings);
955 		if (err)
956 			err = find_and_set_predefined_video_timings(sd,
957 					0x06, adv76xx_prim_mode_hdmi_gr, timings);
958 	} else {
959 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
960 				__func__, state->selected_input);
961 		err = -1;
962 	}
963 
964 
965 	return err;
966 }
967 
968 static void configure_custom_video_timings(struct v4l2_subdev *sd,
969 		const struct v4l2_bt_timings *bt)
970 {
971 	struct adv76xx_state *state = to_state(sd);
972 	u32 width = htotal(bt);
973 	u32 height = vtotal(bt);
974 	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
975 	u16 cp_start_eav = width - bt->hfrontporch;
976 	u16 cp_start_vbi = height - bt->vfrontporch;
977 	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
978 	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
979 		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
980 	const u8 pll[2] = {
981 		0xc0 | ((width >> 8) & 0x1f),
982 		width & 0xff
983 	};
984 
985 	v4l2_dbg(2, debug, sd, "%s\n", __func__);
986 
987 	if (is_analog_input(sd)) {
988 		/* auto graphics */
989 		io_write(sd, 0x00, 0x07); /* video std */
990 		io_write(sd, 0x01, 0x02); /* prim mode */
991 		/* enable embedded syncs for auto graphics mode */
992 		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
993 
994 		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
995 		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
996 		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
997 		if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
998 					0x16, pll, 2))
999 			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
1000 
1001 		/* active video - horizontal timing */
1002 		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1003 		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1004 				   ((cp_start_eav >> 8) & 0x0f));
1005 		cp_write(sd, 0xa4, cp_start_eav & 0xff);
1006 
1007 		/* active video - vertical timing */
1008 		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1009 		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1010 				   ((cp_end_vbi >> 8) & 0xf));
1011 		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1012 	} else if (is_digital_input(sd)) {
1013 		/* set default prim_mode/vid_std for HDMI
1014 		   according to [REF_03, c. 4.2] */
1015 		io_write(sd, 0x00, 0x02); /* video std */
1016 		io_write(sd, 0x01, 0x06); /* prim mode */
1017 	} else {
1018 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1019 				__func__, state->selected_input);
1020 	}
1021 
1022 	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1023 	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1024 	cp_write(sd, 0xab, (height >> 4) & 0xff);
1025 	cp_write(sd, 0xac, (height & 0x0f) << 4);
1026 }
1027 
1028 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1029 {
1030 	struct adv76xx_state *state = to_state(sd);
1031 	u8 offset_buf[4];
1032 
1033 	if (auto_offset) {
1034 		offset_a = 0x3ff;
1035 		offset_b = 0x3ff;
1036 		offset_c = 0x3ff;
1037 	}
1038 
1039 	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1040 			__func__, auto_offset ? "Auto" : "Manual",
1041 			offset_a, offset_b, offset_c);
1042 
1043 	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1044 	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1045 	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1046 	offset_buf[3] = offset_c & 0x0ff;
1047 
1048 	/* Registers must be written in this order with no i2c access in between */
1049 	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1050 			0x77, offset_buf, 4))
1051 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1052 }
1053 
1054 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1055 {
1056 	struct adv76xx_state *state = to_state(sd);
1057 	u8 gain_buf[4];
1058 	u8 gain_man = 1;
1059 	u8 agc_mode_man = 1;
1060 
1061 	if (auto_gain) {
1062 		gain_man = 0;
1063 		agc_mode_man = 0;
1064 		gain_a = 0x100;
1065 		gain_b = 0x100;
1066 		gain_c = 0x100;
1067 	}
1068 
1069 	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1070 			__func__, auto_gain ? "Auto" : "Manual",
1071 			gain_a, gain_b, gain_c);
1072 
1073 	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1074 	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1075 	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1076 	gain_buf[3] = ((gain_c & 0x0ff));
1077 
1078 	/* Registers must be written in this order with no i2c access in between */
1079 	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1080 			     0x73, gain_buf, 4))
1081 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1082 }
1083 
1084 static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1085 {
1086 	struct adv76xx_state *state = to_state(sd);
1087 	bool rgb_output = io_read(sd, 0x02) & 0x02;
1088 	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1089 
1090 	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1091 			__func__, state->rgb_quantization_range,
1092 			rgb_output, hdmi_signal);
1093 
1094 	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1095 	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1096 
1097 	switch (state->rgb_quantization_range) {
1098 	case V4L2_DV_RGB_RANGE_AUTO:
1099 		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1100 			/* Receiving analog RGB signal
1101 			 * Set RGB full range (0-255) */
1102 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1103 			break;
1104 		}
1105 
1106 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1107 			/* Receiving analog YPbPr signal
1108 			 * Set automode */
1109 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1110 			break;
1111 		}
1112 
1113 		if (hdmi_signal) {
1114 			/* Receiving HDMI signal
1115 			 * Set automode */
1116 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1117 			break;
1118 		}
1119 
1120 		/* Receiving DVI-D signal
1121 		 * ADV7604 selects RGB limited range regardless of
1122 		 * input format (CE/IT) in automatic mode */
1123 		if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1124 			/* RGB limited range (16-235) */
1125 			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1126 		} else {
1127 			/* RGB full range (0-255) */
1128 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1129 
1130 			if (is_digital_input(sd) && rgb_output) {
1131 				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1132 			} else {
1133 				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1134 				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1135 			}
1136 		}
1137 		break;
1138 	case V4L2_DV_RGB_RANGE_LIMITED:
1139 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1140 			/* YCrCb limited range (16-235) */
1141 			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1142 			break;
1143 		}
1144 
1145 		/* RGB limited range (16-235) */
1146 		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1147 
1148 		break;
1149 	case V4L2_DV_RGB_RANGE_FULL:
1150 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1151 			/* YCrCb full range (0-255) */
1152 			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1153 			break;
1154 		}
1155 
1156 		/* RGB full range (0-255) */
1157 		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1158 
1159 		if (is_analog_input(sd) || hdmi_signal)
1160 			break;
1161 
1162 		/* Adjust gain/offset for DVI-D signals only */
1163 		if (rgb_output) {
1164 			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1165 		} else {
1166 			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1167 			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1168 		}
1169 		break;
1170 	}
1171 }
1172 
1173 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1174 {
1175 	struct v4l2_subdev *sd =
1176 		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1177 
1178 	struct adv76xx_state *state = to_state(sd);
1179 
1180 	switch (ctrl->id) {
1181 	case V4L2_CID_BRIGHTNESS:
1182 		cp_write(sd, 0x3c, ctrl->val);
1183 		return 0;
1184 	case V4L2_CID_CONTRAST:
1185 		cp_write(sd, 0x3a, ctrl->val);
1186 		return 0;
1187 	case V4L2_CID_SATURATION:
1188 		cp_write(sd, 0x3b, ctrl->val);
1189 		return 0;
1190 	case V4L2_CID_HUE:
1191 		cp_write(sd, 0x3d, ctrl->val);
1192 		return 0;
1193 	case  V4L2_CID_DV_RX_RGB_RANGE:
1194 		state->rgb_quantization_range = ctrl->val;
1195 		set_rgb_quantization_range(sd);
1196 		return 0;
1197 	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1198 		if (!adv76xx_has_afe(state))
1199 			return -EINVAL;
1200 		/* Set the analog sampling phase. This is needed to find the
1201 		   best sampling phase for analog video: an application or
1202 		   driver has to try a number of phases and analyze the picture
1203 		   quality before settling on the best performing phase. */
1204 		afe_write(sd, 0xc8, ctrl->val);
1205 		return 0;
1206 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1207 		/* Use the default blue color for free running mode,
1208 		   or supply your own. */
1209 		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1210 		return 0;
1211 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1212 		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1213 		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1214 		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1215 		return 0;
1216 	}
1217 	return -EINVAL;
1218 }
1219 
1220 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1221 {
1222 	struct v4l2_subdev *sd =
1223 		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1224 
1225 	if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
1226 		ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
1227 		if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
1228 			ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
1229 		return 0;
1230 	}
1231 	return -EINVAL;
1232 }
1233 
1234 /* ----------------------------------------------------------------------- */
1235 
1236 static inline bool no_power(struct v4l2_subdev *sd)
1237 {
1238 	/* Entire chip or CP powered off */
1239 	return io_read(sd, 0x0c) & 0x24;
1240 }
1241 
1242 static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1243 {
1244 	struct adv76xx_state *state = to_state(sd);
1245 
1246 	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1247 }
1248 
1249 static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1250 {
1251 	struct adv76xx_state *state = to_state(sd);
1252 	const struct adv76xx_chip_info *info = state->info;
1253 
1254 	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1255 }
1256 
1257 static inline bool is_hdmi(struct v4l2_subdev *sd)
1258 {
1259 	return hdmi_read(sd, 0x05) & 0x80;
1260 }
1261 
1262 static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1263 {
1264 	struct adv76xx_state *state = to_state(sd);
1265 
1266 	/*
1267 	 * Chips without a AFE don't expose registers for the SSPD, so just assume
1268 	 * that we have a lock.
1269 	 */
1270 	if (adv76xx_has_afe(state))
1271 		return false;
1272 
1273 	/* TODO channel 2 */
1274 	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1275 }
1276 
1277 static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1278 {
1279 	/* TODO channel 2 */
1280 	return !(cp_read(sd, 0xb1) & 0x80);
1281 }
1282 
1283 static inline bool no_signal(struct v4l2_subdev *sd)
1284 {
1285 	bool ret;
1286 
1287 	ret = no_power(sd);
1288 
1289 	ret |= no_lock_stdi(sd);
1290 	ret |= no_lock_sspd(sd);
1291 
1292 	if (is_digital_input(sd)) {
1293 		ret |= no_lock_tmds(sd);
1294 		ret |= no_signal_tmds(sd);
1295 	}
1296 
1297 	return ret;
1298 }
1299 
1300 static inline bool no_lock_cp(struct v4l2_subdev *sd)
1301 {
1302 	struct adv76xx_state *state = to_state(sd);
1303 
1304 	if (!adv76xx_has_afe(state))
1305 		return false;
1306 
1307 	/* CP has detected a non standard number of lines on the incoming
1308 	   video compared to what it is configured to receive by s_dv_timings */
1309 	return io_read(sd, 0x12) & 0x01;
1310 }
1311 
1312 static inline bool in_free_run(struct v4l2_subdev *sd)
1313 {
1314 	return cp_read(sd, 0xff) & 0x10;
1315 }
1316 
1317 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1318 {
1319 	*status = 0;
1320 	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1321 	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1322 	if (!in_free_run(sd) && no_lock_cp(sd))
1323 		*status |= is_digital_input(sd) ?
1324 			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1325 
1326 	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1327 
1328 	return 0;
1329 }
1330 
1331 /* ----------------------------------------------------------------------- */
1332 
1333 struct stdi_readback {
1334 	u16 bl, lcf, lcvs;
1335 	u8 hs_pol, vs_pol;
1336 	bool interlaced;
1337 };
1338 
1339 static int stdi2dv_timings(struct v4l2_subdev *sd,
1340 		struct stdi_readback *stdi,
1341 		struct v4l2_dv_timings *timings)
1342 {
1343 	struct adv76xx_state *state = to_state(sd);
1344 	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1345 	u32 pix_clk;
1346 	int i;
1347 
1348 	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1349 		const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
1350 
1351 		if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1352 					   adv76xx_get_dv_timings_cap(sd, -1),
1353 					   adv76xx_check_dv_timings, NULL))
1354 			continue;
1355 		if (vtotal(bt) != stdi->lcf + 1)
1356 			continue;
1357 		if (bt->vsync != stdi->lcvs)
1358 			continue;
1359 
1360 		pix_clk = hfreq * htotal(bt);
1361 
1362 		if ((pix_clk < bt->pixelclock + 1000000) &&
1363 		    (pix_clk > bt->pixelclock - 1000000)) {
1364 			*timings = v4l2_dv_timings_presets[i];
1365 			return 0;
1366 		}
1367 	}
1368 
1369 	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1370 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1371 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1372 			false, timings))
1373 		return 0;
1374 	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1375 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1376 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1377 			false, state->aspect_ratio, timings))
1378 		return 0;
1379 
1380 	v4l2_dbg(2, debug, sd,
1381 		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1382 		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
1383 		stdi->hs_pol, stdi->vs_pol);
1384 	return -1;
1385 }
1386 
1387 
1388 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1389 {
1390 	struct adv76xx_state *state = to_state(sd);
1391 	const struct adv76xx_chip_info *info = state->info;
1392 	u8 polarity;
1393 
1394 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1395 		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1396 		return -1;
1397 	}
1398 
1399 	/* read STDI */
1400 	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1401 	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1402 	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1403 	stdi->interlaced = io_read(sd, 0x12) & 0x10;
1404 
1405 	if (adv76xx_has_afe(state)) {
1406 		/* read SSPD */
1407 		polarity = cp_read(sd, 0xb5);
1408 		if ((polarity & 0x03) == 0x01) {
1409 			stdi->hs_pol = polarity & 0x10
1410 				     ? (polarity & 0x08 ? '+' : '-') : 'x';
1411 			stdi->vs_pol = polarity & 0x40
1412 				     ? (polarity & 0x20 ? '+' : '-') : 'x';
1413 		} else {
1414 			stdi->hs_pol = 'x';
1415 			stdi->vs_pol = 'x';
1416 		}
1417 	} else {
1418 		polarity = hdmi_read(sd, 0x05);
1419 		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1420 		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1421 	}
1422 
1423 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1424 		v4l2_dbg(2, debug, sd,
1425 			"%s: signal lost during readout of STDI/SSPD\n", __func__);
1426 		return -1;
1427 	}
1428 
1429 	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1430 		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1431 		memset(stdi, 0, sizeof(struct stdi_readback));
1432 		return -1;
1433 	}
1434 
1435 	v4l2_dbg(2, debug, sd,
1436 		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1437 		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
1438 		stdi->hs_pol, stdi->vs_pol,
1439 		stdi->interlaced ? "interlaced" : "progressive");
1440 
1441 	return 0;
1442 }
1443 
1444 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1445 			struct v4l2_enum_dv_timings *timings)
1446 {
1447 	struct adv76xx_state *state = to_state(sd);
1448 
1449 	if (timings->pad >= state->source_pad)
1450 		return -EINVAL;
1451 
1452 	return v4l2_enum_dv_timings_cap(timings,
1453 		adv76xx_get_dv_timings_cap(sd, timings->pad),
1454 		adv76xx_check_dv_timings, NULL);
1455 }
1456 
1457 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1458 			struct v4l2_dv_timings_cap *cap)
1459 {
1460 	struct adv76xx_state *state = to_state(sd);
1461 	unsigned int pad = cap->pad;
1462 
1463 	if (cap->pad >= state->source_pad)
1464 		return -EINVAL;
1465 
1466 	*cap = *adv76xx_get_dv_timings_cap(sd, pad);
1467 	cap->pad = pad;
1468 
1469 	return 0;
1470 }
1471 
1472 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1473    if the format is listed in adv76xx_timings[] */
1474 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1475 		struct v4l2_dv_timings *timings)
1476 {
1477 	v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
1478 				 is_digital_input(sd) ? 250000 : 1000000,
1479 				 adv76xx_check_dv_timings, NULL);
1480 }
1481 
1482 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1483 {
1484 	unsigned int freq;
1485 	int a, b;
1486 
1487 	a = hdmi_read(sd, 0x06);
1488 	b = hdmi_read(sd, 0x3b);
1489 	if (a < 0 || b < 0)
1490 		return 0;
1491 	freq =  a * 1000000 + ((b & 0x30) >> 4) * 250000;
1492 
1493 	if (is_hdmi(sd)) {
1494 		/* adjust for deep color mode */
1495 		unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1496 
1497 		freq = freq * 8 / bits_per_channel;
1498 	}
1499 
1500 	return freq;
1501 }
1502 
1503 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1504 {
1505 	int a, b;
1506 
1507 	a = hdmi_read(sd, 0x51);
1508 	b = hdmi_read(sd, 0x52);
1509 	if (a < 0 || b < 0)
1510 		return 0;
1511 	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1512 }
1513 
1514 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1515 			struct v4l2_dv_timings *timings)
1516 {
1517 	struct adv76xx_state *state = to_state(sd);
1518 	const struct adv76xx_chip_info *info = state->info;
1519 	struct v4l2_bt_timings *bt = &timings->bt;
1520 	struct stdi_readback stdi;
1521 
1522 	if (!timings)
1523 		return -EINVAL;
1524 
1525 	memset(timings, 0, sizeof(struct v4l2_dv_timings));
1526 
1527 	if (no_signal(sd)) {
1528 		state->restart_stdi_once = true;
1529 		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1530 		return -ENOLINK;
1531 	}
1532 
1533 	/* read STDI */
1534 	if (read_stdi(sd, &stdi)) {
1535 		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1536 		return -ENOLINK;
1537 	}
1538 	bt->interlaced = stdi.interlaced ?
1539 		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1540 
1541 	if (is_digital_input(sd)) {
1542 		timings->type = V4L2_DV_BT_656_1120;
1543 
1544 		bt->width = hdmi_read16(sd, 0x07, info->linewidth_mask);
1545 		bt->height = hdmi_read16(sd, 0x09, info->field0_height_mask);
1546 		bt->pixelclock = info->read_hdmi_pixelclock(sd);
1547 		bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1548 		bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1549 		bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1550 		bt->vfrontporch = hdmi_read16(sd, 0x2a,
1551 			info->field0_vfrontporch_mask) / 2;
1552 		bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1553 		bt->vbackporch = hdmi_read16(sd, 0x32,
1554 			info->field0_vbackporch_mask) / 2;
1555 		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1556 			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1557 		if (bt->interlaced == V4L2_DV_INTERLACED) {
1558 			bt->height += hdmi_read16(sd, 0x0b,
1559 				info->field1_height_mask);
1560 			bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1561 				info->field1_vfrontporch_mask) / 2;
1562 			bt->il_vsync = hdmi_read16(sd, 0x30,
1563 				info->field1_vsync_mask) / 2;
1564 			bt->il_vbackporch = hdmi_read16(sd, 0x34,
1565 				info->field1_vbackporch_mask) / 2;
1566 		}
1567 		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1568 	} else {
1569 		/* find format
1570 		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1571 		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1572 		 */
1573 		if (!stdi2dv_timings(sd, &stdi, timings))
1574 			goto found;
1575 		stdi.lcvs += 1;
1576 		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1577 		if (!stdi2dv_timings(sd, &stdi, timings))
1578 			goto found;
1579 		stdi.lcvs -= 2;
1580 		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1581 		if (stdi2dv_timings(sd, &stdi, timings)) {
1582 			/*
1583 			 * The STDI block may measure wrong values, especially
1584 			 * for lcvs and lcf. If the driver can not find any
1585 			 * valid timing, the STDI block is restarted to measure
1586 			 * the video timings again. The function will return an
1587 			 * error, but the restart of STDI will generate a new
1588 			 * STDI interrupt and the format detection process will
1589 			 * restart.
1590 			 */
1591 			if (state->restart_stdi_once) {
1592 				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1593 				/* TODO restart STDI for Sync Channel 2 */
1594 				/* enter one-shot mode */
1595 				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1596 				/* trigger STDI restart */
1597 				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1598 				/* reset to continuous mode */
1599 				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1600 				state->restart_stdi_once = false;
1601 				return -ENOLINK;
1602 			}
1603 			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1604 			return -ERANGE;
1605 		}
1606 		state->restart_stdi_once = true;
1607 	}
1608 found:
1609 
1610 	if (no_signal(sd)) {
1611 		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1612 		memset(timings, 0, sizeof(struct v4l2_dv_timings));
1613 		return -ENOLINK;
1614 	}
1615 
1616 	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1617 			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1618 		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1619 				__func__, (u32)bt->pixelclock);
1620 		return -ERANGE;
1621 	}
1622 
1623 	if (debug > 1)
1624 		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1625 				      timings, true);
1626 
1627 	return 0;
1628 }
1629 
1630 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1631 		struct v4l2_dv_timings *timings)
1632 {
1633 	struct adv76xx_state *state = to_state(sd);
1634 	struct v4l2_bt_timings *bt;
1635 	int err;
1636 
1637 	if (!timings)
1638 		return -EINVAL;
1639 
1640 	if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1641 		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1642 		return 0;
1643 	}
1644 
1645 	bt = &timings->bt;
1646 
1647 	if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1648 				   adv76xx_check_dv_timings, NULL))
1649 		return -ERANGE;
1650 
1651 	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1652 
1653 	state->timings = *timings;
1654 
1655 	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1656 
1657 	/* Use prim_mode and vid_std when available */
1658 	err = configure_predefined_video_timings(sd, timings);
1659 	if (err) {
1660 		/* custom settings when the video format
1661 		 does not have prim_mode/vid_std */
1662 		configure_custom_video_timings(sd, bt);
1663 	}
1664 
1665 	set_rgb_quantization_range(sd);
1666 
1667 	if (debug > 1)
1668 		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1669 				      timings, true);
1670 	return 0;
1671 }
1672 
1673 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1674 		struct v4l2_dv_timings *timings)
1675 {
1676 	struct adv76xx_state *state = to_state(sd);
1677 
1678 	*timings = state->timings;
1679 	return 0;
1680 }
1681 
1682 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1683 {
1684 	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1685 }
1686 
1687 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1688 {
1689 	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1690 }
1691 
1692 static void enable_input(struct v4l2_subdev *sd)
1693 {
1694 	struct adv76xx_state *state = to_state(sd);
1695 
1696 	if (is_analog_input(sd)) {
1697 		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1698 	} else if (is_digital_input(sd)) {
1699 		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1700 		state->info->set_termination(sd, true);
1701 		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1702 		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1703 	} else {
1704 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1705 				__func__, state->selected_input);
1706 	}
1707 }
1708 
1709 static void disable_input(struct v4l2_subdev *sd)
1710 {
1711 	struct adv76xx_state *state = to_state(sd);
1712 
1713 	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1714 	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1715 	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1716 	state->info->set_termination(sd, false);
1717 }
1718 
1719 static void select_input(struct v4l2_subdev *sd)
1720 {
1721 	struct adv76xx_state *state = to_state(sd);
1722 	const struct adv76xx_chip_info *info = state->info;
1723 
1724 	if (is_analog_input(sd)) {
1725 		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1726 
1727 		afe_write(sd, 0x00, 0x08); /* power up ADC */
1728 		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1729 		afe_write(sd, 0xc8, 0x00); /* phase control */
1730 	} else if (is_digital_input(sd)) {
1731 		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1732 
1733 		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1734 
1735 		if (adv76xx_has_afe(state)) {
1736 			afe_write(sd, 0x00, 0xff); /* power down ADC */
1737 			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1738 			afe_write(sd, 0xc8, 0x40); /* phase control */
1739 		}
1740 
1741 		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1742 		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1743 		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1744 	} else {
1745 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1746 				__func__, state->selected_input);
1747 	}
1748 }
1749 
1750 static int adv76xx_s_routing(struct v4l2_subdev *sd,
1751 		u32 input, u32 output, u32 config)
1752 {
1753 	struct adv76xx_state *state = to_state(sd);
1754 
1755 	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1756 			__func__, input, state->selected_input);
1757 
1758 	if (input == state->selected_input)
1759 		return 0;
1760 
1761 	if (input > state->info->max_port)
1762 		return -EINVAL;
1763 
1764 	state->selected_input = input;
1765 
1766 	disable_input(sd);
1767 	select_input(sd);
1768 	enable_input(sd);
1769 
1770 	v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1771 
1772 	return 0;
1773 }
1774 
1775 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1776 				  struct v4l2_subdev_pad_config *cfg,
1777 				  struct v4l2_subdev_mbus_code_enum *code)
1778 {
1779 	struct adv76xx_state *state = to_state(sd);
1780 
1781 	if (code->index >= state->info->nformats)
1782 		return -EINVAL;
1783 
1784 	code->code = state->info->formats[code->index].code;
1785 
1786 	return 0;
1787 }
1788 
1789 static void adv76xx_fill_format(struct adv76xx_state *state,
1790 				struct v4l2_mbus_framefmt *format)
1791 {
1792 	memset(format, 0, sizeof(*format));
1793 
1794 	format->width = state->timings.bt.width;
1795 	format->height = state->timings.bt.height;
1796 	format->field = V4L2_FIELD_NONE;
1797 	format->colorspace = V4L2_COLORSPACE_SRGB;
1798 
1799 	if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1800 		format->colorspace = (state->timings.bt.height <= 576) ?
1801 			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1802 }
1803 
1804 /*
1805  * Compute the op_ch_sel value required to obtain on the bus the component order
1806  * corresponding to the selected format taking into account bus reordering
1807  * applied by the board at the output of the device.
1808  *
1809  * The following table gives the op_ch_value from the format component order
1810  * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1811  * adv76xx_bus_order value in row).
1812  *
1813  *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
1814  * ----------+-------------------------------------------------
1815  * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
1816  * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
1817  * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
1818  * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
1819  * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
1820  * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
1821  */
1822 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1823 {
1824 #define _SEL(a,b,c,d,e,f)	{ \
1825 	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1826 	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1827 #define _BUS(x)			[ADV7604_BUS_ORDER_##x]
1828 
1829 	static const unsigned int op_ch_sel[6][6] = {
1830 		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1831 		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1832 		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1833 		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1834 		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1835 		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1836 	};
1837 
1838 	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1839 }
1840 
1841 static void adv76xx_setup_format(struct adv76xx_state *state)
1842 {
1843 	struct v4l2_subdev *sd = &state->sd;
1844 
1845 	io_write_clr_set(sd, 0x02, 0x02,
1846 			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1847 	io_write(sd, 0x03, state->format->op_format_sel |
1848 		 state->pdata.op_format_mode_sel);
1849 	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1850 	io_write_clr_set(sd, 0x05, 0x01,
1851 			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1852 }
1853 
1854 static int adv76xx_get_format(struct v4l2_subdev *sd,
1855 			      struct v4l2_subdev_pad_config *cfg,
1856 			      struct v4l2_subdev_format *format)
1857 {
1858 	struct adv76xx_state *state = to_state(sd);
1859 
1860 	if (format->pad != state->source_pad)
1861 		return -EINVAL;
1862 
1863 	adv76xx_fill_format(state, &format->format);
1864 
1865 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1866 		struct v4l2_mbus_framefmt *fmt;
1867 
1868 		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1869 		format->format.code = fmt->code;
1870 	} else {
1871 		format->format.code = state->format->code;
1872 	}
1873 
1874 	return 0;
1875 }
1876 
1877 static int adv76xx_get_selection(struct v4l2_subdev *sd,
1878 				 struct v4l2_subdev_pad_config *cfg,
1879 				 struct v4l2_subdev_selection *sel)
1880 {
1881 	struct adv76xx_state *state = to_state(sd);
1882 
1883 	if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1884 		return -EINVAL;
1885 	/* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1886 	if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
1887 		return -EINVAL;
1888 
1889 	sel->r.left	= 0;
1890 	sel->r.top	= 0;
1891 	sel->r.width	= state->timings.bt.width;
1892 	sel->r.height	= state->timings.bt.height;
1893 
1894 	return 0;
1895 }
1896 
1897 static int adv76xx_set_format(struct v4l2_subdev *sd,
1898 			      struct v4l2_subdev_pad_config *cfg,
1899 			      struct v4l2_subdev_format *format)
1900 {
1901 	struct adv76xx_state *state = to_state(sd);
1902 	const struct adv76xx_format_info *info;
1903 
1904 	if (format->pad != state->source_pad)
1905 		return -EINVAL;
1906 
1907 	info = adv76xx_format_info(state, format->format.code);
1908 	if (info == NULL)
1909 		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1910 
1911 	adv76xx_fill_format(state, &format->format);
1912 	format->format.code = info->code;
1913 
1914 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1915 		struct v4l2_mbus_framefmt *fmt;
1916 
1917 		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1918 		fmt->code = format->format.code;
1919 	} else {
1920 		state->format = info;
1921 		adv76xx_setup_format(state);
1922 	}
1923 
1924 	return 0;
1925 }
1926 
1927 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
1928 {
1929 	struct adv76xx_state *state = to_state(sd);
1930 	const struct adv76xx_chip_info *info = state->info;
1931 	const u8 irq_reg_0x43 = io_read(sd, 0x43);
1932 	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
1933 	const u8 irq_reg_0x70 = io_read(sd, 0x70);
1934 	u8 fmt_change_digital;
1935 	u8 fmt_change;
1936 	u8 tx_5v;
1937 
1938 	if (irq_reg_0x43)
1939 		io_write(sd, 0x44, irq_reg_0x43);
1940 	if (irq_reg_0x70)
1941 		io_write(sd, 0x71, irq_reg_0x70);
1942 	if (irq_reg_0x6b)
1943 		io_write(sd, 0x6c, irq_reg_0x6b);
1944 
1945 	v4l2_dbg(2, debug, sd, "%s: ", __func__);
1946 
1947 	/* format change */
1948 	fmt_change = irq_reg_0x43 & 0x98;
1949 	fmt_change_digital = is_digital_input(sd)
1950 			   ? irq_reg_0x6b & info->fmt_change_digital_mask
1951 			   : 0;
1952 
1953 	if (fmt_change || fmt_change_digital) {
1954 		v4l2_dbg(1, debug, sd,
1955 			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
1956 			__func__, fmt_change, fmt_change_digital);
1957 
1958 		v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1959 
1960 		if (handled)
1961 			*handled = true;
1962 	}
1963 	/* HDMI/DVI mode */
1964 	if (irq_reg_0x6b & 0x01) {
1965 		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
1966 			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
1967 		set_rgb_quantization_range(sd);
1968 		if (handled)
1969 			*handled = true;
1970 	}
1971 
1972 	/* tx 5v detect */
1973 	tx_5v = irq_reg_0x70 & info->cable_det_mask;
1974 	if (tx_5v) {
1975 		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
1976 		adv76xx_s_detect_tx_5v_ctrl(sd);
1977 		if (handled)
1978 			*handled = true;
1979 	}
1980 	return 0;
1981 }
1982 
1983 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1984 {
1985 	struct adv76xx_state *state = to_state(sd);
1986 	u8 *data = NULL;
1987 
1988 	memset(edid->reserved, 0, sizeof(edid->reserved));
1989 
1990 	switch (edid->pad) {
1991 	case ADV76XX_PAD_HDMI_PORT_A:
1992 	case ADV7604_PAD_HDMI_PORT_B:
1993 	case ADV7604_PAD_HDMI_PORT_C:
1994 	case ADV7604_PAD_HDMI_PORT_D:
1995 		if (state->edid.present & (1 << edid->pad))
1996 			data = state->edid.edid;
1997 		break;
1998 	default:
1999 		return -EINVAL;
2000 	}
2001 
2002 	if (edid->start_block == 0 && edid->blocks == 0) {
2003 		edid->blocks = data ? state->edid.blocks : 0;
2004 		return 0;
2005 	}
2006 
2007 	if (data == NULL)
2008 		return -ENODATA;
2009 
2010 	if (edid->start_block >= state->edid.blocks)
2011 		return -EINVAL;
2012 
2013 	if (edid->start_block + edid->blocks > state->edid.blocks)
2014 		edid->blocks = state->edid.blocks - edid->start_block;
2015 
2016 	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2017 
2018 	return 0;
2019 }
2020 
2021 static int get_edid_spa_location(const u8 *edid)
2022 {
2023 	u8 d;
2024 
2025 	if ((edid[0x7e] != 1) ||
2026 	    (edid[0x80] != 0x02) ||
2027 	    (edid[0x81] != 0x03)) {
2028 		return -1;
2029 	}
2030 
2031 	/* search Vendor Specific Data Block (tag 3) */
2032 	d = edid[0x82] & 0x7f;
2033 	if (d > 4) {
2034 		int i = 0x84;
2035 		int end = 0x80 + d;
2036 
2037 		do {
2038 			u8 tag = edid[i] >> 5;
2039 			u8 len = edid[i] & 0x1f;
2040 
2041 			if ((tag == 3) && (len >= 5))
2042 				return i + 4;
2043 			i += len + 1;
2044 		} while (i < end);
2045 	}
2046 	return -1;
2047 }
2048 
2049 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2050 {
2051 	struct adv76xx_state *state = to_state(sd);
2052 	const struct adv76xx_chip_info *info = state->info;
2053 	int spa_loc;
2054 	int err;
2055 	int i;
2056 
2057 	memset(edid->reserved, 0, sizeof(edid->reserved));
2058 
2059 	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2060 		return -EINVAL;
2061 	if (edid->start_block != 0)
2062 		return -EINVAL;
2063 	if (edid->blocks == 0) {
2064 		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2065 		state->edid.present &= ~(1 << edid->pad);
2066 		adv76xx_set_hpd(state, state->edid.present);
2067 		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2068 
2069 		/* Fall back to a 16:9 aspect ratio */
2070 		state->aspect_ratio.numerator = 16;
2071 		state->aspect_ratio.denominator = 9;
2072 
2073 		if (!state->edid.present)
2074 			state->edid.blocks = 0;
2075 
2076 		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2077 				__func__, edid->pad, state->edid.present);
2078 		return 0;
2079 	}
2080 	if (edid->blocks > 2) {
2081 		edid->blocks = 2;
2082 		return -E2BIG;
2083 	}
2084 
2085 	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2086 			__func__, edid->pad, state->edid.present);
2087 
2088 	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2089 	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2090 	adv76xx_set_hpd(state, 0);
2091 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2092 
2093 	spa_loc = get_edid_spa_location(edid->edid);
2094 	if (spa_loc < 0)
2095 		spa_loc = 0xc0; /* Default value [REF_02, p. 116] */
2096 
2097 	switch (edid->pad) {
2098 	case ADV76XX_PAD_HDMI_PORT_A:
2099 		state->spa_port_a[0] = edid->edid[spa_loc];
2100 		state->spa_port_a[1] = edid->edid[spa_loc + 1];
2101 		break;
2102 	case ADV7604_PAD_HDMI_PORT_B:
2103 		rep_write(sd, 0x70, edid->edid[spa_loc]);
2104 		rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2105 		break;
2106 	case ADV7604_PAD_HDMI_PORT_C:
2107 		rep_write(sd, 0x72, edid->edid[spa_loc]);
2108 		rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2109 		break;
2110 	case ADV7604_PAD_HDMI_PORT_D:
2111 		rep_write(sd, 0x74, edid->edid[spa_loc]);
2112 		rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2113 		break;
2114 	default:
2115 		return -EINVAL;
2116 	}
2117 
2118 	if (info->type == ADV7604) {
2119 		rep_write(sd, 0x76, spa_loc & 0xff);
2120 		rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2121 	} else {
2122 		/* ADV7612 Software Manual Rev. A, p. 15 */
2123 		rep_write(sd, 0x70, spa_loc & 0xff);
2124 		rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2125 	}
2126 
2127 	edid->edid[spa_loc] = state->spa_port_a[0];
2128 	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2129 
2130 	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2131 	state->edid.blocks = edid->blocks;
2132 	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2133 			edid->edid[0x16]);
2134 	state->edid.present |= 1 << edid->pad;
2135 
2136 	err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
2137 	if (err < 0) {
2138 		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2139 		return err;
2140 	}
2141 
2142 	/* adv76xx calculates the checksums and enables I2C access to internal
2143 	   EDID RAM from DDC port. */
2144 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2145 
2146 	for (i = 0; i < 1000; i++) {
2147 		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2148 			break;
2149 		mdelay(1);
2150 	}
2151 	if (i == 1000) {
2152 		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2153 		return -EIO;
2154 	}
2155 
2156 	/* enable hotplug after 100 ms */
2157 	queue_delayed_work(state->work_queues,
2158 			&state->delayed_work_enable_hotplug, HZ / 10);
2159 	return 0;
2160 }
2161 
2162 /*********** avi info frame CEA-861-E **************/
2163 
2164 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2165 	{ "AVI", 0x01, 0xe0, 0x00 },
2166 	{ "Audio", 0x02, 0xe3, 0x1c },
2167 	{ "SDP", 0x04, 0xe6, 0x2a },
2168 	{ "Vendor", 0x10, 0xec, 0x54 }
2169 };
2170 
2171 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2172 				  union hdmi_infoframe *frame)
2173 {
2174 	uint8_t buffer[32];
2175 	u8 len;
2176 	int i;
2177 
2178 	if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2179 		v4l2_info(sd, "%s infoframe not received\n",
2180 			  adv76xx_cri[index].desc);
2181 		return -ENOENT;
2182 	}
2183 
2184 	for (i = 0; i < 3; i++)
2185 		buffer[i] = infoframe_read(sd,
2186 					   adv76xx_cri[index].head_addr + i);
2187 
2188 	len = buffer[2] + 1;
2189 
2190 	if (len + 3 > sizeof(buffer)) {
2191 		v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2192 			 adv76xx_cri[index].desc, len);
2193 		return -ENOENT;
2194 	}
2195 
2196 	for (i = 0; i < len; i++)
2197 		buffer[i + 3] = infoframe_read(sd,
2198 				       adv76xx_cri[index].payload_addr + i);
2199 
2200 	if (hdmi_infoframe_unpack(frame, buffer) < 0) {
2201 		v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2202 			 adv76xx_cri[index].desc);
2203 		return -ENOENT;
2204 	}
2205 	return 0;
2206 }
2207 
2208 static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2209 {
2210 	int i;
2211 
2212 	if (!is_hdmi(sd)) {
2213 		v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2214 		return;
2215 	}
2216 
2217 	for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2218 		union hdmi_infoframe frame;
2219 		struct i2c_client *client = v4l2_get_subdevdata(sd);
2220 
2221 		if (adv76xx_read_infoframe(sd, i, &frame))
2222 			return;
2223 		hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2224 	}
2225 }
2226 
2227 static int adv76xx_log_status(struct v4l2_subdev *sd)
2228 {
2229 	struct adv76xx_state *state = to_state(sd);
2230 	const struct adv76xx_chip_info *info = state->info;
2231 	struct v4l2_dv_timings timings;
2232 	struct stdi_readback stdi;
2233 	u8 reg_io_0x02 = io_read(sd, 0x02);
2234 	u8 edid_enabled;
2235 	u8 cable_det;
2236 
2237 	static const char * const csc_coeff_sel_rb[16] = {
2238 		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2239 		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2240 		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2241 		"reserved", "reserved", "reserved", "reserved", "manual"
2242 	};
2243 	static const char * const input_color_space_txt[16] = {
2244 		"RGB limited range (16-235)", "RGB full range (0-255)",
2245 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2246 		"xvYCC Bt.601", "xvYCC Bt.709",
2247 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2248 		"invalid", "invalid", "invalid", "invalid", "invalid",
2249 		"invalid", "invalid", "automatic"
2250 	};
2251 	static const char * const hdmi_color_space_txt[16] = {
2252 		"RGB limited range (16-235)", "RGB full range (0-255)",
2253 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2254 		"xvYCC Bt.601", "xvYCC Bt.709",
2255 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2256 		"sYCC", "Adobe YCC 601", "AdobeRGB", "invalid", "invalid",
2257 		"invalid", "invalid", "invalid"
2258 	};
2259 	static const char * const rgb_quantization_range_txt[] = {
2260 		"Automatic",
2261 		"RGB limited range (16-235)",
2262 		"RGB full range (0-255)",
2263 	};
2264 	static const char * const deep_color_mode_txt[4] = {
2265 		"8-bits per channel",
2266 		"10-bits per channel",
2267 		"12-bits per channel",
2268 		"16-bits per channel (not supported)"
2269 	};
2270 
2271 	v4l2_info(sd, "-----Chip status-----\n");
2272 	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2273 	edid_enabled = rep_read(sd, info->edid_status_reg);
2274 	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2275 			((edid_enabled & 0x01) ? "Yes" : "No"),
2276 			((edid_enabled & 0x02) ? "Yes" : "No"),
2277 			((edid_enabled & 0x04) ? "Yes" : "No"),
2278 			((edid_enabled & 0x08) ? "Yes" : "No"));
2279 	v4l2_info(sd, "CEC: %s\n", !!(cec_read(sd, 0x2a) & 0x01) ?
2280 			"enabled" : "disabled");
2281 
2282 	v4l2_info(sd, "-----Signal status-----\n");
2283 	cable_det = info->read_cable_det(sd);
2284 	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2285 			((cable_det & 0x01) ? "Yes" : "No"),
2286 			((cable_det & 0x02) ? "Yes" : "No"),
2287 			((cable_det & 0x04) ? "Yes" : "No"),
2288 			((cable_det & 0x08) ? "Yes" : "No"));
2289 	v4l2_info(sd, "TMDS signal detected: %s\n",
2290 			no_signal_tmds(sd) ? "false" : "true");
2291 	v4l2_info(sd, "TMDS signal locked: %s\n",
2292 			no_lock_tmds(sd) ? "false" : "true");
2293 	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2294 	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2295 	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2296 	v4l2_info(sd, "CP free run: %s\n",
2297 			(in_free_run(sd)) ? "on" : "off");
2298 	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2299 			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2300 			(io_read(sd, 0x01) & 0x70) >> 4);
2301 
2302 	v4l2_info(sd, "-----Video Timings-----\n");
2303 	if (read_stdi(sd, &stdi))
2304 		v4l2_info(sd, "STDI: not locked\n");
2305 	else
2306 		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2307 				stdi.lcf, stdi.bl, stdi.lcvs,
2308 				stdi.interlaced ? "interlaced" : "progressive",
2309 				stdi.hs_pol, stdi.vs_pol);
2310 	if (adv76xx_query_dv_timings(sd, &timings))
2311 		v4l2_info(sd, "No video detected\n");
2312 	else
2313 		v4l2_print_dv_timings(sd->name, "Detected format: ",
2314 				      &timings, true);
2315 	v4l2_print_dv_timings(sd->name, "Configured format: ",
2316 			      &state->timings, true);
2317 
2318 	if (no_signal(sd))
2319 		return 0;
2320 
2321 	v4l2_info(sd, "-----Color space-----\n");
2322 	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2323 			rgb_quantization_range_txt[state->rgb_quantization_range]);
2324 	v4l2_info(sd, "Input color space: %s\n",
2325 			input_color_space_txt[reg_io_0x02 >> 4]);
2326 	v4l2_info(sd, "Output color space: %s %s, saturator %s, alt-gamma %s\n",
2327 			(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2328 			(reg_io_0x02 & 0x04) ? "(16-235)" : "(0-255)",
2329 			(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2330 				"enabled" : "disabled",
2331 			(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2332 	v4l2_info(sd, "Color space conversion: %s\n",
2333 			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2334 
2335 	if (!is_digital_input(sd))
2336 		return 0;
2337 
2338 	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2339 	v4l2_info(sd, "Digital video port selected: %c\n",
2340 			(hdmi_read(sd, 0x00) & 0x03) + 'A');
2341 	v4l2_info(sd, "HDCP encrypted content: %s\n",
2342 			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2343 	v4l2_info(sd, "HDCP keys read: %s%s\n",
2344 			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2345 			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2346 	if (is_hdmi(sd)) {
2347 		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2348 		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2349 		bool audio_mute = io_read(sd, 0x65) & 0x40;
2350 
2351 		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2352 				audio_pll_locked ? "locked" : "not locked",
2353 				audio_sample_packet_detect ? "detected" : "not detected",
2354 				audio_mute ? "muted" : "enabled");
2355 		if (audio_pll_locked && audio_sample_packet_detect) {
2356 			v4l2_info(sd, "Audio format: %s\n",
2357 					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2358 		}
2359 		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2360 				(hdmi_read(sd, 0x5c) << 8) +
2361 				(hdmi_read(sd, 0x5d) & 0xf0));
2362 		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2363 				(hdmi_read(sd, 0x5e) << 8) +
2364 				hdmi_read(sd, 0x5f));
2365 		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2366 
2367 		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2368 		v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2369 
2370 		adv76xx_log_infoframes(sd);
2371 	}
2372 
2373 	return 0;
2374 }
2375 
2376 static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2377 				   struct v4l2_fh *fh,
2378 				   struct v4l2_event_subscription *sub)
2379 {
2380 	switch (sub->type) {
2381 	case V4L2_EVENT_SOURCE_CHANGE:
2382 		return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2383 	case V4L2_EVENT_CTRL:
2384 		return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2385 	default:
2386 		return -EINVAL;
2387 	}
2388 }
2389 
2390 /* ----------------------------------------------------------------------- */
2391 
2392 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2393 	.s_ctrl = adv76xx_s_ctrl,
2394 	.g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2395 };
2396 
2397 static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2398 	.log_status = adv76xx_log_status,
2399 	.interrupt_service_routine = adv76xx_isr,
2400 	.subscribe_event = adv76xx_subscribe_event,
2401 	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2402 #ifdef CONFIG_VIDEO_ADV_DEBUG
2403 	.g_register = adv76xx_g_register,
2404 	.s_register = adv76xx_s_register,
2405 #endif
2406 };
2407 
2408 static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2409 	.s_routing = adv76xx_s_routing,
2410 	.g_input_status = adv76xx_g_input_status,
2411 	.s_dv_timings = adv76xx_s_dv_timings,
2412 	.g_dv_timings = adv76xx_g_dv_timings,
2413 	.query_dv_timings = adv76xx_query_dv_timings,
2414 };
2415 
2416 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2417 	.enum_mbus_code = adv76xx_enum_mbus_code,
2418 	.get_selection = adv76xx_get_selection,
2419 	.get_fmt = adv76xx_get_format,
2420 	.set_fmt = adv76xx_set_format,
2421 	.get_edid = adv76xx_get_edid,
2422 	.set_edid = adv76xx_set_edid,
2423 	.dv_timings_cap = adv76xx_dv_timings_cap,
2424 	.enum_dv_timings = adv76xx_enum_dv_timings,
2425 };
2426 
2427 static const struct v4l2_subdev_ops adv76xx_ops = {
2428 	.core = &adv76xx_core_ops,
2429 	.video = &adv76xx_video_ops,
2430 	.pad = &adv76xx_pad_ops,
2431 };
2432 
2433 /* -------------------------- custom ctrls ---------------------------------- */
2434 
2435 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2436 	.ops = &adv76xx_ctrl_ops,
2437 	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2438 	.name = "Analog Sampling Phase",
2439 	.type = V4L2_CTRL_TYPE_INTEGER,
2440 	.min = 0,
2441 	.max = 0x1f,
2442 	.step = 1,
2443 	.def = 0,
2444 };
2445 
2446 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2447 	.ops = &adv76xx_ctrl_ops,
2448 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2449 	.name = "Free Running Color, Manual",
2450 	.type = V4L2_CTRL_TYPE_BOOLEAN,
2451 	.min = false,
2452 	.max = true,
2453 	.step = 1,
2454 	.def = false,
2455 };
2456 
2457 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2458 	.ops = &adv76xx_ctrl_ops,
2459 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2460 	.name = "Free Running Color",
2461 	.type = V4L2_CTRL_TYPE_INTEGER,
2462 	.min = 0x0,
2463 	.max = 0xffffff,
2464 	.step = 0x1,
2465 	.def = 0x0,
2466 };
2467 
2468 /* ----------------------------------------------------------------------- */
2469 
2470 static int adv76xx_core_init(struct v4l2_subdev *sd)
2471 {
2472 	struct adv76xx_state *state = to_state(sd);
2473 	const struct adv76xx_chip_info *info = state->info;
2474 	struct adv76xx_platform_data *pdata = &state->pdata;
2475 
2476 	hdmi_write(sd, 0x48,
2477 		(pdata->disable_pwrdnb ? 0x80 : 0) |
2478 		(pdata->disable_cable_det_rst ? 0x40 : 0));
2479 
2480 	disable_input(sd);
2481 
2482 	if (pdata->default_input >= 0 &&
2483 	    pdata->default_input < state->source_pad) {
2484 		state->selected_input = pdata->default_input;
2485 		select_input(sd);
2486 		enable_input(sd);
2487 	}
2488 
2489 	/* power */
2490 	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
2491 	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
2492 	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */
2493 
2494 	/* video format */
2495 	io_write_clr_set(sd, 0x02, 0x0f,
2496 			pdata->alt_gamma << 3 |
2497 			pdata->op_656_range << 2 |
2498 			pdata->alt_data_sat << 0);
2499 	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2500 			pdata->insert_av_codes << 2 |
2501 			pdata->replicate_av_codes << 1);
2502 	adv76xx_setup_format(state);
2503 
2504 	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2505 
2506 	/* VS, HS polarities */
2507 	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2508 		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2509 
2510 	/* Adjust drive strength */
2511 	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2512 				pdata->dr_str_clk << 2 |
2513 				pdata->dr_str_sync);
2514 
2515 	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2516 	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2517 	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
2518 				      ADI recommended setting [REF_01, c. 2.3.3] */
2519 	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
2520 				      ADI recommended setting [REF_01, c. 2.3.3] */
2521 	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2522 				     for digital formats */
2523 
2524 	/* HDMI audio */
2525 	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2526 	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2527 	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2528 
2529 	/* TODO from platform data */
2530 	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */
2531 
2532 	if (adv76xx_has_afe(state)) {
2533 		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2534 		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2535 	}
2536 
2537 	/* interrupts */
2538 	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2539 	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2540 	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2541 	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2542 	info->setup_irqs(sd);
2543 
2544 	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2545 }
2546 
2547 static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2548 {
2549 	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2550 }
2551 
2552 static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2553 {
2554 	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2555 }
2556 
2557 static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2558 {
2559 	io_write(sd, 0x41, 0xd0); /* disable INT2 */
2560 }
2561 
2562 static void adv76xx_unregister_clients(struct adv76xx_state *state)
2563 {
2564 	unsigned int i;
2565 
2566 	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) {
2567 		if (state->i2c_clients[i])
2568 			i2c_unregister_device(state->i2c_clients[i]);
2569 	}
2570 }
2571 
2572 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2573 							u8 addr, u8 io_reg)
2574 {
2575 	struct i2c_client *client = v4l2_get_subdevdata(sd);
2576 
2577 	if (addr)
2578 		io_write(sd, io_reg, addr << 1);
2579 	return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1);
2580 }
2581 
2582 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2583 	/* reset ADI recommended settings for HDMI: */
2584 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2585 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2586 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2587 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2588 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2589 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2590 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2591 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2592 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2593 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2594 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2595 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2596 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2597 
2598 	/* set ADI recommended settings for digitizer */
2599 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2600 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2601 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2602 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2603 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2604 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2605 
2606 	{ ADV76XX_REG_SEQ_TERM, 0 },
2607 };
2608 
2609 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2610 	/* set ADI recommended settings for HDMI: */
2611 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2612 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2613 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2614 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2615 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2616 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2617 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2618 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2619 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2620 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2621 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2622 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2623 
2624 	/* reset ADI recommended settings for digitizer */
2625 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2626 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2627 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2628 
2629 	{ ADV76XX_REG_SEQ_TERM, 0 },
2630 };
2631 
2632 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2633 	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2634 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2635 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2636 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2637 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2638 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2639 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2640 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2641 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2642 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2643 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
2644 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
2645 
2646 	{ ADV76XX_REG_SEQ_TERM, 0 },
2647 };
2648 
2649 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
2650 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2651 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2652 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2653 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2654 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2655 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2656 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2657 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2658 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2659 	{ ADV76XX_REG_SEQ_TERM, 0 },
2660 };
2661 
2662 static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2663 	[ADV7604] = {
2664 		.type = ADV7604,
2665 		.has_afe = true,
2666 		.max_port = ADV7604_PAD_VGA_COMP,
2667 		.num_dv_ports = 4,
2668 		.edid_enable_reg = 0x77,
2669 		.edid_status_reg = 0x7d,
2670 		.lcf_reg = 0xb3,
2671 		.tdms_lock_mask = 0xe0,
2672 		.cable_det_mask = 0x1e,
2673 		.fmt_change_digital_mask = 0xc1,
2674 		.cp_csc = 0xfc,
2675 		.formats = adv7604_formats,
2676 		.nformats = ARRAY_SIZE(adv7604_formats),
2677 		.set_termination = adv7604_set_termination,
2678 		.setup_irqs = adv7604_setup_irqs,
2679 		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
2680 		.read_cable_det = adv7604_read_cable_det,
2681 		.recommended_settings = {
2682 		    [0] = adv7604_recommended_settings_afe,
2683 		    [1] = adv7604_recommended_settings_hdmi,
2684 		},
2685 		.num_recommended_settings = {
2686 		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
2687 		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
2688 		},
2689 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
2690 			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
2691 			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
2692 			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
2693 			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
2694 			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
2695 			BIT(ADV7604_PAGE_VDP),
2696 		.linewidth_mask = 0xfff,
2697 		.field0_height_mask = 0xfff,
2698 		.field1_height_mask = 0xfff,
2699 		.hfrontporch_mask = 0x3ff,
2700 		.hsync_mask = 0x3ff,
2701 		.hbackporch_mask = 0x3ff,
2702 		.field0_vfrontporch_mask = 0x1fff,
2703 		.field0_vsync_mask = 0x1fff,
2704 		.field0_vbackporch_mask = 0x1fff,
2705 		.field1_vfrontporch_mask = 0x1fff,
2706 		.field1_vsync_mask = 0x1fff,
2707 		.field1_vbackporch_mask = 0x1fff,
2708 	},
2709 	[ADV7611] = {
2710 		.type = ADV7611,
2711 		.has_afe = false,
2712 		.max_port = ADV76XX_PAD_HDMI_PORT_A,
2713 		.num_dv_ports = 1,
2714 		.edid_enable_reg = 0x74,
2715 		.edid_status_reg = 0x76,
2716 		.lcf_reg = 0xa3,
2717 		.tdms_lock_mask = 0x43,
2718 		.cable_det_mask = 0x01,
2719 		.fmt_change_digital_mask = 0x03,
2720 		.cp_csc = 0xf4,
2721 		.formats = adv7611_formats,
2722 		.nformats = ARRAY_SIZE(adv7611_formats),
2723 		.set_termination = adv7611_set_termination,
2724 		.setup_irqs = adv7611_setup_irqs,
2725 		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
2726 		.read_cable_det = adv7611_read_cable_det,
2727 		.recommended_settings = {
2728 		    [1] = adv7611_recommended_settings_hdmi,
2729 		},
2730 		.num_recommended_settings = {
2731 		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
2732 		},
2733 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
2734 			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
2735 			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
2736 			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
2737 		.linewidth_mask = 0x1fff,
2738 		.field0_height_mask = 0x1fff,
2739 		.field1_height_mask = 0x1fff,
2740 		.hfrontporch_mask = 0x1fff,
2741 		.hsync_mask = 0x1fff,
2742 		.hbackporch_mask = 0x1fff,
2743 		.field0_vfrontporch_mask = 0x3fff,
2744 		.field0_vsync_mask = 0x3fff,
2745 		.field0_vbackporch_mask = 0x3fff,
2746 		.field1_vfrontporch_mask = 0x3fff,
2747 		.field1_vsync_mask = 0x3fff,
2748 		.field1_vbackporch_mask = 0x3fff,
2749 	},
2750 	[ADV7612] = {
2751 		.type = ADV7612,
2752 		.has_afe = false,
2753 		.max_port = ADV76XX_PAD_HDMI_PORT_A,	/* B not supported */
2754 		.num_dv_ports = 1,			/* normally 2 */
2755 		.edid_enable_reg = 0x74,
2756 		.edid_status_reg = 0x76,
2757 		.lcf_reg = 0xa3,
2758 		.tdms_lock_mask = 0x43,
2759 		.cable_det_mask = 0x01,
2760 		.fmt_change_digital_mask = 0x03,
2761 		.cp_csc = 0xf4,
2762 		.formats = adv7612_formats,
2763 		.nformats = ARRAY_SIZE(adv7612_formats),
2764 		.set_termination = adv7611_set_termination,
2765 		.setup_irqs = adv7612_setup_irqs,
2766 		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
2767 		.read_cable_det = adv7612_read_cable_det,
2768 		.recommended_settings = {
2769 		    [1] = adv7612_recommended_settings_hdmi,
2770 		},
2771 		.num_recommended_settings = {
2772 		    [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
2773 		},
2774 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
2775 			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
2776 			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
2777 			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
2778 		.linewidth_mask = 0x1fff,
2779 		.field0_height_mask = 0x1fff,
2780 		.field1_height_mask = 0x1fff,
2781 		.hfrontporch_mask = 0x1fff,
2782 		.hsync_mask = 0x1fff,
2783 		.hbackporch_mask = 0x1fff,
2784 		.field0_vfrontporch_mask = 0x3fff,
2785 		.field0_vsync_mask = 0x3fff,
2786 		.field0_vbackporch_mask = 0x3fff,
2787 		.field1_vfrontporch_mask = 0x3fff,
2788 		.field1_vsync_mask = 0x3fff,
2789 		.field1_vbackporch_mask = 0x3fff,
2790 	},
2791 };
2792 
2793 static const struct i2c_device_id adv76xx_i2c_id[] = {
2794 	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
2795 	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
2796 	{ "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
2797 	{ }
2798 };
2799 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
2800 
2801 static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
2802 	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
2803 	{ .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
2804 	{ }
2805 };
2806 MODULE_DEVICE_TABLE(of, adv76xx_of_id);
2807 
2808 static int adv76xx_parse_dt(struct adv76xx_state *state)
2809 {
2810 	struct v4l2_of_endpoint bus_cfg;
2811 	struct device_node *endpoint;
2812 	struct device_node *np;
2813 	unsigned int flags;
2814 	int ret;
2815 	u32 v;
2816 
2817 	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
2818 
2819 	/* Parse the endpoint. */
2820 	endpoint = of_graph_get_next_endpoint(np, NULL);
2821 	if (!endpoint)
2822 		return -EINVAL;
2823 
2824 	ret = v4l2_of_parse_endpoint(endpoint, &bus_cfg);
2825 	if (ret) {
2826 		of_node_put(endpoint);
2827 		return ret;
2828 	}
2829 
2830 	if (!of_property_read_u32(endpoint, "default-input", &v))
2831 		state->pdata.default_input = v;
2832 	else
2833 		state->pdata.default_input = -1;
2834 
2835 	of_node_put(endpoint);
2836 
2837 	flags = bus_cfg.bus.parallel.flags;
2838 
2839 	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
2840 		state->pdata.inv_hs_pol = 1;
2841 
2842 	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
2843 		state->pdata.inv_vs_pol = 1;
2844 
2845 	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
2846 		state->pdata.inv_llc_pol = 1;
2847 
2848 	if (bus_cfg.bus_type == V4L2_MBUS_BT656) {
2849 		state->pdata.insert_av_codes = 1;
2850 		state->pdata.op_656_range = 1;
2851 	}
2852 
2853 	/* Disable the interrupt for now as no DT-based board uses it. */
2854 	state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED;
2855 
2856 	/* Use the default I2C addresses. */
2857 	state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42;
2858 	state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40;
2859 	state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e;
2860 	state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38;
2861 	state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c;
2862 	state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26;
2863 	state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32;
2864 	state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36;
2865 	state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34;
2866 	state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30;
2867 	state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22;
2868 	state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24;
2869 
2870 	/* Hardcode the remaining platform data fields. */
2871 	state->pdata.disable_pwrdnb = 0;
2872 	state->pdata.disable_cable_det_rst = 0;
2873 	state->pdata.blank_data = 1;
2874 	state->pdata.alt_data_sat = 1;
2875 	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
2876 	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
2877 
2878 	return 0;
2879 }
2880 
2881 static const struct regmap_config adv76xx_regmap_cnf[] = {
2882 	{
2883 		.name			= "io",
2884 		.reg_bits		= 8,
2885 		.val_bits		= 8,
2886 
2887 		.max_register		= 0xff,
2888 		.cache_type		= REGCACHE_NONE,
2889 	},
2890 	{
2891 		.name			= "avlink",
2892 		.reg_bits		= 8,
2893 		.val_bits		= 8,
2894 
2895 		.max_register		= 0xff,
2896 		.cache_type		= REGCACHE_NONE,
2897 	},
2898 	{
2899 		.name			= "cec",
2900 		.reg_bits		= 8,
2901 		.val_bits		= 8,
2902 
2903 		.max_register		= 0xff,
2904 		.cache_type		= REGCACHE_NONE,
2905 	},
2906 	{
2907 		.name			= "infoframe",
2908 		.reg_bits		= 8,
2909 		.val_bits		= 8,
2910 
2911 		.max_register		= 0xff,
2912 		.cache_type		= REGCACHE_NONE,
2913 	},
2914 	{
2915 		.name			= "esdp",
2916 		.reg_bits		= 8,
2917 		.val_bits		= 8,
2918 
2919 		.max_register		= 0xff,
2920 		.cache_type		= REGCACHE_NONE,
2921 	},
2922 	{
2923 		.name			= "epp",
2924 		.reg_bits		= 8,
2925 		.val_bits		= 8,
2926 
2927 		.max_register		= 0xff,
2928 		.cache_type		= REGCACHE_NONE,
2929 	},
2930 	{
2931 		.name			= "afe",
2932 		.reg_bits		= 8,
2933 		.val_bits		= 8,
2934 
2935 		.max_register		= 0xff,
2936 		.cache_type		= REGCACHE_NONE,
2937 	},
2938 	{
2939 		.name			= "rep",
2940 		.reg_bits		= 8,
2941 		.val_bits		= 8,
2942 
2943 		.max_register		= 0xff,
2944 		.cache_type		= REGCACHE_NONE,
2945 	},
2946 	{
2947 		.name			= "edid",
2948 		.reg_bits		= 8,
2949 		.val_bits		= 8,
2950 
2951 		.max_register		= 0xff,
2952 		.cache_type		= REGCACHE_NONE,
2953 	},
2954 
2955 	{
2956 		.name			= "hdmi",
2957 		.reg_bits		= 8,
2958 		.val_bits		= 8,
2959 
2960 		.max_register		= 0xff,
2961 		.cache_type		= REGCACHE_NONE,
2962 	},
2963 	{
2964 		.name			= "test",
2965 		.reg_bits		= 8,
2966 		.val_bits		= 8,
2967 
2968 		.max_register		= 0xff,
2969 		.cache_type		= REGCACHE_NONE,
2970 	},
2971 	{
2972 		.name			= "cp",
2973 		.reg_bits		= 8,
2974 		.val_bits		= 8,
2975 
2976 		.max_register		= 0xff,
2977 		.cache_type		= REGCACHE_NONE,
2978 	},
2979 	{
2980 		.name			= "vdp",
2981 		.reg_bits		= 8,
2982 		.val_bits		= 8,
2983 
2984 		.max_register		= 0xff,
2985 		.cache_type		= REGCACHE_NONE,
2986 	},
2987 };
2988 
2989 static int configure_regmap(struct adv76xx_state *state, int region)
2990 {
2991 	int err;
2992 
2993 	if (!state->i2c_clients[region])
2994 		return -ENODEV;
2995 
2996 	state->regmap[region] =
2997 		devm_regmap_init_i2c(state->i2c_clients[region],
2998 				     &adv76xx_regmap_cnf[region]);
2999 
3000 	if (IS_ERR(state->regmap[region])) {
3001 		err = PTR_ERR(state->regmap[region]);
3002 		v4l_err(state->i2c_clients[region],
3003 			"Error initializing regmap %d with error %d\n",
3004 			region, err);
3005 		return -EINVAL;
3006 	}
3007 
3008 	return 0;
3009 }
3010 
3011 static int configure_regmaps(struct adv76xx_state *state)
3012 {
3013 	int i, err;
3014 
3015 	for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
3016 		err = configure_regmap(state, i);
3017 		if (err && (err != -ENODEV))
3018 			return err;
3019 	}
3020 	return 0;
3021 }
3022 
3023 static int adv76xx_probe(struct i2c_client *client,
3024 			 const struct i2c_device_id *id)
3025 {
3026 	static const struct v4l2_dv_timings cea640x480 =
3027 		V4L2_DV_BT_CEA_640X480P59_94;
3028 	struct adv76xx_state *state;
3029 	struct v4l2_ctrl_handler *hdl;
3030 	struct v4l2_ctrl *ctrl;
3031 	struct v4l2_subdev *sd;
3032 	unsigned int i;
3033 	unsigned int val, val2;
3034 	int err;
3035 
3036 	/* Check if the adapter supports the needed features */
3037 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3038 		return -EIO;
3039 	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3040 			client->addr << 1);
3041 
3042 	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3043 	if (!state) {
3044 		v4l_err(client, "Could not allocate adv76xx_state memory!\n");
3045 		return -ENOMEM;
3046 	}
3047 
3048 	state->i2c_clients[ADV76XX_PAGE_IO] = client;
3049 
3050 	/* initialize variables */
3051 	state->restart_stdi_once = true;
3052 	state->selected_input = ~0;
3053 
3054 	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3055 		const struct of_device_id *oid;
3056 
3057 		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3058 		state->info = oid->data;
3059 
3060 		err = adv76xx_parse_dt(state);
3061 		if (err < 0) {
3062 			v4l_err(client, "DT parsing error\n");
3063 			return err;
3064 		}
3065 	} else if (client->dev.platform_data) {
3066 		struct adv76xx_platform_data *pdata = client->dev.platform_data;
3067 
3068 		state->info = (const struct adv76xx_chip_info *)id->driver_data;
3069 		state->pdata = *pdata;
3070 	} else {
3071 		v4l_err(client, "No platform data!\n");
3072 		return -ENODEV;
3073 	}
3074 
3075 	/* Request GPIOs. */
3076 	for (i = 0; i < state->info->num_dv_ports; ++i) {
3077 		state->hpd_gpio[i] =
3078 			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3079 						      GPIOD_OUT_LOW);
3080 		if (IS_ERR(state->hpd_gpio[i]))
3081 			return PTR_ERR(state->hpd_gpio[i]);
3082 
3083 		if (state->hpd_gpio[i])
3084 			v4l_info(client, "Handling HPD %u GPIO\n", i);
3085 	}
3086 
3087 	state->timings = cea640x480;
3088 	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3089 
3090 	sd = &state->sd;
3091 	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3092 	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3093 		id->name, i2c_adapter_id(client->adapter),
3094 		client->addr);
3095 	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3096 
3097 	/* Configure IO Regmap region */
3098 	err = configure_regmap(state, ADV76XX_PAGE_IO);
3099 
3100 	if (err) {
3101 		v4l2_err(sd, "Error configuring IO regmap region\n");
3102 		return -ENODEV;
3103 	}
3104 
3105 	/*
3106 	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3107 	 * identifies the revision, while on ADV7611 it identifies the model as
3108 	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3109 	 */
3110 	switch (state->info->type) {
3111 	case ADV7604:
3112 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3113 		if (err) {
3114 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3115 			return -ENODEV;
3116 		}
3117 		if (val != 0x68) {
3118 			v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3119 					client->addr << 1);
3120 			return -ENODEV;
3121 		}
3122 		break;
3123 	case ADV7611:
3124 	case ADV7612:
3125 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3126 				0xea,
3127 				&val);
3128 		if (err) {
3129 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3130 			return -ENODEV;
3131 		}
3132 		val2 = val << 8;
3133 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3134 			    0xeb,
3135 			    &val);
3136 		if (err) {
3137 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3138 			return -ENODEV;
3139 		}
3140 		val |= val2;
3141 		if ((state->info->type == ADV7611 && val != 0x2051) ||
3142 			(state->info->type == ADV7612 && val != 0x2041)) {
3143 			v4l2_err(sd, "not an adv761x on address 0x%x\n",
3144 					client->addr << 1);
3145 			return -ENODEV;
3146 		}
3147 		break;
3148 	}
3149 
3150 	/* control handlers */
3151 	hdl = &state->hdl;
3152 	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3153 
3154 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3155 			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3156 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3157 			V4L2_CID_CONTRAST, 0, 255, 1, 128);
3158 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3159 			V4L2_CID_SATURATION, 0, 255, 1, 128);
3160 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3161 			V4L2_CID_HUE, 0, 128, 1, 0);
3162 	ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3163 			V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
3164 			0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
3165 	if (ctrl)
3166 		ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3167 
3168 	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3169 			V4L2_CID_DV_RX_POWER_PRESENT, 0,
3170 			(1 << state->info->num_dv_ports) - 1, 0, 0);
3171 	state->rgb_quantization_range_ctrl =
3172 		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3173 			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3174 			0, V4L2_DV_RGB_RANGE_AUTO);
3175 
3176 	/* custom controls */
3177 	if (adv76xx_has_afe(state))
3178 		state->analog_sampling_phase_ctrl =
3179 			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3180 	state->free_run_color_manual_ctrl =
3181 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3182 	state->free_run_color_ctrl =
3183 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3184 
3185 	sd->ctrl_handler = hdl;
3186 	if (hdl->error) {
3187 		err = hdl->error;
3188 		goto err_hdl;
3189 	}
3190 	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3191 		err = -ENODEV;
3192 		goto err_hdl;
3193 	}
3194 
3195 	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3196 		if (!(BIT(i) & state->info->page_mask))
3197 			continue;
3198 
3199 		state->i2c_clients[i] =
3200 			adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i],
3201 					     0xf2 + i);
3202 		if (state->i2c_clients[i] == NULL) {
3203 			err = -ENOMEM;
3204 			v4l2_err(sd, "failed to create i2c client %u\n", i);
3205 			goto err_i2c;
3206 		}
3207 	}
3208 
3209 	/* work queues */
3210 	state->work_queues = create_singlethread_workqueue(client->name);
3211 	if (!state->work_queues) {
3212 		v4l2_err(sd, "Could not create work queue\n");
3213 		err = -ENOMEM;
3214 		goto err_i2c;
3215 	}
3216 
3217 	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3218 			adv76xx_delayed_work_enable_hotplug);
3219 
3220 	state->source_pad = state->info->num_dv_ports
3221 			  + (state->info->has_afe ? 2 : 0);
3222 	for (i = 0; i < state->source_pad; ++i)
3223 		state->pads[i].flags = MEDIA_PAD_FL_SINK;
3224 	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3225 
3226 	err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3227 				state->pads);
3228 	if (err)
3229 		goto err_work_queues;
3230 
3231 	/* Configure regmaps */
3232 	err = configure_regmaps(state);
3233 	if (err)
3234 		goto err_entity;
3235 
3236 	err = adv76xx_core_init(sd);
3237 	if (err)
3238 		goto err_entity;
3239 	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3240 			client->addr << 1, client->adapter->name);
3241 
3242 	err = v4l2_async_register_subdev(sd);
3243 	if (err)
3244 		goto err_entity;
3245 
3246 	return 0;
3247 
3248 err_entity:
3249 	media_entity_cleanup(&sd->entity);
3250 err_work_queues:
3251 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3252 	destroy_workqueue(state->work_queues);
3253 err_i2c:
3254 	adv76xx_unregister_clients(state);
3255 err_hdl:
3256 	v4l2_ctrl_handler_free(hdl);
3257 	return err;
3258 }
3259 
3260 /* ----------------------------------------------------------------------- */
3261 
3262 static int adv76xx_remove(struct i2c_client *client)
3263 {
3264 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3265 	struct adv76xx_state *state = to_state(sd);
3266 
3267 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3268 	destroy_workqueue(state->work_queues);
3269 	v4l2_async_unregister_subdev(sd);
3270 	media_entity_cleanup(&sd->entity);
3271 	adv76xx_unregister_clients(to_state(sd));
3272 	v4l2_ctrl_handler_free(sd->ctrl_handler);
3273 	return 0;
3274 }
3275 
3276 /* ----------------------------------------------------------------------- */
3277 
3278 static struct i2c_driver adv76xx_driver = {
3279 	.driver = {
3280 		.name = "adv7604",
3281 		.of_match_table = of_match_ptr(adv76xx_of_id),
3282 	},
3283 	.probe = adv76xx_probe,
3284 	.remove = adv76xx_remove,
3285 	.id_table = adv76xx_i2c_id,
3286 };
3287 
3288 module_i2c_driver(adv76xx_driver);
3289