xref: /openbmc/linux/drivers/media/i2c/adv7604.c (revision 1cf233d8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * adv7604 - Analog Devices ADV7604 video decoder driver
4  *
5  * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  *
7  */
8 
9 /*
10  * References (c = chapter, p = page):
11  * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
12  *		Revision 2.5, June 2010
13  * REF_02 - Analog devices, Register map documentation, Documentation of
14  *		the register maps, Software manual, Rev. F, June 2010
15  * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
16  */
17 
18 #include <linux/delay.h>
19 #include <linux/gpio/consumer.h>
20 #include <linux/hdmi.h>
21 #include <linux/i2c.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of_graph.h>
25 #include <linux/slab.h>
26 #include <linux/v4l2-dv-timings.h>
27 #include <linux/videodev2.h>
28 #include <linux/workqueue.h>
29 #include <linux/regmap.h>
30 #include <linux/interrupt.h>
31 
32 #include <media/i2c/adv7604.h>
33 #include <media/cec.h>
34 #include <media/v4l2-ctrls.h>
35 #include <media/v4l2-device.h>
36 #include <media/v4l2-event.h>
37 #include <media/v4l2-dv-timings.h>
38 #include <media/v4l2-fwnode.h>
39 
40 static int debug;
41 module_param(debug, int, 0644);
42 MODULE_PARM_DESC(debug, "debug level (0-2)");
43 
44 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
45 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
46 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
47 MODULE_LICENSE("GPL");
48 
49 /* ADV7604 system clock frequency */
50 #define ADV76XX_FSC (28636360)
51 
52 #define ADV76XX_RGB_OUT					(1 << 1)
53 
54 #define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
55 #define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
56 #define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
57 
58 #define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
59 #define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
60 #define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
61 #define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
62 #define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
63 #define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)
64 
65 #define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
66 #define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
67 #define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
68 #define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
69 #define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
70 #define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
71 
72 #define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
73 
74 #define ADV76XX_MAX_ADDRS (3)
75 
76 enum adv76xx_type {
77 	ADV7604,
78 	ADV7611,
79 	ADV7612,
80 };
81 
82 struct adv76xx_reg_seq {
83 	unsigned int reg;
84 	u8 val;
85 };
86 
87 struct adv76xx_format_info {
88 	u32 code;
89 	u8 op_ch_sel;
90 	bool rgb_out;
91 	bool swap_cb_cr;
92 	u8 op_format_sel;
93 };
94 
95 struct adv76xx_cfg_read_infoframe {
96 	const char *desc;
97 	u8 present_mask;
98 	u8 head_addr;
99 	u8 payload_addr;
100 };
101 
102 struct adv76xx_chip_info {
103 	enum adv76xx_type type;
104 
105 	bool has_afe;
106 	unsigned int max_port;
107 	unsigned int num_dv_ports;
108 
109 	unsigned int edid_enable_reg;
110 	unsigned int edid_status_reg;
111 	unsigned int lcf_reg;
112 
113 	unsigned int cable_det_mask;
114 	unsigned int tdms_lock_mask;
115 	unsigned int fmt_change_digital_mask;
116 	unsigned int cp_csc;
117 
118 	unsigned int cec_irq_status;
119 	unsigned int cec_rx_enable;
120 	unsigned int cec_rx_enable_mask;
121 	bool cec_irq_swap;
122 
123 	const struct adv76xx_format_info *formats;
124 	unsigned int nformats;
125 
126 	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
127 	void (*setup_irqs)(struct v4l2_subdev *sd);
128 	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
129 	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
130 
131 	/* 0 = AFE, 1 = HDMI */
132 	const struct adv76xx_reg_seq *recommended_settings[2];
133 	unsigned int num_recommended_settings[2];
134 
135 	unsigned long page_mask;
136 
137 	/* Masks for timings */
138 	unsigned int linewidth_mask;
139 	unsigned int field0_height_mask;
140 	unsigned int field1_height_mask;
141 	unsigned int hfrontporch_mask;
142 	unsigned int hsync_mask;
143 	unsigned int hbackporch_mask;
144 	unsigned int field0_vfrontporch_mask;
145 	unsigned int field1_vfrontporch_mask;
146 	unsigned int field0_vsync_mask;
147 	unsigned int field1_vsync_mask;
148 	unsigned int field0_vbackporch_mask;
149 	unsigned int field1_vbackporch_mask;
150 };
151 
152 /*
153  **********************************************************************
154  *
155  *  Arrays with configuration parameters for the ADV7604
156  *
157  **********************************************************************
158  */
159 
160 struct adv76xx_state {
161 	const struct adv76xx_chip_info *info;
162 	struct adv76xx_platform_data pdata;
163 
164 	struct gpio_desc *hpd_gpio[4];
165 	struct gpio_desc *reset_gpio;
166 
167 	struct v4l2_subdev sd;
168 	struct media_pad pads[ADV76XX_PAD_MAX];
169 	unsigned int source_pad;
170 
171 	struct v4l2_ctrl_handler hdl;
172 
173 	enum adv76xx_pad selected_input;
174 
175 	struct v4l2_dv_timings timings;
176 	const struct adv76xx_format_info *format;
177 
178 	struct {
179 		u8 edid[256];
180 		u32 present;
181 		unsigned blocks;
182 	} edid;
183 	u16 spa_port_a[2];
184 	struct v4l2_fract aspect_ratio;
185 	u32 rgb_quantization_range;
186 	struct delayed_work delayed_work_enable_hotplug;
187 	bool restart_stdi_once;
188 
189 	/* CEC */
190 	struct cec_adapter *cec_adap;
191 	u8   cec_addr[ADV76XX_MAX_ADDRS];
192 	u8   cec_valid_addrs;
193 	bool cec_enabled_adap;
194 
195 	/* i2c clients */
196 	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
197 
198 	/* Regmaps */
199 	struct regmap *regmap[ADV76XX_PAGE_MAX];
200 
201 	/* controls */
202 	struct v4l2_ctrl *detect_tx_5v_ctrl;
203 	struct v4l2_ctrl *analog_sampling_phase_ctrl;
204 	struct v4l2_ctrl *free_run_color_manual_ctrl;
205 	struct v4l2_ctrl *free_run_color_ctrl;
206 	struct v4l2_ctrl *rgb_quantization_range_ctrl;
207 };
208 
209 static bool adv76xx_has_afe(struct adv76xx_state *state)
210 {
211 	return state->info->has_afe;
212 }
213 
214 /* Unsupported timings. This device cannot support 720p30. */
215 static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
216 	V4L2_DV_BT_CEA_1280X720P30,
217 	{ }
218 };
219 
220 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
221 {
222 	int i;
223 
224 	for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
225 		if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
226 			return false;
227 	return true;
228 }
229 
230 struct adv76xx_video_standards {
231 	struct v4l2_dv_timings timings;
232 	u8 vid_std;
233 	u8 v_freq;
234 };
235 
236 /* sorted by number of lines */
237 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
238 	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
239 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
240 	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
241 	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
242 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
243 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
244 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
245 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
246 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
247 	/* TODO add 1920x1080P60_RB (CVT timing) */
248 	{ },
249 };
250 
251 /* sorted by number of lines */
252 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
253 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
254 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
255 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
256 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
257 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
258 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
259 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
260 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
261 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
262 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
263 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
264 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
265 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
266 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
267 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
268 	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
269 	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
270 	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
271 	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
272 	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
273 	/* TODO add 1600X1200P60_RB (not a DMT timing) */
274 	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
275 	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
276 	{ },
277 };
278 
279 /* sorted by number of lines */
280 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
281 	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
282 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
283 	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
284 	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
285 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
286 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
287 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
288 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
289 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
290 	{ },
291 };
292 
293 /* sorted by number of lines */
294 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
295 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
296 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
297 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
298 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
299 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
300 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
301 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
302 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
303 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
304 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
305 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
306 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
307 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
308 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
309 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
310 	{ },
311 };
312 
313 static const struct v4l2_event adv76xx_ev_fmt = {
314 	.type = V4L2_EVENT_SOURCE_CHANGE,
315 	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
316 };
317 
318 /* ----------------------------------------------------------------------- */
319 
320 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
321 {
322 	return container_of(sd, struct adv76xx_state, sd);
323 }
324 
325 static inline unsigned htotal(const struct v4l2_bt_timings *t)
326 {
327 	return V4L2_DV_BT_FRAME_WIDTH(t);
328 }
329 
330 static inline unsigned vtotal(const struct v4l2_bt_timings *t)
331 {
332 	return V4L2_DV_BT_FRAME_HEIGHT(t);
333 }
334 
335 /* ----------------------------------------------------------------------- */
336 
337 static int adv76xx_read_check(struct adv76xx_state *state,
338 			     int client_page, u8 reg)
339 {
340 	struct i2c_client *client = state->i2c_clients[client_page];
341 	int err;
342 	unsigned int val;
343 
344 	err = regmap_read(state->regmap[client_page], reg, &val);
345 
346 	if (err) {
347 		v4l_err(client, "error reading %02x, %02x\n",
348 				client->addr, reg);
349 		return err;
350 	}
351 	return val;
352 }
353 
354 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
355  * size to one or more registers.
356  *
357  * A value of zero will be returned on success, a negative errno will
358  * be returned in error cases.
359  */
360 static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
361 			      unsigned int init_reg, const void *val,
362 			      size_t val_len)
363 {
364 	struct regmap *regmap = state->regmap[client_page];
365 
366 	if (val_len > I2C_SMBUS_BLOCK_MAX)
367 		val_len = I2C_SMBUS_BLOCK_MAX;
368 
369 	return regmap_raw_write(regmap, init_reg, val, val_len);
370 }
371 
372 /* ----------------------------------------------------------------------- */
373 
374 static inline int io_read(struct v4l2_subdev *sd, u8 reg)
375 {
376 	struct adv76xx_state *state = to_state(sd);
377 
378 	return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
379 }
380 
381 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
382 {
383 	struct adv76xx_state *state = to_state(sd);
384 
385 	return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
386 }
387 
388 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
389 				   u8 val)
390 {
391 	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
392 }
393 
394 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
395 {
396 	struct adv76xx_state *state = to_state(sd);
397 
398 	return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
399 }
400 
401 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
402 {
403 	struct adv76xx_state *state = to_state(sd);
404 
405 	return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
406 }
407 
408 static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
409 {
410 	struct adv76xx_state *state = to_state(sd);
411 
412 	return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
413 }
414 
415 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
416 {
417 	struct adv76xx_state *state = to_state(sd);
418 
419 	return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
420 }
421 
422 static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
423 				   u8 val)
424 {
425 	return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val);
426 }
427 
428 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
429 {
430 	struct adv76xx_state *state = to_state(sd);
431 
432 	return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
433 }
434 
435 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
436 {
437 	struct adv76xx_state *state = to_state(sd);
438 
439 	return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
440 }
441 
442 static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
443 {
444 	struct adv76xx_state *state = to_state(sd);
445 
446 	return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
447 }
448 
449 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
450 {
451 	struct adv76xx_state *state = to_state(sd);
452 
453 	return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
454 }
455 
456 static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
457 {
458 	struct adv76xx_state *state = to_state(sd);
459 
460 	return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
461 }
462 
463 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
464 {
465 	struct adv76xx_state *state = to_state(sd);
466 
467 	return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
468 }
469 
470 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
471 {
472 	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
473 }
474 
475 static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
476 {
477 	struct adv76xx_state *state = to_state(sd);
478 
479 	return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
480 }
481 
482 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
483 {
484 	struct adv76xx_state *state = to_state(sd);
485 
486 	return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
487 }
488 
489 static inline int edid_write_block(struct v4l2_subdev *sd,
490 					unsigned int total_len, const u8 *val)
491 {
492 	struct adv76xx_state *state = to_state(sd);
493 	int err = 0;
494 	int i = 0;
495 	int len = 0;
496 
497 	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
498 				__func__, total_len);
499 
500 	while (!err && i < total_len) {
501 		len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
502 				I2C_SMBUS_BLOCK_MAX :
503 				(total_len - i);
504 
505 		err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
506 				i, val + i, len);
507 		i += len;
508 	}
509 
510 	return err;
511 }
512 
513 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
514 {
515 	const struct adv76xx_chip_info *info = state->info;
516 	unsigned int i;
517 
518 	if (info->type == ADV7604) {
519 		for (i = 0; i < state->info->num_dv_ports; ++i)
520 			gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
521 	} else {
522 		for (i = 0; i < state->info->num_dv_ports; ++i)
523 			io_write_clr_set(&state->sd, 0x20, 0x80 >> i,
524 					 (!!(hpd & BIT(i))) << (7 - i));
525 	}
526 
527 	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
528 }
529 
530 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
531 {
532 	struct delayed_work *dwork = to_delayed_work(work);
533 	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
534 						delayed_work_enable_hotplug);
535 	struct v4l2_subdev *sd = &state->sd;
536 
537 	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
538 
539 	adv76xx_set_hpd(state, state->edid.present);
540 }
541 
542 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
543 {
544 	struct adv76xx_state *state = to_state(sd);
545 
546 	return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
547 }
548 
549 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
550 {
551 	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
552 }
553 
554 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
555 {
556 	struct adv76xx_state *state = to_state(sd);
557 
558 	return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
559 }
560 
561 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
562 {
563 	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
564 }
565 
566 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
567 {
568 	struct adv76xx_state *state = to_state(sd);
569 
570 	return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
571 }
572 
573 static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
574 {
575 	struct adv76xx_state *state = to_state(sd);
576 
577 	return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
578 }
579 
580 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
581 {
582 	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
583 }
584 
585 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
586 {
587 	struct adv76xx_state *state = to_state(sd);
588 
589 	return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
590 }
591 
592 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
593 {
594 	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
595 }
596 
597 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
598 {
599 	struct adv76xx_state *state = to_state(sd);
600 
601 	return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
602 }
603 
604 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
605 {
606 	struct adv76xx_state *state = to_state(sd);
607 
608 	return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
609 }
610 
611 #define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
612 #define ADV76XX_REG_SEQ_TERM		0xffff
613 
614 #ifdef CONFIG_VIDEO_ADV_DEBUG
615 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
616 {
617 	struct adv76xx_state *state = to_state(sd);
618 	unsigned int page = reg >> 8;
619 	unsigned int val;
620 	int err;
621 
622 	if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
623 		return -EINVAL;
624 
625 	reg &= 0xff;
626 	err = regmap_read(state->regmap[page], reg, &val);
627 
628 	return err ? err : val;
629 }
630 #endif
631 
632 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
633 {
634 	struct adv76xx_state *state = to_state(sd);
635 	unsigned int page = reg >> 8;
636 
637 	if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
638 		return -EINVAL;
639 
640 	reg &= 0xff;
641 
642 	return regmap_write(state->regmap[page], reg, val);
643 }
644 
645 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
646 				  const struct adv76xx_reg_seq *reg_seq)
647 {
648 	unsigned int i;
649 
650 	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
651 		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
652 }
653 
654 /* -----------------------------------------------------------------------------
655  * Format helpers
656  */
657 
658 static const struct adv76xx_format_info adv7604_formats[] = {
659 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
660 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
661 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
662 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
663 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
664 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
665 	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
666 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
667 	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
668 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
669 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
670 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
671 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
672 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
673 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
674 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
675 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
676 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
677 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
678 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
679 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
680 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
681 	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
682 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
683 	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
684 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
685 	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
686 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
687 	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
688 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
689 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
690 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
691 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
692 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
693 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
694 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
695 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
696 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
697 };
698 
699 static const struct adv76xx_format_info adv7611_formats[] = {
700 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
701 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
702 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
703 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
704 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
705 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
706 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
707 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
708 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
709 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
710 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
711 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
712 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
713 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
714 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
715 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
716 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
717 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
718 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
719 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
720 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
721 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
722 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
723 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
724 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
725 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
726 };
727 
728 static const struct adv76xx_format_info adv7612_formats[] = {
729 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
730 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
731 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
732 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
733 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
734 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
735 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
736 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
737 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
738 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
739 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
740 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
741 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
742 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
743 };
744 
745 static const struct adv76xx_format_info *
746 adv76xx_format_info(struct adv76xx_state *state, u32 code)
747 {
748 	unsigned int i;
749 
750 	for (i = 0; i < state->info->nformats; ++i) {
751 		if (state->info->formats[i].code == code)
752 			return &state->info->formats[i];
753 	}
754 
755 	return NULL;
756 }
757 
758 /* ----------------------------------------------------------------------- */
759 
760 static inline bool is_analog_input(struct v4l2_subdev *sd)
761 {
762 	struct adv76xx_state *state = to_state(sd);
763 
764 	return state->selected_input == ADV7604_PAD_VGA_RGB ||
765 	       state->selected_input == ADV7604_PAD_VGA_COMP;
766 }
767 
768 static inline bool is_digital_input(struct v4l2_subdev *sd)
769 {
770 	struct adv76xx_state *state = to_state(sd);
771 
772 	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
773 	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
774 	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
775 	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
776 }
777 
778 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
779 	.type = V4L2_DV_BT_656_1120,
780 	/* keep this initialization for compatibility with GCC < 4.4.6 */
781 	.reserved = { 0 },
782 	V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 170000000,
783 		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
784 			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
785 		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
786 			V4L2_DV_BT_CAP_CUSTOM)
787 };
788 
789 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
790 	.type = V4L2_DV_BT_656_1120,
791 	/* keep this initialization for compatibility with GCC < 4.4.6 */
792 	.reserved = { 0 },
793 	V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 225000000,
794 		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
795 			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
796 		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
797 			V4L2_DV_BT_CAP_CUSTOM)
798 };
799 
800 /*
801  * Return the DV timings capabilities for the requested sink pad. As a special
802  * case, pad value -1 returns the capabilities for the currently selected input.
803  */
804 static const struct v4l2_dv_timings_cap *
805 adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
806 {
807 	if (pad == -1) {
808 		struct adv76xx_state *state = to_state(sd);
809 
810 		pad = state->selected_input;
811 	}
812 
813 	switch (pad) {
814 	case ADV76XX_PAD_HDMI_PORT_A:
815 	case ADV7604_PAD_HDMI_PORT_B:
816 	case ADV7604_PAD_HDMI_PORT_C:
817 	case ADV7604_PAD_HDMI_PORT_D:
818 		return &adv76xx_timings_cap_digital;
819 
820 	case ADV7604_PAD_VGA_RGB:
821 	case ADV7604_PAD_VGA_COMP:
822 	default:
823 		return &adv7604_timings_cap_analog;
824 	}
825 }
826 
827 
828 /* ----------------------------------------------------------------------- */
829 
830 #ifdef CONFIG_VIDEO_ADV_DEBUG
831 static void adv76xx_inv_register(struct v4l2_subdev *sd)
832 {
833 	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
834 	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
835 	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
836 	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
837 	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
838 	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
839 	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
840 	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
841 	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
842 	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
843 	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
844 	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
845 	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
846 }
847 
848 static int adv76xx_g_register(struct v4l2_subdev *sd,
849 					struct v4l2_dbg_register *reg)
850 {
851 	int ret;
852 
853 	ret = adv76xx_read_reg(sd, reg->reg);
854 	if (ret < 0) {
855 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
856 		adv76xx_inv_register(sd);
857 		return ret;
858 	}
859 
860 	reg->size = 1;
861 	reg->val = ret;
862 
863 	return 0;
864 }
865 
866 static int adv76xx_s_register(struct v4l2_subdev *sd,
867 					const struct v4l2_dbg_register *reg)
868 {
869 	int ret;
870 
871 	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
872 	if (ret < 0) {
873 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
874 		adv76xx_inv_register(sd);
875 		return ret;
876 	}
877 
878 	return 0;
879 }
880 #endif
881 
882 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
883 {
884 	u8 value = io_read(sd, 0x6f);
885 
886 	return ((value & 0x10) >> 4)
887 	     | ((value & 0x08) >> 2)
888 	     | ((value & 0x04) << 0)
889 	     | ((value & 0x02) << 2);
890 }
891 
892 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
893 {
894 	u8 value = io_read(sd, 0x6f);
895 
896 	return value & 1;
897 }
898 
899 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
900 {
901 	/*  Reads CABLE_DET_A_RAW. For input B support, need to
902 	 *  account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
903 	 */
904 	u8 value = io_read(sd, 0x6f);
905 
906 	return value & 1;
907 }
908 
909 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
910 {
911 	struct adv76xx_state *state = to_state(sd);
912 	const struct adv76xx_chip_info *info = state->info;
913 	u16 cable_det = info->read_cable_det(sd);
914 
915 	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det);
916 }
917 
918 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
919 		u8 prim_mode,
920 		const struct adv76xx_video_standards *predef_vid_timings,
921 		const struct v4l2_dv_timings *timings)
922 {
923 	int i;
924 
925 	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
926 		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
927 				is_digital_input(sd) ? 250000 : 1000000, false))
928 			continue;
929 		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
930 		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
931 				prim_mode); /* v_freq and prim mode */
932 		return 0;
933 	}
934 
935 	return -1;
936 }
937 
938 static int configure_predefined_video_timings(struct v4l2_subdev *sd,
939 		struct v4l2_dv_timings *timings)
940 {
941 	struct adv76xx_state *state = to_state(sd);
942 	int err;
943 
944 	v4l2_dbg(1, debug, sd, "%s", __func__);
945 
946 	if (adv76xx_has_afe(state)) {
947 		/* reset to default values */
948 		io_write(sd, 0x16, 0x43);
949 		io_write(sd, 0x17, 0x5a);
950 	}
951 	/* disable embedded syncs for auto graphics mode */
952 	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
953 	cp_write(sd, 0x8f, 0x00);
954 	cp_write(sd, 0x90, 0x00);
955 	cp_write(sd, 0xa2, 0x00);
956 	cp_write(sd, 0xa3, 0x00);
957 	cp_write(sd, 0xa4, 0x00);
958 	cp_write(sd, 0xa5, 0x00);
959 	cp_write(sd, 0xa6, 0x00);
960 	cp_write(sd, 0xa7, 0x00);
961 	cp_write(sd, 0xab, 0x00);
962 	cp_write(sd, 0xac, 0x00);
963 
964 	if (is_analog_input(sd)) {
965 		err = find_and_set_predefined_video_timings(sd,
966 				0x01, adv7604_prim_mode_comp, timings);
967 		if (err)
968 			err = find_and_set_predefined_video_timings(sd,
969 					0x02, adv7604_prim_mode_gr, timings);
970 	} else if (is_digital_input(sd)) {
971 		err = find_and_set_predefined_video_timings(sd,
972 				0x05, adv76xx_prim_mode_hdmi_comp, timings);
973 		if (err)
974 			err = find_and_set_predefined_video_timings(sd,
975 					0x06, adv76xx_prim_mode_hdmi_gr, timings);
976 	} else {
977 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
978 				__func__, state->selected_input);
979 		err = -1;
980 	}
981 
982 
983 	return err;
984 }
985 
986 static void configure_custom_video_timings(struct v4l2_subdev *sd,
987 		const struct v4l2_bt_timings *bt)
988 {
989 	struct adv76xx_state *state = to_state(sd);
990 	u32 width = htotal(bt);
991 	u32 height = vtotal(bt);
992 	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
993 	u16 cp_start_eav = width - bt->hfrontporch;
994 	u16 cp_start_vbi = height - bt->vfrontporch;
995 	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
996 	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
997 		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
998 	const u8 pll[2] = {
999 		0xc0 | ((width >> 8) & 0x1f),
1000 		width & 0xff
1001 	};
1002 
1003 	v4l2_dbg(2, debug, sd, "%s\n", __func__);
1004 
1005 	if (is_analog_input(sd)) {
1006 		/* auto graphics */
1007 		io_write(sd, 0x00, 0x07); /* video std */
1008 		io_write(sd, 0x01, 0x02); /* prim mode */
1009 		/* enable embedded syncs for auto graphics mode */
1010 		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
1011 
1012 		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1013 		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
1014 		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
1015 		if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
1016 					0x16, pll, 2))
1017 			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
1018 
1019 		/* active video - horizontal timing */
1020 		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1021 		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1022 				   ((cp_start_eav >> 8) & 0x0f));
1023 		cp_write(sd, 0xa4, cp_start_eav & 0xff);
1024 
1025 		/* active video - vertical timing */
1026 		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1027 		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1028 				   ((cp_end_vbi >> 8) & 0xf));
1029 		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1030 	} else if (is_digital_input(sd)) {
1031 		/* set default prim_mode/vid_std for HDMI
1032 		   according to [REF_03, c. 4.2] */
1033 		io_write(sd, 0x00, 0x02); /* video std */
1034 		io_write(sd, 0x01, 0x06); /* prim mode */
1035 	} else {
1036 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1037 				__func__, state->selected_input);
1038 	}
1039 
1040 	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1041 	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1042 	cp_write(sd, 0xab, (height >> 4) & 0xff);
1043 	cp_write(sd, 0xac, (height & 0x0f) << 4);
1044 }
1045 
1046 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1047 {
1048 	struct adv76xx_state *state = to_state(sd);
1049 	u8 offset_buf[4];
1050 
1051 	if (auto_offset) {
1052 		offset_a = 0x3ff;
1053 		offset_b = 0x3ff;
1054 		offset_c = 0x3ff;
1055 	}
1056 
1057 	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1058 			__func__, auto_offset ? "Auto" : "Manual",
1059 			offset_a, offset_b, offset_c);
1060 
1061 	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1062 	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1063 	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1064 	offset_buf[3] = offset_c & 0x0ff;
1065 
1066 	/* Registers must be written in this order with no i2c access in between */
1067 	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1068 			0x77, offset_buf, 4))
1069 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1070 }
1071 
1072 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1073 {
1074 	struct adv76xx_state *state = to_state(sd);
1075 	u8 gain_buf[4];
1076 	u8 gain_man = 1;
1077 	u8 agc_mode_man = 1;
1078 
1079 	if (auto_gain) {
1080 		gain_man = 0;
1081 		agc_mode_man = 0;
1082 		gain_a = 0x100;
1083 		gain_b = 0x100;
1084 		gain_c = 0x100;
1085 	}
1086 
1087 	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1088 			__func__, auto_gain ? "Auto" : "Manual",
1089 			gain_a, gain_b, gain_c);
1090 
1091 	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1092 	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1093 	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1094 	gain_buf[3] = ((gain_c & 0x0ff));
1095 
1096 	/* Registers must be written in this order with no i2c access in between */
1097 	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1098 			     0x73, gain_buf, 4))
1099 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1100 }
1101 
1102 static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1103 {
1104 	struct adv76xx_state *state = to_state(sd);
1105 	bool rgb_output = io_read(sd, 0x02) & 0x02;
1106 	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1107 	u8 y = HDMI_COLORSPACE_RGB;
1108 
1109 	if (hdmi_signal && (io_read(sd, 0x60) & 1))
1110 		y = infoframe_read(sd, 0x01) >> 5;
1111 
1112 	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1113 			__func__, state->rgb_quantization_range,
1114 			rgb_output, hdmi_signal);
1115 
1116 	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1117 	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1118 	io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4);
1119 
1120 	switch (state->rgb_quantization_range) {
1121 	case V4L2_DV_RGB_RANGE_AUTO:
1122 		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1123 			/* Receiving analog RGB signal
1124 			 * Set RGB full range (0-255) */
1125 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1126 			break;
1127 		}
1128 
1129 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1130 			/* Receiving analog YPbPr signal
1131 			 * Set automode */
1132 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1133 			break;
1134 		}
1135 
1136 		if (hdmi_signal) {
1137 			/* Receiving HDMI signal
1138 			 * Set automode */
1139 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1140 			break;
1141 		}
1142 
1143 		/* Receiving DVI-D signal
1144 		 * ADV7604 selects RGB limited range regardless of
1145 		 * input format (CE/IT) in automatic mode */
1146 		if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1147 			/* RGB limited range (16-235) */
1148 			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1149 		} else {
1150 			/* RGB full range (0-255) */
1151 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1152 
1153 			if (is_digital_input(sd) && rgb_output) {
1154 				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1155 			} else {
1156 				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1157 				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1158 			}
1159 		}
1160 		break;
1161 	case V4L2_DV_RGB_RANGE_LIMITED:
1162 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1163 			/* YCrCb limited range (16-235) */
1164 			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1165 			break;
1166 		}
1167 
1168 		if (y != HDMI_COLORSPACE_RGB)
1169 			break;
1170 
1171 		/* RGB limited range (16-235) */
1172 		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1173 
1174 		break;
1175 	case V4L2_DV_RGB_RANGE_FULL:
1176 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1177 			/* YCrCb full range (0-255) */
1178 			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1179 			break;
1180 		}
1181 
1182 		if (y != HDMI_COLORSPACE_RGB)
1183 			break;
1184 
1185 		/* RGB full range (0-255) */
1186 		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1187 
1188 		if (is_analog_input(sd) || hdmi_signal)
1189 			break;
1190 
1191 		/* Adjust gain/offset for DVI-D signals only */
1192 		if (rgb_output) {
1193 			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1194 		} else {
1195 			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1196 			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1197 		}
1198 		break;
1199 	}
1200 }
1201 
1202 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1203 {
1204 	struct v4l2_subdev *sd =
1205 		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1206 
1207 	struct adv76xx_state *state = to_state(sd);
1208 
1209 	switch (ctrl->id) {
1210 	case V4L2_CID_BRIGHTNESS:
1211 		cp_write(sd, 0x3c, ctrl->val);
1212 		return 0;
1213 	case V4L2_CID_CONTRAST:
1214 		cp_write(sd, 0x3a, ctrl->val);
1215 		return 0;
1216 	case V4L2_CID_SATURATION:
1217 		cp_write(sd, 0x3b, ctrl->val);
1218 		return 0;
1219 	case V4L2_CID_HUE:
1220 		cp_write(sd, 0x3d, ctrl->val);
1221 		return 0;
1222 	case  V4L2_CID_DV_RX_RGB_RANGE:
1223 		state->rgb_quantization_range = ctrl->val;
1224 		set_rgb_quantization_range(sd);
1225 		return 0;
1226 	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1227 		if (!adv76xx_has_afe(state))
1228 			return -EINVAL;
1229 		/* Set the analog sampling phase. This is needed to find the
1230 		   best sampling phase for analog video: an application or
1231 		   driver has to try a number of phases and analyze the picture
1232 		   quality before settling on the best performing phase. */
1233 		afe_write(sd, 0xc8, ctrl->val);
1234 		return 0;
1235 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1236 		/* Use the default blue color for free running mode,
1237 		   or supply your own. */
1238 		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1239 		return 0;
1240 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1241 		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1242 		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1243 		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1244 		return 0;
1245 	}
1246 	return -EINVAL;
1247 }
1248 
1249 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1250 {
1251 	struct v4l2_subdev *sd =
1252 		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1253 
1254 	if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
1255 		ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
1256 		if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
1257 			ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
1258 		return 0;
1259 	}
1260 	return -EINVAL;
1261 }
1262 
1263 /* ----------------------------------------------------------------------- */
1264 
1265 static inline bool no_power(struct v4l2_subdev *sd)
1266 {
1267 	/* Entire chip or CP powered off */
1268 	return io_read(sd, 0x0c) & 0x24;
1269 }
1270 
1271 static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1272 {
1273 	struct adv76xx_state *state = to_state(sd);
1274 
1275 	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1276 }
1277 
1278 static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1279 {
1280 	struct adv76xx_state *state = to_state(sd);
1281 	const struct adv76xx_chip_info *info = state->info;
1282 
1283 	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1284 }
1285 
1286 static inline bool is_hdmi(struct v4l2_subdev *sd)
1287 {
1288 	return hdmi_read(sd, 0x05) & 0x80;
1289 }
1290 
1291 static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1292 {
1293 	struct adv76xx_state *state = to_state(sd);
1294 
1295 	/*
1296 	 * Chips without a AFE don't expose registers for the SSPD, so just assume
1297 	 * that we have a lock.
1298 	 */
1299 	if (adv76xx_has_afe(state))
1300 		return false;
1301 
1302 	/* TODO channel 2 */
1303 	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1304 }
1305 
1306 static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1307 {
1308 	/* TODO channel 2 */
1309 	return !(cp_read(sd, 0xb1) & 0x80);
1310 }
1311 
1312 static inline bool no_signal(struct v4l2_subdev *sd)
1313 {
1314 	bool ret;
1315 
1316 	ret = no_power(sd);
1317 
1318 	ret |= no_lock_stdi(sd);
1319 	ret |= no_lock_sspd(sd);
1320 
1321 	if (is_digital_input(sd)) {
1322 		ret |= no_lock_tmds(sd);
1323 		ret |= no_signal_tmds(sd);
1324 	}
1325 
1326 	return ret;
1327 }
1328 
1329 static inline bool no_lock_cp(struct v4l2_subdev *sd)
1330 {
1331 	struct adv76xx_state *state = to_state(sd);
1332 
1333 	if (!adv76xx_has_afe(state))
1334 		return false;
1335 
1336 	/* CP has detected a non standard number of lines on the incoming
1337 	   video compared to what it is configured to receive by s_dv_timings */
1338 	return io_read(sd, 0x12) & 0x01;
1339 }
1340 
1341 static inline bool in_free_run(struct v4l2_subdev *sd)
1342 {
1343 	return cp_read(sd, 0xff) & 0x10;
1344 }
1345 
1346 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1347 {
1348 	*status = 0;
1349 	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1350 	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1351 	if (!in_free_run(sd) && no_lock_cp(sd))
1352 		*status |= is_digital_input(sd) ?
1353 			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1354 
1355 	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1356 
1357 	return 0;
1358 }
1359 
1360 /* ----------------------------------------------------------------------- */
1361 
1362 struct stdi_readback {
1363 	u16 bl, lcf, lcvs;
1364 	u8 hs_pol, vs_pol;
1365 	bool interlaced;
1366 };
1367 
1368 static int stdi2dv_timings(struct v4l2_subdev *sd,
1369 		struct stdi_readback *stdi,
1370 		struct v4l2_dv_timings *timings)
1371 {
1372 	struct adv76xx_state *state = to_state(sd);
1373 	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1374 	u32 pix_clk;
1375 	int i;
1376 
1377 	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1378 		const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
1379 
1380 		if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1381 					   adv76xx_get_dv_timings_cap(sd, -1),
1382 					   adv76xx_check_dv_timings, NULL))
1383 			continue;
1384 		if (vtotal(bt) != stdi->lcf + 1)
1385 			continue;
1386 		if (bt->vsync != stdi->lcvs)
1387 			continue;
1388 
1389 		pix_clk = hfreq * htotal(bt);
1390 
1391 		if ((pix_clk < bt->pixelclock + 1000000) &&
1392 		    (pix_clk > bt->pixelclock - 1000000)) {
1393 			*timings = v4l2_dv_timings_presets[i];
1394 			return 0;
1395 		}
1396 	}
1397 
1398 	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1399 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1400 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1401 			false, timings))
1402 		return 0;
1403 	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1404 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1405 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1406 			false, state->aspect_ratio, timings))
1407 		return 0;
1408 
1409 	v4l2_dbg(2, debug, sd,
1410 		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1411 		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
1412 		stdi->hs_pol, stdi->vs_pol);
1413 	return -1;
1414 }
1415 
1416 
1417 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1418 {
1419 	struct adv76xx_state *state = to_state(sd);
1420 	const struct adv76xx_chip_info *info = state->info;
1421 	u8 polarity;
1422 
1423 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1424 		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1425 		return -1;
1426 	}
1427 
1428 	/* read STDI */
1429 	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1430 	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1431 	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1432 	stdi->interlaced = io_read(sd, 0x12) & 0x10;
1433 
1434 	if (adv76xx_has_afe(state)) {
1435 		/* read SSPD */
1436 		polarity = cp_read(sd, 0xb5);
1437 		if ((polarity & 0x03) == 0x01) {
1438 			stdi->hs_pol = polarity & 0x10
1439 				     ? (polarity & 0x08 ? '+' : '-') : 'x';
1440 			stdi->vs_pol = polarity & 0x40
1441 				     ? (polarity & 0x20 ? '+' : '-') : 'x';
1442 		} else {
1443 			stdi->hs_pol = 'x';
1444 			stdi->vs_pol = 'x';
1445 		}
1446 	} else {
1447 		polarity = hdmi_read(sd, 0x05);
1448 		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1449 		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1450 	}
1451 
1452 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1453 		v4l2_dbg(2, debug, sd,
1454 			"%s: signal lost during readout of STDI/SSPD\n", __func__);
1455 		return -1;
1456 	}
1457 
1458 	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1459 		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1460 		memset(stdi, 0, sizeof(struct stdi_readback));
1461 		return -1;
1462 	}
1463 
1464 	v4l2_dbg(2, debug, sd,
1465 		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1466 		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
1467 		stdi->hs_pol, stdi->vs_pol,
1468 		stdi->interlaced ? "interlaced" : "progressive");
1469 
1470 	return 0;
1471 }
1472 
1473 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1474 			struct v4l2_enum_dv_timings *timings)
1475 {
1476 	struct adv76xx_state *state = to_state(sd);
1477 
1478 	if (timings->pad >= state->source_pad)
1479 		return -EINVAL;
1480 
1481 	return v4l2_enum_dv_timings_cap(timings,
1482 		adv76xx_get_dv_timings_cap(sd, timings->pad),
1483 		adv76xx_check_dv_timings, NULL);
1484 }
1485 
1486 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1487 			struct v4l2_dv_timings_cap *cap)
1488 {
1489 	struct adv76xx_state *state = to_state(sd);
1490 	unsigned int pad = cap->pad;
1491 
1492 	if (cap->pad >= state->source_pad)
1493 		return -EINVAL;
1494 
1495 	*cap = *adv76xx_get_dv_timings_cap(sd, pad);
1496 	cap->pad = pad;
1497 
1498 	return 0;
1499 }
1500 
1501 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1502    if the format is listed in adv76xx_timings[] */
1503 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1504 		struct v4l2_dv_timings *timings)
1505 {
1506 	v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
1507 				 is_digital_input(sd) ? 250000 : 1000000,
1508 				 adv76xx_check_dv_timings, NULL);
1509 }
1510 
1511 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1512 {
1513 	int a, b;
1514 
1515 	a = hdmi_read(sd, 0x06);
1516 	b = hdmi_read(sd, 0x3b);
1517 	if (a < 0 || b < 0)
1518 		return 0;
1519 
1520 	return a * 1000000 + ((b & 0x30) >> 4) * 250000;
1521 }
1522 
1523 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1524 {
1525 	int a, b;
1526 
1527 	a = hdmi_read(sd, 0x51);
1528 	b = hdmi_read(sd, 0x52);
1529 	if (a < 0 || b < 0)
1530 		return 0;
1531 
1532 	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1533 }
1534 
1535 static unsigned int adv76xx_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1536 {
1537 	struct adv76xx_state *state = to_state(sd);
1538 	const struct adv76xx_chip_info *info = state->info;
1539 	unsigned int freq, bits_per_channel, pixelrepetition;
1540 
1541 	freq = info->read_hdmi_pixelclock(sd);
1542 	if (is_hdmi(sd)) {
1543 		/* adjust for deep color mode and pixel repetition */
1544 		bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1545 		pixelrepetition = (hdmi_read(sd, 0x05) & 0x0f) + 1;
1546 
1547 		freq = freq * 8 / bits_per_channel / pixelrepetition;
1548 	}
1549 
1550 	return freq;
1551 }
1552 
1553 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1554 			struct v4l2_dv_timings *timings)
1555 {
1556 	struct adv76xx_state *state = to_state(sd);
1557 	const struct adv76xx_chip_info *info = state->info;
1558 	struct v4l2_bt_timings *bt = &timings->bt;
1559 	struct stdi_readback stdi;
1560 
1561 	if (!timings)
1562 		return -EINVAL;
1563 
1564 	memset(timings, 0, sizeof(struct v4l2_dv_timings));
1565 
1566 	if (no_signal(sd)) {
1567 		state->restart_stdi_once = true;
1568 		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1569 		return -ENOLINK;
1570 	}
1571 
1572 	/* read STDI */
1573 	if (read_stdi(sd, &stdi)) {
1574 		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1575 		return -ENOLINK;
1576 	}
1577 	bt->interlaced = stdi.interlaced ?
1578 		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1579 
1580 	if (is_digital_input(sd)) {
1581 		bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1582 		u8 vic = 0;
1583 		u32 w, h;
1584 
1585 		w = hdmi_read16(sd, 0x07, info->linewidth_mask);
1586 		h = hdmi_read16(sd, 0x09, info->field0_height_mask);
1587 
1588 		if (hdmi_signal && (io_read(sd, 0x60) & 1))
1589 			vic = infoframe_read(sd, 0x04);
1590 
1591 		if (vic && v4l2_find_dv_timings_cea861_vic(timings, vic) &&
1592 		    bt->width == w && bt->height == h)
1593 			goto found;
1594 
1595 		timings->type = V4L2_DV_BT_656_1120;
1596 
1597 		bt->width = w;
1598 		bt->height = h;
1599 		bt->pixelclock = adv76xx_read_hdmi_pixelclock(sd);
1600 		bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1601 		bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1602 		bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1603 		bt->vfrontporch = hdmi_read16(sd, 0x2a,
1604 			info->field0_vfrontporch_mask) / 2;
1605 		bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1606 		bt->vbackporch = hdmi_read16(sd, 0x32,
1607 			info->field0_vbackporch_mask) / 2;
1608 		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1609 			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1610 		if (bt->interlaced == V4L2_DV_INTERLACED) {
1611 			bt->height += hdmi_read16(sd, 0x0b,
1612 				info->field1_height_mask);
1613 			bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1614 				info->field1_vfrontporch_mask) / 2;
1615 			bt->il_vsync = hdmi_read16(sd, 0x30,
1616 				info->field1_vsync_mask) / 2;
1617 			bt->il_vbackporch = hdmi_read16(sd, 0x34,
1618 				info->field1_vbackporch_mask) / 2;
1619 		}
1620 		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1621 	} else {
1622 		/* find format
1623 		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1624 		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1625 		 */
1626 		if (!stdi2dv_timings(sd, &stdi, timings))
1627 			goto found;
1628 		stdi.lcvs += 1;
1629 		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1630 		if (!stdi2dv_timings(sd, &stdi, timings))
1631 			goto found;
1632 		stdi.lcvs -= 2;
1633 		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1634 		if (stdi2dv_timings(sd, &stdi, timings)) {
1635 			/*
1636 			 * The STDI block may measure wrong values, especially
1637 			 * for lcvs and lcf. If the driver can not find any
1638 			 * valid timing, the STDI block is restarted to measure
1639 			 * the video timings again. The function will return an
1640 			 * error, but the restart of STDI will generate a new
1641 			 * STDI interrupt and the format detection process will
1642 			 * restart.
1643 			 */
1644 			if (state->restart_stdi_once) {
1645 				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1646 				/* TODO restart STDI for Sync Channel 2 */
1647 				/* enter one-shot mode */
1648 				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1649 				/* trigger STDI restart */
1650 				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1651 				/* reset to continuous mode */
1652 				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1653 				state->restart_stdi_once = false;
1654 				return -ENOLINK;
1655 			}
1656 			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1657 			return -ERANGE;
1658 		}
1659 		state->restart_stdi_once = true;
1660 	}
1661 found:
1662 
1663 	if (no_signal(sd)) {
1664 		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1665 		memset(timings, 0, sizeof(struct v4l2_dv_timings));
1666 		return -ENOLINK;
1667 	}
1668 
1669 	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1670 			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1671 		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1672 				__func__, (u32)bt->pixelclock);
1673 		return -ERANGE;
1674 	}
1675 
1676 	if (debug > 1)
1677 		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1678 				      timings, true);
1679 
1680 	return 0;
1681 }
1682 
1683 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1684 		struct v4l2_dv_timings *timings)
1685 {
1686 	struct adv76xx_state *state = to_state(sd);
1687 	struct v4l2_bt_timings *bt;
1688 	int err;
1689 
1690 	if (!timings)
1691 		return -EINVAL;
1692 
1693 	if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1694 		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1695 		return 0;
1696 	}
1697 
1698 	bt = &timings->bt;
1699 
1700 	if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1701 				   adv76xx_check_dv_timings, NULL))
1702 		return -ERANGE;
1703 
1704 	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1705 
1706 	state->timings = *timings;
1707 
1708 	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1709 
1710 	/* Use prim_mode and vid_std when available */
1711 	err = configure_predefined_video_timings(sd, timings);
1712 	if (err) {
1713 		/* custom settings when the video format
1714 		 does not have prim_mode/vid_std */
1715 		configure_custom_video_timings(sd, bt);
1716 	}
1717 
1718 	set_rgb_quantization_range(sd);
1719 
1720 	if (debug > 1)
1721 		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1722 				      timings, true);
1723 	return 0;
1724 }
1725 
1726 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1727 		struct v4l2_dv_timings *timings)
1728 {
1729 	struct adv76xx_state *state = to_state(sd);
1730 
1731 	*timings = state->timings;
1732 	return 0;
1733 }
1734 
1735 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1736 {
1737 	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1738 }
1739 
1740 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1741 {
1742 	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1743 }
1744 
1745 static void enable_input(struct v4l2_subdev *sd)
1746 {
1747 	struct adv76xx_state *state = to_state(sd);
1748 
1749 	if (is_analog_input(sd)) {
1750 		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1751 	} else if (is_digital_input(sd)) {
1752 		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1753 		state->info->set_termination(sd, true);
1754 		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1755 		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1756 	} else {
1757 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1758 				__func__, state->selected_input);
1759 	}
1760 }
1761 
1762 static void disable_input(struct v4l2_subdev *sd)
1763 {
1764 	struct adv76xx_state *state = to_state(sd);
1765 
1766 	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1767 	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1768 	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1769 	state->info->set_termination(sd, false);
1770 }
1771 
1772 static void select_input(struct v4l2_subdev *sd)
1773 {
1774 	struct adv76xx_state *state = to_state(sd);
1775 	const struct adv76xx_chip_info *info = state->info;
1776 
1777 	if (is_analog_input(sd)) {
1778 		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1779 
1780 		afe_write(sd, 0x00, 0x08); /* power up ADC */
1781 		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1782 		afe_write(sd, 0xc8, 0x00); /* phase control */
1783 	} else if (is_digital_input(sd)) {
1784 		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1785 
1786 		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1787 
1788 		if (adv76xx_has_afe(state)) {
1789 			afe_write(sd, 0x00, 0xff); /* power down ADC */
1790 			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1791 			afe_write(sd, 0xc8, 0x40); /* phase control */
1792 		}
1793 
1794 		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1795 		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1796 		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1797 	} else {
1798 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1799 				__func__, state->selected_input);
1800 	}
1801 }
1802 
1803 static int adv76xx_s_routing(struct v4l2_subdev *sd,
1804 		u32 input, u32 output, u32 config)
1805 {
1806 	struct adv76xx_state *state = to_state(sd);
1807 
1808 	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1809 			__func__, input, state->selected_input);
1810 
1811 	if (input == state->selected_input)
1812 		return 0;
1813 
1814 	if (input > state->info->max_port)
1815 		return -EINVAL;
1816 
1817 	state->selected_input = input;
1818 
1819 	disable_input(sd);
1820 	select_input(sd);
1821 	enable_input(sd);
1822 
1823 	v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1824 
1825 	return 0;
1826 }
1827 
1828 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1829 				  struct v4l2_subdev_pad_config *cfg,
1830 				  struct v4l2_subdev_mbus_code_enum *code)
1831 {
1832 	struct adv76xx_state *state = to_state(sd);
1833 
1834 	if (code->index >= state->info->nformats)
1835 		return -EINVAL;
1836 
1837 	code->code = state->info->formats[code->index].code;
1838 
1839 	return 0;
1840 }
1841 
1842 static void adv76xx_fill_format(struct adv76xx_state *state,
1843 				struct v4l2_mbus_framefmt *format)
1844 {
1845 	memset(format, 0, sizeof(*format));
1846 
1847 	format->width = state->timings.bt.width;
1848 	format->height = state->timings.bt.height;
1849 	format->field = V4L2_FIELD_NONE;
1850 	format->colorspace = V4L2_COLORSPACE_SRGB;
1851 
1852 	if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1853 		format->colorspace = (state->timings.bt.height <= 576) ?
1854 			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1855 }
1856 
1857 /*
1858  * Compute the op_ch_sel value required to obtain on the bus the component order
1859  * corresponding to the selected format taking into account bus reordering
1860  * applied by the board at the output of the device.
1861  *
1862  * The following table gives the op_ch_value from the format component order
1863  * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1864  * adv76xx_bus_order value in row).
1865  *
1866  *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
1867  * ----------+-------------------------------------------------
1868  * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
1869  * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
1870  * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
1871  * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
1872  * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
1873  * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
1874  */
1875 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1876 {
1877 #define _SEL(a,b,c,d,e,f)	{ \
1878 	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1879 	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1880 #define _BUS(x)			[ADV7604_BUS_ORDER_##x]
1881 
1882 	static const unsigned int op_ch_sel[6][6] = {
1883 		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1884 		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1885 		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1886 		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1887 		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1888 		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1889 	};
1890 
1891 	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1892 }
1893 
1894 static void adv76xx_setup_format(struct adv76xx_state *state)
1895 {
1896 	struct v4l2_subdev *sd = &state->sd;
1897 
1898 	io_write_clr_set(sd, 0x02, 0x02,
1899 			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1900 	io_write(sd, 0x03, state->format->op_format_sel |
1901 		 state->pdata.op_format_mode_sel);
1902 	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1903 	io_write_clr_set(sd, 0x05, 0x01,
1904 			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1905 	set_rgb_quantization_range(sd);
1906 }
1907 
1908 static int adv76xx_get_format(struct v4l2_subdev *sd,
1909 			      struct v4l2_subdev_pad_config *cfg,
1910 			      struct v4l2_subdev_format *format)
1911 {
1912 	struct adv76xx_state *state = to_state(sd);
1913 
1914 	if (format->pad != state->source_pad)
1915 		return -EINVAL;
1916 
1917 	adv76xx_fill_format(state, &format->format);
1918 
1919 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1920 		struct v4l2_mbus_framefmt *fmt;
1921 
1922 		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1923 		format->format.code = fmt->code;
1924 	} else {
1925 		format->format.code = state->format->code;
1926 	}
1927 
1928 	return 0;
1929 }
1930 
1931 static int adv76xx_get_selection(struct v4l2_subdev *sd,
1932 				 struct v4l2_subdev_pad_config *cfg,
1933 				 struct v4l2_subdev_selection *sel)
1934 {
1935 	struct adv76xx_state *state = to_state(sd);
1936 
1937 	if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1938 		return -EINVAL;
1939 	/* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1940 	if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
1941 		return -EINVAL;
1942 
1943 	sel->r.left	= 0;
1944 	sel->r.top	= 0;
1945 	sel->r.width	= state->timings.bt.width;
1946 	sel->r.height	= state->timings.bt.height;
1947 
1948 	return 0;
1949 }
1950 
1951 static int adv76xx_set_format(struct v4l2_subdev *sd,
1952 			      struct v4l2_subdev_pad_config *cfg,
1953 			      struct v4l2_subdev_format *format)
1954 {
1955 	struct adv76xx_state *state = to_state(sd);
1956 	const struct adv76xx_format_info *info;
1957 
1958 	if (format->pad != state->source_pad)
1959 		return -EINVAL;
1960 
1961 	info = adv76xx_format_info(state, format->format.code);
1962 	if (!info)
1963 		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1964 
1965 	adv76xx_fill_format(state, &format->format);
1966 	format->format.code = info->code;
1967 
1968 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1969 		struct v4l2_mbus_framefmt *fmt;
1970 
1971 		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1972 		fmt->code = format->format.code;
1973 	} else {
1974 		state->format = info;
1975 		adv76xx_setup_format(state);
1976 	}
1977 
1978 	return 0;
1979 }
1980 
1981 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
1982 static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status)
1983 {
1984 	struct adv76xx_state *state = to_state(sd);
1985 
1986 	if ((cec_read(sd, 0x11) & 0x01) == 0) {
1987 		v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__);
1988 		return;
1989 	}
1990 
1991 	if (tx_raw_status & 0x02) {
1992 		v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n",
1993 			 __func__);
1994 		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST,
1995 				  1, 0, 0, 0);
1996 		return;
1997 	}
1998 	if (tx_raw_status & 0x04) {
1999 		u8 status;
2000 		u8 nack_cnt;
2001 		u8 low_drive_cnt;
2002 
2003 		v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__);
2004 		/*
2005 		 * We set this status bit since this hardware performs
2006 		 * retransmissions.
2007 		 */
2008 		status = CEC_TX_STATUS_MAX_RETRIES;
2009 		nack_cnt = cec_read(sd, 0x14) & 0xf;
2010 		if (nack_cnt)
2011 			status |= CEC_TX_STATUS_NACK;
2012 		low_drive_cnt = cec_read(sd, 0x14) >> 4;
2013 		if (low_drive_cnt)
2014 			status |= CEC_TX_STATUS_LOW_DRIVE;
2015 		cec_transmit_done(state->cec_adap, status,
2016 				  0, nack_cnt, low_drive_cnt, 0);
2017 		return;
2018 	}
2019 	if (tx_raw_status & 0x01) {
2020 		v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__);
2021 		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0);
2022 		return;
2023 	}
2024 }
2025 
2026 static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled)
2027 {
2028 	struct adv76xx_state *state = to_state(sd);
2029 	const struct adv76xx_chip_info *info = state->info;
2030 	u8 cec_irq;
2031 
2032 	/* cec controller */
2033 	cec_irq = io_read(sd, info->cec_irq_status) & 0x0f;
2034 	if (!cec_irq)
2035 		return;
2036 
2037 	v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq);
2038 	adv76xx_cec_tx_raw_status(sd, cec_irq);
2039 	if (cec_irq & 0x08) {
2040 		struct cec_msg msg;
2041 
2042 		msg.len = cec_read(sd, 0x25) & 0x1f;
2043 		if (msg.len > 16)
2044 			msg.len = 16;
2045 
2046 		if (msg.len) {
2047 			u8 i;
2048 
2049 			for (i = 0; i < msg.len; i++)
2050 				msg.msg[i] = cec_read(sd, i + 0x15);
2051 			cec_write(sd, info->cec_rx_enable,
2052 				  info->cec_rx_enable_mask); /* re-enable rx */
2053 			cec_received_msg(state->cec_adap, &msg);
2054 		}
2055 	}
2056 
2057 	if (info->cec_irq_swap) {
2058 		/*
2059 		 * Note: the bit order is swapped between 0x4d and 0x4e
2060 		 * on adv7604
2061 		 */
2062 		cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) |
2063 			  ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3);
2064 	}
2065 	io_write(sd, info->cec_irq_status + 1, cec_irq);
2066 
2067 	if (handled)
2068 		*handled = true;
2069 }
2070 
2071 static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable)
2072 {
2073 	struct adv76xx_state *state = cec_get_drvdata(adap);
2074 	const struct adv76xx_chip_info *info = state->info;
2075 	struct v4l2_subdev *sd = &state->sd;
2076 
2077 	if (!state->cec_enabled_adap && enable) {
2078 		cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */
2079 		cec_write(sd, 0x2c, 0x01);	/* cec soft reset */
2080 		cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */
2081 		/* enabled irqs: */
2082 		/* tx: ready */
2083 		/* tx: arbitration lost */
2084 		/* tx: retry timeout */
2085 		/* rx: ready */
2086 		io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x0f);
2087 		cec_write(sd, info->cec_rx_enable, info->cec_rx_enable_mask);
2088 	} else if (state->cec_enabled_adap && !enable) {
2089 		/* disable cec interrupts */
2090 		io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x00);
2091 		/* disable address mask 1-3 */
2092 		cec_write_clr_set(sd, 0x27, 0x70, 0x00);
2093 		/* power down cec section */
2094 		cec_write_clr_set(sd, 0x2a, 0x01, 0x00);
2095 		state->cec_valid_addrs = 0;
2096 	}
2097 	state->cec_enabled_adap = enable;
2098 	adv76xx_s_detect_tx_5v_ctrl(sd);
2099 	return 0;
2100 }
2101 
2102 static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
2103 {
2104 	struct adv76xx_state *state = cec_get_drvdata(adap);
2105 	struct v4l2_subdev *sd = &state->sd;
2106 	unsigned int i, free_idx = ADV76XX_MAX_ADDRS;
2107 
2108 	if (!state->cec_enabled_adap)
2109 		return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;
2110 
2111 	if (addr == CEC_LOG_ADDR_INVALID) {
2112 		cec_write_clr_set(sd, 0x27, 0x70, 0);
2113 		state->cec_valid_addrs = 0;
2114 		return 0;
2115 	}
2116 
2117 	for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2118 		bool is_valid = state->cec_valid_addrs & (1 << i);
2119 
2120 		if (free_idx == ADV76XX_MAX_ADDRS && !is_valid)
2121 			free_idx = i;
2122 		if (is_valid && state->cec_addr[i] == addr)
2123 			return 0;
2124 	}
2125 	if (i == ADV76XX_MAX_ADDRS) {
2126 		i = free_idx;
2127 		if (i == ADV76XX_MAX_ADDRS)
2128 			return -ENXIO;
2129 	}
2130 	state->cec_addr[i] = addr;
2131 	state->cec_valid_addrs |= 1 << i;
2132 
2133 	switch (i) {
2134 	case 0:
2135 		/* enable address mask 0 */
2136 		cec_write_clr_set(sd, 0x27, 0x10, 0x10);
2137 		/* set address for mask 0 */
2138 		cec_write_clr_set(sd, 0x28, 0x0f, addr);
2139 		break;
2140 	case 1:
2141 		/* enable address mask 1 */
2142 		cec_write_clr_set(sd, 0x27, 0x20, 0x20);
2143 		/* set address for mask 1 */
2144 		cec_write_clr_set(sd, 0x28, 0xf0, addr << 4);
2145 		break;
2146 	case 2:
2147 		/* enable address mask 2 */
2148 		cec_write_clr_set(sd, 0x27, 0x40, 0x40);
2149 		/* set address for mask 1 */
2150 		cec_write_clr_set(sd, 0x29, 0x0f, addr);
2151 		break;
2152 	}
2153 	return 0;
2154 }
2155 
2156 static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
2157 				     u32 signal_free_time, struct cec_msg *msg)
2158 {
2159 	struct adv76xx_state *state = cec_get_drvdata(adap);
2160 	struct v4l2_subdev *sd = &state->sd;
2161 	u8 len = msg->len;
2162 	unsigned int i;
2163 
2164 	/*
2165 	 * The number of retries is the number of attempts - 1, but retry
2166 	 * at least once. It's not clear if a value of 0 is allowed, so
2167 	 * let's do at least one retry.
2168 	 */
2169 	cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4);
2170 
2171 	if (len > 16) {
2172 		v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len);
2173 		return -EINVAL;
2174 	}
2175 
2176 	/* write data */
2177 	for (i = 0; i < len; i++)
2178 		cec_write(sd, i, msg->msg[i]);
2179 
2180 	/* set length (data + header) */
2181 	cec_write(sd, 0x10, len);
2182 	/* start transmit, enable tx */
2183 	cec_write(sd, 0x11, 0x01);
2184 	return 0;
2185 }
2186 
2187 static const struct cec_adap_ops adv76xx_cec_adap_ops = {
2188 	.adap_enable = adv76xx_cec_adap_enable,
2189 	.adap_log_addr = adv76xx_cec_adap_log_addr,
2190 	.adap_transmit = adv76xx_cec_adap_transmit,
2191 };
2192 #endif
2193 
2194 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
2195 {
2196 	struct adv76xx_state *state = to_state(sd);
2197 	const struct adv76xx_chip_info *info = state->info;
2198 	const u8 irq_reg_0x43 = io_read(sd, 0x43);
2199 	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
2200 	const u8 irq_reg_0x70 = io_read(sd, 0x70);
2201 	u8 fmt_change_digital;
2202 	u8 fmt_change;
2203 	u8 tx_5v;
2204 
2205 	if (irq_reg_0x43)
2206 		io_write(sd, 0x44, irq_reg_0x43);
2207 	if (irq_reg_0x70)
2208 		io_write(sd, 0x71, irq_reg_0x70);
2209 	if (irq_reg_0x6b)
2210 		io_write(sd, 0x6c, irq_reg_0x6b);
2211 
2212 	v4l2_dbg(2, debug, sd, "%s: ", __func__);
2213 
2214 	/* format change */
2215 	fmt_change = irq_reg_0x43 & 0x98;
2216 	fmt_change_digital = is_digital_input(sd)
2217 			   ? irq_reg_0x6b & info->fmt_change_digital_mask
2218 			   : 0;
2219 
2220 	if (fmt_change || fmt_change_digital) {
2221 		v4l2_dbg(1, debug, sd,
2222 			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2223 			__func__, fmt_change, fmt_change_digital);
2224 
2225 		v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
2226 
2227 		if (handled)
2228 			*handled = true;
2229 	}
2230 	/* HDMI/DVI mode */
2231 	if (irq_reg_0x6b & 0x01) {
2232 		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
2233 			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
2234 		set_rgb_quantization_range(sd);
2235 		if (handled)
2236 			*handled = true;
2237 	}
2238 
2239 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
2240 	/* cec */
2241 	adv76xx_cec_isr(sd, handled);
2242 #endif
2243 
2244 	/* tx 5v detect */
2245 	tx_5v = irq_reg_0x70 & info->cable_det_mask;
2246 	if (tx_5v) {
2247 		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
2248 		adv76xx_s_detect_tx_5v_ctrl(sd);
2249 		if (handled)
2250 			*handled = true;
2251 	}
2252 	return 0;
2253 }
2254 
2255 static irqreturn_t adv76xx_irq_handler(int irq, void *dev_id)
2256 {
2257 	struct adv76xx_state *state = dev_id;
2258 	bool handled = false;
2259 
2260 	adv76xx_isr(&state->sd, 0, &handled);
2261 
2262 	return handled ? IRQ_HANDLED : IRQ_NONE;
2263 }
2264 
2265 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2266 {
2267 	struct adv76xx_state *state = to_state(sd);
2268 	u8 *data = NULL;
2269 
2270 	memset(edid->reserved, 0, sizeof(edid->reserved));
2271 
2272 	switch (edid->pad) {
2273 	case ADV76XX_PAD_HDMI_PORT_A:
2274 	case ADV7604_PAD_HDMI_PORT_B:
2275 	case ADV7604_PAD_HDMI_PORT_C:
2276 	case ADV7604_PAD_HDMI_PORT_D:
2277 		if (state->edid.present & (1 << edid->pad))
2278 			data = state->edid.edid;
2279 		break;
2280 	default:
2281 		return -EINVAL;
2282 	}
2283 
2284 	if (edid->start_block == 0 && edid->blocks == 0) {
2285 		edid->blocks = data ? state->edid.blocks : 0;
2286 		return 0;
2287 	}
2288 
2289 	if (!data)
2290 		return -ENODATA;
2291 
2292 	if (edid->start_block >= state->edid.blocks)
2293 		return -EINVAL;
2294 
2295 	if (edid->start_block + edid->blocks > state->edid.blocks)
2296 		edid->blocks = state->edid.blocks - edid->start_block;
2297 
2298 	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2299 
2300 	return 0;
2301 }
2302 
2303 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2304 {
2305 	struct adv76xx_state *state = to_state(sd);
2306 	const struct adv76xx_chip_info *info = state->info;
2307 	unsigned int spa_loc;
2308 	u16 pa, parent_pa;
2309 	int err;
2310 	int i;
2311 
2312 	memset(edid->reserved, 0, sizeof(edid->reserved));
2313 
2314 	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2315 		return -EINVAL;
2316 	if (edid->start_block != 0)
2317 		return -EINVAL;
2318 	if (edid->blocks == 0) {
2319 		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2320 		state->edid.present &= ~(1 << edid->pad);
2321 		adv76xx_set_hpd(state, state->edid.present);
2322 		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2323 
2324 		/* Fall back to a 16:9 aspect ratio */
2325 		state->aspect_ratio.numerator = 16;
2326 		state->aspect_ratio.denominator = 9;
2327 
2328 		if (!state->edid.present) {
2329 			state->edid.blocks = 0;
2330 			cec_phys_addr_invalidate(state->cec_adap);
2331 		}
2332 
2333 		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2334 				__func__, edid->pad, state->edid.present);
2335 		return 0;
2336 	}
2337 	if (edid->blocks > 2) {
2338 		edid->blocks = 2;
2339 		return -E2BIG;
2340 	}
2341 	pa = v4l2_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc);
2342 	err = v4l2_phys_addr_validate(pa, &parent_pa, NULL);
2343 	if (err)
2344 		return err;
2345 
2346 	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2347 			__func__, edid->pad, state->edid.present);
2348 
2349 	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2350 	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2351 	adv76xx_set_hpd(state, 0);
2352 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2353 
2354 	/*
2355 	 * Return an error if no location of the source physical address
2356 	 * was found.
2357 	 */
2358 	if (edid->blocks > 1 && spa_loc == 0)
2359 		return -EINVAL;
2360 
2361 	switch (edid->pad) {
2362 	case ADV76XX_PAD_HDMI_PORT_A:
2363 		state->spa_port_a[0] = pa >> 8;
2364 		state->spa_port_a[1] = pa & 0xff;
2365 		break;
2366 	case ADV7604_PAD_HDMI_PORT_B:
2367 		rep_write(sd, 0x70, pa >> 8);
2368 		rep_write(sd, 0x71, pa & 0xff);
2369 		break;
2370 	case ADV7604_PAD_HDMI_PORT_C:
2371 		rep_write(sd, 0x72, pa >> 8);
2372 		rep_write(sd, 0x73, pa & 0xff);
2373 		break;
2374 	case ADV7604_PAD_HDMI_PORT_D:
2375 		rep_write(sd, 0x74, pa >> 8);
2376 		rep_write(sd, 0x75, pa & 0xff);
2377 		break;
2378 	default:
2379 		return -EINVAL;
2380 	}
2381 
2382 	if (info->type == ADV7604) {
2383 		rep_write(sd, 0x76, spa_loc & 0xff);
2384 		rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2385 	} else {
2386 		/* ADV7612 Software Manual Rev. A, p. 15 */
2387 		rep_write(sd, 0x70, spa_loc & 0xff);
2388 		rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2389 	}
2390 
2391 	if (spa_loc) {
2392 		edid->edid[spa_loc] = state->spa_port_a[0];
2393 		edid->edid[spa_loc + 1] = state->spa_port_a[1];
2394 	}
2395 
2396 	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2397 	state->edid.blocks = edid->blocks;
2398 	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2399 			edid->edid[0x16]);
2400 	state->edid.present |= 1 << edid->pad;
2401 
2402 	err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
2403 	if (err < 0) {
2404 		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2405 		return err;
2406 	}
2407 
2408 	/* adv76xx calculates the checksums and enables I2C access to internal
2409 	   EDID RAM from DDC port. */
2410 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2411 
2412 	for (i = 0; i < 1000; i++) {
2413 		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2414 			break;
2415 		mdelay(1);
2416 	}
2417 	if (i == 1000) {
2418 		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2419 		return -EIO;
2420 	}
2421 	cec_s_phys_addr(state->cec_adap, parent_pa, false);
2422 
2423 	/* enable hotplug after 100 ms */
2424 	schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
2425 	return 0;
2426 }
2427 
2428 /*********** avi info frame CEA-861-E **************/
2429 
2430 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2431 	{ "AVI", 0x01, 0xe0, 0x00 },
2432 	{ "Audio", 0x02, 0xe3, 0x1c },
2433 	{ "SDP", 0x04, 0xe6, 0x2a },
2434 	{ "Vendor", 0x10, 0xec, 0x54 }
2435 };
2436 
2437 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2438 				  union hdmi_infoframe *frame)
2439 {
2440 	uint8_t buffer[32];
2441 	u8 len;
2442 	int i;
2443 
2444 	if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2445 		v4l2_info(sd, "%s infoframe not received\n",
2446 			  adv76xx_cri[index].desc);
2447 		return -ENOENT;
2448 	}
2449 
2450 	for (i = 0; i < 3; i++)
2451 		buffer[i] = infoframe_read(sd,
2452 					   adv76xx_cri[index].head_addr + i);
2453 
2454 	len = buffer[2] + 1;
2455 
2456 	if (len + 3 > sizeof(buffer)) {
2457 		v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2458 			 adv76xx_cri[index].desc, len);
2459 		return -ENOENT;
2460 	}
2461 
2462 	for (i = 0; i < len; i++)
2463 		buffer[i + 3] = infoframe_read(sd,
2464 				       adv76xx_cri[index].payload_addr + i);
2465 
2466 	if (hdmi_infoframe_unpack(frame, buffer, sizeof(buffer)) < 0) {
2467 		v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2468 			 adv76xx_cri[index].desc);
2469 		return -ENOENT;
2470 	}
2471 	return 0;
2472 }
2473 
2474 static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2475 {
2476 	int i;
2477 
2478 	if (!is_hdmi(sd)) {
2479 		v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2480 		return;
2481 	}
2482 
2483 	for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2484 		union hdmi_infoframe frame;
2485 		struct i2c_client *client = v4l2_get_subdevdata(sd);
2486 
2487 		if (adv76xx_read_infoframe(sd, i, &frame))
2488 			return;
2489 		hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2490 	}
2491 }
2492 
2493 static int adv76xx_log_status(struct v4l2_subdev *sd)
2494 {
2495 	struct adv76xx_state *state = to_state(sd);
2496 	const struct adv76xx_chip_info *info = state->info;
2497 	struct v4l2_dv_timings timings;
2498 	struct stdi_readback stdi;
2499 	u8 reg_io_0x02 = io_read(sd, 0x02);
2500 	u8 edid_enabled;
2501 	u8 cable_det;
2502 
2503 	static const char * const csc_coeff_sel_rb[16] = {
2504 		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2505 		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2506 		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2507 		"reserved", "reserved", "reserved", "reserved", "manual"
2508 	};
2509 	static const char * const input_color_space_txt[16] = {
2510 		"RGB limited range (16-235)", "RGB full range (0-255)",
2511 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2512 		"xvYCC Bt.601", "xvYCC Bt.709",
2513 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2514 		"invalid", "invalid", "invalid", "invalid", "invalid",
2515 		"invalid", "invalid", "automatic"
2516 	};
2517 	static const char * const hdmi_color_space_txt[16] = {
2518 		"RGB limited range (16-235)", "RGB full range (0-255)",
2519 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2520 		"xvYCC Bt.601", "xvYCC Bt.709",
2521 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2522 		"sYCC", "opYCC 601", "opRGB", "invalid", "invalid",
2523 		"invalid", "invalid", "invalid"
2524 	};
2525 	static const char * const rgb_quantization_range_txt[] = {
2526 		"Automatic",
2527 		"RGB limited range (16-235)",
2528 		"RGB full range (0-255)",
2529 	};
2530 	static const char * const deep_color_mode_txt[4] = {
2531 		"8-bits per channel",
2532 		"10-bits per channel",
2533 		"12-bits per channel",
2534 		"16-bits per channel (not supported)"
2535 	};
2536 
2537 	v4l2_info(sd, "-----Chip status-----\n");
2538 	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2539 	edid_enabled = rep_read(sd, info->edid_status_reg);
2540 	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2541 			((edid_enabled & 0x01) ? "Yes" : "No"),
2542 			((edid_enabled & 0x02) ? "Yes" : "No"),
2543 			((edid_enabled & 0x04) ? "Yes" : "No"),
2544 			((edid_enabled & 0x08) ? "Yes" : "No"));
2545 	v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ?
2546 			"enabled" : "disabled");
2547 	if (state->cec_enabled_adap) {
2548 		int i;
2549 
2550 		for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2551 			bool is_valid = state->cec_valid_addrs & (1 << i);
2552 
2553 			if (is_valid)
2554 				v4l2_info(sd, "CEC Logical Address: 0x%x\n",
2555 					  state->cec_addr[i]);
2556 		}
2557 	}
2558 
2559 	v4l2_info(sd, "-----Signal status-----\n");
2560 	cable_det = info->read_cable_det(sd);
2561 	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2562 			((cable_det & 0x01) ? "Yes" : "No"),
2563 			((cable_det & 0x02) ? "Yes" : "No"),
2564 			((cable_det & 0x04) ? "Yes" : "No"),
2565 			((cable_det & 0x08) ? "Yes" : "No"));
2566 	v4l2_info(sd, "TMDS signal detected: %s\n",
2567 			no_signal_tmds(sd) ? "false" : "true");
2568 	v4l2_info(sd, "TMDS signal locked: %s\n",
2569 			no_lock_tmds(sd) ? "false" : "true");
2570 	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2571 	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2572 	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2573 	v4l2_info(sd, "CP free run: %s\n",
2574 			(in_free_run(sd)) ? "on" : "off");
2575 	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2576 			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2577 			(io_read(sd, 0x01) & 0x70) >> 4);
2578 
2579 	v4l2_info(sd, "-----Video Timings-----\n");
2580 	if (read_stdi(sd, &stdi))
2581 		v4l2_info(sd, "STDI: not locked\n");
2582 	else
2583 		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2584 				stdi.lcf, stdi.bl, stdi.lcvs,
2585 				stdi.interlaced ? "interlaced" : "progressive",
2586 				stdi.hs_pol, stdi.vs_pol);
2587 	if (adv76xx_query_dv_timings(sd, &timings))
2588 		v4l2_info(sd, "No video detected\n");
2589 	else
2590 		v4l2_print_dv_timings(sd->name, "Detected format: ",
2591 				      &timings, true);
2592 	v4l2_print_dv_timings(sd->name, "Configured format: ",
2593 			      &state->timings, true);
2594 
2595 	if (no_signal(sd))
2596 		return 0;
2597 
2598 	v4l2_info(sd, "-----Color space-----\n");
2599 	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2600 			rgb_quantization_range_txt[state->rgb_quantization_range]);
2601 	v4l2_info(sd, "Input color space: %s\n",
2602 			input_color_space_txt[reg_io_0x02 >> 4]);
2603 	v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n",
2604 			(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2605 			(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2606 				"(16-235)" : "(0-255)",
2607 			(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2608 	v4l2_info(sd, "Color space conversion: %s\n",
2609 			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2610 
2611 	if (!is_digital_input(sd))
2612 		return 0;
2613 
2614 	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2615 	v4l2_info(sd, "Digital video port selected: %c\n",
2616 			(hdmi_read(sd, 0x00) & 0x03) + 'A');
2617 	v4l2_info(sd, "HDCP encrypted content: %s\n",
2618 			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2619 	v4l2_info(sd, "HDCP keys read: %s%s\n",
2620 			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2621 			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2622 	if (is_hdmi(sd)) {
2623 		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2624 		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2625 		bool audio_mute = io_read(sd, 0x65) & 0x40;
2626 
2627 		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2628 				audio_pll_locked ? "locked" : "not locked",
2629 				audio_sample_packet_detect ? "detected" : "not detected",
2630 				audio_mute ? "muted" : "enabled");
2631 		if (audio_pll_locked && audio_sample_packet_detect) {
2632 			v4l2_info(sd, "Audio format: %s\n",
2633 					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2634 		}
2635 		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2636 				(hdmi_read(sd, 0x5c) << 8) +
2637 				(hdmi_read(sd, 0x5d) & 0xf0));
2638 		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2639 				(hdmi_read(sd, 0x5e) << 8) +
2640 				hdmi_read(sd, 0x5f));
2641 		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2642 
2643 		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2644 		v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2645 
2646 		adv76xx_log_infoframes(sd);
2647 	}
2648 
2649 	return 0;
2650 }
2651 
2652 static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2653 				   struct v4l2_fh *fh,
2654 				   struct v4l2_event_subscription *sub)
2655 {
2656 	switch (sub->type) {
2657 	case V4L2_EVENT_SOURCE_CHANGE:
2658 		return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2659 	case V4L2_EVENT_CTRL:
2660 		return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2661 	default:
2662 		return -EINVAL;
2663 	}
2664 }
2665 
2666 static int adv76xx_registered(struct v4l2_subdev *sd)
2667 {
2668 	struct adv76xx_state *state = to_state(sd);
2669 	struct i2c_client *client = v4l2_get_subdevdata(sd);
2670 	int err;
2671 
2672 	err = cec_register_adapter(state->cec_adap, &client->dev);
2673 	if (err)
2674 		cec_delete_adapter(state->cec_adap);
2675 	return err;
2676 }
2677 
2678 static void adv76xx_unregistered(struct v4l2_subdev *sd)
2679 {
2680 	struct adv76xx_state *state = to_state(sd);
2681 
2682 	cec_unregister_adapter(state->cec_adap);
2683 }
2684 
2685 /* ----------------------------------------------------------------------- */
2686 
2687 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2688 	.s_ctrl = adv76xx_s_ctrl,
2689 	.g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2690 };
2691 
2692 static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2693 	.log_status = adv76xx_log_status,
2694 	.interrupt_service_routine = adv76xx_isr,
2695 	.subscribe_event = adv76xx_subscribe_event,
2696 	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2697 #ifdef CONFIG_VIDEO_ADV_DEBUG
2698 	.g_register = adv76xx_g_register,
2699 	.s_register = adv76xx_s_register,
2700 #endif
2701 };
2702 
2703 static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2704 	.s_routing = adv76xx_s_routing,
2705 	.g_input_status = adv76xx_g_input_status,
2706 	.s_dv_timings = adv76xx_s_dv_timings,
2707 	.g_dv_timings = adv76xx_g_dv_timings,
2708 	.query_dv_timings = adv76xx_query_dv_timings,
2709 };
2710 
2711 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2712 	.enum_mbus_code = adv76xx_enum_mbus_code,
2713 	.get_selection = adv76xx_get_selection,
2714 	.get_fmt = adv76xx_get_format,
2715 	.set_fmt = adv76xx_set_format,
2716 	.get_edid = adv76xx_get_edid,
2717 	.set_edid = adv76xx_set_edid,
2718 	.dv_timings_cap = adv76xx_dv_timings_cap,
2719 	.enum_dv_timings = adv76xx_enum_dv_timings,
2720 };
2721 
2722 static const struct v4l2_subdev_ops adv76xx_ops = {
2723 	.core = &adv76xx_core_ops,
2724 	.video = &adv76xx_video_ops,
2725 	.pad = &adv76xx_pad_ops,
2726 };
2727 
2728 static const struct v4l2_subdev_internal_ops adv76xx_int_ops = {
2729 	.registered = adv76xx_registered,
2730 	.unregistered = adv76xx_unregistered,
2731 };
2732 
2733 /* -------------------------- custom ctrls ---------------------------------- */
2734 
2735 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2736 	.ops = &adv76xx_ctrl_ops,
2737 	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2738 	.name = "Analog Sampling Phase",
2739 	.type = V4L2_CTRL_TYPE_INTEGER,
2740 	.min = 0,
2741 	.max = 0x1f,
2742 	.step = 1,
2743 	.def = 0,
2744 };
2745 
2746 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2747 	.ops = &adv76xx_ctrl_ops,
2748 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2749 	.name = "Free Running Color, Manual",
2750 	.type = V4L2_CTRL_TYPE_BOOLEAN,
2751 	.min = false,
2752 	.max = true,
2753 	.step = 1,
2754 	.def = false,
2755 };
2756 
2757 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2758 	.ops = &adv76xx_ctrl_ops,
2759 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2760 	.name = "Free Running Color",
2761 	.type = V4L2_CTRL_TYPE_INTEGER,
2762 	.min = 0x0,
2763 	.max = 0xffffff,
2764 	.step = 0x1,
2765 	.def = 0x0,
2766 };
2767 
2768 /* ----------------------------------------------------------------------- */
2769 
2770 struct adv76xx_register_map {
2771 	const char *name;
2772 	u8 default_addr;
2773 };
2774 
2775 static const struct adv76xx_register_map adv76xx_default_addresses[] = {
2776 	[ADV76XX_PAGE_IO] = { "main", 0x4c },
2777 	[ADV7604_PAGE_AVLINK] = { "avlink", 0x42 },
2778 	[ADV76XX_PAGE_CEC] = { "cec", 0x40 },
2779 	[ADV76XX_PAGE_INFOFRAME] = { "infoframe", 0x3e },
2780 	[ADV7604_PAGE_ESDP] = { "esdp", 0x38 },
2781 	[ADV7604_PAGE_DPP] = { "dpp", 0x3c },
2782 	[ADV76XX_PAGE_AFE] = { "afe", 0x26 },
2783 	[ADV76XX_PAGE_REP] = { "rep", 0x32 },
2784 	[ADV76XX_PAGE_EDID] = { "edid", 0x36 },
2785 	[ADV76XX_PAGE_HDMI] = { "hdmi", 0x34 },
2786 	[ADV76XX_PAGE_TEST] = { "test", 0x30 },
2787 	[ADV76XX_PAGE_CP] = { "cp", 0x22 },
2788 	[ADV7604_PAGE_VDP] = { "vdp", 0x24 },
2789 };
2790 
2791 static int adv76xx_core_init(struct v4l2_subdev *sd)
2792 {
2793 	struct adv76xx_state *state = to_state(sd);
2794 	const struct adv76xx_chip_info *info = state->info;
2795 	struct adv76xx_platform_data *pdata = &state->pdata;
2796 
2797 	hdmi_write(sd, 0x48,
2798 		(pdata->disable_pwrdnb ? 0x80 : 0) |
2799 		(pdata->disable_cable_det_rst ? 0x40 : 0));
2800 
2801 	disable_input(sd);
2802 
2803 	if (pdata->default_input >= 0 &&
2804 	    pdata->default_input < state->source_pad) {
2805 		state->selected_input = pdata->default_input;
2806 		select_input(sd);
2807 		enable_input(sd);
2808 	}
2809 
2810 	/* power */
2811 	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
2812 	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
2813 	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */
2814 
2815 	/* HPD */
2816 	if (info->type != ADV7604) {
2817 		/* Set manual HPD values to 0 */
2818 		io_write_clr_set(sd, 0x20, 0xc0, 0);
2819 		/*
2820 		 * Set HPA_DELAY to 200 ms and set automatic HPD control
2821 		 * to: internal EDID is active AND a cable is detected
2822 		 * AND the manual HPD control is set to 1.
2823 		 */
2824 		hdmi_write_clr_set(sd, 0x6c, 0xf6, 0x26);
2825 	}
2826 
2827 	/* video format */
2828 	io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3);
2829 	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2830 			pdata->insert_av_codes << 2 |
2831 			pdata->replicate_av_codes << 1);
2832 	adv76xx_setup_format(state);
2833 
2834 	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2835 
2836 	/* VS, HS polarities */
2837 	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2838 		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2839 
2840 	/* Adjust drive strength */
2841 	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2842 				pdata->dr_str_clk << 2 |
2843 				pdata->dr_str_sync);
2844 
2845 	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2846 	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2847 	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
2848 				      ADI recommended setting [REF_01, c. 2.3.3] */
2849 	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
2850 				      ADI recommended setting [REF_01, c. 2.3.3] */
2851 	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2852 				     for digital formats */
2853 
2854 	/* HDMI audio */
2855 	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2856 	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2857 	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2858 
2859 	/* TODO from platform data */
2860 	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */
2861 
2862 	if (adv76xx_has_afe(state)) {
2863 		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2864 		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2865 	}
2866 
2867 	/* interrupts */
2868 	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2869 	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2870 	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2871 	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2872 	info->setup_irqs(sd);
2873 
2874 	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2875 }
2876 
2877 static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2878 {
2879 	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2880 }
2881 
2882 static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2883 {
2884 	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2885 }
2886 
2887 static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2888 {
2889 	io_write(sd, 0x41, 0xd0); /* disable INT2 */
2890 }
2891 
2892 static void adv76xx_unregister_clients(struct adv76xx_state *state)
2893 {
2894 	unsigned int i;
2895 
2896 	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i)
2897 		i2c_unregister_device(state->i2c_clients[i]);
2898 }
2899 
2900 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2901 					       unsigned int page)
2902 {
2903 	struct i2c_client *client = v4l2_get_subdevdata(sd);
2904 	struct adv76xx_state *state = to_state(sd);
2905 	struct adv76xx_platform_data *pdata = &state->pdata;
2906 	unsigned int io_reg = 0xf2 + page;
2907 	struct i2c_client *new_client;
2908 
2909 	if (pdata && pdata->i2c_addresses[page])
2910 		new_client = i2c_new_dummy_device(client->adapter,
2911 					   pdata->i2c_addresses[page]);
2912 	else
2913 		new_client = i2c_new_ancillary_device(client,
2914 				adv76xx_default_addresses[page].name,
2915 				adv76xx_default_addresses[page].default_addr);
2916 
2917 	if (!IS_ERR(new_client))
2918 		io_write(sd, io_reg, new_client->addr << 1);
2919 
2920 	return new_client;
2921 }
2922 
2923 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2924 	/* reset ADI recommended settings for HDMI: */
2925 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2926 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2927 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2928 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2929 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2930 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2931 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2932 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2933 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2934 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2935 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2936 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2937 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2938 
2939 	/* set ADI recommended settings for digitizer */
2940 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2941 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2942 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2943 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2944 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2945 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2946 
2947 	{ ADV76XX_REG_SEQ_TERM, 0 },
2948 };
2949 
2950 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2951 	/* set ADI recommended settings for HDMI: */
2952 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2953 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2954 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2955 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2956 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2957 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2958 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2959 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2960 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2961 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2962 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2963 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2964 
2965 	/* reset ADI recommended settings for digitizer */
2966 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2967 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2968 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2969 
2970 	{ ADV76XX_REG_SEQ_TERM, 0 },
2971 };
2972 
2973 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2974 	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2975 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2976 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2977 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2978 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2979 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2980 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2981 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2982 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2983 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2984 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
2985 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
2986 
2987 	{ ADV76XX_REG_SEQ_TERM, 0 },
2988 };
2989 
2990 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
2991 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2992 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2993 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2994 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2995 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2996 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2997 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2998 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2999 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
3000 	{ ADV76XX_REG_SEQ_TERM, 0 },
3001 };
3002 
3003 static const struct adv76xx_chip_info adv76xx_chip_info[] = {
3004 	[ADV7604] = {
3005 		.type = ADV7604,
3006 		.has_afe = true,
3007 		.max_port = ADV7604_PAD_VGA_COMP,
3008 		.num_dv_ports = 4,
3009 		.edid_enable_reg = 0x77,
3010 		.edid_status_reg = 0x7d,
3011 		.lcf_reg = 0xb3,
3012 		.tdms_lock_mask = 0xe0,
3013 		.cable_det_mask = 0x1e,
3014 		.fmt_change_digital_mask = 0xc1,
3015 		.cp_csc = 0xfc,
3016 		.cec_irq_status = 0x4d,
3017 		.cec_rx_enable = 0x26,
3018 		.cec_rx_enable_mask = 0x01,
3019 		.cec_irq_swap = true,
3020 		.formats = adv7604_formats,
3021 		.nformats = ARRAY_SIZE(adv7604_formats),
3022 		.set_termination = adv7604_set_termination,
3023 		.setup_irqs = adv7604_setup_irqs,
3024 		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
3025 		.read_cable_det = adv7604_read_cable_det,
3026 		.recommended_settings = {
3027 		    [0] = adv7604_recommended_settings_afe,
3028 		    [1] = adv7604_recommended_settings_hdmi,
3029 		},
3030 		.num_recommended_settings = {
3031 		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
3032 		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
3033 		},
3034 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
3035 			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
3036 			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
3037 			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
3038 			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
3039 			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
3040 			BIT(ADV7604_PAGE_VDP),
3041 		.linewidth_mask = 0xfff,
3042 		.field0_height_mask = 0xfff,
3043 		.field1_height_mask = 0xfff,
3044 		.hfrontporch_mask = 0x3ff,
3045 		.hsync_mask = 0x3ff,
3046 		.hbackporch_mask = 0x3ff,
3047 		.field0_vfrontporch_mask = 0x1fff,
3048 		.field0_vsync_mask = 0x1fff,
3049 		.field0_vbackporch_mask = 0x1fff,
3050 		.field1_vfrontporch_mask = 0x1fff,
3051 		.field1_vsync_mask = 0x1fff,
3052 		.field1_vbackporch_mask = 0x1fff,
3053 	},
3054 	[ADV7611] = {
3055 		.type = ADV7611,
3056 		.has_afe = false,
3057 		.max_port = ADV76XX_PAD_HDMI_PORT_A,
3058 		.num_dv_ports = 1,
3059 		.edid_enable_reg = 0x74,
3060 		.edid_status_reg = 0x76,
3061 		.lcf_reg = 0xa3,
3062 		.tdms_lock_mask = 0x43,
3063 		.cable_det_mask = 0x01,
3064 		.fmt_change_digital_mask = 0x03,
3065 		.cp_csc = 0xf4,
3066 		.cec_irq_status = 0x93,
3067 		.cec_rx_enable = 0x2c,
3068 		.cec_rx_enable_mask = 0x02,
3069 		.formats = adv7611_formats,
3070 		.nformats = ARRAY_SIZE(adv7611_formats),
3071 		.set_termination = adv7611_set_termination,
3072 		.setup_irqs = adv7611_setup_irqs,
3073 		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3074 		.read_cable_det = adv7611_read_cable_det,
3075 		.recommended_settings = {
3076 		    [1] = adv7611_recommended_settings_hdmi,
3077 		},
3078 		.num_recommended_settings = {
3079 		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
3080 		},
3081 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3082 			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3083 			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3084 			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3085 		.linewidth_mask = 0x1fff,
3086 		.field0_height_mask = 0x1fff,
3087 		.field1_height_mask = 0x1fff,
3088 		.hfrontporch_mask = 0x1fff,
3089 		.hsync_mask = 0x1fff,
3090 		.hbackporch_mask = 0x1fff,
3091 		.field0_vfrontporch_mask = 0x3fff,
3092 		.field0_vsync_mask = 0x3fff,
3093 		.field0_vbackporch_mask = 0x3fff,
3094 		.field1_vfrontporch_mask = 0x3fff,
3095 		.field1_vsync_mask = 0x3fff,
3096 		.field1_vbackporch_mask = 0x3fff,
3097 	},
3098 	[ADV7612] = {
3099 		.type = ADV7612,
3100 		.has_afe = false,
3101 		.max_port = ADV76XX_PAD_HDMI_PORT_A,	/* B not supported */
3102 		.num_dv_ports = 1,			/* normally 2 */
3103 		.edid_enable_reg = 0x74,
3104 		.edid_status_reg = 0x76,
3105 		.lcf_reg = 0xa3,
3106 		.tdms_lock_mask = 0x43,
3107 		.cable_det_mask = 0x01,
3108 		.fmt_change_digital_mask = 0x03,
3109 		.cp_csc = 0xf4,
3110 		.cec_irq_status = 0x93,
3111 		.cec_rx_enable = 0x2c,
3112 		.cec_rx_enable_mask = 0x02,
3113 		.formats = adv7612_formats,
3114 		.nformats = ARRAY_SIZE(adv7612_formats),
3115 		.set_termination = adv7611_set_termination,
3116 		.setup_irqs = adv7612_setup_irqs,
3117 		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3118 		.read_cable_det = adv7612_read_cable_det,
3119 		.recommended_settings = {
3120 		    [1] = adv7612_recommended_settings_hdmi,
3121 		},
3122 		.num_recommended_settings = {
3123 		    [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
3124 		},
3125 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3126 			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3127 			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3128 			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3129 		.linewidth_mask = 0x1fff,
3130 		.field0_height_mask = 0x1fff,
3131 		.field1_height_mask = 0x1fff,
3132 		.hfrontporch_mask = 0x1fff,
3133 		.hsync_mask = 0x1fff,
3134 		.hbackporch_mask = 0x1fff,
3135 		.field0_vfrontporch_mask = 0x3fff,
3136 		.field0_vsync_mask = 0x3fff,
3137 		.field0_vbackporch_mask = 0x3fff,
3138 		.field1_vfrontporch_mask = 0x3fff,
3139 		.field1_vsync_mask = 0x3fff,
3140 		.field1_vbackporch_mask = 0x3fff,
3141 	},
3142 };
3143 
3144 static const struct i2c_device_id adv76xx_i2c_id[] = {
3145 	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
3146 	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3147 	{ "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
3148 	{ }
3149 };
3150 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
3151 
3152 static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
3153 	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
3154 	{ .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
3155 	{ }
3156 };
3157 MODULE_DEVICE_TABLE(of, adv76xx_of_id);
3158 
3159 static int adv76xx_parse_dt(struct adv76xx_state *state)
3160 {
3161 	struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
3162 	struct device_node *endpoint;
3163 	struct device_node *np;
3164 	unsigned int flags;
3165 	int ret;
3166 	u32 v;
3167 
3168 	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
3169 
3170 	/* Parse the endpoint. */
3171 	endpoint = of_graph_get_next_endpoint(np, NULL);
3172 	if (!endpoint)
3173 		return -EINVAL;
3174 
3175 	ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), &bus_cfg);
3176 	of_node_put(endpoint);
3177 	if (ret)
3178 		return ret;
3179 
3180 	if (!of_property_read_u32(np, "default-input", &v))
3181 		state->pdata.default_input = v;
3182 	else
3183 		state->pdata.default_input = -1;
3184 
3185 	flags = bus_cfg.bus.parallel.flags;
3186 
3187 	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
3188 		state->pdata.inv_hs_pol = 1;
3189 
3190 	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
3191 		state->pdata.inv_vs_pol = 1;
3192 
3193 	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
3194 		state->pdata.inv_llc_pol = 1;
3195 
3196 	if (bus_cfg.bus_type == V4L2_MBUS_BT656)
3197 		state->pdata.insert_av_codes = 1;
3198 
3199 	/* Disable the interrupt for now as no DT-based board uses it. */
3200 	state->pdata.int1_config = ADV76XX_INT1_CONFIG_ACTIVE_HIGH;
3201 
3202 	/* Hardcode the remaining platform data fields. */
3203 	state->pdata.disable_pwrdnb = 0;
3204 	state->pdata.disable_cable_det_rst = 0;
3205 	state->pdata.blank_data = 1;
3206 	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
3207 	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
3208 	state->pdata.dr_str_data = ADV76XX_DR_STR_MEDIUM_HIGH;
3209 	state->pdata.dr_str_clk = ADV76XX_DR_STR_MEDIUM_HIGH;
3210 	state->pdata.dr_str_sync = ADV76XX_DR_STR_MEDIUM_HIGH;
3211 
3212 	return 0;
3213 }
3214 
3215 static const struct regmap_config adv76xx_regmap_cnf[] = {
3216 	{
3217 		.name			= "io",
3218 		.reg_bits		= 8,
3219 		.val_bits		= 8,
3220 
3221 		.max_register		= 0xff,
3222 		.cache_type		= REGCACHE_NONE,
3223 	},
3224 	{
3225 		.name			= "avlink",
3226 		.reg_bits		= 8,
3227 		.val_bits		= 8,
3228 
3229 		.max_register		= 0xff,
3230 		.cache_type		= REGCACHE_NONE,
3231 	},
3232 	{
3233 		.name			= "cec",
3234 		.reg_bits		= 8,
3235 		.val_bits		= 8,
3236 
3237 		.max_register		= 0xff,
3238 		.cache_type		= REGCACHE_NONE,
3239 	},
3240 	{
3241 		.name			= "infoframe",
3242 		.reg_bits		= 8,
3243 		.val_bits		= 8,
3244 
3245 		.max_register		= 0xff,
3246 		.cache_type		= REGCACHE_NONE,
3247 	},
3248 	{
3249 		.name			= "esdp",
3250 		.reg_bits		= 8,
3251 		.val_bits		= 8,
3252 
3253 		.max_register		= 0xff,
3254 		.cache_type		= REGCACHE_NONE,
3255 	},
3256 	{
3257 		.name			= "epp",
3258 		.reg_bits		= 8,
3259 		.val_bits		= 8,
3260 
3261 		.max_register		= 0xff,
3262 		.cache_type		= REGCACHE_NONE,
3263 	},
3264 	{
3265 		.name			= "afe",
3266 		.reg_bits		= 8,
3267 		.val_bits		= 8,
3268 
3269 		.max_register		= 0xff,
3270 		.cache_type		= REGCACHE_NONE,
3271 	},
3272 	{
3273 		.name			= "rep",
3274 		.reg_bits		= 8,
3275 		.val_bits		= 8,
3276 
3277 		.max_register		= 0xff,
3278 		.cache_type		= REGCACHE_NONE,
3279 	},
3280 	{
3281 		.name			= "edid",
3282 		.reg_bits		= 8,
3283 		.val_bits		= 8,
3284 
3285 		.max_register		= 0xff,
3286 		.cache_type		= REGCACHE_NONE,
3287 	},
3288 
3289 	{
3290 		.name			= "hdmi",
3291 		.reg_bits		= 8,
3292 		.val_bits		= 8,
3293 
3294 		.max_register		= 0xff,
3295 		.cache_type		= REGCACHE_NONE,
3296 	},
3297 	{
3298 		.name			= "test",
3299 		.reg_bits		= 8,
3300 		.val_bits		= 8,
3301 
3302 		.max_register		= 0xff,
3303 		.cache_type		= REGCACHE_NONE,
3304 	},
3305 	{
3306 		.name			= "cp",
3307 		.reg_bits		= 8,
3308 		.val_bits		= 8,
3309 
3310 		.max_register		= 0xff,
3311 		.cache_type		= REGCACHE_NONE,
3312 	},
3313 	{
3314 		.name			= "vdp",
3315 		.reg_bits		= 8,
3316 		.val_bits		= 8,
3317 
3318 		.max_register		= 0xff,
3319 		.cache_type		= REGCACHE_NONE,
3320 	},
3321 };
3322 
3323 static int configure_regmap(struct adv76xx_state *state, int region)
3324 {
3325 	int err;
3326 
3327 	if (!state->i2c_clients[region])
3328 		return -ENODEV;
3329 
3330 	state->regmap[region] =
3331 		devm_regmap_init_i2c(state->i2c_clients[region],
3332 				     &adv76xx_regmap_cnf[region]);
3333 
3334 	if (IS_ERR(state->regmap[region])) {
3335 		err = PTR_ERR(state->regmap[region]);
3336 		v4l_err(state->i2c_clients[region],
3337 			"Error initializing regmap %d with error %d\n",
3338 			region, err);
3339 		return -EINVAL;
3340 	}
3341 
3342 	return 0;
3343 }
3344 
3345 static int configure_regmaps(struct adv76xx_state *state)
3346 {
3347 	int i, err;
3348 
3349 	for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
3350 		err = configure_regmap(state, i);
3351 		if (err && (err != -ENODEV))
3352 			return err;
3353 	}
3354 	return 0;
3355 }
3356 
3357 static void adv76xx_reset(struct adv76xx_state *state)
3358 {
3359 	if (state->reset_gpio) {
3360 		/* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
3361 		gpiod_set_value_cansleep(state->reset_gpio, 0);
3362 		usleep_range(5000, 10000);
3363 		gpiod_set_value_cansleep(state->reset_gpio, 1);
3364 		/* It is recommended to wait 5 ms after the low pulse before */
3365 		/* an I2C write is performed to the ADV76XX. */
3366 		usleep_range(5000, 10000);
3367 	}
3368 }
3369 
3370 static int adv76xx_probe(struct i2c_client *client,
3371 			 const struct i2c_device_id *id)
3372 {
3373 	static const struct v4l2_dv_timings cea640x480 =
3374 		V4L2_DV_BT_CEA_640X480P59_94;
3375 	struct adv76xx_state *state;
3376 	struct v4l2_ctrl_handler *hdl;
3377 	struct v4l2_ctrl *ctrl;
3378 	struct v4l2_subdev *sd;
3379 	unsigned int i;
3380 	unsigned int val, val2;
3381 	int err;
3382 
3383 	/* Check if the adapter supports the needed features */
3384 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3385 		return -EIO;
3386 	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3387 			client->addr << 1);
3388 
3389 	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3390 	if (!state)
3391 		return -ENOMEM;
3392 
3393 	state->i2c_clients[ADV76XX_PAGE_IO] = client;
3394 
3395 	/* initialize variables */
3396 	state->restart_stdi_once = true;
3397 	state->selected_input = ~0;
3398 
3399 	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3400 		const struct of_device_id *oid;
3401 
3402 		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3403 		state->info = oid->data;
3404 
3405 		err = adv76xx_parse_dt(state);
3406 		if (err < 0) {
3407 			v4l_err(client, "DT parsing error\n");
3408 			return err;
3409 		}
3410 	} else if (client->dev.platform_data) {
3411 		struct adv76xx_platform_data *pdata = client->dev.platform_data;
3412 
3413 		state->info = (const struct adv76xx_chip_info *)id->driver_data;
3414 		state->pdata = *pdata;
3415 	} else {
3416 		v4l_err(client, "No platform data!\n");
3417 		return -ENODEV;
3418 	}
3419 
3420 	/* Request GPIOs. */
3421 	for (i = 0; i < state->info->num_dv_ports; ++i) {
3422 		state->hpd_gpio[i] =
3423 			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3424 						      GPIOD_OUT_LOW);
3425 		if (IS_ERR(state->hpd_gpio[i]))
3426 			return PTR_ERR(state->hpd_gpio[i]);
3427 
3428 		if (state->hpd_gpio[i])
3429 			v4l_info(client, "Handling HPD %u GPIO\n", i);
3430 	}
3431 	state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
3432 								GPIOD_OUT_HIGH);
3433 	if (IS_ERR(state->reset_gpio))
3434 		return PTR_ERR(state->reset_gpio);
3435 
3436 	adv76xx_reset(state);
3437 
3438 	state->timings = cea640x480;
3439 	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3440 
3441 	sd = &state->sd;
3442 	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3443 	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3444 		id->name, i2c_adapter_id(client->adapter),
3445 		client->addr);
3446 	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3447 	sd->internal_ops = &adv76xx_int_ops;
3448 
3449 	/* Configure IO Regmap region */
3450 	err = configure_regmap(state, ADV76XX_PAGE_IO);
3451 
3452 	if (err) {
3453 		v4l2_err(sd, "Error configuring IO regmap region\n");
3454 		return -ENODEV;
3455 	}
3456 
3457 	/*
3458 	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3459 	 * identifies the revision, while on ADV7611 it identifies the model as
3460 	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3461 	 */
3462 	switch (state->info->type) {
3463 	case ADV7604:
3464 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3465 		if (err) {
3466 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3467 			return -ENODEV;
3468 		}
3469 		if (val != 0x68) {
3470 			v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3471 					client->addr << 1);
3472 			return -ENODEV;
3473 		}
3474 		break;
3475 	case ADV7611:
3476 	case ADV7612:
3477 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3478 				0xea,
3479 				&val);
3480 		if (err) {
3481 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3482 			return -ENODEV;
3483 		}
3484 		val2 = val << 8;
3485 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3486 			    0xeb,
3487 			    &val);
3488 		if (err) {
3489 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3490 			return -ENODEV;
3491 		}
3492 		val |= val2;
3493 		if ((state->info->type == ADV7611 && val != 0x2051) ||
3494 			(state->info->type == ADV7612 && val != 0x2041)) {
3495 			v4l2_err(sd, "not an adv761x on address 0x%x\n",
3496 					client->addr << 1);
3497 			return -ENODEV;
3498 		}
3499 		break;
3500 	}
3501 
3502 	/* control handlers */
3503 	hdl = &state->hdl;
3504 	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3505 
3506 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3507 			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3508 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3509 			V4L2_CID_CONTRAST, 0, 255, 1, 128);
3510 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3511 			V4L2_CID_SATURATION, 0, 255, 1, 128);
3512 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3513 			V4L2_CID_HUE, 0, 128, 1, 0);
3514 	ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3515 			V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
3516 			0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
3517 	if (ctrl)
3518 		ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3519 
3520 	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3521 			V4L2_CID_DV_RX_POWER_PRESENT, 0,
3522 			(1 << state->info->num_dv_ports) - 1, 0, 0);
3523 	state->rgb_quantization_range_ctrl =
3524 		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3525 			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3526 			0, V4L2_DV_RGB_RANGE_AUTO);
3527 
3528 	/* custom controls */
3529 	if (adv76xx_has_afe(state))
3530 		state->analog_sampling_phase_ctrl =
3531 			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3532 	state->free_run_color_manual_ctrl =
3533 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3534 	state->free_run_color_ctrl =
3535 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3536 
3537 	sd->ctrl_handler = hdl;
3538 	if (hdl->error) {
3539 		err = hdl->error;
3540 		goto err_hdl;
3541 	}
3542 	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3543 		err = -ENODEV;
3544 		goto err_hdl;
3545 	}
3546 
3547 	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3548 		struct i2c_client *dummy_client;
3549 
3550 		if (!(BIT(i) & state->info->page_mask))
3551 			continue;
3552 
3553 		dummy_client = adv76xx_dummy_client(sd, i);
3554 		if (IS_ERR(dummy_client)) {
3555 			err = PTR_ERR(dummy_client);
3556 			v4l2_err(sd, "failed to create i2c client %u\n", i);
3557 			goto err_i2c;
3558 		}
3559 
3560 		state->i2c_clients[i] = dummy_client;
3561 	}
3562 
3563 	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3564 			adv76xx_delayed_work_enable_hotplug);
3565 
3566 	state->source_pad = state->info->num_dv_ports
3567 			  + (state->info->has_afe ? 2 : 0);
3568 	for (i = 0; i < state->source_pad; ++i)
3569 		state->pads[i].flags = MEDIA_PAD_FL_SINK;
3570 	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3571 	sd->entity.function = MEDIA_ENT_F_DV_DECODER;
3572 
3573 	err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3574 				state->pads);
3575 	if (err)
3576 		goto err_work_queues;
3577 
3578 	/* Configure regmaps */
3579 	err = configure_regmaps(state);
3580 	if (err)
3581 		goto err_entity;
3582 
3583 	err = adv76xx_core_init(sd);
3584 	if (err)
3585 		goto err_entity;
3586 
3587 	if (client->irq) {
3588 		err = devm_request_threaded_irq(&client->dev,
3589 						client->irq,
3590 						NULL, adv76xx_irq_handler,
3591 						IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
3592 						client->name, state);
3593 		if (err)
3594 			goto err_entity;
3595 	}
3596 
3597 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
3598 	state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops,
3599 		state, dev_name(&client->dev),
3600 		CEC_CAP_DEFAULTS, ADV76XX_MAX_ADDRS);
3601 	err = PTR_ERR_OR_ZERO(state->cec_adap);
3602 	if (err)
3603 		goto err_entity;
3604 #endif
3605 
3606 	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3607 			client->addr << 1, client->adapter->name);
3608 
3609 	err = v4l2_async_register_subdev(sd);
3610 	if (err)
3611 		goto err_entity;
3612 
3613 	return 0;
3614 
3615 err_entity:
3616 	media_entity_cleanup(&sd->entity);
3617 err_work_queues:
3618 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3619 err_i2c:
3620 	adv76xx_unregister_clients(state);
3621 err_hdl:
3622 	v4l2_ctrl_handler_free(hdl);
3623 	return err;
3624 }
3625 
3626 /* ----------------------------------------------------------------------- */
3627 
3628 static int adv76xx_remove(struct i2c_client *client)
3629 {
3630 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3631 	struct adv76xx_state *state = to_state(sd);
3632 
3633 	/* disable interrupts */
3634 	io_write(sd, 0x40, 0);
3635 	io_write(sd, 0x41, 0);
3636 	io_write(sd, 0x46, 0);
3637 	io_write(sd, 0x6e, 0);
3638 	io_write(sd, 0x73, 0);
3639 
3640 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3641 	v4l2_async_unregister_subdev(sd);
3642 	media_entity_cleanup(&sd->entity);
3643 	adv76xx_unregister_clients(to_state(sd));
3644 	v4l2_ctrl_handler_free(sd->ctrl_handler);
3645 	return 0;
3646 }
3647 
3648 /* ----------------------------------------------------------------------- */
3649 
3650 static struct i2c_driver adv76xx_driver = {
3651 	.driver = {
3652 		.name = "adv7604",
3653 		.of_match_table = of_match_ptr(adv76xx_of_id),
3654 	},
3655 	.probe = adv76xx_probe,
3656 	.remove = adv76xx_remove,
3657 	.id_table = adv76xx_i2c_id,
3658 };
3659 
3660 module_i2c_driver(adv76xx_driver);
3661