xref: /openbmc/linux/drivers/media/i2c/adv7604.c (revision 110e6f26)
1 /*
2  * adv7604 - Analog Devices ADV7604 video decoder driver
3  *
4  * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
5  *
6  * This program is free software; you may redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17  * SOFTWARE.
18  *
19  */
20 
21 /*
22  * References (c = chapter, p = page):
23  * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
24  *		Revision 2.5, June 2010
25  * REF_02 - Analog devices, Register map documentation, Documentation of
26  *		the register maps, Software manual, Rev. F, June 2010
27  * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
28  */
29 
30 #include <linux/delay.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/slab.h>
37 #include <linux/v4l2-dv-timings.h>
38 #include <linux/videodev2.h>
39 #include <linux/workqueue.h>
40 #include <linux/regmap.h>
41 
42 #include <media/i2c/adv7604.h>
43 #include <media/v4l2-ctrls.h>
44 #include <media/v4l2-device.h>
45 #include <media/v4l2-event.h>
46 #include <media/v4l2-dv-timings.h>
47 #include <media/v4l2-of.h>
48 
49 static int debug;
50 module_param(debug, int, 0644);
51 MODULE_PARM_DESC(debug, "debug level (0-2)");
52 
53 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
54 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
55 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
56 MODULE_LICENSE("GPL");
57 
58 /* ADV7604 system clock frequency */
59 #define ADV76XX_FSC (28636360)
60 
61 #define ADV76XX_RGB_OUT					(1 << 1)
62 
63 #define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
64 #define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
65 #define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
66 
67 #define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
68 #define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
69 #define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
70 #define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
71 #define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
72 #define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)
73 
74 #define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
75 #define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
76 #define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
77 #define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
78 #define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
79 #define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
80 
81 #define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
82 
83 enum adv76xx_type {
84 	ADV7604,
85 	ADV7611,
86 	ADV7612,
87 };
88 
89 struct adv76xx_reg_seq {
90 	unsigned int reg;
91 	u8 val;
92 };
93 
94 struct adv76xx_format_info {
95 	u32 code;
96 	u8 op_ch_sel;
97 	bool rgb_out;
98 	bool swap_cb_cr;
99 	u8 op_format_sel;
100 };
101 
102 struct adv76xx_cfg_read_infoframe {
103 	const char *desc;
104 	u8 present_mask;
105 	u8 head_addr;
106 	u8 payload_addr;
107 };
108 
109 struct adv76xx_chip_info {
110 	enum adv76xx_type type;
111 
112 	bool has_afe;
113 	unsigned int max_port;
114 	unsigned int num_dv_ports;
115 
116 	unsigned int edid_enable_reg;
117 	unsigned int edid_status_reg;
118 	unsigned int lcf_reg;
119 
120 	unsigned int cable_det_mask;
121 	unsigned int tdms_lock_mask;
122 	unsigned int fmt_change_digital_mask;
123 	unsigned int cp_csc;
124 
125 	const struct adv76xx_format_info *formats;
126 	unsigned int nformats;
127 
128 	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
129 	void (*setup_irqs)(struct v4l2_subdev *sd);
130 	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
131 	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
132 
133 	/* 0 = AFE, 1 = HDMI */
134 	const struct adv76xx_reg_seq *recommended_settings[2];
135 	unsigned int num_recommended_settings[2];
136 
137 	unsigned long page_mask;
138 
139 	/* Masks for timings */
140 	unsigned int linewidth_mask;
141 	unsigned int field0_height_mask;
142 	unsigned int field1_height_mask;
143 	unsigned int hfrontporch_mask;
144 	unsigned int hsync_mask;
145 	unsigned int hbackporch_mask;
146 	unsigned int field0_vfrontporch_mask;
147 	unsigned int field1_vfrontporch_mask;
148 	unsigned int field0_vsync_mask;
149 	unsigned int field1_vsync_mask;
150 	unsigned int field0_vbackporch_mask;
151 	unsigned int field1_vbackporch_mask;
152 };
153 
154 /*
155  **********************************************************************
156  *
157  *  Arrays with configuration parameters for the ADV7604
158  *
159  **********************************************************************
160  */
161 
162 struct adv76xx_state {
163 	const struct adv76xx_chip_info *info;
164 	struct adv76xx_platform_data pdata;
165 
166 	struct gpio_desc *hpd_gpio[4];
167 
168 	struct v4l2_subdev sd;
169 	struct media_pad pads[ADV76XX_PAD_MAX];
170 	unsigned int source_pad;
171 
172 	struct v4l2_ctrl_handler hdl;
173 
174 	enum adv76xx_pad selected_input;
175 
176 	struct v4l2_dv_timings timings;
177 	const struct adv76xx_format_info *format;
178 
179 	struct {
180 		u8 edid[256];
181 		u32 present;
182 		unsigned blocks;
183 	} edid;
184 	u16 spa_port_a[2];
185 	struct v4l2_fract aspect_ratio;
186 	u32 rgb_quantization_range;
187 	struct workqueue_struct *work_queues;
188 	struct delayed_work delayed_work_enable_hotplug;
189 	bool restart_stdi_once;
190 
191 	/* i2c clients */
192 	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
193 
194 	/* Regmaps */
195 	struct regmap *regmap[ADV76XX_PAGE_MAX];
196 
197 	/* controls */
198 	struct v4l2_ctrl *detect_tx_5v_ctrl;
199 	struct v4l2_ctrl *analog_sampling_phase_ctrl;
200 	struct v4l2_ctrl *free_run_color_manual_ctrl;
201 	struct v4l2_ctrl *free_run_color_ctrl;
202 	struct v4l2_ctrl *rgb_quantization_range_ctrl;
203 };
204 
205 static bool adv76xx_has_afe(struct adv76xx_state *state)
206 {
207 	return state->info->has_afe;
208 }
209 
210 /* Unsupported timings. This device cannot support 720p30. */
211 static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
212 	V4L2_DV_BT_CEA_1280X720P30,
213 	{ }
214 };
215 
216 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
217 {
218 	int i;
219 
220 	for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
221 		if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
222 			return false;
223 	return true;
224 }
225 
226 struct adv76xx_video_standards {
227 	struct v4l2_dv_timings timings;
228 	u8 vid_std;
229 	u8 v_freq;
230 };
231 
232 /* sorted by number of lines */
233 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
234 	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
235 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
236 	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
237 	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
238 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
239 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
240 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
241 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
242 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
243 	/* TODO add 1920x1080P60_RB (CVT timing) */
244 	{ },
245 };
246 
247 /* sorted by number of lines */
248 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
249 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
250 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
251 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
252 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
253 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
254 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
255 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
256 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
257 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
258 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
259 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
260 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
261 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
262 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
263 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
264 	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
265 	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
266 	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
267 	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
268 	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
269 	/* TODO add 1600X1200P60_RB (not a DMT timing) */
270 	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
271 	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
272 	{ },
273 };
274 
275 /* sorted by number of lines */
276 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
277 	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
278 	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
279 	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
280 	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
281 	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
282 	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
283 	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
284 	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
285 	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
286 	{ },
287 };
288 
289 /* sorted by number of lines */
290 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
291 	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
292 	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
293 	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
294 	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
295 	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
296 	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
297 	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
298 	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
299 	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
300 	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
301 	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
302 	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
303 	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
304 	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
305 	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
306 	{ },
307 };
308 
309 static const struct v4l2_event adv76xx_ev_fmt = {
310 	.type = V4L2_EVENT_SOURCE_CHANGE,
311 	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
312 };
313 
314 /* ----------------------------------------------------------------------- */
315 
316 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
317 {
318 	return container_of(sd, struct adv76xx_state, sd);
319 }
320 
321 static inline unsigned htotal(const struct v4l2_bt_timings *t)
322 {
323 	return V4L2_DV_BT_FRAME_WIDTH(t);
324 }
325 
326 static inline unsigned vtotal(const struct v4l2_bt_timings *t)
327 {
328 	return V4L2_DV_BT_FRAME_HEIGHT(t);
329 }
330 
331 /* ----------------------------------------------------------------------- */
332 
333 static int adv76xx_read_check(struct adv76xx_state *state,
334 			     int client_page, u8 reg)
335 {
336 	struct i2c_client *client = state->i2c_clients[client_page];
337 	int err;
338 	unsigned int val;
339 
340 	err = regmap_read(state->regmap[client_page], reg, &val);
341 
342 	if (err) {
343 		v4l_err(client, "error reading %02x, %02x\n",
344 				client->addr, reg);
345 		return err;
346 	}
347 	return val;
348 }
349 
350 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
351  * size to one or more registers.
352  *
353  * A value of zero will be returned on success, a negative errno will
354  * be returned in error cases.
355  */
356 static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
357 			      unsigned int init_reg, const void *val,
358 			      size_t val_len)
359 {
360 	struct regmap *regmap = state->regmap[client_page];
361 
362 	if (val_len > I2C_SMBUS_BLOCK_MAX)
363 		val_len = I2C_SMBUS_BLOCK_MAX;
364 
365 	return regmap_raw_write(regmap, init_reg, val, val_len);
366 }
367 
368 /* ----------------------------------------------------------------------- */
369 
370 static inline int io_read(struct v4l2_subdev *sd, u8 reg)
371 {
372 	struct adv76xx_state *state = to_state(sd);
373 
374 	return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
375 }
376 
377 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
378 {
379 	struct adv76xx_state *state = to_state(sd);
380 
381 	return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
382 }
383 
384 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
385 {
386 	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
387 }
388 
389 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
390 {
391 	struct adv76xx_state *state = to_state(sd);
392 
393 	return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
394 }
395 
396 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
397 {
398 	struct adv76xx_state *state = to_state(sd);
399 
400 	return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
401 }
402 
403 static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
404 {
405 	struct adv76xx_state *state = to_state(sd);
406 
407 	return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
408 }
409 
410 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
411 {
412 	struct adv76xx_state *state = to_state(sd);
413 
414 	return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
415 }
416 
417 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
418 {
419 	struct adv76xx_state *state = to_state(sd);
420 
421 	return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
422 }
423 
424 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
425 {
426 	struct adv76xx_state *state = to_state(sd);
427 
428 	return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
429 }
430 
431 static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
432 {
433 	struct adv76xx_state *state = to_state(sd);
434 
435 	return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
436 }
437 
438 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
439 {
440 	struct adv76xx_state *state = to_state(sd);
441 
442 	return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
443 }
444 
445 static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
446 {
447 	struct adv76xx_state *state = to_state(sd);
448 
449 	return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
450 }
451 
452 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
453 {
454 	struct adv76xx_state *state = to_state(sd);
455 
456 	return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
457 }
458 
459 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
460 {
461 	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
462 }
463 
464 static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
465 {
466 	struct adv76xx_state *state = to_state(sd);
467 
468 	return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
469 }
470 
471 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
472 {
473 	struct adv76xx_state *state = to_state(sd);
474 
475 	return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
476 }
477 
478 static inline int edid_write_block(struct v4l2_subdev *sd,
479 					unsigned int total_len, const u8 *val)
480 {
481 	struct adv76xx_state *state = to_state(sd);
482 	int err = 0;
483 	int i = 0;
484 	int len = 0;
485 
486 	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
487 				__func__, total_len);
488 
489 	while (!err && i < total_len) {
490 		len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
491 				I2C_SMBUS_BLOCK_MAX :
492 				(total_len - i);
493 
494 		err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
495 				i, val + i, len);
496 		i += len;
497 	}
498 
499 	return err;
500 }
501 
502 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
503 {
504 	unsigned int i;
505 
506 	for (i = 0; i < state->info->num_dv_ports; ++i)
507 		gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
508 
509 	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
510 }
511 
512 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
513 {
514 	struct delayed_work *dwork = to_delayed_work(work);
515 	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
516 						delayed_work_enable_hotplug);
517 	struct v4l2_subdev *sd = &state->sd;
518 
519 	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
520 
521 	adv76xx_set_hpd(state, state->edid.present);
522 }
523 
524 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
525 {
526 	struct adv76xx_state *state = to_state(sd);
527 
528 	return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
529 }
530 
531 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
532 {
533 	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
534 }
535 
536 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
537 {
538 	struct adv76xx_state *state = to_state(sd);
539 
540 	return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
541 }
542 
543 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
544 {
545 	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
546 }
547 
548 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
549 {
550 	struct adv76xx_state *state = to_state(sd);
551 
552 	return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
553 }
554 
555 static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
556 {
557 	struct adv76xx_state *state = to_state(sd);
558 
559 	return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
560 }
561 
562 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
563 {
564 	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
565 }
566 
567 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
568 {
569 	struct adv76xx_state *state = to_state(sd);
570 
571 	return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
572 }
573 
574 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
575 {
576 	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
577 }
578 
579 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
580 {
581 	struct adv76xx_state *state = to_state(sd);
582 
583 	return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
584 }
585 
586 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
587 {
588 	struct adv76xx_state *state = to_state(sd);
589 
590 	return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
591 }
592 
593 #define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
594 #define ADV76XX_REG_SEQ_TERM		0xffff
595 
596 #ifdef CONFIG_VIDEO_ADV_DEBUG
597 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
598 {
599 	struct adv76xx_state *state = to_state(sd);
600 	unsigned int page = reg >> 8;
601 	unsigned int val;
602 	int err;
603 
604 	if (!(BIT(page) & state->info->page_mask))
605 		return -EINVAL;
606 
607 	reg &= 0xff;
608 	err = regmap_read(state->regmap[page], reg, &val);
609 
610 	return err ? err : val;
611 }
612 #endif
613 
614 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
615 {
616 	struct adv76xx_state *state = to_state(sd);
617 	unsigned int page = reg >> 8;
618 
619 	if (!(BIT(page) & state->info->page_mask))
620 		return -EINVAL;
621 
622 	reg &= 0xff;
623 
624 	return regmap_write(state->regmap[page], reg, val);
625 }
626 
627 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
628 				  const struct adv76xx_reg_seq *reg_seq)
629 {
630 	unsigned int i;
631 
632 	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
633 		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
634 }
635 
636 /* -----------------------------------------------------------------------------
637  * Format helpers
638  */
639 
640 static const struct adv76xx_format_info adv7604_formats[] = {
641 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
642 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
643 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
644 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
645 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
646 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
647 	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
648 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
649 	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
650 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
651 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
652 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
653 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
654 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
655 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
656 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
657 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
658 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
659 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
660 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
661 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
662 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
663 	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
664 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
665 	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
666 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
667 	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
668 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
669 	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
670 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
671 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
672 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
673 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
674 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
675 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
676 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
677 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
678 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
679 };
680 
681 static const struct adv76xx_format_info adv7611_formats[] = {
682 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
683 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
684 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
685 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
686 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
687 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
688 	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
689 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
690 	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
691 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
692 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
693 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
694 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
695 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
696 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
697 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
698 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
699 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
700 	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
701 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
702 	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
703 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
704 	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
705 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
706 	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
707 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
708 };
709 
710 static const struct adv76xx_format_info adv7612_formats[] = {
711 	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
712 	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
713 	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
714 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
715 	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
716 	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
717 	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
718 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
719 	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
720 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
721 	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
722 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
723 	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
724 	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
725 };
726 
727 static const struct adv76xx_format_info *
728 adv76xx_format_info(struct adv76xx_state *state, u32 code)
729 {
730 	unsigned int i;
731 
732 	for (i = 0; i < state->info->nformats; ++i) {
733 		if (state->info->formats[i].code == code)
734 			return &state->info->formats[i];
735 	}
736 
737 	return NULL;
738 }
739 
740 /* ----------------------------------------------------------------------- */
741 
742 static inline bool is_analog_input(struct v4l2_subdev *sd)
743 {
744 	struct adv76xx_state *state = to_state(sd);
745 
746 	return state->selected_input == ADV7604_PAD_VGA_RGB ||
747 	       state->selected_input == ADV7604_PAD_VGA_COMP;
748 }
749 
750 static inline bool is_digital_input(struct v4l2_subdev *sd)
751 {
752 	struct adv76xx_state *state = to_state(sd);
753 
754 	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
755 	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
756 	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
757 	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
758 }
759 
760 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
761 	.type = V4L2_DV_BT_656_1120,
762 	/* keep this initialization for compatibility with GCC < 4.4.6 */
763 	.reserved = { 0 },
764 	V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000,
765 		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
766 			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
767 		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
768 			V4L2_DV_BT_CAP_CUSTOM)
769 };
770 
771 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
772 	.type = V4L2_DV_BT_656_1120,
773 	/* keep this initialization for compatibility with GCC < 4.4.6 */
774 	.reserved = { 0 },
775 	V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 225000000,
776 		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
777 			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
778 		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
779 			V4L2_DV_BT_CAP_CUSTOM)
780 };
781 
782 static inline const struct v4l2_dv_timings_cap *
783 adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd)
784 {
785 	return is_digital_input(sd) ? &adv76xx_timings_cap_digital :
786 				      &adv7604_timings_cap_analog;
787 }
788 
789 
790 /* ----------------------------------------------------------------------- */
791 
792 #ifdef CONFIG_VIDEO_ADV_DEBUG
793 static void adv76xx_inv_register(struct v4l2_subdev *sd)
794 {
795 	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
796 	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
797 	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
798 	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
799 	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
800 	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
801 	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
802 	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
803 	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
804 	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
805 	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
806 	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
807 	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
808 }
809 
810 static int adv76xx_g_register(struct v4l2_subdev *sd,
811 					struct v4l2_dbg_register *reg)
812 {
813 	int ret;
814 
815 	ret = adv76xx_read_reg(sd, reg->reg);
816 	if (ret < 0) {
817 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
818 		adv76xx_inv_register(sd);
819 		return ret;
820 	}
821 
822 	reg->size = 1;
823 	reg->val = ret;
824 
825 	return 0;
826 }
827 
828 static int adv76xx_s_register(struct v4l2_subdev *sd,
829 					const struct v4l2_dbg_register *reg)
830 {
831 	int ret;
832 
833 	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
834 	if (ret < 0) {
835 		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
836 		adv76xx_inv_register(sd);
837 		return ret;
838 	}
839 
840 	return 0;
841 }
842 #endif
843 
844 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
845 {
846 	u8 value = io_read(sd, 0x6f);
847 
848 	return ((value & 0x10) >> 4)
849 	     | ((value & 0x08) >> 2)
850 	     | ((value & 0x04) << 0)
851 	     | ((value & 0x02) << 2);
852 }
853 
854 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
855 {
856 	u8 value = io_read(sd, 0x6f);
857 
858 	return value & 1;
859 }
860 
861 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
862 {
863 	/*  Reads CABLE_DET_A_RAW. For input B support, need to
864 	 *  account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
865 	 */
866 	u8 value = io_read(sd, 0x6f);
867 
868 	return value & 1;
869 }
870 
871 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
872 {
873 	struct adv76xx_state *state = to_state(sd);
874 	const struct adv76xx_chip_info *info = state->info;
875 
876 	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
877 				info->read_cable_det(sd));
878 }
879 
880 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
881 		u8 prim_mode,
882 		const struct adv76xx_video_standards *predef_vid_timings,
883 		const struct v4l2_dv_timings *timings)
884 {
885 	int i;
886 
887 	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
888 		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
889 				is_digital_input(sd) ? 250000 : 1000000, false))
890 			continue;
891 		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
892 		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
893 				prim_mode); /* v_freq and prim mode */
894 		return 0;
895 	}
896 
897 	return -1;
898 }
899 
900 static int configure_predefined_video_timings(struct v4l2_subdev *sd,
901 		struct v4l2_dv_timings *timings)
902 {
903 	struct adv76xx_state *state = to_state(sd);
904 	int err;
905 
906 	v4l2_dbg(1, debug, sd, "%s", __func__);
907 
908 	if (adv76xx_has_afe(state)) {
909 		/* reset to default values */
910 		io_write(sd, 0x16, 0x43);
911 		io_write(sd, 0x17, 0x5a);
912 	}
913 	/* disable embedded syncs for auto graphics mode */
914 	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
915 	cp_write(sd, 0x8f, 0x00);
916 	cp_write(sd, 0x90, 0x00);
917 	cp_write(sd, 0xa2, 0x00);
918 	cp_write(sd, 0xa3, 0x00);
919 	cp_write(sd, 0xa4, 0x00);
920 	cp_write(sd, 0xa5, 0x00);
921 	cp_write(sd, 0xa6, 0x00);
922 	cp_write(sd, 0xa7, 0x00);
923 	cp_write(sd, 0xab, 0x00);
924 	cp_write(sd, 0xac, 0x00);
925 
926 	if (is_analog_input(sd)) {
927 		err = find_and_set_predefined_video_timings(sd,
928 				0x01, adv7604_prim_mode_comp, timings);
929 		if (err)
930 			err = find_and_set_predefined_video_timings(sd,
931 					0x02, adv7604_prim_mode_gr, timings);
932 	} else if (is_digital_input(sd)) {
933 		err = find_and_set_predefined_video_timings(sd,
934 				0x05, adv76xx_prim_mode_hdmi_comp, timings);
935 		if (err)
936 			err = find_and_set_predefined_video_timings(sd,
937 					0x06, adv76xx_prim_mode_hdmi_gr, timings);
938 	} else {
939 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
940 				__func__, state->selected_input);
941 		err = -1;
942 	}
943 
944 
945 	return err;
946 }
947 
948 static void configure_custom_video_timings(struct v4l2_subdev *sd,
949 		const struct v4l2_bt_timings *bt)
950 {
951 	struct adv76xx_state *state = to_state(sd);
952 	u32 width = htotal(bt);
953 	u32 height = vtotal(bt);
954 	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
955 	u16 cp_start_eav = width - bt->hfrontporch;
956 	u16 cp_start_vbi = height - bt->vfrontporch;
957 	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
958 	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
959 		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
960 	const u8 pll[2] = {
961 		0xc0 | ((width >> 8) & 0x1f),
962 		width & 0xff
963 	};
964 
965 	v4l2_dbg(2, debug, sd, "%s\n", __func__);
966 
967 	if (is_analog_input(sd)) {
968 		/* auto graphics */
969 		io_write(sd, 0x00, 0x07); /* video std */
970 		io_write(sd, 0x01, 0x02); /* prim mode */
971 		/* enable embedded syncs for auto graphics mode */
972 		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
973 
974 		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
975 		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
976 		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
977 		if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
978 					0x16, pll, 2))
979 			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
980 
981 		/* active video - horizontal timing */
982 		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
983 		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
984 				   ((cp_start_eav >> 8) & 0x0f));
985 		cp_write(sd, 0xa4, cp_start_eav & 0xff);
986 
987 		/* active video - vertical timing */
988 		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
989 		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
990 				   ((cp_end_vbi >> 8) & 0xf));
991 		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
992 	} else if (is_digital_input(sd)) {
993 		/* set default prim_mode/vid_std for HDMI
994 		   according to [REF_03, c. 4.2] */
995 		io_write(sd, 0x00, 0x02); /* video std */
996 		io_write(sd, 0x01, 0x06); /* prim mode */
997 	} else {
998 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
999 				__func__, state->selected_input);
1000 	}
1001 
1002 	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1003 	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1004 	cp_write(sd, 0xab, (height >> 4) & 0xff);
1005 	cp_write(sd, 0xac, (height & 0x0f) << 4);
1006 }
1007 
1008 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1009 {
1010 	struct adv76xx_state *state = to_state(sd);
1011 	u8 offset_buf[4];
1012 
1013 	if (auto_offset) {
1014 		offset_a = 0x3ff;
1015 		offset_b = 0x3ff;
1016 		offset_c = 0x3ff;
1017 	}
1018 
1019 	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1020 			__func__, auto_offset ? "Auto" : "Manual",
1021 			offset_a, offset_b, offset_c);
1022 
1023 	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1024 	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1025 	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1026 	offset_buf[3] = offset_c & 0x0ff;
1027 
1028 	/* Registers must be written in this order with no i2c access in between */
1029 	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1030 			0x77, offset_buf, 4))
1031 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1032 }
1033 
1034 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1035 {
1036 	struct adv76xx_state *state = to_state(sd);
1037 	u8 gain_buf[4];
1038 	u8 gain_man = 1;
1039 	u8 agc_mode_man = 1;
1040 
1041 	if (auto_gain) {
1042 		gain_man = 0;
1043 		agc_mode_man = 0;
1044 		gain_a = 0x100;
1045 		gain_b = 0x100;
1046 		gain_c = 0x100;
1047 	}
1048 
1049 	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1050 			__func__, auto_gain ? "Auto" : "Manual",
1051 			gain_a, gain_b, gain_c);
1052 
1053 	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1054 	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1055 	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1056 	gain_buf[3] = ((gain_c & 0x0ff));
1057 
1058 	/* Registers must be written in this order with no i2c access in between */
1059 	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1060 			     0x73, gain_buf, 4))
1061 		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1062 }
1063 
1064 static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1065 {
1066 	struct adv76xx_state *state = to_state(sd);
1067 	bool rgb_output = io_read(sd, 0x02) & 0x02;
1068 	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1069 
1070 	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1071 			__func__, state->rgb_quantization_range,
1072 			rgb_output, hdmi_signal);
1073 
1074 	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1075 	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1076 
1077 	switch (state->rgb_quantization_range) {
1078 	case V4L2_DV_RGB_RANGE_AUTO:
1079 		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1080 			/* Receiving analog RGB signal
1081 			 * Set RGB full range (0-255) */
1082 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1083 			break;
1084 		}
1085 
1086 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1087 			/* Receiving analog YPbPr signal
1088 			 * Set automode */
1089 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1090 			break;
1091 		}
1092 
1093 		if (hdmi_signal) {
1094 			/* Receiving HDMI signal
1095 			 * Set automode */
1096 			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1097 			break;
1098 		}
1099 
1100 		/* Receiving DVI-D signal
1101 		 * ADV7604 selects RGB limited range regardless of
1102 		 * input format (CE/IT) in automatic mode */
1103 		if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1104 			/* RGB limited range (16-235) */
1105 			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1106 		} else {
1107 			/* RGB full range (0-255) */
1108 			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1109 
1110 			if (is_digital_input(sd) && rgb_output) {
1111 				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1112 			} else {
1113 				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1114 				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1115 			}
1116 		}
1117 		break;
1118 	case V4L2_DV_RGB_RANGE_LIMITED:
1119 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1120 			/* YCrCb limited range (16-235) */
1121 			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1122 			break;
1123 		}
1124 
1125 		/* RGB limited range (16-235) */
1126 		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1127 
1128 		break;
1129 	case V4L2_DV_RGB_RANGE_FULL:
1130 		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1131 			/* YCrCb full range (0-255) */
1132 			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1133 			break;
1134 		}
1135 
1136 		/* RGB full range (0-255) */
1137 		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1138 
1139 		if (is_analog_input(sd) || hdmi_signal)
1140 			break;
1141 
1142 		/* Adjust gain/offset for DVI-D signals only */
1143 		if (rgb_output) {
1144 			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1145 		} else {
1146 			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1147 			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1148 		}
1149 		break;
1150 	}
1151 }
1152 
1153 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1154 {
1155 	struct v4l2_subdev *sd =
1156 		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1157 
1158 	struct adv76xx_state *state = to_state(sd);
1159 
1160 	switch (ctrl->id) {
1161 	case V4L2_CID_BRIGHTNESS:
1162 		cp_write(sd, 0x3c, ctrl->val);
1163 		return 0;
1164 	case V4L2_CID_CONTRAST:
1165 		cp_write(sd, 0x3a, ctrl->val);
1166 		return 0;
1167 	case V4L2_CID_SATURATION:
1168 		cp_write(sd, 0x3b, ctrl->val);
1169 		return 0;
1170 	case V4L2_CID_HUE:
1171 		cp_write(sd, 0x3d, ctrl->val);
1172 		return 0;
1173 	case  V4L2_CID_DV_RX_RGB_RANGE:
1174 		state->rgb_quantization_range = ctrl->val;
1175 		set_rgb_quantization_range(sd);
1176 		return 0;
1177 	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1178 		if (!adv76xx_has_afe(state))
1179 			return -EINVAL;
1180 		/* Set the analog sampling phase. This is needed to find the
1181 		   best sampling phase for analog video: an application or
1182 		   driver has to try a number of phases and analyze the picture
1183 		   quality before settling on the best performing phase. */
1184 		afe_write(sd, 0xc8, ctrl->val);
1185 		return 0;
1186 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1187 		/* Use the default blue color for free running mode,
1188 		   or supply your own. */
1189 		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1190 		return 0;
1191 	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1192 		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1193 		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1194 		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1195 		return 0;
1196 	}
1197 	return -EINVAL;
1198 }
1199 
1200 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1201 {
1202 	struct v4l2_subdev *sd =
1203 		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1204 
1205 	if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
1206 		ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
1207 		if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
1208 			ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
1209 		return 0;
1210 	}
1211 	return -EINVAL;
1212 }
1213 
1214 /* ----------------------------------------------------------------------- */
1215 
1216 static inline bool no_power(struct v4l2_subdev *sd)
1217 {
1218 	/* Entire chip or CP powered off */
1219 	return io_read(sd, 0x0c) & 0x24;
1220 }
1221 
1222 static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1223 {
1224 	struct adv76xx_state *state = to_state(sd);
1225 
1226 	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1227 }
1228 
1229 static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1230 {
1231 	struct adv76xx_state *state = to_state(sd);
1232 	const struct adv76xx_chip_info *info = state->info;
1233 
1234 	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1235 }
1236 
1237 static inline bool is_hdmi(struct v4l2_subdev *sd)
1238 {
1239 	return hdmi_read(sd, 0x05) & 0x80;
1240 }
1241 
1242 static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1243 {
1244 	struct adv76xx_state *state = to_state(sd);
1245 
1246 	/*
1247 	 * Chips without a AFE don't expose registers for the SSPD, so just assume
1248 	 * that we have a lock.
1249 	 */
1250 	if (adv76xx_has_afe(state))
1251 		return false;
1252 
1253 	/* TODO channel 2 */
1254 	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1255 }
1256 
1257 static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1258 {
1259 	/* TODO channel 2 */
1260 	return !(cp_read(sd, 0xb1) & 0x80);
1261 }
1262 
1263 static inline bool no_signal(struct v4l2_subdev *sd)
1264 {
1265 	bool ret;
1266 
1267 	ret = no_power(sd);
1268 
1269 	ret |= no_lock_stdi(sd);
1270 	ret |= no_lock_sspd(sd);
1271 
1272 	if (is_digital_input(sd)) {
1273 		ret |= no_lock_tmds(sd);
1274 		ret |= no_signal_tmds(sd);
1275 	}
1276 
1277 	return ret;
1278 }
1279 
1280 static inline bool no_lock_cp(struct v4l2_subdev *sd)
1281 {
1282 	struct adv76xx_state *state = to_state(sd);
1283 
1284 	if (!adv76xx_has_afe(state))
1285 		return false;
1286 
1287 	/* CP has detected a non standard number of lines on the incoming
1288 	   video compared to what it is configured to receive by s_dv_timings */
1289 	return io_read(sd, 0x12) & 0x01;
1290 }
1291 
1292 static inline bool in_free_run(struct v4l2_subdev *sd)
1293 {
1294 	return cp_read(sd, 0xff) & 0x10;
1295 }
1296 
1297 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1298 {
1299 	*status = 0;
1300 	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1301 	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1302 	if (!in_free_run(sd) && no_lock_cp(sd))
1303 		*status |= is_digital_input(sd) ?
1304 			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1305 
1306 	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1307 
1308 	return 0;
1309 }
1310 
1311 /* ----------------------------------------------------------------------- */
1312 
1313 struct stdi_readback {
1314 	u16 bl, lcf, lcvs;
1315 	u8 hs_pol, vs_pol;
1316 	bool interlaced;
1317 };
1318 
1319 static int stdi2dv_timings(struct v4l2_subdev *sd,
1320 		struct stdi_readback *stdi,
1321 		struct v4l2_dv_timings *timings)
1322 {
1323 	struct adv76xx_state *state = to_state(sd);
1324 	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1325 	u32 pix_clk;
1326 	int i;
1327 
1328 	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1329 		const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
1330 
1331 		if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1332 					   adv76xx_get_dv_timings_cap(sd),
1333 					   adv76xx_check_dv_timings, NULL))
1334 			continue;
1335 		if (vtotal(bt) != stdi->lcf + 1)
1336 			continue;
1337 		if (bt->vsync != stdi->lcvs)
1338 			continue;
1339 
1340 		pix_clk = hfreq * htotal(bt);
1341 
1342 		if ((pix_clk < bt->pixelclock + 1000000) &&
1343 		    (pix_clk > bt->pixelclock - 1000000)) {
1344 			*timings = v4l2_dv_timings_presets[i];
1345 			return 0;
1346 		}
1347 	}
1348 
1349 	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1350 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1351 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1352 			false, timings))
1353 		return 0;
1354 	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1355 			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1356 			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1357 			false, state->aspect_ratio, timings))
1358 		return 0;
1359 
1360 	v4l2_dbg(2, debug, sd,
1361 		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1362 		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
1363 		stdi->hs_pol, stdi->vs_pol);
1364 	return -1;
1365 }
1366 
1367 
1368 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1369 {
1370 	struct adv76xx_state *state = to_state(sd);
1371 	const struct adv76xx_chip_info *info = state->info;
1372 	u8 polarity;
1373 
1374 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1375 		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1376 		return -1;
1377 	}
1378 
1379 	/* read STDI */
1380 	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1381 	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1382 	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1383 	stdi->interlaced = io_read(sd, 0x12) & 0x10;
1384 
1385 	if (adv76xx_has_afe(state)) {
1386 		/* read SSPD */
1387 		polarity = cp_read(sd, 0xb5);
1388 		if ((polarity & 0x03) == 0x01) {
1389 			stdi->hs_pol = polarity & 0x10
1390 				     ? (polarity & 0x08 ? '+' : '-') : 'x';
1391 			stdi->vs_pol = polarity & 0x40
1392 				     ? (polarity & 0x20 ? '+' : '-') : 'x';
1393 		} else {
1394 			stdi->hs_pol = 'x';
1395 			stdi->vs_pol = 'x';
1396 		}
1397 	} else {
1398 		polarity = hdmi_read(sd, 0x05);
1399 		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1400 		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1401 	}
1402 
1403 	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1404 		v4l2_dbg(2, debug, sd,
1405 			"%s: signal lost during readout of STDI/SSPD\n", __func__);
1406 		return -1;
1407 	}
1408 
1409 	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1410 		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1411 		memset(stdi, 0, sizeof(struct stdi_readback));
1412 		return -1;
1413 	}
1414 
1415 	v4l2_dbg(2, debug, sd,
1416 		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1417 		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
1418 		stdi->hs_pol, stdi->vs_pol,
1419 		stdi->interlaced ? "interlaced" : "progressive");
1420 
1421 	return 0;
1422 }
1423 
1424 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1425 			struct v4l2_enum_dv_timings *timings)
1426 {
1427 	struct adv76xx_state *state = to_state(sd);
1428 
1429 	if (timings->pad >= state->source_pad)
1430 		return -EINVAL;
1431 
1432 	return v4l2_enum_dv_timings_cap(timings,
1433 		adv76xx_get_dv_timings_cap(sd), adv76xx_check_dv_timings, NULL);
1434 }
1435 
1436 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1437 			struct v4l2_dv_timings_cap *cap)
1438 {
1439 	struct adv76xx_state *state = to_state(sd);
1440 
1441 	if (cap->pad >= state->source_pad)
1442 		return -EINVAL;
1443 
1444 	*cap = *adv76xx_get_dv_timings_cap(sd);
1445 	return 0;
1446 }
1447 
1448 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1449    if the format is listed in adv76xx_timings[] */
1450 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1451 		struct v4l2_dv_timings *timings)
1452 {
1453 	v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd),
1454 			is_digital_input(sd) ? 250000 : 1000000,
1455 			adv76xx_check_dv_timings, NULL);
1456 }
1457 
1458 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1459 {
1460 	unsigned int freq;
1461 	int a, b;
1462 
1463 	a = hdmi_read(sd, 0x06);
1464 	b = hdmi_read(sd, 0x3b);
1465 	if (a < 0 || b < 0)
1466 		return 0;
1467 	freq =  a * 1000000 + ((b & 0x30) >> 4) * 250000;
1468 
1469 	if (is_hdmi(sd)) {
1470 		/* adjust for deep color mode */
1471 		unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1472 
1473 		freq = freq * 8 / bits_per_channel;
1474 	}
1475 
1476 	return freq;
1477 }
1478 
1479 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1480 {
1481 	int a, b;
1482 
1483 	a = hdmi_read(sd, 0x51);
1484 	b = hdmi_read(sd, 0x52);
1485 	if (a < 0 || b < 0)
1486 		return 0;
1487 	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1488 }
1489 
1490 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1491 			struct v4l2_dv_timings *timings)
1492 {
1493 	struct adv76xx_state *state = to_state(sd);
1494 	const struct adv76xx_chip_info *info = state->info;
1495 	struct v4l2_bt_timings *bt = &timings->bt;
1496 	struct stdi_readback stdi;
1497 
1498 	if (!timings)
1499 		return -EINVAL;
1500 
1501 	memset(timings, 0, sizeof(struct v4l2_dv_timings));
1502 
1503 	if (no_signal(sd)) {
1504 		state->restart_stdi_once = true;
1505 		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1506 		return -ENOLINK;
1507 	}
1508 
1509 	/* read STDI */
1510 	if (read_stdi(sd, &stdi)) {
1511 		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1512 		return -ENOLINK;
1513 	}
1514 	bt->interlaced = stdi.interlaced ?
1515 		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1516 
1517 	if (is_digital_input(sd)) {
1518 		timings->type = V4L2_DV_BT_656_1120;
1519 
1520 		bt->width = hdmi_read16(sd, 0x07, info->linewidth_mask);
1521 		bt->height = hdmi_read16(sd, 0x09, info->field0_height_mask);
1522 		bt->pixelclock = info->read_hdmi_pixelclock(sd);
1523 		bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1524 		bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1525 		bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1526 		bt->vfrontporch = hdmi_read16(sd, 0x2a,
1527 			info->field0_vfrontporch_mask) / 2;
1528 		bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1529 		bt->vbackporch = hdmi_read16(sd, 0x32,
1530 			info->field0_vbackporch_mask) / 2;
1531 		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1532 			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1533 		if (bt->interlaced == V4L2_DV_INTERLACED) {
1534 			bt->height += hdmi_read16(sd, 0x0b,
1535 				info->field1_height_mask);
1536 			bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1537 				info->field1_vfrontporch_mask) / 2;
1538 			bt->il_vsync = hdmi_read16(sd, 0x30,
1539 				info->field1_vsync_mask) / 2;
1540 			bt->il_vbackporch = hdmi_read16(sd, 0x34,
1541 				info->field1_vbackporch_mask) / 2;
1542 		}
1543 		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1544 	} else {
1545 		/* find format
1546 		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1547 		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1548 		 */
1549 		if (!stdi2dv_timings(sd, &stdi, timings))
1550 			goto found;
1551 		stdi.lcvs += 1;
1552 		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1553 		if (!stdi2dv_timings(sd, &stdi, timings))
1554 			goto found;
1555 		stdi.lcvs -= 2;
1556 		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1557 		if (stdi2dv_timings(sd, &stdi, timings)) {
1558 			/*
1559 			 * The STDI block may measure wrong values, especially
1560 			 * for lcvs and lcf. If the driver can not find any
1561 			 * valid timing, the STDI block is restarted to measure
1562 			 * the video timings again. The function will return an
1563 			 * error, but the restart of STDI will generate a new
1564 			 * STDI interrupt and the format detection process will
1565 			 * restart.
1566 			 */
1567 			if (state->restart_stdi_once) {
1568 				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1569 				/* TODO restart STDI for Sync Channel 2 */
1570 				/* enter one-shot mode */
1571 				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1572 				/* trigger STDI restart */
1573 				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1574 				/* reset to continuous mode */
1575 				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1576 				state->restart_stdi_once = false;
1577 				return -ENOLINK;
1578 			}
1579 			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1580 			return -ERANGE;
1581 		}
1582 		state->restart_stdi_once = true;
1583 	}
1584 found:
1585 
1586 	if (no_signal(sd)) {
1587 		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1588 		memset(timings, 0, sizeof(struct v4l2_dv_timings));
1589 		return -ENOLINK;
1590 	}
1591 
1592 	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1593 			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1594 		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1595 				__func__, (u32)bt->pixelclock);
1596 		return -ERANGE;
1597 	}
1598 
1599 	if (debug > 1)
1600 		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1601 				      timings, true);
1602 
1603 	return 0;
1604 }
1605 
1606 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1607 		struct v4l2_dv_timings *timings)
1608 {
1609 	struct adv76xx_state *state = to_state(sd);
1610 	struct v4l2_bt_timings *bt;
1611 	int err;
1612 
1613 	if (!timings)
1614 		return -EINVAL;
1615 
1616 	if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1617 		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1618 		return 0;
1619 	}
1620 
1621 	bt = &timings->bt;
1622 
1623 	if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd),
1624 				   adv76xx_check_dv_timings, NULL))
1625 		return -ERANGE;
1626 
1627 	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1628 
1629 	state->timings = *timings;
1630 
1631 	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1632 
1633 	/* Use prim_mode and vid_std when available */
1634 	err = configure_predefined_video_timings(sd, timings);
1635 	if (err) {
1636 		/* custom settings when the video format
1637 		 does not have prim_mode/vid_std */
1638 		configure_custom_video_timings(sd, bt);
1639 	}
1640 
1641 	set_rgb_quantization_range(sd);
1642 
1643 	if (debug > 1)
1644 		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1645 				      timings, true);
1646 	return 0;
1647 }
1648 
1649 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1650 		struct v4l2_dv_timings *timings)
1651 {
1652 	struct adv76xx_state *state = to_state(sd);
1653 
1654 	*timings = state->timings;
1655 	return 0;
1656 }
1657 
1658 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1659 {
1660 	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1661 }
1662 
1663 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1664 {
1665 	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1666 }
1667 
1668 static void enable_input(struct v4l2_subdev *sd)
1669 {
1670 	struct adv76xx_state *state = to_state(sd);
1671 
1672 	if (is_analog_input(sd)) {
1673 		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1674 	} else if (is_digital_input(sd)) {
1675 		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1676 		state->info->set_termination(sd, true);
1677 		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1678 		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1679 	} else {
1680 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1681 				__func__, state->selected_input);
1682 	}
1683 }
1684 
1685 static void disable_input(struct v4l2_subdev *sd)
1686 {
1687 	struct adv76xx_state *state = to_state(sd);
1688 
1689 	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1690 	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1691 	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1692 	state->info->set_termination(sd, false);
1693 }
1694 
1695 static void select_input(struct v4l2_subdev *sd)
1696 {
1697 	struct adv76xx_state *state = to_state(sd);
1698 	const struct adv76xx_chip_info *info = state->info;
1699 
1700 	if (is_analog_input(sd)) {
1701 		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1702 
1703 		afe_write(sd, 0x00, 0x08); /* power up ADC */
1704 		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1705 		afe_write(sd, 0xc8, 0x00); /* phase control */
1706 	} else if (is_digital_input(sd)) {
1707 		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1708 
1709 		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1710 
1711 		if (adv76xx_has_afe(state)) {
1712 			afe_write(sd, 0x00, 0xff); /* power down ADC */
1713 			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1714 			afe_write(sd, 0xc8, 0x40); /* phase control */
1715 		}
1716 
1717 		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1718 		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1719 		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1720 	} else {
1721 		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1722 				__func__, state->selected_input);
1723 	}
1724 }
1725 
1726 static int adv76xx_s_routing(struct v4l2_subdev *sd,
1727 		u32 input, u32 output, u32 config)
1728 {
1729 	struct adv76xx_state *state = to_state(sd);
1730 
1731 	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1732 			__func__, input, state->selected_input);
1733 
1734 	if (input == state->selected_input)
1735 		return 0;
1736 
1737 	if (input > state->info->max_port)
1738 		return -EINVAL;
1739 
1740 	state->selected_input = input;
1741 
1742 	disable_input(sd);
1743 	select_input(sd);
1744 	enable_input(sd);
1745 
1746 	v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1747 
1748 	return 0;
1749 }
1750 
1751 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1752 				  struct v4l2_subdev_pad_config *cfg,
1753 				  struct v4l2_subdev_mbus_code_enum *code)
1754 {
1755 	struct adv76xx_state *state = to_state(sd);
1756 
1757 	if (code->index >= state->info->nformats)
1758 		return -EINVAL;
1759 
1760 	code->code = state->info->formats[code->index].code;
1761 
1762 	return 0;
1763 }
1764 
1765 static void adv76xx_fill_format(struct adv76xx_state *state,
1766 				struct v4l2_mbus_framefmt *format)
1767 {
1768 	memset(format, 0, sizeof(*format));
1769 
1770 	format->width = state->timings.bt.width;
1771 	format->height = state->timings.bt.height;
1772 	format->field = V4L2_FIELD_NONE;
1773 	format->colorspace = V4L2_COLORSPACE_SRGB;
1774 
1775 	if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1776 		format->colorspace = (state->timings.bt.height <= 576) ?
1777 			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1778 }
1779 
1780 /*
1781  * Compute the op_ch_sel value required to obtain on the bus the component order
1782  * corresponding to the selected format taking into account bus reordering
1783  * applied by the board at the output of the device.
1784  *
1785  * The following table gives the op_ch_value from the format component order
1786  * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1787  * adv76xx_bus_order value in row).
1788  *
1789  *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
1790  * ----------+-------------------------------------------------
1791  * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
1792  * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
1793  * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
1794  * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
1795  * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
1796  * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
1797  */
1798 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1799 {
1800 #define _SEL(a,b,c,d,e,f)	{ \
1801 	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1802 	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1803 #define _BUS(x)			[ADV7604_BUS_ORDER_##x]
1804 
1805 	static const unsigned int op_ch_sel[6][6] = {
1806 		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1807 		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1808 		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1809 		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1810 		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1811 		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1812 	};
1813 
1814 	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1815 }
1816 
1817 static void adv76xx_setup_format(struct adv76xx_state *state)
1818 {
1819 	struct v4l2_subdev *sd = &state->sd;
1820 
1821 	io_write_clr_set(sd, 0x02, 0x02,
1822 			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1823 	io_write(sd, 0x03, state->format->op_format_sel |
1824 		 state->pdata.op_format_mode_sel);
1825 	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1826 	io_write_clr_set(sd, 0x05, 0x01,
1827 			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1828 }
1829 
1830 static int adv76xx_get_format(struct v4l2_subdev *sd,
1831 			      struct v4l2_subdev_pad_config *cfg,
1832 			      struct v4l2_subdev_format *format)
1833 {
1834 	struct adv76xx_state *state = to_state(sd);
1835 
1836 	if (format->pad != state->source_pad)
1837 		return -EINVAL;
1838 
1839 	adv76xx_fill_format(state, &format->format);
1840 
1841 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1842 		struct v4l2_mbus_framefmt *fmt;
1843 
1844 		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1845 		format->format.code = fmt->code;
1846 	} else {
1847 		format->format.code = state->format->code;
1848 	}
1849 
1850 	return 0;
1851 }
1852 
1853 static int adv76xx_get_selection(struct v4l2_subdev *sd,
1854 				 struct v4l2_subdev_pad_config *cfg,
1855 				 struct v4l2_subdev_selection *sel)
1856 {
1857 	struct adv76xx_state *state = to_state(sd);
1858 
1859 	if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1860 		return -EINVAL;
1861 	/* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1862 	if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
1863 		return -EINVAL;
1864 
1865 	sel->r.left	= 0;
1866 	sel->r.top	= 0;
1867 	sel->r.width	= state->timings.bt.width;
1868 	sel->r.height	= state->timings.bt.height;
1869 
1870 	return 0;
1871 }
1872 
1873 static int adv76xx_set_format(struct v4l2_subdev *sd,
1874 			      struct v4l2_subdev_pad_config *cfg,
1875 			      struct v4l2_subdev_format *format)
1876 {
1877 	struct adv76xx_state *state = to_state(sd);
1878 	const struct adv76xx_format_info *info;
1879 
1880 	if (format->pad != state->source_pad)
1881 		return -EINVAL;
1882 
1883 	info = adv76xx_format_info(state, format->format.code);
1884 	if (info == NULL)
1885 		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1886 
1887 	adv76xx_fill_format(state, &format->format);
1888 	format->format.code = info->code;
1889 
1890 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1891 		struct v4l2_mbus_framefmt *fmt;
1892 
1893 		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1894 		fmt->code = format->format.code;
1895 	} else {
1896 		state->format = info;
1897 		adv76xx_setup_format(state);
1898 	}
1899 
1900 	return 0;
1901 }
1902 
1903 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
1904 {
1905 	struct adv76xx_state *state = to_state(sd);
1906 	const struct adv76xx_chip_info *info = state->info;
1907 	const u8 irq_reg_0x43 = io_read(sd, 0x43);
1908 	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
1909 	const u8 irq_reg_0x70 = io_read(sd, 0x70);
1910 	u8 fmt_change_digital;
1911 	u8 fmt_change;
1912 	u8 tx_5v;
1913 
1914 	if (irq_reg_0x43)
1915 		io_write(sd, 0x44, irq_reg_0x43);
1916 	if (irq_reg_0x70)
1917 		io_write(sd, 0x71, irq_reg_0x70);
1918 	if (irq_reg_0x6b)
1919 		io_write(sd, 0x6c, irq_reg_0x6b);
1920 
1921 	v4l2_dbg(2, debug, sd, "%s: ", __func__);
1922 
1923 	/* format change */
1924 	fmt_change = irq_reg_0x43 & 0x98;
1925 	fmt_change_digital = is_digital_input(sd)
1926 			   ? irq_reg_0x6b & info->fmt_change_digital_mask
1927 			   : 0;
1928 
1929 	if (fmt_change || fmt_change_digital) {
1930 		v4l2_dbg(1, debug, sd,
1931 			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
1932 			__func__, fmt_change, fmt_change_digital);
1933 
1934 		v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1935 
1936 		if (handled)
1937 			*handled = true;
1938 	}
1939 	/* HDMI/DVI mode */
1940 	if (irq_reg_0x6b & 0x01) {
1941 		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
1942 			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
1943 		set_rgb_quantization_range(sd);
1944 		if (handled)
1945 			*handled = true;
1946 	}
1947 
1948 	/* tx 5v detect */
1949 	tx_5v = irq_reg_0x70 & info->cable_det_mask;
1950 	if (tx_5v) {
1951 		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
1952 		adv76xx_s_detect_tx_5v_ctrl(sd);
1953 		if (handled)
1954 			*handled = true;
1955 	}
1956 	return 0;
1957 }
1958 
1959 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1960 {
1961 	struct adv76xx_state *state = to_state(sd);
1962 	u8 *data = NULL;
1963 
1964 	memset(edid->reserved, 0, sizeof(edid->reserved));
1965 
1966 	switch (edid->pad) {
1967 	case ADV76XX_PAD_HDMI_PORT_A:
1968 	case ADV7604_PAD_HDMI_PORT_B:
1969 	case ADV7604_PAD_HDMI_PORT_C:
1970 	case ADV7604_PAD_HDMI_PORT_D:
1971 		if (state->edid.present & (1 << edid->pad))
1972 			data = state->edid.edid;
1973 		break;
1974 	default:
1975 		return -EINVAL;
1976 	}
1977 
1978 	if (edid->start_block == 0 && edid->blocks == 0) {
1979 		edid->blocks = data ? state->edid.blocks : 0;
1980 		return 0;
1981 	}
1982 
1983 	if (data == NULL)
1984 		return -ENODATA;
1985 
1986 	if (edid->start_block >= state->edid.blocks)
1987 		return -EINVAL;
1988 
1989 	if (edid->start_block + edid->blocks > state->edid.blocks)
1990 		edid->blocks = state->edid.blocks - edid->start_block;
1991 
1992 	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
1993 
1994 	return 0;
1995 }
1996 
1997 static int get_edid_spa_location(const u8 *edid)
1998 {
1999 	u8 d;
2000 
2001 	if ((edid[0x7e] != 1) ||
2002 	    (edid[0x80] != 0x02) ||
2003 	    (edid[0x81] != 0x03)) {
2004 		return -1;
2005 	}
2006 
2007 	/* search Vendor Specific Data Block (tag 3) */
2008 	d = edid[0x82] & 0x7f;
2009 	if (d > 4) {
2010 		int i = 0x84;
2011 		int end = 0x80 + d;
2012 
2013 		do {
2014 			u8 tag = edid[i] >> 5;
2015 			u8 len = edid[i] & 0x1f;
2016 
2017 			if ((tag == 3) && (len >= 5))
2018 				return i + 4;
2019 			i += len + 1;
2020 		} while (i < end);
2021 	}
2022 	return -1;
2023 }
2024 
2025 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2026 {
2027 	struct adv76xx_state *state = to_state(sd);
2028 	const struct adv76xx_chip_info *info = state->info;
2029 	int spa_loc;
2030 	int err;
2031 	int i;
2032 
2033 	memset(edid->reserved, 0, sizeof(edid->reserved));
2034 
2035 	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2036 		return -EINVAL;
2037 	if (edid->start_block != 0)
2038 		return -EINVAL;
2039 	if (edid->blocks == 0) {
2040 		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2041 		state->edid.present &= ~(1 << edid->pad);
2042 		adv76xx_set_hpd(state, state->edid.present);
2043 		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2044 
2045 		/* Fall back to a 16:9 aspect ratio */
2046 		state->aspect_ratio.numerator = 16;
2047 		state->aspect_ratio.denominator = 9;
2048 
2049 		if (!state->edid.present)
2050 			state->edid.blocks = 0;
2051 
2052 		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2053 				__func__, edid->pad, state->edid.present);
2054 		return 0;
2055 	}
2056 	if (edid->blocks > 2) {
2057 		edid->blocks = 2;
2058 		return -E2BIG;
2059 	}
2060 
2061 	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2062 			__func__, edid->pad, state->edid.present);
2063 
2064 	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2065 	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2066 	adv76xx_set_hpd(state, 0);
2067 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2068 
2069 	spa_loc = get_edid_spa_location(edid->edid);
2070 	if (spa_loc < 0)
2071 		spa_loc = 0xc0; /* Default value [REF_02, p. 116] */
2072 
2073 	switch (edid->pad) {
2074 	case ADV76XX_PAD_HDMI_PORT_A:
2075 		state->spa_port_a[0] = edid->edid[spa_loc];
2076 		state->spa_port_a[1] = edid->edid[spa_loc + 1];
2077 		break;
2078 	case ADV7604_PAD_HDMI_PORT_B:
2079 		rep_write(sd, 0x70, edid->edid[spa_loc]);
2080 		rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2081 		break;
2082 	case ADV7604_PAD_HDMI_PORT_C:
2083 		rep_write(sd, 0x72, edid->edid[spa_loc]);
2084 		rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2085 		break;
2086 	case ADV7604_PAD_HDMI_PORT_D:
2087 		rep_write(sd, 0x74, edid->edid[spa_loc]);
2088 		rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2089 		break;
2090 	default:
2091 		return -EINVAL;
2092 	}
2093 
2094 	if (info->type == ADV7604) {
2095 		rep_write(sd, 0x76, spa_loc & 0xff);
2096 		rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2097 	} else {
2098 		/* ADV7612 Software Manual Rev. A, p. 15 */
2099 		rep_write(sd, 0x70, spa_loc & 0xff);
2100 		rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2101 	}
2102 
2103 	edid->edid[spa_loc] = state->spa_port_a[0];
2104 	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2105 
2106 	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2107 	state->edid.blocks = edid->blocks;
2108 	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2109 			edid->edid[0x16]);
2110 	state->edid.present |= 1 << edid->pad;
2111 
2112 	err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
2113 	if (err < 0) {
2114 		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2115 		return err;
2116 	}
2117 
2118 	/* adv76xx calculates the checksums and enables I2C access to internal
2119 	   EDID RAM from DDC port. */
2120 	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2121 
2122 	for (i = 0; i < 1000; i++) {
2123 		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2124 			break;
2125 		mdelay(1);
2126 	}
2127 	if (i == 1000) {
2128 		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2129 		return -EIO;
2130 	}
2131 
2132 	/* enable hotplug after 100 ms */
2133 	queue_delayed_work(state->work_queues,
2134 			&state->delayed_work_enable_hotplug, HZ / 10);
2135 	return 0;
2136 }
2137 
2138 /*********** avi info frame CEA-861-E **************/
2139 
2140 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2141 	{ "AVI", 0x01, 0xe0, 0x00 },
2142 	{ "Audio", 0x02, 0xe3, 0x1c },
2143 	{ "SDP", 0x04, 0xe6, 0x2a },
2144 	{ "Vendor", 0x10, 0xec, 0x54 }
2145 };
2146 
2147 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2148 				  union hdmi_infoframe *frame)
2149 {
2150 	uint8_t buffer[32];
2151 	u8 len;
2152 	int i;
2153 
2154 	if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2155 		v4l2_info(sd, "%s infoframe not received\n",
2156 			  adv76xx_cri[index].desc);
2157 		return -ENOENT;
2158 	}
2159 
2160 	for (i = 0; i < 3; i++)
2161 		buffer[i] = infoframe_read(sd,
2162 					   adv76xx_cri[index].head_addr + i);
2163 
2164 	len = buffer[2] + 1;
2165 
2166 	if (len + 3 > sizeof(buffer)) {
2167 		v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2168 			 adv76xx_cri[index].desc, len);
2169 		return -ENOENT;
2170 	}
2171 
2172 	for (i = 0; i < len; i++)
2173 		buffer[i + 3] = infoframe_read(sd,
2174 				       adv76xx_cri[index].payload_addr + i);
2175 
2176 	if (hdmi_infoframe_unpack(frame, buffer) < 0) {
2177 		v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2178 			 adv76xx_cri[index].desc);
2179 		return -ENOENT;
2180 	}
2181 	return 0;
2182 }
2183 
2184 static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2185 {
2186 	int i;
2187 
2188 	if (!is_hdmi(sd)) {
2189 		v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2190 		return;
2191 	}
2192 
2193 	for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2194 		union hdmi_infoframe frame;
2195 		struct i2c_client *client = v4l2_get_subdevdata(sd);
2196 
2197 		if (adv76xx_read_infoframe(sd, i, &frame))
2198 			return;
2199 		hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2200 	}
2201 }
2202 
2203 static int adv76xx_log_status(struct v4l2_subdev *sd)
2204 {
2205 	struct adv76xx_state *state = to_state(sd);
2206 	const struct adv76xx_chip_info *info = state->info;
2207 	struct v4l2_dv_timings timings;
2208 	struct stdi_readback stdi;
2209 	u8 reg_io_0x02 = io_read(sd, 0x02);
2210 	u8 edid_enabled;
2211 	u8 cable_det;
2212 
2213 	static const char * const csc_coeff_sel_rb[16] = {
2214 		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2215 		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2216 		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2217 		"reserved", "reserved", "reserved", "reserved", "manual"
2218 	};
2219 	static const char * const input_color_space_txt[16] = {
2220 		"RGB limited range (16-235)", "RGB full range (0-255)",
2221 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2222 		"xvYCC Bt.601", "xvYCC Bt.709",
2223 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2224 		"invalid", "invalid", "invalid", "invalid", "invalid",
2225 		"invalid", "invalid", "automatic"
2226 	};
2227 	static const char * const hdmi_color_space_txt[16] = {
2228 		"RGB limited range (16-235)", "RGB full range (0-255)",
2229 		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2230 		"xvYCC Bt.601", "xvYCC Bt.709",
2231 		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2232 		"sYCC", "Adobe YCC 601", "AdobeRGB", "invalid", "invalid",
2233 		"invalid", "invalid", "invalid"
2234 	};
2235 	static const char * const rgb_quantization_range_txt[] = {
2236 		"Automatic",
2237 		"RGB limited range (16-235)",
2238 		"RGB full range (0-255)",
2239 	};
2240 	static const char * const deep_color_mode_txt[4] = {
2241 		"8-bits per channel",
2242 		"10-bits per channel",
2243 		"12-bits per channel",
2244 		"16-bits per channel (not supported)"
2245 	};
2246 
2247 	v4l2_info(sd, "-----Chip status-----\n");
2248 	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2249 	edid_enabled = rep_read(sd, info->edid_status_reg);
2250 	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2251 			((edid_enabled & 0x01) ? "Yes" : "No"),
2252 			((edid_enabled & 0x02) ? "Yes" : "No"),
2253 			((edid_enabled & 0x04) ? "Yes" : "No"),
2254 			((edid_enabled & 0x08) ? "Yes" : "No"));
2255 	v4l2_info(sd, "CEC: %s\n", !!(cec_read(sd, 0x2a) & 0x01) ?
2256 			"enabled" : "disabled");
2257 
2258 	v4l2_info(sd, "-----Signal status-----\n");
2259 	cable_det = info->read_cable_det(sd);
2260 	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2261 			((cable_det & 0x01) ? "Yes" : "No"),
2262 			((cable_det & 0x02) ? "Yes" : "No"),
2263 			((cable_det & 0x04) ? "Yes" : "No"),
2264 			((cable_det & 0x08) ? "Yes" : "No"));
2265 	v4l2_info(sd, "TMDS signal detected: %s\n",
2266 			no_signal_tmds(sd) ? "false" : "true");
2267 	v4l2_info(sd, "TMDS signal locked: %s\n",
2268 			no_lock_tmds(sd) ? "false" : "true");
2269 	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2270 	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2271 	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2272 	v4l2_info(sd, "CP free run: %s\n",
2273 			(in_free_run(sd)) ? "on" : "off");
2274 	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2275 			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2276 			(io_read(sd, 0x01) & 0x70) >> 4);
2277 
2278 	v4l2_info(sd, "-----Video Timings-----\n");
2279 	if (read_stdi(sd, &stdi))
2280 		v4l2_info(sd, "STDI: not locked\n");
2281 	else
2282 		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2283 				stdi.lcf, stdi.bl, stdi.lcvs,
2284 				stdi.interlaced ? "interlaced" : "progressive",
2285 				stdi.hs_pol, stdi.vs_pol);
2286 	if (adv76xx_query_dv_timings(sd, &timings))
2287 		v4l2_info(sd, "No video detected\n");
2288 	else
2289 		v4l2_print_dv_timings(sd->name, "Detected format: ",
2290 				      &timings, true);
2291 	v4l2_print_dv_timings(sd->name, "Configured format: ",
2292 			      &state->timings, true);
2293 
2294 	if (no_signal(sd))
2295 		return 0;
2296 
2297 	v4l2_info(sd, "-----Color space-----\n");
2298 	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2299 			rgb_quantization_range_txt[state->rgb_quantization_range]);
2300 	v4l2_info(sd, "Input color space: %s\n",
2301 			input_color_space_txt[reg_io_0x02 >> 4]);
2302 	v4l2_info(sd, "Output color space: %s %s, saturator %s, alt-gamma %s\n",
2303 			(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2304 			(reg_io_0x02 & 0x04) ? "(16-235)" : "(0-255)",
2305 			(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2306 				"enabled" : "disabled",
2307 			(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2308 	v4l2_info(sd, "Color space conversion: %s\n",
2309 			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2310 
2311 	if (!is_digital_input(sd))
2312 		return 0;
2313 
2314 	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2315 	v4l2_info(sd, "Digital video port selected: %c\n",
2316 			(hdmi_read(sd, 0x00) & 0x03) + 'A');
2317 	v4l2_info(sd, "HDCP encrypted content: %s\n",
2318 			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2319 	v4l2_info(sd, "HDCP keys read: %s%s\n",
2320 			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2321 			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2322 	if (is_hdmi(sd)) {
2323 		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2324 		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2325 		bool audio_mute = io_read(sd, 0x65) & 0x40;
2326 
2327 		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2328 				audio_pll_locked ? "locked" : "not locked",
2329 				audio_sample_packet_detect ? "detected" : "not detected",
2330 				audio_mute ? "muted" : "enabled");
2331 		if (audio_pll_locked && audio_sample_packet_detect) {
2332 			v4l2_info(sd, "Audio format: %s\n",
2333 					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2334 		}
2335 		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2336 				(hdmi_read(sd, 0x5c) << 8) +
2337 				(hdmi_read(sd, 0x5d) & 0xf0));
2338 		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2339 				(hdmi_read(sd, 0x5e) << 8) +
2340 				hdmi_read(sd, 0x5f));
2341 		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2342 
2343 		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2344 		v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2345 
2346 		adv76xx_log_infoframes(sd);
2347 	}
2348 
2349 	return 0;
2350 }
2351 
2352 static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2353 				   struct v4l2_fh *fh,
2354 				   struct v4l2_event_subscription *sub)
2355 {
2356 	switch (sub->type) {
2357 	case V4L2_EVENT_SOURCE_CHANGE:
2358 		return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2359 	case V4L2_EVENT_CTRL:
2360 		return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2361 	default:
2362 		return -EINVAL;
2363 	}
2364 }
2365 
2366 /* ----------------------------------------------------------------------- */
2367 
2368 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2369 	.s_ctrl = adv76xx_s_ctrl,
2370 	.g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2371 };
2372 
2373 static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2374 	.log_status = adv76xx_log_status,
2375 	.interrupt_service_routine = adv76xx_isr,
2376 	.subscribe_event = adv76xx_subscribe_event,
2377 	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2378 #ifdef CONFIG_VIDEO_ADV_DEBUG
2379 	.g_register = adv76xx_g_register,
2380 	.s_register = adv76xx_s_register,
2381 #endif
2382 };
2383 
2384 static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2385 	.s_routing = adv76xx_s_routing,
2386 	.g_input_status = adv76xx_g_input_status,
2387 	.s_dv_timings = adv76xx_s_dv_timings,
2388 	.g_dv_timings = adv76xx_g_dv_timings,
2389 	.query_dv_timings = adv76xx_query_dv_timings,
2390 };
2391 
2392 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2393 	.enum_mbus_code = adv76xx_enum_mbus_code,
2394 	.get_selection = adv76xx_get_selection,
2395 	.get_fmt = adv76xx_get_format,
2396 	.set_fmt = adv76xx_set_format,
2397 	.get_edid = adv76xx_get_edid,
2398 	.set_edid = adv76xx_set_edid,
2399 	.dv_timings_cap = adv76xx_dv_timings_cap,
2400 	.enum_dv_timings = adv76xx_enum_dv_timings,
2401 };
2402 
2403 static const struct v4l2_subdev_ops adv76xx_ops = {
2404 	.core = &adv76xx_core_ops,
2405 	.video = &adv76xx_video_ops,
2406 	.pad = &adv76xx_pad_ops,
2407 };
2408 
2409 /* -------------------------- custom ctrls ---------------------------------- */
2410 
2411 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2412 	.ops = &adv76xx_ctrl_ops,
2413 	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2414 	.name = "Analog Sampling Phase",
2415 	.type = V4L2_CTRL_TYPE_INTEGER,
2416 	.min = 0,
2417 	.max = 0x1f,
2418 	.step = 1,
2419 	.def = 0,
2420 };
2421 
2422 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2423 	.ops = &adv76xx_ctrl_ops,
2424 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2425 	.name = "Free Running Color, Manual",
2426 	.type = V4L2_CTRL_TYPE_BOOLEAN,
2427 	.min = false,
2428 	.max = true,
2429 	.step = 1,
2430 	.def = false,
2431 };
2432 
2433 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2434 	.ops = &adv76xx_ctrl_ops,
2435 	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2436 	.name = "Free Running Color",
2437 	.type = V4L2_CTRL_TYPE_INTEGER,
2438 	.min = 0x0,
2439 	.max = 0xffffff,
2440 	.step = 0x1,
2441 	.def = 0x0,
2442 };
2443 
2444 /* ----------------------------------------------------------------------- */
2445 
2446 static int adv76xx_core_init(struct v4l2_subdev *sd)
2447 {
2448 	struct adv76xx_state *state = to_state(sd);
2449 	const struct adv76xx_chip_info *info = state->info;
2450 	struct adv76xx_platform_data *pdata = &state->pdata;
2451 
2452 	hdmi_write(sd, 0x48,
2453 		(pdata->disable_pwrdnb ? 0x80 : 0) |
2454 		(pdata->disable_cable_det_rst ? 0x40 : 0));
2455 
2456 	disable_input(sd);
2457 
2458 	if (pdata->default_input >= 0 &&
2459 	    pdata->default_input < state->source_pad) {
2460 		state->selected_input = pdata->default_input;
2461 		select_input(sd);
2462 		enable_input(sd);
2463 	}
2464 
2465 	/* power */
2466 	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
2467 	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
2468 	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */
2469 
2470 	/* video format */
2471 	io_write_clr_set(sd, 0x02, 0x0f,
2472 			pdata->alt_gamma << 3 |
2473 			pdata->op_656_range << 2 |
2474 			pdata->alt_data_sat << 0);
2475 	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2476 			pdata->insert_av_codes << 2 |
2477 			pdata->replicate_av_codes << 1);
2478 	adv76xx_setup_format(state);
2479 
2480 	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2481 
2482 	/* VS, HS polarities */
2483 	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2484 		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2485 
2486 	/* Adjust drive strength */
2487 	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2488 				pdata->dr_str_clk << 2 |
2489 				pdata->dr_str_sync);
2490 
2491 	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2492 	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2493 	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
2494 				      ADI recommended setting [REF_01, c. 2.3.3] */
2495 	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
2496 				      ADI recommended setting [REF_01, c. 2.3.3] */
2497 	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2498 				     for digital formats */
2499 
2500 	/* HDMI audio */
2501 	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2502 	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2503 	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2504 
2505 	/* TODO from platform data */
2506 	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */
2507 
2508 	if (adv76xx_has_afe(state)) {
2509 		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2510 		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2511 	}
2512 
2513 	/* interrupts */
2514 	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2515 	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2516 	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2517 	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2518 	info->setup_irqs(sd);
2519 
2520 	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2521 }
2522 
2523 static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2524 {
2525 	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2526 }
2527 
2528 static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2529 {
2530 	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2531 }
2532 
2533 static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2534 {
2535 	io_write(sd, 0x41, 0xd0); /* disable INT2 */
2536 }
2537 
2538 static void adv76xx_unregister_clients(struct adv76xx_state *state)
2539 {
2540 	unsigned int i;
2541 
2542 	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) {
2543 		if (state->i2c_clients[i])
2544 			i2c_unregister_device(state->i2c_clients[i]);
2545 	}
2546 }
2547 
2548 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2549 							u8 addr, u8 io_reg)
2550 {
2551 	struct i2c_client *client = v4l2_get_subdevdata(sd);
2552 
2553 	if (addr)
2554 		io_write(sd, io_reg, addr << 1);
2555 	return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1);
2556 }
2557 
2558 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2559 	/* reset ADI recommended settings for HDMI: */
2560 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2561 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2562 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2563 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2564 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2565 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2566 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2567 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2568 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2569 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2570 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2571 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2572 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2573 
2574 	/* set ADI recommended settings for digitizer */
2575 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2576 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2577 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2578 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2579 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2580 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2581 
2582 	{ ADV76XX_REG_SEQ_TERM, 0 },
2583 };
2584 
2585 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2586 	/* set ADI recommended settings for HDMI: */
2587 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2588 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2589 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2590 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2591 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2592 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2593 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2594 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2595 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2596 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2597 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2598 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2599 
2600 	/* reset ADI recommended settings for digitizer */
2601 	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2602 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2603 	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2604 
2605 	{ ADV76XX_REG_SEQ_TERM, 0 },
2606 };
2607 
2608 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2609 	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2610 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2611 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2612 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2613 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2614 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2615 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2616 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2617 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2618 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2619 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
2620 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
2621 
2622 	{ ADV76XX_REG_SEQ_TERM, 0 },
2623 };
2624 
2625 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
2626 	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2627 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2628 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2629 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2630 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2631 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2632 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2633 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2634 	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2635 	{ ADV76XX_REG_SEQ_TERM, 0 },
2636 };
2637 
2638 static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2639 	[ADV7604] = {
2640 		.type = ADV7604,
2641 		.has_afe = true,
2642 		.max_port = ADV7604_PAD_VGA_COMP,
2643 		.num_dv_ports = 4,
2644 		.edid_enable_reg = 0x77,
2645 		.edid_status_reg = 0x7d,
2646 		.lcf_reg = 0xb3,
2647 		.tdms_lock_mask = 0xe0,
2648 		.cable_det_mask = 0x1e,
2649 		.fmt_change_digital_mask = 0xc1,
2650 		.cp_csc = 0xfc,
2651 		.formats = adv7604_formats,
2652 		.nformats = ARRAY_SIZE(adv7604_formats),
2653 		.set_termination = adv7604_set_termination,
2654 		.setup_irqs = adv7604_setup_irqs,
2655 		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
2656 		.read_cable_det = adv7604_read_cable_det,
2657 		.recommended_settings = {
2658 		    [0] = adv7604_recommended_settings_afe,
2659 		    [1] = adv7604_recommended_settings_hdmi,
2660 		},
2661 		.num_recommended_settings = {
2662 		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
2663 		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
2664 		},
2665 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
2666 			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
2667 			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
2668 			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
2669 			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
2670 			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
2671 			BIT(ADV7604_PAGE_VDP),
2672 		.linewidth_mask = 0xfff,
2673 		.field0_height_mask = 0xfff,
2674 		.field1_height_mask = 0xfff,
2675 		.hfrontporch_mask = 0x3ff,
2676 		.hsync_mask = 0x3ff,
2677 		.hbackporch_mask = 0x3ff,
2678 		.field0_vfrontporch_mask = 0x1fff,
2679 		.field0_vsync_mask = 0x1fff,
2680 		.field0_vbackporch_mask = 0x1fff,
2681 		.field1_vfrontporch_mask = 0x1fff,
2682 		.field1_vsync_mask = 0x1fff,
2683 		.field1_vbackporch_mask = 0x1fff,
2684 	},
2685 	[ADV7611] = {
2686 		.type = ADV7611,
2687 		.has_afe = false,
2688 		.max_port = ADV76XX_PAD_HDMI_PORT_A,
2689 		.num_dv_ports = 1,
2690 		.edid_enable_reg = 0x74,
2691 		.edid_status_reg = 0x76,
2692 		.lcf_reg = 0xa3,
2693 		.tdms_lock_mask = 0x43,
2694 		.cable_det_mask = 0x01,
2695 		.fmt_change_digital_mask = 0x03,
2696 		.cp_csc = 0xf4,
2697 		.formats = adv7611_formats,
2698 		.nformats = ARRAY_SIZE(adv7611_formats),
2699 		.set_termination = adv7611_set_termination,
2700 		.setup_irqs = adv7611_setup_irqs,
2701 		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
2702 		.read_cable_det = adv7611_read_cable_det,
2703 		.recommended_settings = {
2704 		    [1] = adv7611_recommended_settings_hdmi,
2705 		},
2706 		.num_recommended_settings = {
2707 		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
2708 		},
2709 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
2710 			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
2711 			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
2712 			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
2713 		.linewidth_mask = 0x1fff,
2714 		.field0_height_mask = 0x1fff,
2715 		.field1_height_mask = 0x1fff,
2716 		.hfrontporch_mask = 0x1fff,
2717 		.hsync_mask = 0x1fff,
2718 		.hbackporch_mask = 0x1fff,
2719 		.field0_vfrontporch_mask = 0x3fff,
2720 		.field0_vsync_mask = 0x3fff,
2721 		.field0_vbackporch_mask = 0x3fff,
2722 		.field1_vfrontporch_mask = 0x3fff,
2723 		.field1_vsync_mask = 0x3fff,
2724 		.field1_vbackporch_mask = 0x3fff,
2725 	},
2726 	[ADV7612] = {
2727 		.type = ADV7612,
2728 		.has_afe = false,
2729 		.max_port = ADV76XX_PAD_HDMI_PORT_A,	/* B not supported */
2730 		.num_dv_ports = 1,			/* normally 2 */
2731 		.edid_enable_reg = 0x74,
2732 		.edid_status_reg = 0x76,
2733 		.lcf_reg = 0xa3,
2734 		.tdms_lock_mask = 0x43,
2735 		.cable_det_mask = 0x01,
2736 		.fmt_change_digital_mask = 0x03,
2737 		.cp_csc = 0xf4,
2738 		.formats = adv7612_formats,
2739 		.nformats = ARRAY_SIZE(adv7612_formats),
2740 		.set_termination = adv7611_set_termination,
2741 		.setup_irqs = adv7612_setup_irqs,
2742 		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
2743 		.read_cable_det = adv7612_read_cable_det,
2744 		.recommended_settings = {
2745 		    [1] = adv7612_recommended_settings_hdmi,
2746 		},
2747 		.num_recommended_settings = {
2748 		    [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
2749 		},
2750 		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
2751 			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
2752 			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
2753 			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
2754 		.linewidth_mask = 0x1fff,
2755 		.field0_height_mask = 0x1fff,
2756 		.field1_height_mask = 0x1fff,
2757 		.hfrontporch_mask = 0x1fff,
2758 		.hsync_mask = 0x1fff,
2759 		.hbackporch_mask = 0x1fff,
2760 		.field0_vfrontporch_mask = 0x3fff,
2761 		.field0_vsync_mask = 0x3fff,
2762 		.field0_vbackporch_mask = 0x3fff,
2763 		.field1_vfrontporch_mask = 0x3fff,
2764 		.field1_vsync_mask = 0x3fff,
2765 		.field1_vbackporch_mask = 0x3fff,
2766 	},
2767 };
2768 
2769 static const struct i2c_device_id adv76xx_i2c_id[] = {
2770 	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
2771 	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
2772 	{ "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
2773 	{ }
2774 };
2775 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
2776 
2777 static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
2778 	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
2779 	{ .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
2780 	{ }
2781 };
2782 MODULE_DEVICE_TABLE(of, adv76xx_of_id);
2783 
2784 static int adv76xx_parse_dt(struct adv76xx_state *state)
2785 {
2786 	struct v4l2_of_endpoint bus_cfg;
2787 	struct device_node *endpoint;
2788 	struct device_node *np;
2789 	unsigned int flags;
2790 	int ret;
2791 	u32 v;
2792 
2793 	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
2794 
2795 	/* Parse the endpoint. */
2796 	endpoint = of_graph_get_next_endpoint(np, NULL);
2797 	if (!endpoint)
2798 		return -EINVAL;
2799 
2800 	ret = v4l2_of_parse_endpoint(endpoint, &bus_cfg);
2801 	if (ret) {
2802 		of_node_put(endpoint);
2803 		return ret;
2804 	}
2805 
2806 	if (!of_property_read_u32(endpoint, "default-input", &v))
2807 		state->pdata.default_input = v;
2808 	else
2809 		state->pdata.default_input = -1;
2810 
2811 	of_node_put(endpoint);
2812 
2813 	flags = bus_cfg.bus.parallel.flags;
2814 
2815 	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
2816 		state->pdata.inv_hs_pol = 1;
2817 
2818 	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
2819 		state->pdata.inv_vs_pol = 1;
2820 
2821 	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
2822 		state->pdata.inv_llc_pol = 1;
2823 
2824 	if (bus_cfg.bus_type == V4L2_MBUS_BT656) {
2825 		state->pdata.insert_av_codes = 1;
2826 		state->pdata.op_656_range = 1;
2827 	}
2828 
2829 	/* Disable the interrupt for now as no DT-based board uses it. */
2830 	state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED;
2831 
2832 	/* Use the default I2C addresses. */
2833 	state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42;
2834 	state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40;
2835 	state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e;
2836 	state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38;
2837 	state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c;
2838 	state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26;
2839 	state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32;
2840 	state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36;
2841 	state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34;
2842 	state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30;
2843 	state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22;
2844 	state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24;
2845 
2846 	/* Hardcode the remaining platform data fields. */
2847 	state->pdata.disable_pwrdnb = 0;
2848 	state->pdata.disable_cable_det_rst = 0;
2849 	state->pdata.blank_data = 1;
2850 	state->pdata.alt_data_sat = 1;
2851 	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
2852 	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
2853 
2854 	return 0;
2855 }
2856 
2857 static const struct regmap_config adv76xx_regmap_cnf[] = {
2858 	{
2859 		.name			= "io",
2860 		.reg_bits		= 8,
2861 		.val_bits		= 8,
2862 
2863 		.max_register		= 0xff,
2864 		.cache_type		= REGCACHE_NONE,
2865 	},
2866 	{
2867 		.name			= "avlink",
2868 		.reg_bits		= 8,
2869 		.val_bits		= 8,
2870 
2871 		.max_register		= 0xff,
2872 		.cache_type		= REGCACHE_NONE,
2873 	},
2874 	{
2875 		.name			= "cec",
2876 		.reg_bits		= 8,
2877 		.val_bits		= 8,
2878 
2879 		.max_register		= 0xff,
2880 		.cache_type		= REGCACHE_NONE,
2881 	},
2882 	{
2883 		.name			= "infoframe",
2884 		.reg_bits		= 8,
2885 		.val_bits		= 8,
2886 
2887 		.max_register		= 0xff,
2888 		.cache_type		= REGCACHE_NONE,
2889 	},
2890 	{
2891 		.name			= "esdp",
2892 		.reg_bits		= 8,
2893 		.val_bits		= 8,
2894 
2895 		.max_register		= 0xff,
2896 		.cache_type		= REGCACHE_NONE,
2897 	},
2898 	{
2899 		.name			= "epp",
2900 		.reg_bits		= 8,
2901 		.val_bits		= 8,
2902 
2903 		.max_register		= 0xff,
2904 		.cache_type		= REGCACHE_NONE,
2905 	},
2906 	{
2907 		.name			= "afe",
2908 		.reg_bits		= 8,
2909 		.val_bits		= 8,
2910 
2911 		.max_register		= 0xff,
2912 		.cache_type		= REGCACHE_NONE,
2913 	},
2914 	{
2915 		.name			= "rep",
2916 		.reg_bits		= 8,
2917 		.val_bits		= 8,
2918 
2919 		.max_register		= 0xff,
2920 		.cache_type		= REGCACHE_NONE,
2921 	},
2922 	{
2923 		.name			= "edid",
2924 		.reg_bits		= 8,
2925 		.val_bits		= 8,
2926 
2927 		.max_register		= 0xff,
2928 		.cache_type		= REGCACHE_NONE,
2929 	},
2930 
2931 	{
2932 		.name			= "hdmi",
2933 		.reg_bits		= 8,
2934 		.val_bits		= 8,
2935 
2936 		.max_register		= 0xff,
2937 		.cache_type		= REGCACHE_NONE,
2938 	},
2939 	{
2940 		.name			= "test",
2941 		.reg_bits		= 8,
2942 		.val_bits		= 8,
2943 
2944 		.max_register		= 0xff,
2945 		.cache_type		= REGCACHE_NONE,
2946 	},
2947 	{
2948 		.name			= "cp",
2949 		.reg_bits		= 8,
2950 		.val_bits		= 8,
2951 
2952 		.max_register		= 0xff,
2953 		.cache_type		= REGCACHE_NONE,
2954 	},
2955 	{
2956 		.name			= "vdp",
2957 		.reg_bits		= 8,
2958 		.val_bits		= 8,
2959 
2960 		.max_register		= 0xff,
2961 		.cache_type		= REGCACHE_NONE,
2962 	},
2963 };
2964 
2965 static int configure_regmap(struct adv76xx_state *state, int region)
2966 {
2967 	int err;
2968 
2969 	if (!state->i2c_clients[region])
2970 		return -ENODEV;
2971 
2972 	state->regmap[region] =
2973 		devm_regmap_init_i2c(state->i2c_clients[region],
2974 				     &adv76xx_regmap_cnf[region]);
2975 
2976 	if (IS_ERR(state->regmap[region])) {
2977 		err = PTR_ERR(state->regmap[region]);
2978 		v4l_err(state->i2c_clients[region],
2979 			"Error initializing regmap %d with error %d\n",
2980 			region, err);
2981 		return -EINVAL;
2982 	}
2983 
2984 	return 0;
2985 }
2986 
2987 static int configure_regmaps(struct adv76xx_state *state)
2988 {
2989 	int i, err;
2990 
2991 	for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
2992 		err = configure_regmap(state, i);
2993 		if (err && (err != -ENODEV))
2994 			return err;
2995 	}
2996 	return 0;
2997 }
2998 
2999 static int adv76xx_probe(struct i2c_client *client,
3000 			 const struct i2c_device_id *id)
3001 {
3002 	static const struct v4l2_dv_timings cea640x480 =
3003 		V4L2_DV_BT_CEA_640X480P59_94;
3004 	struct adv76xx_state *state;
3005 	struct v4l2_ctrl_handler *hdl;
3006 	struct v4l2_ctrl *ctrl;
3007 	struct v4l2_subdev *sd;
3008 	unsigned int i;
3009 	unsigned int val, val2;
3010 	int err;
3011 
3012 	/* Check if the adapter supports the needed features */
3013 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3014 		return -EIO;
3015 	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3016 			client->addr << 1);
3017 
3018 	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3019 	if (!state) {
3020 		v4l_err(client, "Could not allocate adv76xx_state memory!\n");
3021 		return -ENOMEM;
3022 	}
3023 
3024 	state->i2c_clients[ADV76XX_PAGE_IO] = client;
3025 
3026 	/* initialize variables */
3027 	state->restart_stdi_once = true;
3028 	state->selected_input = ~0;
3029 
3030 	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3031 		const struct of_device_id *oid;
3032 
3033 		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3034 		state->info = oid->data;
3035 
3036 		err = adv76xx_parse_dt(state);
3037 		if (err < 0) {
3038 			v4l_err(client, "DT parsing error\n");
3039 			return err;
3040 		}
3041 	} else if (client->dev.platform_data) {
3042 		struct adv76xx_platform_data *pdata = client->dev.platform_data;
3043 
3044 		state->info = (const struct adv76xx_chip_info *)id->driver_data;
3045 		state->pdata = *pdata;
3046 	} else {
3047 		v4l_err(client, "No platform data!\n");
3048 		return -ENODEV;
3049 	}
3050 
3051 	/* Request GPIOs. */
3052 	for (i = 0; i < state->info->num_dv_ports; ++i) {
3053 		state->hpd_gpio[i] =
3054 			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3055 						      GPIOD_OUT_LOW);
3056 		if (IS_ERR(state->hpd_gpio[i]))
3057 			return PTR_ERR(state->hpd_gpio[i]);
3058 
3059 		if (state->hpd_gpio[i])
3060 			v4l_info(client, "Handling HPD %u GPIO\n", i);
3061 	}
3062 
3063 	state->timings = cea640x480;
3064 	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3065 
3066 	sd = &state->sd;
3067 	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3068 	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3069 		id->name, i2c_adapter_id(client->adapter),
3070 		client->addr);
3071 	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3072 
3073 	/* Configure IO Regmap region */
3074 	err = configure_regmap(state, ADV76XX_PAGE_IO);
3075 
3076 	if (err) {
3077 		v4l2_err(sd, "Error configuring IO regmap region\n");
3078 		return -ENODEV;
3079 	}
3080 
3081 	/*
3082 	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3083 	 * identifies the revision, while on ADV7611 it identifies the model as
3084 	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3085 	 */
3086 	switch (state->info->type) {
3087 	case ADV7604:
3088 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3089 		if (err) {
3090 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3091 			return -ENODEV;
3092 		}
3093 		if (val != 0x68) {
3094 			v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3095 					client->addr << 1);
3096 			return -ENODEV;
3097 		}
3098 		break;
3099 	case ADV7611:
3100 	case ADV7612:
3101 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3102 				0xea,
3103 				&val);
3104 		if (err) {
3105 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3106 			return -ENODEV;
3107 		}
3108 		val2 = val << 8;
3109 		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3110 			    0xeb,
3111 			    &val);
3112 		if (err) {
3113 			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3114 			return -ENODEV;
3115 		}
3116 		val |= val2;
3117 		if ((state->info->type == ADV7611 && val != 0x2051) ||
3118 			(state->info->type == ADV7612 && val != 0x2041)) {
3119 			v4l2_err(sd, "not an adv761x on address 0x%x\n",
3120 					client->addr << 1);
3121 			return -ENODEV;
3122 		}
3123 		break;
3124 	}
3125 
3126 	/* control handlers */
3127 	hdl = &state->hdl;
3128 	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3129 
3130 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3131 			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3132 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3133 			V4L2_CID_CONTRAST, 0, 255, 1, 128);
3134 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3135 			V4L2_CID_SATURATION, 0, 255, 1, 128);
3136 	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3137 			V4L2_CID_HUE, 0, 128, 1, 0);
3138 	ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3139 			V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
3140 			0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
3141 	if (ctrl)
3142 		ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3143 
3144 	/* private controls */
3145 	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3146 			V4L2_CID_DV_RX_POWER_PRESENT, 0,
3147 			(1 << state->info->num_dv_ports) - 1, 0, 0);
3148 	state->rgb_quantization_range_ctrl =
3149 		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3150 			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3151 			0, V4L2_DV_RGB_RANGE_AUTO);
3152 
3153 	/* custom controls */
3154 	if (adv76xx_has_afe(state))
3155 		state->analog_sampling_phase_ctrl =
3156 			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3157 	state->free_run_color_manual_ctrl =
3158 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3159 	state->free_run_color_ctrl =
3160 		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3161 
3162 	sd->ctrl_handler = hdl;
3163 	if (hdl->error) {
3164 		err = hdl->error;
3165 		goto err_hdl;
3166 	}
3167 	state->detect_tx_5v_ctrl->is_private = true;
3168 	state->rgb_quantization_range_ctrl->is_private = true;
3169 	if (adv76xx_has_afe(state))
3170 		state->analog_sampling_phase_ctrl->is_private = true;
3171 	state->free_run_color_manual_ctrl->is_private = true;
3172 	state->free_run_color_ctrl->is_private = true;
3173 
3174 	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3175 		err = -ENODEV;
3176 		goto err_hdl;
3177 	}
3178 
3179 	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3180 		if (!(BIT(i) & state->info->page_mask))
3181 			continue;
3182 
3183 		state->i2c_clients[i] =
3184 			adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i],
3185 					     0xf2 + i);
3186 		if (state->i2c_clients[i] == NULL) {
3187 			err = -ENOMEM;
3188 			v4l2_err(sd, "failed to create i2c client %u\n", i);
3189 			goto err_i2c;
3190 		}
3191 	}
3192 
3193 	/* work queues */
3194 	state->work_queues = create_singlethread_workqueue(client->name);
3195 	if (!state->work_queues) {
3196 		v4l2_err(sd, "Could not create work queue\n");
3197 		err = -ENOMEM;
3198 		goto err_i2c;
3199 	}
3200 
3201 	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3202 			adv76xx_delayed_work_enable_hotplug);
3203 
3204 	state->source_pad = state->info->num_dv_ports
3205 			  + (state->info->has_afe ? 2 : 0);
3206 	for (i = 0; i < state->source_pad; ++i)
3207 		state->pads[i].flags = MEDIA_PAD_FL_SINK;
3208 	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3209 
3210 	err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3211 				state->pads);
3212 	if (err)
3213 		goto err_work_queues;
3214 
3215 	/* Configure regmaps */
3216 	err = configure_regmaps(state);
3217 	if (err)
3218 		goto err_entity;
3219 
3220 	err = adv76xx_core_init(sd);
3221 	if (err)
3222 		goto err_entity;
3223 	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3224 			client->addr << 1, client->adapter->name);
3225 
3226 	err = v4l2_async_register_subdev(sd);
3227 	if (err)
3228 		goto err_entity;
3229 
3230 	return 0;
3231 
3232 err_entity:
3233 	media_entity_cleanup(&sd->entity);
3234 err_work_queues:
3235 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3236 	destroy_workqueue(state->work_queues);
3237 err_i2c:
3238 	adv76xx_unregister_clients(state);
3239 err_hdl:
3240 	v4l2_ctrl_handler_free(hdl);
3241 	return err;
3242 }
3243 
3244 /* ----------------------------------------------------------------------- */
3245 
3246 static int adv76xx_remove(struct i2c_client *client)
3247 {
3248 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3249 	struct adv76xx_state *state = to_state(sd);
3250 
3251 	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3252 	destroy_workqueue(state->work_queues);
3253 	v4l2_async_unregister_subdev(sd);
3254 	media_entity_cleanup(&sd->entity);
3255 	adv76xx_unregister_clients(to_state(sd));
3256 	v4l2_ctrl_handler_free(sd->ctrl_handler);
3257 	return 0;
3258 }
3259 
3260 /* ----------------------------------------------------------------------- */
3261 
3262 static struct i2c_driver adv76xx_driver = {
3263 	.driver = {
3264 		.name = "adv7604",
3265 		.of_match_table = of_match_ptr(adv76xx_of_id),
3266 	},
3267 	.probe = adv76xx_probe,
3268 	.remove = adv76xx_remove,
3269 	.id_table = adv76xx_i2c_id,
3270 };
3271 
3272 module_i2c_driver(adv76xx_driver);
3273