1 /* 2 * Driver for Zarlink DVB-T ZL10353 demodulator 3 * 4 * Copyright (C) 2006, 2007 Christopher Pascoe <c.pascoe@itee.uq.edu.au> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/init.h> 25 #include <linux/delay.h> 26 #include <linux/string.h> 27 #include <linux/slab.h> 28 #include <asm/div64.h> 29 30 #include "dvb_frontend.h" 31 #include "zl10353_priv.h" 32 #include "zl10353.h" 33 34 struct zl10353_state { 35 struct i2c_adapter *i2c; 36 struct dvb_frontend frontend; 37 38 struct zl10353_config config; 39 40 u32 bandwidth; 41 u32 ucblocks; 42 u32 frequency; 43 }; 44 45 static int debug; 46 #define dprintk(args...) \ 47 do { \ 48 if (debug) printk(KERN_DEBUG "zl10353: " args); \ 49 } while (0) 50 51 static int debug_regs; 52 53 static int zl10353_single_write(struct dvb_frontend *fe, u8 reg, u8 val) 54 { 55 struct zl10353_state *state = fe->demodulator_priv; 56 u8 buf[2] = { reg, val }; 57 struct i2c_msg msg = { .addr = state->config.demod_address, .flags = 0, 58 .buf = buf, .len = 2 }; 59 int err = i2c_transfer(state->i2c, &msg, 1); 60 if (err != 1) { 61 printk("zl10353: write to reg %x failed (err = %d)!\n", reg, err); 62 return err; 63 } 64 return 0; 65 } 66 67 static int zl10353_write(struct dvb_frontend *fe, const u8 ibuf[], int ilen) 68 { 69 int err, i; 70 for (i = 0; i < ilen - 1; i++) 71 if ((err = zl10353_single_write(fe, ibuf[0] + i, ibuf[i + 1]))) 72 return err; 73 74 return 0; 75 } 76 77 static int zl10353_read_register(struct zl10353_state *state, u8 reg) 78 { 79 int ret; 80 u8 b0[1] = { reg }; 81 u8 b1[1] = { 0 }; 82 struct i2c_msg msg[2] = { { .addr = state->config.demod_address, 83 .flags = 0, 84 .buf = b0, .len = 1 }, 85 { .addr = state->config.demod_address, 86 .flags = I2C_M_RD, 87 .buf = b1, .len = 1 } }; 88 89 ret = i2c_transfer(state->i2c, msg, 2); 90 91 if (ret != 2) { 92 printk("%s: readreg error (reg=%d, ret==%i)\n", 93 __func__, reg, ret); 94 return ret; 95 } 96 97 return b1[0]; 98 } 99 100 static void zl10353_dump_regs(struct dvb_frontend *fe) 101 { 102 struct zl10353_state *state = fe->demodulator_priv; 103 int ret; 104 u8 reg; 105 106 /* Dump all registers. */ 107 for (reg = 0; ; reg++) { 108 if (reg % 16 == 0) { 109 if (reg) 110 printk(KERN_CONT "\n"); 111 printk(KERN_DEBUG "%02x:", reg); 112 } 113 ret = zl10353_read_register(state, reg); 114 if (ret >= 0) 115 printk(KERN_CONT " %02x", (u8)ret); 116 else 117 printk(KERN_CONT " --"); 118 if (reg == 0xff) 119 break; 120 } 121 printk(KERN_CONT "\n"); 122 } 123 124 static void zl10353_calc_nominal_rate(struct dvb_frontend *fe, 125 u32 bandwidth, 126 u16 *nominal_rate) 127 { 128 struct zl10353_state *state = fe->demodulator_priv; 129 u32 adc_clock = 450560; /* 45.056 MHz */ 130 u64 value; 131 u8 bw = bandwidth / 1000000; 132 133 if (state->config.adc_clock) 134 adc_clock = state->config.adc_clock; 135 136 value = (u64)10 * (1 << 23) / 7 * 125; 137 value = (bw * value) + adc_clock / 2; 138 do_div(value, adc_clock); 139 *nominal_rate = value; 140 141 dprintk("%s: bw %d, adc_clock %d => 0x%x\n", 142 __func__, bw, adc_clock, *nominal_rate); 143 } 144 145 static void zl10353_calc_input_freq(struct dvb_frontend *fe, 146 u16 *input_freq) 147 { 148 struct zl10353_state *state = fe->demodulator_priv; 149 u32 adc_clock = 450560; /* 45.056 MHz */ 150 int if2 = 361667; /* 36.1667 MHz */ 151 int ife; 152 u64 value; 153 154 if (state->config.adc_clock) 155 adc_clock = state->config.adc_clock; 156 if (state->config.if2) 157 if2 = state->config.if2; 158 159 if (adc_clock >= if2 * 2) 160 ife = if2; 161 else { 162 ife = adc_clock - (if2 % adc_clock); 163 if (ife > adc_clock / 2) 164 ife = adc_clock - ife; 165 } 166 value = (u64)65536 * ife + adc_clock / 2; 167 do_div(value, adc_clock); 168 *input_freq = -value; 169 170 dprintk("%s: if2 %d, ife %d, adc_clock %d => %d / 0x%x\n", 171 __func__, if2, ife, adc_clock, -(int)value, *input_freq); 172 } 173 174 static int zl10353_sleep(struct dvb_frontend *fe) 175 { 176 static u8 zl10353_softdown[] = { 0x50, 0x0C, 0x44 }; 177 178 zl10353_write(fe, zl10353_softdown, sizeof(zl10353_softdown)); 179 return 0; 180 } 181 182 static int zl10353_set_parameters(struct dvb_frontend *fe) 183 { 184 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 185 struct zl10353_state *state = fe->demodulator_priv; 186 u16 nominal_rate, input_freq; 187 u8 pllbuf[6] = { 0x67 }, acq_ctl = 0; 188 u16 tps = 0; 189 190 state->frequency = c->frequency; 191 192 zl10353_single_write(fe, RESET, 0x80); 193 udelay(200); 194 zl10353_single_write(fe, 0xEA, 0x01); 195 udelay(200); 196 zl10353_single_write(fe, 0xEA, 0x00); 197 198 zl10353_single_write(fe, AGC_TARGET, 0x28); 199 200 if (c->transmission_mode != TRANSMISSION_MODE_AUTO) 201 acq_ctl |= (1 << 0); 202 if (c->guard_interval != GUARD_INTERVAL_AUTO) 203 acq_ctl |= (1 << 1); 204 zl10353_single_write(fe, ACQ_CTL, acq_ctl); 205 206 switch (c->bandwidth_hz) { 207 case 6000000: 208 /* These are extrapolated from the 7 and 8MHz values */ 209 zl10353_single_write(fe, MCLK_RATIO, 0x97); 210 zl10353_single_write(fe, 0x64, 0x34); 211 zl10353_single_write(fe, 0xcc, 0xdd); 212 break; 213 case 7000000: 214 zl10353_single_write(fe, MCLK_RATIO, 0x86); 215 zl10353_single_write(fe, 0x64, 0x35); 216 zl10353_single_write(fe, 0xcc, 0x73); 217 break; 218 default: 219 c->bandwidth_hz = 8000000; 220 /* fall though */ 221 case 8000000: 222 zl10353_single_write(fe, MCLK_RATIO, 0x75); 223 zl10353_single_write(fe, 0x64, 0x36); 224 zl10353_single_write(fe, 0xcc, 0x73); 225 } 226 227 zl10353_calc_nominal_rate(fe, c->bandwidth_hz, &nominal_rate); 228 zl10353_single_write(fe, TRL_NOMINAL_RATE_1, msb(nominal_rate)); 229 zl10353_single_write(fe, TRL_NOMINAL_RATE_0, lsb(nominal_rate)); 230 state->bandwidth = c->bandwidth_hz; 231 232 zl10353_calc_input_freq(fe, &input_freq); 233 zl10353_single_write(fe, INPUT_FREQ_1, msb(input_freq)); 234 zl10353_single_write(fe, INPUT_FREQ_0, lsb(input_freq)); 235 236 /* Hint at TPS settings */ 237 switch (c->code_rate_HP) { 238 case FEC_2_3: 239 tps |= (1 << 7); 240 break; 241 case FEC_3_4: 242 tps |= (2 << 7); 243 break; 244 case FEC_5_6: 245 tps |= (3 << 7); 246 break; 247 case FEC_7_8: 248 tps |= (4 << 7); 249 break; 250 case FEC_1_2: 251 case FEC_AUTO: 252 break; 253 default: 254 return -EINVAL; 255 } 256 257 switch (c->code_rate_LP) { 258 case FEC_2_3: 259 tps |= (1 << 4); 260 break; 261 case FEC_3_4: 262 tps |= (2 << 4); 263 break; 264 case FEC_5_6: 265 tps |= (3 << 4); 266 break; 267 case FEC_7_8: 268 tps |= (4 << 4); 269 break; 270 case FEC_1_2: 271 case FEC_AUTO: 272 break; 273 case FEC_NONE: 274 if (c->hierarchy == HIERARCHY_AUTO || 275 c->hierarchy == HIERARCHY_NONE) 276 break; 277 default: 278 return -EINVAL; 279 } 280 281 switch (c->modulation) { 282 case QPSK: 283 break; 284 case QAM_AUTO: 285 case QAM_16: 286 tps |= (1 << 13); 287 break; 288 case QAM_64: 289 tps |= (2 << 13); 290 break; 291 default: 292 return -EINVAL; 293 } 294 295 switch (c->transmission_mode) { 296 case TRANSMISSION_MODE_2K: 297 case TRANSMISSION_MODE_AUTO: 298 break; 299 case TRANSMISSION_MODE_8K: 300 tps |= (1 << 0); 301 break; 302 default: 303 return -EINVAL; 304 } 305 306 switch (c->guard_interval) { 307 case GUARD_INTERVAL_1_32: 308 case GUARD_INTERVAL_AUTO: 309 break; 310 case GUARD_INTERVAL_1_16: 311 tps |= (1 << 2); 312 break; 313 case GUARD_INTERVAL_1_8: 314 tps |= (2 << 2); 315 break; 316 case GUARD_INTERVAL_1_4: 317 tps |= (3 << 2); 318 break; 319 default: 320 return -EINVAL; 321 } 322 323 switch (c->hierarchy) { 324 case HIERARCHY_AUTO: 325 case HIERARCHY_NONE: 326 break; 327 case HIERARCHY_1: 328 tps |= (1 << 10); 329 break; 330 case HIERARCHY_2: 331 tps |= (2 << 10); 332 break; 333 case HIERARCHY_4: 334 tps |= (3 << 10); 335 break; 336 default: 337 return -EINVAL; 338 } 339 340 zl10353_single_write(fe, TPS_GIVEN_1, msb(tps)); 341 zl10353_single_write(fe, TPS_GIVEN_0, lsb(tps)); 342 343 if (fe->ops.i2c_gate_ctrl) 344 fe->ops.i2c_gate_ctrl(fe, 0); 345 346 /* 347 * If there is no tuner attached to the secondary I2C bus, we call 348 * set_params to program a potential tuner attached somewhere else. 349 * Otherwise, we update the PLL registers via calc_regs. 350 */ 351 if (state->config.no_tuner) { 352 if (fe->ops.tuner_ops.set_params) { 353 fe->ops.tuner_ops.set_params(fe); 354 if (fe->ops.i2c_gate_ctrl) 355 fe->ops.i2c_gate_ctrl(fe, 0); 356 } 357 } else if (fe->ops.tuner_ops.calc_regs) { 358 fe->ops.tuner_ops.calc_regs(fe, pllbuf + 1, 5); 359 pllbuf[1] <<= 1; 360 zl10353_write(fe, pllbuf, sizeof(pllbuf)); 361 } 362 363 zl10353_single_write(fe, 0x5F, 0x13); 364 365 /* If no attached tuner or invalid PLL registers, just start the FSM. */ 366 if (state->config.no_tuner || fe->ops.tuner_ops.calc_regs == NULL) 367 zl10353_single_write(fe, FSM_GO, 0x01); 368 else 369 zl10353_single_write(fe, TUNER_GO, 0x01); 370 371 return 0; 372 } 373 374 static int zl10353_get_parameters(struct dvb_frontend *fe) 375 { 376 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 377 struct zl10353_state *state = fe->demodulator_priv; 378 int s6, s9; 379 u16 tps; 380 static const u8 tps_fec_to_api[8] = { 381 FEC_1_2, 382 FEC_2_3, 383 FEC_3_4, 384 FEC_5_6, 385 FEC_7_8, 386 FEC_AUTO, 387 FEC_AUTO, 388 FEC_AUTO 389 }; 390 391 s6 = zl10353_read_register(state, STATUS_6); 392 s9 = zl10353_read_register(state, STATUS_9); 393 if (s6 < 0 || s9 < 0) 394 return -EREMOTEIO; 395 if ((s6 & (1 << 5)) == 0 || (s9 & (1 << 4)) == 0) 396 return -EINVAL; /* no FE or TPS lock */ 397 398 tps = zl10353_read_register(state, TPS_RECEIVED_1) << 8 | 399 zl10353_read_register(state, TPS_RECEIVED_0); 400 401 c->code_rate_HP = tps_fec_to_api[(tps >> 7) & 7]; 402 c->code_rate_LP = tps_fec_to_api[(tps >> 4) & 7]; 403 404 switch ((tps >> 13) & 3) { 405 case 0: 406 c->modulation = QPSK; 407 break; 408 case 1: 409 c->modulation = QAM_16; 410 break; 411 case 2: 412 c->modulation = QAM_64; 413 break; 414 default: 415 c->modulation = QAM_AUTO; 416 break; 417 } 418 419 c->transmission_mode = (tps & 0x01) ? TRANSMISSION_MODE_8K : 420 TRANSMISSION_MODE_2K; 421 422 switch ((tps >> 2) & 3) { 423 case 0: 424 c->guard_interval = GUARD_INTERVAL_1_32; 425 break; 426 case 1: 427 c->guard_interval = GUARD_INTERVAL_1_16; 428 break; 429 case 2: 430 c->guard_interval = GUARD_INTERVAL_1_8; 431 break; 432 case 3: 433 c->guard_interval = GUARD_INTERVAL_1_4; 434 break; 435 default: 436 c->guard_interval = GUARD_INTERVAL_AUTO; 437 break; 438 } 439 440 switch ((tps >> 10) & 7) { 441 case 0: 442 c->hierarchy = HIERARCHY_NONE; 443 break; 444 case 1: 445 c->hierarchy = HIERARCHY_1; 446 break; 447 case 2: 448 c->hierarchy = HIERARCHY_2; 449 break; 450 case 3: 451 c->hierarchy = HIERARCHY_4; 452 break; 453 default: 454 c->hierarchy = HIERARCHY_AUTO; 455 break; 456 } 457 458 c->frequency = state->frequency; 459 c->bandwidth_hz = state->bandwidth; 460 c->inversion = INVERSION_AUTO; 461 462 return 0; 463 } 464 465 static int zl10353_read_status(struct dvb_frontend *fe, fe_status_t *status) 466 { 467 struct zl10353_state *state = fe->demodulator_priv; 468 int s6, s7, s8; 469 470 if ((s6 = zl10353_read_register(state, STATUS_6)) < 0) 471 return -EREMOTEIO; 472 if ((s7 = zl10353_read_register(state, STATUS_7)) < 0) 473 return -EREMOTEIO; 474 if ((s8 = zl10353_read_register(state, STATUS_8)) < 0) 475 return -EREMOTEIO; 476 477 *status = 0; 478 if (s6 & (1 << 2)) 479 *status |= FE_HAS_CARRIER; 480 if (s6 & (1 << 1)) 481 *status |= FE_HAS_VITERBI; 482 if (s6 & (1 << 5)) 483 *status |= FE_HAS_LOCK; 484 if (s7 & (1 << 4)) 485 *status |= FE_HAS_SYNC; 486 if (s8 & (1 << 6)) 487 *status |= FE_HAS_SIGNAL; 488 489 if ((*status & (FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)) != 490 (FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)) 491 *status &= ~FE_HAS_LOCK; 492 493 return 0; 494 } 495 496 static int zl10353_read_ber(struct dvb_frontend *fe, u32 *ber) 497 { 498 struct zl10353_state *state = fe->demodulator_priv; 499 500 *ber = zl10353_read_register(state, RS_ERR_CNT_2) << 16 | 501 zl10353_read_register(state, RS_ERR_CNT_1) << 8 | 502 zl10353_read_register(state, RS_ERR_CNT_0); 503 504 return 0; 505 } 506 507 static int zl10353_read_signal_strength(struct dvb_frontend *fe, u16 *strength) 508 { 509 struct zl10353_state *state = fe->demodulator_priv; 510 511 u16 signal = zl10353_read_register(state, AGC_GAIN_1) << 10 | 512 zl10353_read_register(state, AGC_GAIN_0) << 2 | 3; 513 514 *strength = ~signal; 515 516 return 0; 517 } 518 519 static int zl10353_read_snr(struct dvb_frontend *fe, u16 *snr) 520 { 521 struct zl10353_state *state = fe->demodulator_priv; 522 u8 _snr; 523 524 if (debug_regs) 525 zl10353_dump_regs(fe); 526 527 _snr = zl10353_read_register(state, SNR); 528 *snr = 10 * _snr / 8; 529 530 return 0; 531 } 532 533 static int zl10353_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) 534 { 535 struct zl10353_state *state = fe->demodulator_priv; 536 u32 ubl = 0; 537 538 ubl = zl10353_read_register(state, RS_UBC_1) << 8 | 539 zl10353_read_register(state, RS_UBC_0); 540 541 state->ucblocks += ubl; 542 *ucblocks = state->ucblocks; 543 544 return 0; 545 } 546 547 static int zl10353_get_tune_settings(struct dvb_frontend *fe, 548 struct dvb_frontend_tune_settings 549 *fe_tune_settings) 550 { 551 fe_tune_settings->min_delay_ms = 1000; 552 fe_tune_settings->step_size = 0; 553 fe_tune_settings->max_drift = 0; 554 555 return 0; 556 } 557 558 static int zl10353_init(struct dvb_frontend *fe) 559 { 560 struct zl10353_state *state = fe->demodulator_priv; 561 u8 zl10353_reset_attach[6] = { 0x50, 0x03, 0x64, 0x46, 0x15, 0x0F }; 562 563 if (debug_regs) 564 zl10353_dump_regs(fe); 565 if (state->config.parallel_ts) 566 zl10353_reset_attach[2] &= ~0x20; 567 if (state->config.clock_ctl_1) 568 zl10353_reset_attach[3] = state->config.clock_ctl_1; 569 if (state->config.pll_0) 570 zl10353_reset_attach[4] = state->config.pll_0; 571 572 /* Do a "hard" reset if not already done */ 573 if (zl10353_read_register(state, 0x50) != zl10353_reset_attach[1] || 574 zl10353_read_register(state, 0x51) != zl10353_reset_attach[2]) { 575 zl10353_write(fe, zl10353_reset_attach, 576 sizeof(zl10353_reset_attach)); 577 if (debug_regs) 578 zl10353_dump_regs(fe); 579 } 580 581 return 0; 582 } 583 584 static int zl10353_i2c_gate_ctrl(struct dvb_frontend* fe, int enable) 585 { 586 struct zl10353_state *state = fe->demodulator_priv; 587 u8 val = 0x0a; 588 589 if (state->config.disable_i2c_gate_ctrl) { 590 /* No tuner attached to the internal I2C bus */ 591 /* If set enable I2C bridge, the main I2C bus stopped hardly */ 592 return 0; 593 } 594 595 if (enable) 596 val |= 0x10; 597 598 return zl10353_single_write(fe, 0x62, val); 599 } 600 601 static void zl10353_release(struct dvb_frontend *fe) 602 { 603 struct zl10353_state *state = fe->demodulator_priv; 604 kfree(state); 605 } 606 607 static struct dvb_frontend_ops zl10353_ops; 608 609 struct dvb_frontend *zl10353_attach(const struct zl10353_config *config, 610 struct i2c_adapter *i2c) 611 { 612 struct zl10353_state *state = NULL; 613 int id; 614 615 /* allocate memory for the internal state */ 616 state = kzalloc(sizeof(struct zl10353_state), GFP_KERNEL); 617 if (state == NULL) 618 goto error; 619 620 /* setup the state */ 621 state->i2c = i2c; 622 memcpy(&state->config, config, sizeof(struct zl10353_config)); 623 624 /* check if the demod is there */ 625 id = zl10353_read_register(state, CHIP_ID); 626 if ((id != ID_ZL10353) && (id != ID_CE6230) && (id != ID_CE6231)) 627 goto error; 628 629 /* create dvb_frontend */ 630 memcpy(&state->frontend.ops, &zl10353_ops, sizeof(struct dvb_frontend_ops)); 631 state->frontend.demodulator_priv = state; 632 633 return &state->frontend; 634 error: 635 kfree(state); 636 return NULL; 637 } 638 639 static struct dvb_frontend_ops zl10353_ops = { 640 .delsys = { SYS_DVBT }, 641 .info = { 642 .name = "Zarlink ZL10353 DVB-T", 643 .frequency_min = 174000000, 644 .frequency_max = 862000000, 645 .frequency_stepsize = 166667, 646 .frequency_tolerance = 0, 647 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | 648 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | 649 FE_CAN_FEC_AUTO | 650 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | 651 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | 652 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | 653 FE_CAN_MUTE_TS 654 }, 655 656 .release = zl10353_release, 657 658 .init = zl10353_init, 659 .sleep = zl10353_sleep, 660 .i2c_gate_ctrl = zl10353_i2c_gate_ctrl, 661 .write = zl10353_write, 662 663 .set_frontend = zl10353_set_parameters, 664 .get_frontend = zl10353_get_parameters, 665 .get_tune_settings = zl10353_get_tune_settings, 666 667 .read_status = zl10353_read_status, 668 .read_ber = zl10353_read_ber, 669 .read_signal_strength = zl10353_read_signal_strength, 670 .read_snr = zl10353_read_snr, 671 .read_ucblocks = zl10353_read_ucblocks, 672 }; 673 674 module_param(debug, int, 0644); 675 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); 676 677 module_param(debug_regs, int, 0644); 678 MODULE_PARM_DESC(debug_regs, "Turn on/off frontend register dumps (default:off)."); 679 680 MODULE_DESCRIPTION("Zarlink ZL10353 DVB-T demodulator driver"); 681 MODULE_AUTHOR("Chris Pascoe"); 682 MODULE_LICENSE("GPL"); 683 684 EXPORT_SYMBOL(zl10353_attach); 685