xref: /openbmc/linux/drivers/media/dvb-frontends/tda1004x.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1   /*
2      Driver for Philips tda1004xh OFDM Demodulator
3 
4      (c) 2003, 2004 Andrew de Quincey & Robert Schlabbach
5 
6      This program is free software; you can redistribute it and/or modify
7      it under the terms of the GNU General Public License as published by
8      the Free Software Foundation; either version 2 of the License, or
9      (at your option) any later version.
10 
11      This program is distributed in the hope that it will be useful,
12      but WITHOUT ANY WARRANTY; without even the implied warranty of
13      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 
15      GNU General Public License for more details.
16 
17      You should have received a copy of the GNU General Public License
18      along with this program; if not, write to the Free Software
19      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 
21    */
22 /*
23  * This driver needs external firmware. Please use the commands
24  * "<kerneldir>/scripts/get_dvb_firmware tda10045",
25  * "<kerneldir>/scripts/get_dvb_firmware tda10046" to
26  * download/extract them, and then copy them to /usr/lib/hotplug/firmware
27  * or /lib/firmware (depending on configuration of firmware hotplug).
28  */
29 #define TDA10045_DEFAULT_FIRMWARE "dvb-fe-tda10045.fw"
30 #define TDA10046_DEFAULT_FIRMWARE "dvb-fe-tda10046.fw"
31 
32 #include <linux/init.h>
33 #include <linux/module.h>
34 #include <linux/device.h>
35 #include <linux/jiffies.h>
36 #include <linux/string.h>
37 #include <linux/slab.h>
38 
39 #include <media/dvb_frontend.h>
40 #include "tda1004x.h"
41 
42 static int debug;
43 #define dprintk(args...) \
44 	do { \
45 		if (debug) printk(KERN_DEBUG "tda1004x: " args); \
46 	} while (0)
47 
48 #define TDA1004X_CHIPID		 0x00
49 #define TDA1004X_AUTO		 0x01
50 #define TDA1004X_IN_CONF1	 0x02
51 #define TDA1004X_IN_CONF2	 0x03
52 #define TDA1004X_OUT_CONF1	 0x04
53 #define TDA1004X_OUT_CONF2	 0x05
54 #define TDA1004X_STATUS_CD	 0x06
55 #define TDA1004X_CONFC4		 0x07
56 #define TDA1004X_DSSPARE2	 0x0C
57 #define TDA10045H_CODE_IN	 0x0D
58 #define TDA10045H_FWPAGE	 0x0E
59 #define TDA1004X_SCAN_CPT	 0x10
60 #define TDA1004X_DSP_CMD	 0x11
61 #define TDA1004X_DSP_ARG	 0x12
62 #define TDA1004X_DSP_DATA1	 0x13
63 #define TDA1004X_DSP_DATA2	 0x14
64 #define TDA1004X_CONFADC1	 0x15
65 #define TDA1004X_CONFC1		 0x16
66 #define TDA10045H_S_AGC		 0x1a
67 #define TDA10046H_AGC_TUN_LEVEL	 0x1a
68 #define TDA1004X_SNR		 0x1c
69 #define TDA1004X_CONF_TS1	 0x1e
70 #define TDA1004X_CONF_TS2	 0x1f
71 #define TDA1004X_CBER_RESET	 0x20
72 #define TDA1004X_CBER_MSB	 0x21
73 #define TDA1004X_CBER_LSB	 0x22
74 #define TDA1004X_CVBER_LUT	 0x23
75 #define TDA1004X_VBER_MSB	 0x24
76 #define TDA1004X_VBER_MID	 0x25
77 #define TDA1004X_VBER_LSB	 0x26
78 #define TDA1004X_UNCOR		 0x27
79 
80 #define TDA10045H_CONFPLL_P	 0x2D
81 #define TDA10045H_CONFPLL_M_MSB	 0x2E
82 #define TDA10045H_CONFPLL_M_LSB	 0x2F
83 #define TDA10045H_CONFPLL_N	 0x30
84 
85 #define TDA10046H_CONFPLL1	 0x2D
86 #define TDA10046H_CONFPLL2	 0x2F
87 #define TDA10046H_CONFPLL3	 0x30
88 #define TDA10046H_TIME_WREF1	 0x31
89 #define TDA10046H_TIME_WREF2	 0x32
90 #define TDA10046H_TIME_WREF3	 0x33
91 #define TDA10046H_TIME_WREF4	 0x34
92 #define TDA10046H_TIME_WREF5	 0x35
93 
94 #define TDA10045H_UNSURW_MSB	 0x31
95 #define TDA10045H_UNSURW_LSB	 0x32
96 #define TDA10045H_WREF_MSB	 0x33
97 #define TDA10045H_WREF_MID	 0x34
98 #define TDA10045H_WREF_LSB	 0x35
99 #define TDA10045H_MUXOUT	 0x36
100 #define TDA1004X_CONFADC2	 0x37
101 
102 #define TDA10045H_IOFFSET	 0x38
103 
104 #define TDA10046H_CONF_TRISTATE1 0x3B
105 #define TDA10046H_CONF_TRISTATE2 0x3C
106 #define TDA10046H_CONF_POLARITY	 0x3D
107 #define TDA10046H_FREQ_OFFSET	 0x3E
108 #define TDA10046H_GPIO_OUT_SEL	 0x41
109 #define TDA10046H_GPIO_SELECT	 0x42
110 #define TDA10046H_AGC_CONF	 0x43
111 #define TDA10046H_AGC_THR	 0x44
112 #define TDA10046H_AGC_RENORM	 0x45
113 #define TDA10046H_AGC_GAINS	 0x46
114 #define TDA10046H_AGC_TUN_MIN	 0x47
115 #define TDA10046H_AGC_TUN_MAX	 0x48
116 #define TDA10046H_AGC_IF_MIN	 0x49
117 #define TDA10046H_AGC_IF_MAX	 0x4A
118 
119 #define TDA10046H_FREQ_PHY2_MSB	 0x4D
120 #define TDA10046H_FREQ_PHY2_LSB	 0x4E
121 
122 #define TDA10046H_CVBER_CTRL	 0x4F
123 #define TDA10046H_AGC_IF_LEVEL	 0x52
124 #define TDA10046H_CODE_CPT	 0x57
125 #define TDA10046H_CODE_IN	 0x58
126 
127 
128 static int tda1004x_write_byteI(struct tda1004x_state *state, int reg, int data)
129 {
130 	int ret;
131 	u8 buf[] = { reg, data };
132 	struct i2c_msg msg = { .flags = 0, .buf = buf, .len = 2 };
133 
134 	dprintk("%s: reg=0x%x, data=0x%x\n", __func__, reg, data);
135 
136 	msg.addr = state->config->demod_address;
137 	ret = i2c_transfer(state->i2c, &msg, 1);
138 
139 	if (ret != 1)
140 		dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
141 			__func__, reg, data, ret);
142 
143 	dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __func__,
144 		reg, data, ret);
145 	return (ret != 1) ? -1 : 0;
146 }
147 
148 static int tda1004x_read_byte(struct tda1004x_state *state, int reg)
149 {
150 	int ret;
151 	u8 b0[] = { reg };
152 	u8 b1[] = { 0 };
153 	struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 },
154 				{ .flags = I2C_M_RD, .buf = b1, .len = 1 }};
155 
156 	dprintk("%s: reg=0x%x\n", __func__, reg);
157 
158 	msg[0].addr = state->config->demod_address;
159 	msg[1].addr = state->config->demod_address;
160 	ret = i2c_transfer(state->i2c, msg, 2);
161 
162 	if (ret != 2) {
163 		dprintk("%s: error reg=0x%x, ret=%i\n", __func__, reg,
164 			ret);
165 		return -EINVAL;
166 	}
167 
168 	dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __func__,
169 		reg, b1[0], ret);
170 	return b1[0];
171 }
172 
173 static int tda1004x_write_mask(struct tda1004x_state *state, int reg, int mask, int data)
174 {
175 	int val;
176 	dprintk("%s: reg=0x%x, mask=0x%x, data=0x%x\n", __func__, reg,
177 		mask, data);
178 
179 	// read a byte and check
180 	val = tda1004x_read_byte(state, reg);
181 	if (val < 0)
182 		return val;
183 
184 	// mask if off
185 	val = val & ~mask;
186 	val |= data & 0xff;
187 
188 	// write it out again
189 	return tda1004x_write_byteI(state, reg, val);
190 }
191 
192 static int tda1004x_write_buf(struct tda1004x_state *state, int reg, unsigned char *buf, int len)
193 {
194 	int i;
195 	int result;
196 
197 	dprintk("%s: reg=0x%x, len=0x%x\n", __func__, reg, len);
198 
199 	result = 0;
200 	for (i = 0; i < len; i++) {
201 		result = tda1004x_write_byteI(state, reg + i, buf[i]);
202 		if (result != 0)
203 			break;
204 	}
205 
206 	return result;
207 }
208 
209 static int tda1004x_enable_tuner_i2c(struct tda1004x_state *state)
210 {
211 	int result;
212 	dprintk("%s\n", __func__);
213 
214 	result = tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 2);
215 	msleep(20);
216 	return result;
217 }
218 
219 static int tda1004x_disable_tuner_i2c(struct tda1004x_state *state)
220 {
221 	dprintk("%s\n", __func__);
222 
223 	return tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 0);
224 }
225 
226 static int tda10045h_set_bandwidth(struct tda1004x_state *state,
227 				   u32 bandwidth)
228 {
229 	static u8 bandwidth_6mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x60, 0x1e, 0xa7, 0x45, 0x4f };
230 	static u8 bandwidth_7mhz[] = { 0x02, 0x00, 0x37, 0x00, 0x4a, 0x2f, 0x6d, 0x76, 0xdb };
231 	static u8 bandwidth_8mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x48, 0x17, 0x89, 0xc7, 0x14 };
232 
233 	switch (bandwidth) {
234 	case 6000000:
235 		tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_6mhz, sizeof(bandwidth_6mhz));
236 		break;
237 
238 	case 7000000:
239 		tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_7mhz, sizeof(bandwidth_7mhz));
240 		break;
241 
242 	case 8000000:
243 		tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_8mhz, sizeof(bandwidth_8mhz));
244 		break;
245 
246 	default:
247 		return -EINVAL;
248 	}
249 
250 	tda1004x_write_byteI(state, TDA10045H_IOFFSET, 0);
251 
252 	return 0;
253 }
254 
255 static int tda10046h_set_bandwidth(struct tda1004x_state *state,
256 				   u32 bandwidth)
257 {
258 	static u8 bandwidth_6mhz_53M[] = { 0x7b, 0x2e, 0x11, 0xf0, 0xd2 };
259 	static u8 bandwidth_7mhz_53M[] = { 0x6a, 0x02, 0x6a, 0x43, 0x9f };
260 	static u8 bandwidth_8mhz_53M[] = { 0x5c, 0x32, 0xc2, 0x96, 0x6d };
261 
262 	static u8 bandwidth_6mhz_48M[] = { 0x70, 0x02, 0x49, 0x24, 0x92 };
263 	static u8 bandwidth_7mhz_48M[] = { 0x60, 0x02, 0xaa, 0xaa, 0xab };
264 	static u8 bandwidth_8mhz_48M[] = { 0x54, 0x03, 0x0c, 0x30, 0xc3 };
265 	int tda10046_clk53m;
266 
267 	if ((state->config->if_freq == TDA10046_FREQ_045) ||
268 	    (state->config->if_freq == TDA10046_FREQ_052))
269 		tda10046_clk53m = 0;
270 	else
271 		tda10046_clk53m = 1;
272 	switch (bandwidth) {
273 	case 6000000:
274 		if (tda10046_clk53m)
275 			tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_53M,
276 						  sizeof(bandwidth_6mhz_53M));
277 		else
278 			tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_48M,
279 						  sizeof(bandwidth_6mhz_48M));
280 		if (state->config->if_freq == TDA10046_FREQ_045) {
281 			tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0a);
282 			tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xab);
283 		}
284 		break;
285 
286 	case 7000000:
287 		if (tda10046_clk53m)
288 			tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_53M,
289 						  sizeof(bandwidth_7mhz_53M));
290 		else
291 			tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_48M,
292 						  sizeof(bandwidth_7mhz_48M));
293 		if (state->config->if_freq == TDA10046_FREQ_045) {
294 			tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
295 			tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
296 		}
297 		break;
298 
299 	case 8000000:
300 		if (tda10046_clk53m)
301 			tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_53M,
302 						  sizeof(bandwidth_8mhz_53M));
303 		else
304 			tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_48M,
305 						  sizeof(bandwidth_8mhz_48M));
306 		if (state->config->if_freq == TDA10046_FREQ_045) {
307 			tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
308 			tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x55);
309 		}
310 		break;
311 
312 	default:
313 		return -EINVAL;
314 	}
315 
316 	return 0;
317 }
318 
319 static int tda1004x_do_upload(struct tda1004x_state *state,
320 			      const unsigned char *mem, unsigned int len,
321 			      u8 dspCodeCounterReg, u8 dspCodeInReg)
322 {
323 	u8 buf[65];
324 	struct i2c_msg fw_msg = { .flags = 0, .buf = buf, .len = 0 };
325 	int tx_size;
326 	int pos = 0;
327 
328 	/* clear code counter */
329 	tda1004x_write_byteI(state, dspCodeCounterReg, 0);
330 	fw_msg.addr = state->config->demod_address;
331 
332 	i2c_lock_bus(state->i2c, I2C_LOCK_SEGMENT);
333 	buf[0] = dspCodeInReg;
334 	while (pos != len) {
335 		// work out how much to send this time
336 		tx_size = len - pos;
337 		if (tx_size > 0x10)
338 			tx_size = 0x10;
339 
340 		// send the chunk
341 		memcpy(buf + 1, mem + pos, tx_size);
342 		fw_msg.len = tx_size + 1;
343 		if (__i2c_transfer(state->i2c, &fw_msg, 1) != 1) {
344 			printk(KERN_ERR "tda1004x: Error during firmware upload\n");
345 			i2c_unlock_bus(state->i2c, I2C_LOCK_SEGMENT);
346 			return -EIO;
347 		}
348 		pos += tx_size;
349 
350 		dprintk("%s: fw_pos=0x%x\n", __func__, pos);
351 	}
352 	i2c_unlock_bus(state->i2c, I2C_LOCK_SEGMENT);
353 
354 	/* give the DSP a chance to settle 03/10/05 Hac */
355 	msleep(100);
356 
357 	return 0;
358 }
359 
360 static int tda1004x_check_upload_ok(struct tda1004x_state *state)
361 {
362 	u8 data1, data2;
363 	unsigned long timeout;
364 
365 	if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
366 		timeout = jiffies + 2 * HZ;
367 		while(!(tda1004x_read_byte(state, TDA1004X_STATUS_CD) & 0x20)) {
368 			if (time_after(jiffies, timeout)) {
369 				printk(KERN_ERR "tda1004x: timeout waiting for DSP ready\n");
370 				break;
371 			}
372 			msleep(1);
373 		}
374 	} else
375 		msleep(100);
376 
377 	// check upload was OK
378 	tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0); // we want to read from the DSP
379 	tda1004x_write_byteI(state, TDA1004X_DSP_CMD, 0x67);
380 
381 	data1 = tda1004x_read_byte(state, TDA1004X_DSP_DATA1);
382 	data2 = tda1004x_read_byte(state, TDA1004X_DSP_DATA2);
383 	if (data1 != 0x67 || data2 < 0x20 || data2 > 0x2e) {
384 		printk(KERN_INFO "tda1004x: found firmware revision %x -- invalid\n", data2);
385 		return -EIO;
386 	}
387 	printk(KERN_INFO "tda1004x: found firmware revision %x -- ok\n", data2);
388 	return 0;
389 }
390 
391 static int tda10045_fwupload(struct dvb_frontend* fe)
392 {
393 	struct tda1004x_state* state = fe->demodulator_priv;
394 	int ret;
395 	const struct firmware *fw;
396 
397 	/* don't re-upload unless necessary */
398 	if (tda1004x_check_upload_ok(state) == 0)
399 		return 0;
400 
401 	/* request the firmware, this will block until someone uploads it */
402 	printk(KERN_INFO "tda1004x: waiting for firmware upload (%s)...\n", TDA10045_DEFAULT_FIRMWARE);
403 	ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
404 	if (ret) {
405 		printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
406 		return ret;
407 	}
408 
409 	/* reset chip */
410 	tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0);
411 	tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
412 	tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
413 	msleep(10);
414 
415 	/* set parameters */
416 	tda10045h_set_bandwidth(state, 8000000);
417 
418 	ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10045H_FWPAGE, TDA10045H_CODE_IN);
419 	release_firmware(fw);
420 	if (ret)
421 		return ret;
422 	printk(KERN_INFO "tda1004x: firmware upload complete\n");
423 
424 	/* wait for DSP to initialise */
425 	/* DSPREADY doesn't seem to work on the TDA10045H */
426 	msleep(100);
427 
428 	return tda1004x_check_upload_ok(state);
429 }
430 
431 static void tda10046_init_plls(struct dvb_frontend* fe)
432 {
433 	struct tda1004x_state* state = fe->demodulator_priv;
434 	int tda10046_clk53m;
435 
436 	if ((state->config->if_freq == TDA10046_FREQ_045) ||
437 	    (state->config->if_freq == TDA10046_FREQ_052))
438 		tda10046_clk53m = 0;
439 	else
440 		tda10046_clk53m = 1;
441 
442 	tda1004x_write_byteI(state, TDA10046H_CONFPLL1, 0xf0);
443 	if(tda10046_clk53m) {
444 		printk(KERN_INFO "tda1004x: setting up plls for 53MHz sampling clock\n");
445 		tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x08); // PLL M = 8
446 	} else {
447 		printk(KERN_INFO "tda1004x: setting up plls for 48MHz sampling clock\n");
448 		tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x03); // PLL M = 3
449 	}
450 	if (state->config->xtal_freq == TDA10046_XTAL_4M ) {
451 		dprintk("%s: setting up PLLs for a 4 MHz Xtal\n", __func__);
452 		tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 0); // PLL P = N = 0
453 	} else {
454 		dprintk("%s: setting up PLLs for a 16 MHz Xtal\n", __func__);
455 		tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 3); // PLL P = 0, N = 3
456 	}
457 	if(tda10046_clk53m)
458 		tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x67);
459 	else
460 		tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x72);
461 	/* Note clock frequency is handled implicitly */
462 	switch (state->config->if_freq) {
463 	case TDA10046_FREQ_045:
464 		tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
465 		tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
466 		break;
467 	case TDA10046_FREQ_052:
468 		tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
469 		tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xc7);
470 		break;
471 	case TDA10046_FREQ_3617:
472 		tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
473 		tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x59);
474 		break;
475 	case TDA10046_FREQ_3613:
476 		tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
477 		tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x3f);
478 		break;
479 	}
480 	tda10046h_set_bandwidth(state, 8000000); /* default bandwidth 8 MHz */
481 	/* let the PLLs settle */
482 	msleep(120);
483 }
484 
485 static int tda10046_fwupload(struct dvb_frontend* fe)
486 {
487 	struct tda1004x_state* state = fe->demodulator_priv;
488 	int ret, confc4;
489 	const struct firmware *fw;
490 
491 	/* reset + wake up chip */
492 	if (state->config->xtal_freq == TDA10046_XTAL_4M) {
493 		confc4 = 0;
494 	} else {
495 		dprintk("%s: 16MHz Xtal, reducing I2C speed\n", __func__);
496 		confc4 = 0x80;
497 	}
498 	tda1004x_write_byteI(state, TDA1004X_CONFC4, confc4);
499 
500 	tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 1, 0);
501 	/* set GPIO 1 and 3 */
502 	if (state->config->gpio_config != TDA10046_GPTRI) {
503 		tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE2, 0x33);
504 		tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x0f, state->config->gpio_config &0x0f);
505 	}
506 	/* let the clocks recover from sleep */
507 	msleep(10);
508 
509 	/* The PLLs need to be reprogrammed after sleep */
510 	tda10046_init_plls(fe);
511 	tda1004x_write_mask(state, TDA1004X_CONFADC2, 0xc0, 0);
512 
513 	/* don't re-upload unless necessary */
514 	if (tda1004x_check_upload_ok(state) == 0)
515 		return 0;
516 
517 	/*
518 	   For i2c normal work, we need to slow down the bus speed.
519 	   However, the slow down breaks the eeprom firmware load.
520 	   So, use normal speed for eeprom booting and then restore the
521 	   i2c speed after that. Tested with MSI TV @nyware A/D board,
522 	   that comes with firmware version 29 inside their eeprom.
523 
524 	   It should also be noticed that no other I2C transfer should
525 	   be in course while booting from eeprom, otherwise, tda10046
526 	   goes into an instable state. So, proper locking are needed
527 	   at the i2c bus master.
528 	 */
529 	printk(KERN_INFO "tda1004x: trying to boot from eeprom\n");
530 	tda1004x_write_byteI(state, TDA1004X_CONFC4, 4);
531 	msleep(300);
532 	tda1004x_write_byteI(state, TDA1004X_CONFC4, confc4);
533 
534 	/* Checks if eeprom firmware went without troubles */
535 	if (tda1004x_check_upload_ok(state) == 0)
536 		return 0;
537 
538 	/* eeprom firmware didn't work. Load one manually. */
539 
540 	if (state->config->request_firmware != NULL) {
541 		/* request the firmware, this will block until someone uploads it */
542 		printk(KERN_INFO "tda1004x: waiting for firmware upload...\n");
543 		ret = state->config->request_firmware(fe, &fw, TDA10046_DEFAULT_FIRMWARE);
544 		if (ret) {
545 			/* remain compatible to old bug: try to load with tda10045 image name */
546 			ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
547 			if (ret) {
548 				printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
549 				return ret;
550 			} else {
551 				printk(KERN_INFO "tda1004x: please rename the firmware file to %s\n",
552 						  TDA10046_DEFAULT_FIRMWARE);
553 			}
554 		}
555 	} else {
556 		printk(KERN_ERR "tda1004x: no request function defined, can't upload from file\n");
557 		return -EIO;
558 	}
559 	tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); // going to boot from HOST
560 	ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10046H_CODE_CPT, TDA10046H_CODE_IN);
561 	release_firmware(fw);
562 	return tda1004x_check_upload_ok(state);
563 }
564 
565 static int tda1004x_encode_fec(int fec)
566 {
567 	// convert known FEC values
568 	switch (fec) {
569 	case FEC_1_2:
570 		return 0;
571 	case FEC_2_3:
572 		return 1;
573 	case FEC_3_4:
574 		return 2;
575 	case FEC_5_6:
576 		return 3;
577 	case FEC_7_8:
578 		return 4;
579 	}
580 
581 	// unsupported
582 	return -EINVAL;
583 }
584 
585 static int tda1004x_decode_fec(int tdafec)
586 {
587 	// convert known FEC values
588 	switch (tdafec) {
589 	case 0:
590 		return FEC_1_2;
591 	case 1:
592 		return FEC_2_3;
593 	case 2:
594 		return FEC_3_4;
595 	case 3:
596 		return FEC_5_6;
597 	case 4:
598 		return FEC_7_8;
599 	}
600 
601 	// unsupported
602 	return -1;
603 }
604 
605 static int tda1004x_write(struct dvb_frontend* fe, const u8 buf[], int len)
606 {
607 	struct tda1004x_state* state = fe->demodulator_priv;
608 
609 	if (len != 2)
610 		return -EINVAL;
611 
612 	return tda1004x_write_byteI(state, buf[0], buf[1]);
613 }
614 
615 static int tda10045_init(struct dvb_frontend* fe)
616 {
617 	struct tda1004x_state* state = fe->demodulator_priv;
618 
619 	dprintk("%s\n", __func__);
620 
621 	if (tda10045_fwupload(fe)) {
622 		printk("tda1004x: firmware upload failed\n");
623 		return -EIO;
624 	}
625 
626 	tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0); // wake up the ADC
627 
628 	// tda setup
629 	tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
630 	tda1004x_write_mask(state, TDA1004X_AUTO, 8, 0); // select HP stream
631 	tda1004x_write_mask(state, TDA1004X_CONFC1, 0x40, 0); // set polarity of VAGC signal
632 	tda1004x_write_mask(state, TDA1004X_CONFC1, 0x80, 0x80); // enable pulse killer
633 	tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10); // enable auto offset
634 	tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0x0); // no frequency offset
635 	tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 0); // setup MPEG2 TS interface
636 	tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0); // setup MPEG2 TS interface
637 	tda1004x_write_mask(state, TDA1004X_VBER_MSB, 0xe0, 0xa0); // 10^6 VBER measurement bits
638 	tda1004x_write_mask(state, TDA1004X_CONFC1, 0x10, 0); // VAGC polarity
639 	tda1004x_write_byteI(state, TDA1004X_CONFADC1, 0x2e);
640 
641 	tda1004x_write_mask(state, 0x1f, 0x01, state->config->invert_oclk);
642 
643 	return 0;
644 }
645 
646 static int tda10046_init(struct dvb_frontend* fe)
647 {
648 	struct tda1004x_state* state = fe->demodulator_priv;
649 	dprintk("%s\n", __func__);
650 
651 	if (tda10046_fwupload(fe)) {
652 		printk("tda1004x: firmware upload failed\n");
653 		return -EIO;
654 	}
655 
656 	// tda setup
657 	tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
658 	tda1004x_write_byteI(state, TDA1004X_AUTO, 0x87);    // 100 ppm crystal, select HP stream
659 	tda1004x_write_byteI(state, TDA1004X_CONFC1, 0x88);      // enable pulse killer
660 
661 	switch (state->config->agc_config) {
662 	case TDA10046_AGC_DEFAULT:
663 		tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x00); // AGC setup
664 		tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60);  // set AGC polarities
665 		break;
666 	case TDA10046_AGC_IFO_AUTO_NEG:
667 		tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
668 		tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60);  // set AGC polarities
669 		break;
670 	case TDA10046_AGC_IFO_AUTO_POS:
671 		tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
672 		tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x00);  // set AGC polarities
673 		break;
674 	case TDA10046_AGC_TDA827X:
675 		tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02);   // AGC setup
676 		tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70);    // AGC Threshold
677 		tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x08); // Gain Renormalize
678 		tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60);  // set AGC polarities
679 		break;
680 	}
681 	if (state->config->ts_mode == 0) {
682 		tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 0xc0, 0x40);
683 		tda1004x_write_mask(state, 0x3a, 0x80, state->config->invert_oclk << 7);
684 	} else {
685 		tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 0xc0, 0x80);
686 		tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x10,
687 							state->config->invert_oclk << 4);
688 	}
689 	tda1004x_write_byteI(state, TDA1004X_CONFADC2, 0x38);
690 	tda1004x_write_mask (state, TDA10046H_CONF_TRISTATE1, 0x3e, 0x38); // Turn IF AGC output on
691 	tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MIN, 0);	  // }
692 	tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MAX, 0xff); // } AGC min/max values
693 	tda1004x_write_byteI(state, TDA10046H_AGC_IF_MIN, 0);	  // }
694 	tda1004x_write_byteI(state, TDA10046H_AGC_IF_MAX, 0xff);  // }
695 	tda1004x_write_byteI(state, TDA10046H_AGC_GAINS, 0x12); // IF gain 2, TUN gain 1
696 	tda1004x_write_byteI(state, TDA10046H_CVBER_CTRL, 0x1a); // 10^6 VBER measurement bits
697 	tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 7); // MPEG2 interface config
698 	tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0xc0); // MPEG2 interface config
699 	// tda1004x_write_mask(state, 0x50, 0x80, 0x80);         // handle out of guard echoes
700 
701 	return 0;
702 }
703 
704 static int tda1004x_set_fe(struct dvb_frontend *fe)
705 {
706 	struct dtv_frontend_properties *fe_params = &fe->dtv_property_cache;
707 	struct tda1004x_state* state = fe->demodulator_priv;
708 	int tmp;
709 	int inversion;
710 
711 	dprintk("%s\n", __func__);
712 
713 	if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
714 		// setup auto offset
715 		tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10);
716 		tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x80, 0);
717 		tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0);
718 
719 		// disable agc_conf[2]
720 		tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 0);
721 	}
722 
723 	// set frequency
724 	if (fe->ops.tuner_ops.set_params) {
725 		fe->ops.tuner_ops.set_params(fe);
726 		if (fe->ops.i2c_gate_ctrl)
727 			fe->ops.i2c_gate_ctrl(fe, 0);
728 	}
729 
730 	// Hardcoded to use auto as much as possible on the TDA10045 as it
731 	// is very unreliable if AUTO mode is _not_ used.
732 	if (state->demod_type == TDA1004X_DEMOD_TDA10045) {
733 		fe_params->code_rate_HP = FEC_AUTO;
734 		fe_params->guard_interval = GUARD_INTERVAL_AUTO;
735 		fe_params->transmission_mode = TRANSMISSION_MODE_AUTO;
736 	}
737 
738 	// Set standard params.. or put them to auto
739 	if ((fe_params->code_rate_HP == FEC_AUTO) ||
740 		(fe_params->code_rate_LP == FEC_AUTO) ||
741 		(fe_params->modulation == QAM_AUTO) ||
742 		(fe_params->hierarchy == HIERARCHY_AUTO)) {
743 		tda1004x_write_mask(state, TDA1004X_AUTO, 1, 1);	// enable auto
744 		tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x03, 0);	/* turn off modulation bits */
745 		tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0);	// turn off hierarchy bits
746 		tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x3f, 0);	// turn off FEC bits
747 	} else {
748 		tda1004x_write_mask(state, TDA1004X_AUTO, 1, 0);	// disable auto
749 
750 		// set HP FEC
751 		tmp = tda1004x_encode_fec(fe_params->code_rate_HP);
752 		if (tmp < 0)
753 			return tmp;
754 		tda1004x_write_mask(state, TDA1004X_IN_CONF2, 7, tmp);
755 
756 		// set LP FEC
757 		tmp = tda1004x_encode_fec(fe_params->code_rate_LP);
758 		if (tmp < 0)
759 			return tmp;
760 		tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x38, tmp << 3);
761 
762 		/* set modulation */
763 		switch (fe_params->modulation) {
764 		case QPSK:
765 			tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 0);
766 			break;
767 
768 		case QAM_16:
769 			tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 1);
770 			break;
771 
772 		case QAM_64:
773 			tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 2);
774 			break;
775 
776 		default:
777 			return -EINVAL;
778 		}
779 
780 		// set hierarchy
781 		switch (fe_params->hierarchy) {
782 		case HIERARCHY_NONE:
783 			tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0 << 5);
784 			break;
785 
786 		case HIERARCHY_1:
787 			tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 1 << 5);
788 			break;
789 
790 		case HIERARCHY_2:
791 			tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 2 << 5);
792 			break;
793 
794 		case HIERARCHY_4:
795 			tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 3 << 5);
796 			break;
797 
798 		default:
799 			return -EINVAL;
800 		}
801 	}
802 
803 	// set bandwidth
804 	switch (state->demod_type) {
805 	case TDA1004X_DEMOD_TDA10045:
806 		tda10045h_set_bandwidth(state, fe_params->bandwidth_hz);
807 		break;
808 
809 	case TDA1004X_DEMOD_TDA10046:
810 		tda10046h_set_bandwidth(state, fe_params->bandwidth_hz);
811 		break;
812 	}
813 
814 	// set inversion
815 	inversion = fe_params->inversion;
816 	if (state->config->invert)
817 		inversion = inversion ? INVERSION_OFF : INVERSION_ON;
818 	switch (inversion) {
819 	case INVERSION_OFF:
820 		tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0);
821 		break;
822 
823 	case INVERSION_ON:
824 		tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0x20);
825 		break;
826 
827 	default:
828 		return -EINVAL;
829 	}
830 
831 	// set guard interval
832 	switch (fe_params->guard_interval) {
833 	case GUARD_INTERVAL_1_32:
834 		tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
835 		tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
836 		break;
837 
838 	case GUARD_INTERVAL_1_16:
839 		tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
840 		tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 1 << 2);
841 		break;
842 
843 	case GUARD_INTERVAL_1_8:
844 		tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
845 		tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 2 << 2);
846 		break;
847 
848 	case GUARD_INTERVAL_1_4:
849 		tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
850 		tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 3 << 2);
851 		break;
852 
853 	case GUARD_INTERVAL_AUTO:
854 		tda1004x_write_mask(state, TDA1004X_AUTO, 2, 2);
855 		tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
856 		break;
857 
858 	default:
859 		return -EINVAL;
860 	}
861 
862 	// set transmission mode
863 	switch (fe_params->transmission_mode) {
864 	case TRANSMISSION_MODE_2K:
865 		tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
866 		tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0 << 4);
867 		break;
868 
869 	case TRANSMISSION_MODE_8K:
870 		tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
871 		tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 1 << 4);
872 		break;
873 
874 	case TRANSMISSION_MODE_AUTO:
875 		tda1004x_write_mask(state, TDA1004X_AUTO, 4, 4);
876 		tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0);
877 		break;
878 
879 	default:
880 		return -EINVAL;
881 	}
882 
883 	// start the lock
884 	switch (state->demod_type) {
885 	case TDA1004X_DEMOD_TDA10045:
886 		tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
887 		tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
888 		break;
889 
890 	case TDA1004X_DEMOD_TDA10046:
891 		tda1004x_write_mask(state, TDA1004X_AUTO, 0x40, 0x40);
892 		msleep(1);
893 		tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 1);
894 		break;
895 	}
896 
897 	msleep(10);
898 
899 	return 0;
900 }
901 
902 static int tda1004x_get_fe(struct dvb_frontend *fe,
903 			   struct dtv_frontend_properties *fe_params)
904 {
905 	struct tda1004x_state* state = fe->demodulator_priv;
906 	int status;
907 
908 	dprintk("%s\n", __func__);
909 
910 	status = tda1004x_read_byte(state, TDA1004X_STATUS_CD);
911 	if (status == -1)
912 		return -EIO;
913 
914 	/* Only update the properties cache if device is locked */
915 	if (!(status & 8))
916 		return 0;
917 
918 	// inversion status
919 	fe_params->inversion = INVERSION_OFF;
920 	if (tda1004x_read_byte(state, TDA1004X_CONFC1) & 0x20)
921 		fe_params->inversion = INVERSION_ON;
922 	if (state->config->invert)
923 		fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON;
924 
925 	// bandwidth
926 	switch (state->demod_type) {
927 	case TDA1004X_DEMOD_TDA10045:
928 		switch (tda1004x_read_byte(state, TDA10045H_WREF_LSB)) {
929 		case 0x14:
930 			fe_params->bandwidth_hz = 8000000;
931 			break;
932 		case 0xdb:
933 			fe_params->bandwidth_hz = 7000000;
934 			break;
935 		case 0x4f:
936 			fe_params->bandwidth_hz = 6000000;
937 			break;
938 		}
939 		break;
940 	case TDA1004X_DEMOD_TDA10046:
941 		switch (tda1004x_read_byte(state, TDA10046H_TIME_WREF1)) {
942 		case 0x5c:
943 		case 0x54:
944 			fe_params->bandwidth_hz = 8000000;
945 			break;
946 		case 0x6a:
947 		case 0x60:
948 			fe_params->bandwidth_hz = 7000000;
949 			break;
950 		case 0x7b:
951 		case 0x70:
952 			fe_params->bandwidth_hz = 6000000;
953 			break;
954 		}
955 		break;
956 	}
957 
958 	// FEC
959 	fe_params->code_rate_HP =
960 	    tda1004x_decode_fec(tda1004x_read_byte(state, TDA1004X_OUT_CONF2) & 7);
961 	fe_params->code_rate_LP =
962 	    tda1004x_decode_fec((tda1004x_read_byte(state, TDA1004X_OUT_CONF2) >> 3) & 7);
963 
964 	/* modulation */
965 	switch (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 3) {
966 	case 0:
967 		fe_params->modulation = QPSK;
968 		break;
969 	case 1:
970 		fe_params->modulation = QAM_16;
971 		break;
972 	case 2:
973 		fe_params->modulation = QAM_64;
974 		break;
975 	}
976 
977 	// transmission mode
978 	fe_params->transmission_mode = TRANSMISSION_MODE_2K;
979 	if (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x10)
980 		fe_params->transmission_mode = TRANSMISSION_MODE_8K;
981 
982 	// guard interval
983 	switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x0c) >> 2) {
984 	case 0:
985 		fe_params->guard_interval = GUARD_INTERVAL_1_32;
986 		break;
987 	case 1:
988 		fe_params->guard_interval = GUARD_INTERVAL_1_16;
989 		break;
990 	case 2:
991 		fe_params->guard_interval = GUARD_INTERVAL_1_8;
992 		break;
993 	case 3:
994 		fe_params->guard_interval = GUARD_INTERVAL_1_4;
995 		break;
996 	}
997 
998 	// hierarchy
999 	switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x60) >> 5) {
1000 	case 0:
1001 		fe_params->hierarchy = HIERARCHY_NONE;
1002 		break;
1003 	case 1:
1004 		fe_params->hierarchy = HIERARCHY_1;
1005 		break;
1006 	case 2:
1007 		fe_params->hierarchy = HIERARCHY_2;
1008 		break;
1009 	case 3:
1010 		fe_params->hierarchy = HIERARCHY_4;
1011 		break;
1012 	}
1013 
1014 	return 0;
1015 }
1016 
1017 static int tda1004x_read_status(struct dvb_frontend *fe,
1018 				enum fe_status *fe_status)
1019 {
1020 	struct tda1004x_state* state = fe->demodulator_priv;
1021 	int status;
1022 	int cber;
1023 	int vber;
1024 
1025 	dprintk("%s\n", __func__);
1026 
1027 	// read status
1028 	status = tda1004x_read_byte(state, TDA1004X_STATUS_CD);
1029 	if (status == -1)
1030 		return -EIO;
1031 
1032 	// decode
1033 	*fe_status = 0;
1034 	if (status & 4)
1035 		*fe_status |= FE_HAS_SIGNAL;
1036 	if (status & 2)
1037 		*fe_status |= FE_HAS_CARRIER;
1038 	if (status & 8)
1039 		*fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
1040 
1041 	// if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi
1042 	// is getting anything valid
1043 	if (!(*fe_status & FE_HAS_VITERBI)) {
1044 		// read the CBER
1045 		cber = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1046 		if (cber == -1)
1047 			return -EIO;
1048 		status = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1049 		if (status == -1)
1050 			return -EIO;
1051 		cber |= (status << 8);
1052 		// The address 0x20 should be read to cope with a TDA10046 bug
1053 		tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1054 
1055 		if (cber != 65535)
1056 			*fe_status |= FE_HAS_VITERBI;
1057 	}
1058 
1059 	// if we DO have some valid VITERBI output, but don't already have SYNC
1060 	// bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid.
1061 	if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) {
1062 		// read the VBER
1063 		vber = tda1004x_read_byte(state, TDA1004X_VBER_LSB);
1064 		if (vber == -1)
1065 			return -EIO;
1066 		status = tda1004x_read_byte(state, TDA1004X_VBER_MID);
1067 		if (status == -1)
1068 			return -EIO;
1069 		vber |= (status << 8);
1070 		status = tda1004x_read_byte(state, TDA1004X_VBER_MSB);
1071 		if (status == -1)
1072 			return -EIO;
1073 		vber |= (status & 0x0f) << 16;
1074 		// The CVBER_LUT should be read to cope with TDA10046 hardware bug
1075 		tda1004x_read_byte(state, TDA1004X_CVBER_LUT);
1076 
1077 		// if RS has passed some valid TS packets, then we must be
1078 		// getting some SYNC bytes
1079 		if (vber < 16632)
1080 			*fe_status |= FE_HAS_SYNC;
1081 	}
1082 
1083 	// success
1084 	dprintk("%s: fe_status=0x%x\n", __func__, *fe_status);
1085 	return 0;
1086 }
1087 
1088 static int tda1004x_read_signal_strength(struct dvb_frontend* fe, u16 * signal)
1089 {
1090 	struct tda1004x_state* state = fe->demodulator_priv;
1091 	int tmp;
1092 	int reg = 0;
1093 
1094 	dprintk("%s\n", __func__);
1095 
1096 	// determine the register to use
1097 	switch (state->demod_type) {
1098 	case TDA1004X_DEMOD_TDA10045:
1099 		reg = TDA10045H_S_AGC;
1100 		break;
1101 
1102 	case TDA1004X_DEMOD_TDA10046:
1103 		reg = TDA10046H_AGC_IF_LEVEL;
1104 		break;
1105 	}
1106 
1107 	// read it
1108 	tmp = tda1004x_read_byte(state, reg);
1109 	if (tmp < 0)
1110 		return -EIO;
1111 
1112 	*signal = (tmp << 8) | tmp;
1113 	dprintk("%s: signal=0x%x\n", __func__, *signal);
1114 	return 0;
1115 }
1116 
1117 static int tda1004x_read_snr(struct dvb_frontend* fe, u16 * snr)
1118 {
1119 	struct tda1004x_state* state = fe->demodulator_priv;
1120 	int tmp;
1121 
1122 	dprintk("%s\n", __func__);
1123 
1124 	// read it
1125 	tmp = tda1004x_read_byte(state, TDA1004X_SNR);
1126 	if (tmp < 0)
1127 		return -EIO;
1128 	tmp = 255 - tmp;
1129 
1130 	*snr = ((tmp << 8) | tmp);
1131 	dprintk("%s: snr=0x%x\n", __func__, *snr);
1132 	return 0;
1133 }
1134 
1135 static int tda1004x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
1136 {
1137 	struct tda1004x_state* state = fe->demodulator_priv;
1138 	int tmp;
1139 	int tmp2;
1140 	int counter;
1141 
1142 	dprintk("%s\n", __func__);
1143 
1144 	// read the UCBLOCKS and reset
1145 	counter = 0;
1146 	tmp = tda1004x_read_byte(state, TDA1004X_UNCOR);
1147 	if (tmp < 0)
1148 		return -EIO;
1149 	tmp &= 0x7f;
1150 	while (counter++ < 5) {
1151 		tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1152 		tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1153 		tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1154 
1155 		tmp2 = tda1004x_read_byte(state, TDA1004X_UNCOR);
1156 		if (tmp2 < 0)
1157 			return -EIO;
1158 		tmp2 &= 0x7f;
1159 		if ((tmp2 < tmp) || (tmp2 == 0))
1160 			break;
1161 	}
1162 
1163 	if (tmp != 0x7f)
1164 		*ucblocks = tmp;
1165 	else
1166 		*ucblocks = 0xffffffff;
1167 
1168 	dprintk("%s: ucblocks=0x%x\n", __func__, *ucblocks);
1169 	return 0;
1170 }
1171 
1172 static int tda1004x_read_ber(struct dvb_frontend* fe, u32* ber)
1173 {
1174 	struct tda1004x_state* state = fe->demodulator_priv;
1175 	int tmp;
1176 
1177 	dprintk("%s\n", __func__);
1178 
1179 	// read it in
1180 	tmp = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1181 	if (tmp < 0)
1182 		return -EIO;
1183 	*ber = tmp << 1;
1184 	tmp = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1185 	if (tmp < 0)
1186 		return -EIO;
1187 	*ber |= (tmp << 9);
1188 	// The address 0x20 should be read to cope with a TDA10046 bug
1189 	tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1190 
1191 	dprintk("%s: ber=0x%x\n", __func__, *ber);
1192 	return 0;
1193 }
1194 
1195 static int tda1004x_sleep(struct dvb_frontend* fe)
1196 {
1197 	struct tda1004x_state* state = fe->demodulator_priv;
1198 	int gpio_conf;
1199 
1200 	switch (state->demod_type) {
1201 	case TDA1004X_DEMOD_TDA10045:
1202 		tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0x10);
1203 		break;
1204 
1205 	case TDA1004X_DEMOD_TDA10046:
1206 		/* set outputs to tristate */
1207 		tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0xff);
1208 		/* invert GPIO 1 and 3 if desired*/
1209 		gpio_conf = state->config->gpio_config;
1210 		if (gpio_conf >= TDA10046_GP00_I)
1211 			tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x0f,
1212 							(gpio_conf & 0x0f) ^ 0x0a);
1213 
1214 		tda1004x_write_mask(state, TDA1004X_CONFADC2, 0xc0, 0xc0);
1215 		tda1004x_write_mask(state, TDA1004X_CONFC4, 1, 1);
1216 		break;
1217 	}
1218 
1219 	return 0;
1220 }
1221 
1222 static int tda1004x_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
1223 {
1224 	struct tda1004x_state* state = fe->demodulator_priv;
1225 
1226 	if (enable) {
1227 		return tda1004x_enable_tuner_i2c(state);
1228 	} else {
1229 		return tda1004x_disable_tuner_i2c(state);
1230 	}
1231 }
1232 
1233 static int tda1004x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
1234 {
1235 	fesettings->min_delay_ms = 800;
1236 	/* Drift compensation makes no sense for DVB-T */
1237 	fesettings->step_size = 0;
1238 	fesettings->max_drift = 0;
1239 	return 0;
1240 }
1241 
1242 static void tda1004x_release(struct dvb_frontend* fe)
1243 {
1244 	struct tda1004x_state *state = fe->demodulator_priv;
1245 	kfree(state);
1246 }
1247 
1248 static const struct dvb_frontend_ops tda10045_ops = {
1249 	.delsys = { SYS_DVBT },
1250 	.info = {
1251 		.name = "Philips TDA10045H DVB-T",
1252 		.frequency_min_hz =  51 * MHz,
1253 		.frequency_max_hz = 858 * MHz,
1254 		.frequency_stepsize_hz = 166667,
1255 		.caps =
1256 		    FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1257 		    FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1258 		    FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1259 		    FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1260 	},
1261 
1262 	.release = tda1004x_release,
1263 
1264 	.init = tda10045_init,
1265 	.sleep = tda1004x_sleep,
1266 	.write = tda1004x_write,
1267 	.i2c_gate_ctrl = tda1004x_i2c_gate_ctrl,
1268 
1269 	.set_frontend = tda1004x_set_fe,
1270 	.get_frontend = tda1004x_get_fe,
1271 	.get_tune_settings = tda1004x_get_tune_settings,
1272 
1273 	.read_status = tda1004x_read_status,
1274 	.read_ber = tda1004x_read_ber,
1275 	.read_signal_strength = tda1004x_read_signal_strength,
1276 	.read_snr = tda1004x_read_snr,
1277 	.read_ucblocks = tda1004x_read_ucblocks,
1278 };
1279 
1280 struct dvb_frontend* tda10045_attach(const struct tda1004x_config* config,
1281 				     struct i2c_adapter* i2c)
1282 {
1283 	struct tda1004x_state *state;
1284 	int id;
1285 
1286 	/* allocate memory for the internal state */
1287 	state = kzalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1288 	if (!state) {
1289 		printk(KERN_ERR "Can't allocate memory for tda10045 state\n");
1290 		return NULL;
1291 	}
1292 
1293 	/* setup the state */
1294 	state->config = config;
1295 	state->i2c = i2c;
1296 	state->demod_type = TDA1004X_DEMOD_TDA10045;
1297 
1298 	/* check if the demod is there */
1299 	id = tda1004x_read_byte(state, TDA1004X_CHIPID);
1300 	if (id < 0) {
1301 		printk(KERN_ERR "tda10045: chip is not answering. Giving up.\n");
1302 		kfree(state);
1303 		return NULL;
1304 	}
1305 
1306 	if (id != 0x25) {
1307 		printk(KERN_ERR "Invalid tda1004x ID = 0x%02x. Can't proceed\n", id);
1308 		kfree(state);
1309 		return NULL;
1310 	}
1311 
1312 	/* create dvb_frontend */
1313 	memcpy(&state->frontend.ops, &tda10045_ops, sizeof(struct dvb_frontend_ops));
1314 	state->frontend.demodulator_priv = state;
1315 	return &state->frontend;
1316 }
1317 
1318 static const struct dvb_frontend_ops tda10046_ops = {
1319 	.delsys = { SYS_DVBT },
1320 	.info = {
1321 		.name = "Philips TDA10046H DVB-T",
1322 		.frequency_min_hz =  51 * MHz,
1323 		.frequency_max_hz = 858 * MHz,
1324 		.frequency_stepsize_hz = 166667,
1325 		.caps =
1326 		    FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1327 		    FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1328 		    FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1329 		    FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1330 	},
1331 
1332 	.release = tda1004x_release,
1333 
1334 	.init = tda10046_init,
1335 	.sleep = tda1004x_sleep,
1336 	.write = tda1004x_write,
1337 	.i2c_gate_ctrl = tda1004x_i2c_gate_ctrl,
1338 
1339 	.set_frontend = tda1004x_set_fe,
1340 	.get_frontend = tda1004x_get_fe,
1341 	.get_tune_settings = tda1004x_get_tune_settings,
1342 
1343 	.read_status = tda1004x_read_status,
1344 	.read_ber = tda1004x_read_ber,
1345 	.read_signal_strength = tda1004x_read_signal_strength,
1346 	.read_snr = tda1004x_read_snr,
1347 	.read_ucblocks = tda1004x_read_ucblocks,
1348 };
1349 
1350 struct dvb_frontend* tda10046_attach(const struct tda1004x_config* config,
1351 				     struct i2c_adapter* i2c)
1352 {
1353 	struct tda1004x_state *state;
1354 	int id;
1355 
1356 	/* allocate memory for the internal state */
1357 	state = kzalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1358 	if (!state) {
1359 		printk(KERN_ERR "Can't allocate memory for tda10046 state\n");
1360 		return NULL;
1361 	}
1362 
1363 	/* setup the state */
1364 	state->config = config;
1365 	state->i2c = i2c;
1366 	state->demod_type = TDA1004X_DEMOD_TDA10046;
1367 
1368 	/* check if the demod is there */
1369 	id = tda1004x_read_byte(state, TDA1004X_CHIPID);
1370 	if (id < 0) {
1371 		printk(KERN_ERR "tda10046: chip is not answering. Giving up.\n");
1372 		kfree(state);
1373 		return NULL;
1374 	}
1375 	if (id != 0x46) {
1376 		printk(KERN_ERR "Invalid tda1004x ID = 0x%02x. Can't proceed\n", id);
1377 		kfree(state);
1378 		return NULL;
1379 	}
1380 
1381 	/* create dvb_frontend */
1382 	memcpy(&state->frontend.ops, &tda10046_ops, sizeof(struct dvb_frontend_ops));
1383 	state->frontend.demodulator_priv = state;
1384 	return &state->frontend;
1385 }
1386 
1387 module_param(debug, int, 0644);
1388 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
1389 
1390 MODULE_DESCRIPTION("Philips TDA10045H & TDA10046H DVB-T Demodulator");
1391 MODULE_AUTHOR("Andrew de Quincey & Robert Schlabbach");
1392 MODULE_LICENSE("GPL");
1393 
1394 EXPORT_SYMBOL(tda10045_attach);
1395 EXPORT_SYMBOL(tda10046_attach);
1396