1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Toshiba TC90522 Demodulator 4 * 5 * Copyright (C) 2014 Akihiro Tsukada <tskd08@gmail.com> 6 */ 7 8 /* 9 * NOTICE: 10 * This driver is incomplete and lacks init/config of the chips, 11 * as the necessary info is not disclosed. 12 * It assumes that users of this driver (such as a PCI bridge of 13 * DTV receiver cards) properly init and configure the chip 14 * via I2C *before* calling this driver's init() function. 15 * 16 * Currently, PT3 driver is the only one that uses this driver, 17 * and contains init/config code in its firmware. 18 * Thus some part of the code might be dependent on PT3 specific config. 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/math64.h> 23 #include <linux/dvb/frontend.h> 24 #include <media/dvb_math.h> 25 #include "tc90522.h" 26 27 #define TC90522_I2C_THRU_REG 0xfe 28 29 #define TC90522_MODULE_IDX(addr) (((u8)(addr) & 0x02U) >> 1) 30 31 struct tc90522_state { 32 struct tc90522_config cfg; 33 struct dvb_frontend fe; 34 struct i2c_client *i2c_client; 35 struct i2c_adapter tuner_i2c; 36 37 bool lna; 38 }; 39 40 struct reg_val { 41 u8 reg; 42 u8 val; 43 }; 44 45 static int 46 reg_write(struct tc90522_state *state, const struct reg_val *regs, int num) 47 { 48 int i, ret; 49 struct i2c_msg msg; 50 51 ret = 0; 52 msg.addr = state->i2c_client->addr; 53 msg.flags = 0; 54 msg.len = 2; 55 for (i = 0; i < num; i++) { 56 msg.buf = (u8 *)®s[i]; 57 ret = i2c_transfer(state->i2c_client->adapter, &msg, 1); 58 if (ret == 0) 59 ret = -EIO; 60 if (ret < 0) 61 return ret; 62 } 63 return 0; 64 } 65 66 static int reg_read(struct tc90522_state *state, u8 reg, u8 *val, u8 len) 67 { 68 struct i2c_msg msgs[2] = { 69 { 70 .addr = state->i2c_client->addr, 71 .flags = 0, 72 .buf = ®, 73 .len = 1, 74 }, 75 { 76 .addr = state->i2c_client->addr, 77 .flags = I2C_M_RD, 78 .buf = val, 79 .len = len, 80 }, 81 }; 82 int ret; 83 84 ret = i2c_transfer(state->i2c_client->adapter, msgs, ARRAY_SIZE(msgs)); 85 if (ret == ARRAY_SIZE(msgs)) 86 ret = 0; 87 else if (ret >= 0) 88 ret = -EIO; 89 return ret; 90 } 91 92 static struct tc90522_state *cfg_to_state(struct tc90522_config *c) 93 { 94 return container_of(c, struct tc90522_state, cfg); 95 } 96 97 98 static int tc90522s_set_tsid(struct dvb_frontend *fe) 99 { 100 struct reg_val set_tsid[] = { 101 { 0x8f, 00 }, 102 { 0x90, 00 } 103 }; 104 105 set_tsid[0].val = (fe->dtv_property_cache.stream_id & 0xff00) >> 8; 106 set_tsid[1].val = fe->dtv_property_cache.stream_id & 0xff; 107 return reg_write(fe->demodulator_priv, set_tsid, ARRAY_SIZE(set_tsid)); 108 } 109 110 static int tc90522t_set_layers(struct dvb_frontend *fe) 111 { 112 struct reg_val rv; 113 u8 laysel; 114 115 laysel = ~fe->dtv_property_cache.isdbt_layer_enabled & 0x07; 116 laysel = (laysel & 0x01) << 2 | (laysel & 0x02) | (laysel & 0x04) >> 2; 117 rv.reg = 0x71; 118 rv.val = laysel; 119 return reg_write(fe->demodulator_priv, &rv, 1); 120 } 121 122 /* frontend ops */ 123 124 static int tc90522s_read_status(struct dvb_frontend *fe, enum fe_status *status) 125 { 126 struct tc90522_state *state; 127 int ret; 128 u8 reg; 129 130 state = fe->demodulator_priv; 131 ret = reg_read(state, 0xc3, ®, 1); 132 if (ret < 0) 133 return ret; 134 135 *status = 0; 136 if (reg & 0x80) /* input level under min ? */ 137 return 0; 138 *status |= FE_HAS_SIGNAL; 139 140 if (reg & 0x60) /* carrier? */ 141 return 0; 142 *status |= FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC; 143 144 if (reg & 0x10) 145 return 0; 146 if (reg_read(state, 0xc5, ®, 1) < 0 || !(reg & 0x03)) 147 return 0; 148 *status |= FE_HAS_LOCK; 149 return 0; 150 } 151 152 static int tc90522t_read_status(struct dvb_frontend *fe, enum fe_status *status) 153 { 154 struct tc90522_state *state; 155 int ret; 156 u8 reg; 157 158 state = fe->demodulator_priv; 159 ret = reg_read(state, 0x96, ®, 1); 160 if (ret < 0) 161 return ret; 162 163 *status = 0; 164 if (reg & 0xe0) { 165 *status = FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI 166 | FE_HAS_SYNC | FE_HAS_LOCK; 167 return 0; 168 } 169 170 ret = reg_read(state, 0x80, ®, 1); 171 if (ret < 0) 172 return ret; 173 174 if (reg & 0xf0) 175 return 0; 176 *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER; 177 178 if (reg & 0x0c) 179 return 0; 180 *status |= FE_HAS_SYNC | FE_HAS_VITERBI; 181 182 if (reg & 0x02) 183 return 0; 184 *status |= FE_HAS_LOCK; 185 return 0; 186 } 187 188 static const enum fe_code_rate fec_conv_sat[] = { 189 FEC_NONE, /* unused */ 190 FEC_1_2, /* for BPSK */ 191 FEC_1_2, FEC_2_3, FEC_3_4, FEC_5_6, FEC_7_8, /* for QPSK */ 192 FEC_2_3, /* for 8PSK. (trellis code) */ 193 }; 194 195 static int tc90522s_get_frontend(struct dvb_frontend *fe, 196 struct dtv_frontend_properties *c) 197 { 198 struct tc90522_state *state; 199 struct dtv_fe_stats *stats; 200 int ret, i; 201 int layers; 202 u8 val[10]; 203 u32 cndat; 204 205 state = fe->demodulator_priv; 206 c->delivery_system = SYS_ISDBS; 207 c->symbol_rate = 28860000; 208 209 layers = 0; 210 ret = reg_read(state, 0xe6, val, 5); 211 if (ret == 0) { 212 u8 v; 213 214 c->stream_id = val[0] << 8 | val[1]; 215 216 /* high/single layer */ 217 v = (val[2] & 0x70) >> 4; 218 c->modulation = (v == 7) ? PSK_8 : QPSK; 219 c->fec_inner = fec_conv_sat[v]; 220 c->layer[0].fec = c->fec_inner; 221 c->layer[0].modulation = c->modulation; 222 c->layer[0].segment_count = val[3] & 0x3f; /* slots */ 223 224 /* low layer */ 225 v = (val[2] & 0x07); 226 c->layer[1].fec = fec_conv_sat[v]; 227 if (v == 0) /* no low layer */ 228 c->layer[1].segment_count = 0; 229 else 230 c->layer[1].segment_count = val[4] & 0x3f; /* slots */ 231 /* 232 * actually, BPSK if v==1, but not defined in 233 * enum fe_modulation 234 */ 235 c->layer[1].modulation = QPSK; 236 layers = (v > 0) ? 2 : 1; 237 } 238 239 /* statistics */ 240 241 stats = &c->strength; 242 stats->len = 0; 243 /* let the connected tuner set RSSI property cache */ 244 if (fe->ops.tuner_ops.get_rf_strength) { 245 u16 dummy; 246 247 fe->ops.tuner_ops.get_rf_strength(fe, &dummy); 248 } 249 250 stats = &c->cnr; 251 stats->len = 1; 252 stats->stat[0].scale = FE_SCALE_NOT_AVAILABLE; 253 cndat = 0; 254 ret = reg_read(state, 0xbc, val, 2); 255 if (ret == 0) 256 cndat = val[0] << 8 | val[1]; 257 if (cndat >= 3000) { 258 u32 p, p4; 259 s64 cn; 260 261 cndat -= 3000; /* cndat: 4.12 fixed point float */ 262 /* 263 * cnr[mdB] = -1634.6 * P^5 + 14341 * P^4 - 50259 * P^3 264 * + 88977 * P^2 - 89565 * P + 58857 265 * (P = sqrt(cndat) / 64) 266 */ 267 /* p := sqrt(cndat) << 8 = P << 14, 2.14 fixed point float */ 268 /* cn = cnr << 3 */ 269 p = int_sqrt(cndat << 16); 270 p4 = cndat * cndat; 271 cn = div64_s64(-16346LL * p4 * p, 10) >> 35; 272 cn += (14341LL * p4) >> 21; 273 cn -= (50259LL * cndat * p) >> 23; 274 cn += (88977LL * cndat) >> 9; 275 cn -= (89565LL * p) >> 11; 276 cn += 58857 << 3; 277 stats->stat[0].svalue = cn >> 3; 278 stats->stat[0].scale = FE_SCALE_DECIBEL; 279 } 280 281 /* per-layer post viterbi BER (or PER? config dependent?) */ 282 stats = &c->post_bit_error; 283 memset(stats, 0, sizeof(*stats)); 284 stats->len = layers; 285 ret = reg_read(state, 0xeb, val, 10); 286 if (ret < 0) 287 for (i = 0; i < layers; i++) 288 stats->stat[i].scale = FE_SCALE_NOT_AVAILABLE; 289 else { 290 for (i = 0; i < layers; i++) { 291 stats->stat[i].scale = FE_SCALE_COUNTER; 292 stats->stat[i].uvalue = val[i * 5] << 16 293 | val[i * 5 + 1] << 8 | val[i * 5 + 2]; 294 } 295 } 296 stats = &c->post_bit_count; 297 memset(stats, 0, sizeof(*stats)); 298 stats->len = layers; 299 if (ret < 0) 300 for (i = 0; i < layers; i++) 301 stats->stat[i].scale = FE_SCALE_NOT_AVAILABLE; 302 else { 303 for (i = 0; i < layers; i++) { 304 stats->stat[i].scale = FE_SCALE_COUNTER; 305 stats->stat[i].uvalue = 306 val[i * 5 + 3] << 8 | val[i * 5 + 4]; 307 stats->stat[i].uvalue *= 204 * 8; 308 } 309 } 310 311 return 0; 312 } 313 314 315 static const enum fe_transmit_mode tm_conv[] = { 316 TRANSMISSION_MODE_2K, 317 TRANSMISSION_MODE_4K, 318 TRANSMISSION_MODE_8K, 319 0 320 }; 321 322 static const enum fe_code_rate fec_conv_ter[] = { 323 FEC_1_2, FEC_2_3, FEC_3_4, FEC_5_6, FEC_7_8, 0, 0, 0 324 }; 325 326 static const enum fe_modulation mod_conv[] = { 327 DQPSK, QPSK, QAM_16, QAM_64, 0, 0, 0, 0 328 }; 329 330 static int tc90522t_get_frontend(struct dvb_frontend *fe, 331 struct dtv_frontend_properties *c) 332 { 333 struct tc90522_state *state; 334 struct dtv_fe_stats *stats; 335 int ret, i; 336 int layers; 337 u8 val[15], mode; 338 u32 cndat; 339 340 state = fe->demodulator_priv; 341 c->delivery_system = SYS_ISDBT; 342 c->bandwidth_hz = 6000000; 343 mode = 1; 344 ret = reg_read(state, 0xb0, val, 1); 345 if (ret == 0) { 346 mode = (val[0] & 0xc0) >> 6; 347 c->transmission_mode = tm_conv[mode]; 348 c->guard_interval = (val[0] & 0x30) >> 4; 349 } 350 351 ret = reg_read(state, 0xb2, val, 6); 352 layers = 0; 353 if (ret == 0) { 354 u8 v; 355 356 c->isdbt_partial_reception = val[0] & 0x01; 357 c->isdbt_sb_mode = (val[0] & 0xc0) == 0x40; 358 359 /* layer A */ 360 v = (val[2] & 0x78) >> 3; 361 if (v == 0x0f) 362 c->layer[0].segment_count = 0; 363 else { 364 layers++; 365 c->layer[0].segment_count = v; 366 c->layer[0].fec = fec_conv_ter[(val[1] & 0x1c) >> 2]; 367 c->layer[0].modulation = mod_conv[(val[1] & 0xe0) >> 5]; 368 v = (val[1] & 0x03) << 1 | (val[2] & 0x80) >> 7; 369 c->layer[0].interleaving = v; 370 } 371 372 /* layer B */ 373 v = (val[3] & 0x03) << 2 | (val[4] & 0xc0) >> 6; 374 if (v == 0x0f) 375 c->layer[1].segment_count = 0; 376 else { 377 layers++; 378 c->layer[1].segment_count = v; 379 c->layer[1].fec = fec_conv_ter[(val[3] & 0xe0) >> 5]; 380 c->layer[1].modulation = mod_conv[(val[2] & 0x07)]; 381 c->layer[1].interleaving = (val[3] & 0x1c) >> 2; 382 } 383 384 /* layer C */ 385 v = (val[5] & 0x1e) >> 1; 386 if (v == 0x0f) 387 c->layer[2].segment_count = 0; 388 else { 389 layers++; 390 c->layer[2].segment_count = v; 391 c->layer[2].fec = fec_conv_ter[(val[4] & 0x07)]; 392 c->layer[2].modulation = mod_conv[(val[4] & 0x38) >> 3]; 393 c->layer[2].interleaving = (val[5] & 0xe0) >> 5; 394 } 395 } 396 397 /* statistics */ 398 399 stats = &c->strength; 400 stats->len = 0; 401 /* let the connected tuner set RSSI property cache */ 402 if (fe->ops.tuner_ops.get_rf_strength) { 403 u16 dummy; 404 405 fe->ops.tuner_ops.get_rf_strength(fe, &dummy); 406 } 407 408 stats = &c->cnr; 409 stats->len = 1; 410 stats->stat[0].scale = FE_SCALE_NOT_AVAILABLE; 411 cndat = 0; 412 ret = reg_read(state, 0x8b, val, 3); 413 if (ret == 0) 414 cndat = val[0] << 16 | val[1] << 8 | val[2]; 415 if (cndat != 0) { 416 u32 p, tmp; 417 s64 cn; 418 419 /* 420 * cnr[mdB] = 0.024 P^4 - 1.6 P^3 + 39.8 P^2 + 549.1 P + 3096.5 421 * (P = 10log10(5505024/cndat)) 422 */ 423 /* cn = cnr << 3 (61.3 fixed point float */ 424 /* p = 10log10(5505024/cndat) << 24 (8.24 fixed point float)*/ 425 p = intlog10(5505024) - intlog10(cndat); 426 p *= 10; 427 428 cn = 24772; 429 cn += div64_s64(43827LL * p, 10) >> 24; 430 tmp = p >> 8; 431 cn += div64_s64(3184LL * tmp * tmp, 10) >> 32; 432 tmp = p >> 13; 433 cn -= div64_s64(128LL * tmp * tmp * tmp, 10) >> 33; 434 tmp = p >> 18; 435 cn += div64_s64(192LL * tmp * tmp * tmp * tmp, 1000) >> 24; 436 437 stats->stat[0].svalue = cn >> 3; 438 stats->stat[0].scale = FE_SCALE_DECIBEL; 439 } 440 441 /* per-layer post viterbi BER (or PER? config dependent?) */ 442 stats = &c->post_bit_error; 443 memset(stats, 0, sizeof(*stats)); 444 stats->len = layers; 445 ret = reg_read(state, 0x9d, val, 15); 446 if (ret < 0) 447 for (i = 0; i < layers; i++) 448 stats->stat[i].scale = FE_SCALE_NOT_AVAILABLE; 449 else { 450 for (i = 0; i < layers; i++) { 451 stats->stat[i].scale = FE_SCALE_COUNTER; 452 stats->stat[i].uvalue = val[i * 3] << 16 453 | val[i * 3 + 1] << 8 | val[i * 3 + 2]; 454 } 455 } 456 stats = &c->post_bit_count; 457 memset(stats, 0, sizeof(*stats)); 458 stats->len = layers; 459 if (ret < 0) 460 for (i = 0; i < layers; i++) 461 stats->stat[i].scale = FE_SCALE_NOT_AVAILABLE; 462 else { 463 for (i = 0; i < layers; i++) { 464 stats->stat[i].scale = FE_SCALE_COUNTER; 465 stats->stat[i].uvalue = 466 val[9 + i * 2] << 8 | val[9 + i * 2 + 1]; 467 stats->stat[i].uvalue *= 204 * 8; 468 } 469 } 470 471 return 0; 472 } 473 474 static const struct reg_val reset_sat = { 0x03, 0x01 }; 475 static const struct reg_val reset_ter = { 0x01, 0x40 }; 476 477 static int tc90522_set_frontend(struct dvb_frontend *fe) 478 { 479 struct tc90522_state *state; 480 int ret; 481 482 state = fe->demodulator_priv; 483 484 if (fe->ops.tuner_ops.set_params) 485 ret = fe->ops.tuner_ops.set_params(fe); 486 else 487 ret = -ENODEV; 488 if (ret < 0) 489 goto failed; 490 491 if (fe->ops.delsys[0] == SYS_ISDBS) { 492 ret = tc90522s_set_tsid(fe); 493 if (ret < 0) 494 goto failed; 495 ret = reg_write(state, &reset_sat, 1); 496 } else { 497 ret = tc90522t_set_layers(fe); 498 if (ret < 0) 499 goto failed; 500 ret = reg_write(state, &reset_ter, 1); 501 } 502 if (ret < 0) 503 goto failed; 504 505 return 0; 506 507 failed: 508 dev_warn(&state->tuner_i2c.dev, "(%s) failed. [adap%d-fe%d]\n", 509 __func__, fe->dvb->num, fe->id); 510 return ret; 511 } 512 513 static int tc90522_get_tune_settings(struct dvb_frontend *fe, 514 struct dvb_frontend_tune_settings *settings) 515 { 516 if (fe->ops.delsys[0] == SYS_ISDBS) { 517 settings->min_delay_ms = 250; 518 settings->step_size = 1000; 519 settings->max_drift = settings->step_size * 2; 520 } else { 521 settings->min_delay_ms = 400; 522 settings->step_size = 142857; 523 settings->max_drift = settings->step_size; 524 } 525 return 0; 526 } 527 528 static int tc90522_set_if_agc(struct dvb_frontend *fe, bool on) 529 { 530 struct reg_val agc_sat[] = { 531 { 0x0a, 0x00 }, 532 { 0x10, 0x30 }, 533 { 0x11, 0x00 }, 534 { 0x03, 0x01 }, 535 }; 536 struct reg_val agc_ter[] = { 537 { 0x25, 0x00 }, 538 { 0x23, 0x4c }, 539 { 0x01, 0x40 }, 540 }; 541 struct tc90522_state *state; 542 struct reg_val *rv; 543 int num; 544 545 state = fe->demodulator_priv; 546 if (fe->ops.delsys[0] == SYS_ISDBS) { 547 agc_sat[0].val = on ? 0xff : 0x00; 548 agc_sat[1].val |= 0x80; 549 agc_sat[1].val |= on ? 0x01 : 0x00; 550 agc_sat[2].val |= on ? 0x40 : 0x00; 551 rv = agc_sat; 552 num = ARRAY_SIZE(agc_sat); 553 } else { 554 agc_ter[0].val = on ? 0x40 : 0x00; 555 agc_ter[1].val |= on ? 0x00 : 0x01; 556 rv = agc_ter; 557 num = ARRAY_SIZE(agc_ter); 558 } 559 return reg_write(state, rv, num); 560 } 561 562 static const struct reg_val sleep_sat = { 0x17, 0x01 }; 563 static const struct reg_val sleep_ter = { 0x03, 0x90 }; 564 565 static int tc90522_sleep(struct dvb_frontend *fe) 566 { 567 struct tc90522_state *state; 568 int ret; 569 570 state = fe->demodulator_priv; 571 if (fe->ops.delsys[0] == SYS_ISDBS) 572 ret = reg_write(state, &sleep_sat, 1); 573 else { 574 ret = reg_write(state, &sleep_ter, 1); 575 if (ret == 0 && fe->ops.set_lna && 576 fe->dtv_property_cache.lna == LNA_AUTO) { 577 fe->dtv_property_cache.lna = 0; 578 ret = fe->ops.set_lna(fe); 579 fe->dtv_property_cache.lna = LNA_AUTO; 580 } 581 } 582 if (ret < 0) 583 dev_warn(&state->tuner_i2c.dev, 584 "(%s) failed. [adap%d-fe%d]\n", 585 __func__, fe->dvb->num, fe->id); 586 return ret; 587 } 588 589 static const struct reg_val wakeup_sat = { 0x17, 0x00 }; 590 static const struct reg_val wakeup_ter = { 0x03, 0x80 }; 591 592 static int tc90522_init(struct dvb_frontend *fe) 593 { 594 struct tc90522_state *state; 595 int ret; 596 597 /* 598 * Because the init sequence is not public, 599 * the parent device/driver should have init'ed the device before. 600 * just wake up the device here. 601 */ 602 603 state = fe->demodulator_priv; 604 if (fe->ops.delsys[0] == SYS_ISDBS) 605 ret = reg_write(state, &wakeup_sat, 1); 606 else { 607 ret = reg_write(state, &wakeup_ter, 1); 608 if (ret == 0 && fe->ops.set_lna && 609 fe->dtv_property_cache.lna == LNA_AUTO) { 610 fe->dtv_property_cache.lna = 1; 611 ret = fe->ops.set_lna(fe); 612 fe->dtv_property_cache.lna = LNA_AUTO; 613 } 614 } 615 if (ret < 0) { 616 dev_warn(&state->tuner_i2c.dev, 617 "(%s) failed. [adap%d-fe%d]\n", 618 __func__, fe->dvb->num, fe->id); 619 return ret; 620 } 621 622 /* prefer 'all-layers' to 'none' as a default */ 623 if (fe->dtv_property_cache.isdbt_layer_enabled == 0) 624 fe->dtv_property_cache.isdbt_layer_enabled = 7; 625 return tc90522_set_if_agc(fe, true); 626 } 627 628 629 /* 630 * tuner I2C adapter functions 631 */ 632 633 static int 634 tc90522_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) 635 { 636 struct tc90522_state *state; 637 struct i2c_msg *new_msgs; 638 int i, j; 639 int ret, rd_num; 640 u8 wbuf[256]; 641 u8 *p, *bufend; 642 643 if (num <= 0) 644 return -EINVAL; 645 646 rd_num = 0; 647 for (i = 0; i < num; i++) 648 if (msgs[i].flags & I2C_M_RD) 649 rd_num++; 650 new_msgs = kmalloc_array(num + rd_num, sizeof(*new_msgs), GFP_KERNEL); 651 if (!new_msgs) 652 return -ENOMEM; 653 654 state = i2c_get_adapdata(adap); 655 p = wbuf; 656 bufend = wbuf + sizeof(wbuf); 657 for (i = 0, j = 0; i < num; i++, j++) { 658 new_msgs[j].addr = state->i2c_client->addr; 659 new_msgs[j].flags = msgs[i].flags; 660 661 if (msgs[i].flags & I2C_M_RD) { 662 new_msgs[j].flags &= ~I2C_M_RD; 663 if (p + 2 > bufend) 664 break; 665 p[0] = TC90522_I2C_THRU_REG; 666 p[1] = msgs[i].addr << 1 | 0x01; 667 new_msgs[j].buf = p; 668 new_msgs[j].len = 2; 669 p += 2; 670 j++; 671 new_msgs[j].addr = state->i2c_client->addr; 672 new_msgs[j].flags = msgs[i].flags; 673 new_msgs[j].buf = msgs[i].buf; 674 new_msgs[j].len = msgs[i].len; 675 continue; 676 } 677 678 if (p + msgs[i].len + 2 > bufend) 679 break; 680 p[0] = TC90522_I2C_THRU_REG; 681 p[1] = msgs[i].addr << 1; 682 memcpy(p + 2, msgs[i].buf, msgs[i].len); 683 new_msgs[j].buf = p; 684 new_msgs[j].len = msgs[i].len + 2; 685 p += new_msgs[j].len; 686 } 687 688 if (i < num) 689 ret = -ENOMEM; 690 else 691 ret = i2c_transfer(state->i2c_client->adapter, new_msgs, j); 692 if (ret >= 0 && ret < j) 693 ret = -EIO; 694 kfree(new_msgs); 695 return (ret == j) ? num : ret; 696 } 697 698 static u32 tc90522_functionality(struct i2c_adapter *adap) 699 { 700 return I2C_FUNC_I2C; 701 } 702 703 static const struct i2c_algorithm tc90522_tuner_i2c_algo = { 704 .master_xfer = &tc90522_master_xfer, 705 .functionality = &tc90522_functionality, 706 }; 707 708 709 /* 710 * I2C driver functions 711 */ 712 713 static const struct dvb_frontend_ops tc90522_ops_sat = { 714 .delsys = { SYS_ISDBS }, 715 .info = { 716 .name = "Toshiba TC90522 ISDB-S module", 717 .frequency_min_hz = 950 * MHz, 718 .frequency_max_hz = 2150 * MHz, 719 .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_AUTO | 720 FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | 721 FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO, 722 }, 723 724 .init = tc90522_init, 725 .sleep = tc90522_sleep, 726 .set_frontend = tc90522_set_frontend, 727 .get_tune_settings = tc90522_get_tune_settings, 728 729 .get_frontend = tc90522s_get_frontend, 730 .read_status = tc90522s_read_status, 731 }; 732 733 static const struct dvb_frontend_ops tc90522_ops_ter = { 734 .delsys = { SYS_ISDBT }, 735 .info = { 736 .name = "Toshiba TC90522 ISDB-T module", 737 .frequency_min_hz = 470 * MHz, 738 .frequency_max_hz = 770 * MHz, 739 .frequency_stepsize_hz = 142857, 740 .caps = FE_CAN_INVERSION_AUTO | 741 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | 742 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | 743 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | 744 FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | 745 FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | 746 FE_CAN_HIERARCHY_AUTO, 747 }, 748 749 .init = tc90522_init, 750 .sleep = tc90522_sleep, 751 .set_frontend = tc90522_set_frontend, 752 .get_tune_settings = tc90522_get_tune_settings, 753 754 .get_frontend = tc90522t_get_frontend, 755 .read_status = tc90522t_read_status, 756 }; 757 758 759 static int tc90522_probe(struct i2c_client *client, 760 const struct i2c_device_id *id) 761 { 762 struct tc90522_state *state; 763 struct tc90522_config *cfg; 764 const struct dvb_frontend_ops *ops; 765 struct i2c_adapter *adap; 766 int ret; 767 768 state = kzalloc(sizeof(*state), GFP_KERNEL); 769 if (!state) 770 return -ENOMEM; 771 state->i2c_client = client; 772 773 cfg = client->dev.platform_data; 774 memcpy(&state->cfg, cfg, sizeof(state->cfg)); 775 cfg->fe = state->cfg.fe = &state->fe; 776 ops = id->driver_data == 0 ? &tc90522_ops_sat : &tc90522_ops_ter; 777 memcpy(&state->fe.ops, ops, sizeof(*ops)); 778 state->fe.demodulator_priv = state; 779 780 adap = &state->tuner_i2c; 781 adap->owner = THIS_MODULE; 782 adap->algo = &tc90522_tuner_i2c_algo; 783 adap->dev.parent = &client->dev; 784 strscpy(adap->name, "tc90522_sub", sizeof(adap->name)); 785 i2c_set_adapdata(adap, state); 786 ret = i2c_add_adapter(adap); 787 if (ret < 0) 788 goto free_state; 789 cfg->tuner_i2c = state->cfg.tuner_i2c = adap; 790 791 i2c_set_clientdata(client, &state->cfg); 792 dev_info(&client->dev, "Toshiba TC90522 attached.\n"); 793 return 0; 794 free_state: 795 kfree(state); 796 return ret; 797 } 798 799 static int tc90522_remove(struct i2c_client *client) 800 { 801 struct tc90522_state *state; 802 803 state = cfg_to_state(i2c_get_clientdata(client)); 804 i2c_del_adapter(&state->tuner_i2c); 805 kfree(state); 806 return 0; 807 } 808 809 810 static const struct i2c_device_id tc90522_id[] = { 811 { TC90522_I2C_DEV_SAT, 0 }, 812 { TC90522_I2C_DEV_TER, 1 }, 813 {} 814 }; 815 MODULE_DEVICE_TABLE(i2c, tc90522_id); 816 817 static struct i2c_driver tc90522_driver = { 818 .driver = { 819 .name = "tc90522", 820 }, 821 .probe = tc90522_probe, 822 .remove = tc90522_remove, 823 .id_table = tc90522_id, 824 }; 825 826 module_i2c_driver(tc90522_driver); 827 828 MODULE_DESCRIPTION("Toshiba TC90522 frontend"); 829 MODULE_AUTHOR("Akihiro TSUKADA"); 830 MODULE_LICENSE("GPL"); 831