xref: /openbmc/linux/drivers/media/dvb-frontends/stv6111.c (revision 2eb0f624b709e78ec8e2f4c3412947703db99301)
1 /*
2  * Driver for the ST STV6111 tuner
3  *
4  * Copyright (C) 2014 Digital Devices GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * version 2 only, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/init.h>
21 #include <linux/delay.h>
22 #include <linux/firmware.h>
23 #include <linux/i2c.h>
24 #include <asm/div64.h>
25 
26 #include "stv6111.h"
27 
28 #include <media/dvb_frontend.h>
29 
30 struct stv {
31 	struct i2c_adapter *i2c;
32 	u8 adr;
33 
34 	u8 reg[11];
35 	u32 ref_freq;
36 	u32 frequency;
37 };
38 
39 struct slookup {
40 	s16 value;
41 	u16 reg_value;
42 };
43 
44 static const struct slookup lnagain_nf_lookup[] = {
45 	/* Gain *100dB // Reg */
46 	{ 2572,	0 },
47 	{ 2575, 1 },
48 	{ 2580, 2 },
49 	{ 2588, 3 },
50 	{ 2596, 4 },
51 	{ 2611, 5 },
52 	{ 2633, 6 },
53 	{ 2664, 7 },
54 	{ 2701, 8 },
55 	{ 2753, 9 },
56 	{ 2816, 10 },
57 	{ 2902, 11 },
58 	{ 2995, 12 },
59 	{ 3104, 13 },
60 	{ 3215, 14 },
61 	{ 3337, 15 },
62 	{ 3492, 16 },
63 	{ 3614, 17 },
64 	{ 3731, 18 },
65 	{ 3861, 19 },
66 	{ 3988, 20 },
67 	{ 4124, 21 },
68 	{ 4253, 22 },
69 	{ 4386,	23 },
70 	{ 4505,	24 },
71 	{ 4623,	25 },
72 	{ 4726,	26 },
73 	{ 4821,	27 },
74 	{ 4903,	28 },
75 	{ 4979,	29 },
76 	{ 5045,	30 },
77 	{ 5102,	31 }
78 };
79 
80 static const struct slookup lnagain_iip3_lookup[] = {
81 	/* Gain *100dB // reg */
82 	{ 1548,	0 },
83 	{ 1552,	1 },
84 	{ 1569,	2 },
85 	{ 1565,	3 },
86 	{ 1577,	4 },
87 	{ 1594,	5 },
88 	{ 1627,	6 },
89 	{ 1656,	7 },
90 	{ 1700,	8 },
91 	{ 1748,	9 },
92 	{ 1805,	10 },
93 	{ 1896,	11 },
94 	{ 1995,	12 },
95 	{ 2113,	13 },
96 	{ 2233,	14 },
97 	{ 2366,	15 },
98 	{ 2543,	16 },
99 	{ 2687,	17 },
100 	{ 2842,	18 },
101 	{ 2999,	19 },
102 	{ 3167,	20 },
103 	{ 3342,	21 },
104 	{ 3507,	22 },
105 	{ 3679,	23 },
106 	{ 3827,	24 },
107 	{ 3970,	25 },
108 	{ 4094,	26 },
109 	{ 4210,	27 },
110 	{ 4308,	28 },
111 	{ 4396,	29 },
112 	{ 4468,	30 },
113 	{ 4535,	31 }
114 };
115 
116 static const struct slookup gain_rfagc_lookup[] = {
117 	/* Gain *100dB // reg */
118 	{ 4870,	0x3000 },
119 	{ 4850,	0x3C00 },
120 	{ 4800,	0x4500 },
121 	{ 4750,	0x4800 },
122 	{ 4700,	0x4B00 },
123 	{ 4650,	0x4D00 },
124 	{ 4600,	0x4F00 },
125 	{ 4550,	0x5100 },
126 	{ 4500,	0x5200 },
127 	{ 4420,	0x5500 },
128 	{ 4316,	0x5800 },
129 	{ 4200,	0x5B00 },
130 	{ 4119,	0x5D00 },
131 	{ 3999,	0x6000 },
132 	{ 3950,	0x6100 },
133 	{ 3876,	0x6300 },
134 	{ 3755,	0x6600 },
135 	{ 3641,	0x6900 },
136 	{ 3567,	0x6B00 },
137 	{ 3425,	0x6F00 },
138 	{ 3350,	0x7100 },
139 	{ 3236,	0x7400 },
140 	{ 3118,	0x7700 },
141 	{ 3004,	0x7A00 },
142 	{ 2917,	0x7C00 },
143 	{ 2776,	0x7F00 },
144 	{ 2635,	0x8200 },
145 	{ 2516,	0x8500 },
146 	{ 2406,	0x8800 },
147 	{ 2290,	0x8B00 },
148 	{ 2170,	0x8E00 },
149 	{ 2073,	0x9100 },
150 	{ 1949,	0x9400 },
151 	{ 1836,	0x9700 },
152 	{ 1712,	0x9A00 },
153 	{ 1631,	0x9C00 },
154 	{ 1515,	0x9F00 },
155 	{ 1400,	0xA200 },
156 	{ 1323,	0xA400 },
157 	{ 1203,	0xA700 },
158 	{ 1091,	0xAA00 },
159 	{ 1011,	0xAC00 },
160 	{ 904,	0xAF00 },
161 	{ 787,	0xB200 },
162 	{ 685,	0xB500 },
163 	{ 571,	0xB800 },
164 	{ 464,	0xBB00 },
165 	{ 374,	0xBE00 },
166 	{ 275,	0xC200 },
167 	{ 181,	0xC600 },
168 	{ 102,	0xCC00 },
169 	{ 49,	0xD900 }
170 };
171 
172 /*
173  * This table is 6 dB too low comapred to the others (probably created with
174  * a different BB_MAG setting)
175  */
176 static const struct slookup gain_channel_agc_nf_lookup[] = {
177 	/* Gain *100dB // reg */
178 	{ 7082,	0x3000 },
179 	{ 7052,	0x4000 },
180 	{ 7007,	0x4600 },
181 	{ 6954,	0x4A00 },
182 	{ 6909,	0x4D00 },
183 	{ 6833,	0x5100 },
184 	{ 6753,	0x5400 },
185 	{ 6659,	0x5700 },
186 	{ 6561,	0x5A00 },
187 	{ 6472,	0x5C00 },
188 	{ 6366,	0x5F00 },
189 	{ 6259,	0x6100 },
190 	{ 6151,	0x6400 },
191 	{ 6026,	0x6700 },
192 	{ 5920,	0x6900 },
193 	{ 5835,	0x6B00 },
194 	{ 5770,	0x6C00 },
195 	{ 5681,	0x6E00 },
196 	{ 5596,	0x7000 },
197 	{ 5503,	0x7200 },
198 	{ 5429,	0x7300 },
199 	{ 5319,	0x7500 },
200 	{ 5220,	0x7700 },
201 	{ 5111,	0x7900 },
202 	{ 4983,	0x7B00 },
203 	{ 4876,	0x7D00 },
204 	{ 4755,	0x7F00 },
205 	{ 4635,	0x8100 },
206 	{ 4499,	0x8300 },
207 	{ 4405,	0x8500 },
208 	{ 4323,	0x8600 },
209 	{ 4233,	0x8800 },
210 	{ 4156,	0x8A00 },
211 	{ 4038,	0x8C00 },
212 	{ 3935,	0x8E00 },
213 	{ 3823,	0x9000 },
214 	{ 3712,	0x9200 },
215 	{ 3601,	0x9500 },
216 	{ 3511,	0x9700 },
217 	{ 3413,	0x9900 },
218 	{ 3309,	0x9B00 },
219 	{ 3213,	0x9D00 },
220 	{ 3088,	0x9F00 },
221 	{ 2992,	0xA100 },
222 	{ 2878,	0xA400 },
223 	{ 2769,	0xA700 },
224 	{ 2645,	0xAA00 },
225 	{ 2538,	0xAD00 },
226 	{ 2441,	0xB000 },
227 	{ 2350,	0xB600 },
228 	{ 2237,	0xBA00 },
229 	{ 2137,	0xBF00 },
230 	{ 2039,	0xC500 },
231 	{ 1938,	0xDF00 },
232 	{ 1927,	0xFF00 }
233 };
234 
235 static const struct slookup gain_channel_agc_iip3_lookup[] = {
236 	/* Gain *100dB // reg */
237 	{ 7070,	0x3000 },
238 	{ 7028,	0x4000 },
239 	{ 7019,	0x4600 },
240 	{ 6900,	0x4A00 },
241 	{ 6811,	0x4D00 },
242 	{ 6763,	0x5100 },
243 	{ 6690,	0x5400 },
244 	{ 6644,	0x5700 },
245 	{ 6617,	0x5A00 },
246 	{ 6598,	0x5C00 },
247 	{ 6462,	0x5F00 },
248 	{ 6348,	0x6100 },
249 	{ 6197,	0x6400 },
250 	{ 6154,	0x6700 },
251 	{ 6098,	0x6900 },
252 	{ 5893,	0x6B00 },
253 	{ 5812,	0x6C00 },
254 	{ 5773,	0x6E00 },
255 	{ 5723,	0x7000 },
256 	{ 5661,	0x7200 },
257 	{ 5579,	0x7300 },
258 	{ 5460,	0x7500 },
259 	{ 5308,	0x7700 },
260 	{ 5099,	0x7900 },
261 	{ 4910,	0x7B00 },
262 	{ 4800,	0x7D00 },
263 	{ 4785,	0x7F00 },
264 	{ 4635,	0x8100 },
265 	{ 4466,	0x8300 },
266 	{ 4314,	0x8500 },
267 	{ 4295,	0x8600 },
268 	{ 4144,	0x8800 },
269 	{ 3920,	0x8A00 },
270 	{ 3889,	0x8C00 },
271 	{ 3771,	0x8E00 },
272 	{ 3655,	0x9000 },
273 	{ 3446,	0x9200 },
274 	{ 3298,	0x9500 },
275 	{ 3083,	0x9700 },
276 	{ 3015,	0x9900 },
277 	{ 2833,	0x9B00 },
278 	{ 2746,	0x9D00 },
279 	{ 2632,	0x9F00 },
280 	{ 2598,	0xA100 },
281 	{ 2480,	0xA400 },
282 	{ 2236,	0xA700 },
283 	{ 2171,	0xAA00 },
284 	{ 2060,	0xAD00 },
285 	{ 1999,	0xB000 },
286 	{ 1974,	0xB600 },
287 	{ 1820,	0xBA00 },
288 	{ 1741,	0xBF00 },
289 	{ 1655,	0xC500 },
290 	{ 1444,	0xDF00 },
291 	{ 1325,	0xFF00 },
292 };
293 
294 static inline u32 muldiv32(u32 a, u32 b, u32 c)
295 {
296 	u64 tmp64;
297 
298 	tmp64 = (u64)a * (u64)b;
299 	do_div(tmp64, c);
300 
301 	return (u32)tmp64;
302 }
303 
304 static int i2c_read(struct i2c_adapter *adap,
305 		    u8 adr, u8 *msg, int len, u8 *answ, int alen)
306 {
307 	struct i2c_msg msgs[2] = { { .addr = adr, .flags = 0,
308 				     .buf = msg, .len = len},
309 				   { .addr = adr, .flags = I2C_M_RD,
310 				     .buf = answ, .len = alen } };
311 	if (i2c_transfer(adap, msgs, 2) != 2) {
312 		dev_err(&adap->dev, "i2c read error\n");
313 		return -EIO;
314 	}
315 	return 0;
316 }
317 
318 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len)
319 {
320 	struct i2c_msg msg = {.addr = adr, .flags = 0,
321 			      .buf = data, .len = len};
322 
323 	if (i2c_transfer(adap, &msg, 1) != 1) {
324 		dev_err(&adap->dev, "i2c write error\n");
325 		return -EIO;
326 	}
327 	return 0;
328 }
329 
330 static int write_regs(struct stv *state, int reg, int len)
331 {
332 	u8 d[12];
333 
334 	memcpy(&d[1], &state->reg[reg], len);
335 	d[0] = reg;
336 	return i2c_write(state->i2c, state->adr, d, len + 1);
337 }
338 
339 static int write_reg(struct stv *state, u8 reg, u8 val)
340 {
341 	u8 d[2] = {reg, val};
342 
343 	return i2c_write(state->i2c, state->adr, d, 2);
344 }
345 
346 static int read_reg(struct stv *state, u8 reg, u8 *val)
347 {
348 	return i2c_read(state->i2c, state->adr, &reg, 1, val, 1);
349 }
350 
351 static int wait_for_call_done(struct stv *state, u8 mask)
352 {
353 	int status = 0;
354 	u32 lock_retry_count = 10;
355 
356 	while (lock_retry_count > 0) {
357 		u8 regval;
358 
359 		status = read_reg(state, 9, &regval);
360 		if (status < 0)
361 			return status;
362 
363 		if ((regval & mask) == 0)
364 			break;
365 		usleep_range(4000, 6000);
366 		lock_retry_count -= 1;
367 
368 		status = -EIO;
369 	}
370 	return status;
371 }
372 
373 static void init_state(struct stv *state)
374 {
375 	u32 clkdiv = 0;
376 	u32 agcmode = 0;
377 	u32 agcref = 2;
378 	u32 agcset = 0xffffffff;
379 	u32 bbmode = 0xffffffff;
380 
381 	state->reg[0] = 0x08;
382 	state->reg[1] = 0x41;
383 	state->reg[2] = 0x8f;
384 	state->reg[3] = 0x00;
385 	state->reg[4] = 0xce;
386 	state->reg[5] = 0x54;
387 	state->reg[6] = 0x55;
388 	state->reg[7] = 0x45;
389 	state->reg[8] = 0x46;
390 	state->reg[9] = 0xbd;
391 	state->reg[10] = 0x11;
392 
393 	state->ref_freq = 16000;
394 
395 	if (clkdiv <= 3)
396 		state->reg[0x00] |= (clkdiv & 0x03);
397 	if (agcmode <= 3) {
398 		state->reg[0x03] |= (agcmode << 5);
399 		if (agcmode == 0x01)
400 			state->reg[0x01] |= 0x30;
401 	}
402 	if (bbmode <= 3)
403 		state->reg[0x01] = (state->reg[0x01] & ~0x30) | (bbmode << 4);
404 	if (agcref <= 7)
405 		state->reg[0x03] |= agcref;
406 	if (agcset <= 31)
407 		state->reg[0x02] = (state->reg[0x02] & ~0x1F) | agcset | 0x40;
408 }
409 
410 static int attach_init(struct stv *state)
411 {
412 	if (write_regs(state, 0, 11))
413 		return -ENODEV;
414 	return 0;
415 }
416 
417 static void release(struct dvb_frontend *fe)
418 {
419 	kfree(fe->tuner_priv);
420 	fe->tuner_priv = NULL;
421 }
422 
423 static int set_bandwidth(struct dvb_frontend *fe, u32 cutoff_frequency)
424 {
425 	struct stv *state = fe->tuner_priv;
426 	u32 index = (cutoff_frequency + 999999) / 1000000;
427 	int stat = 0;
428 
429 	if (index < 6)
430 		index = 6;
431 	if (index > 50)
432 		index = 50;
433 	if ((state->reg[0x08] & ~0xFC) == ((index - 6) << 2))
434 		return 0;
435 
436 	state->reg[0x08] = (state->reg[0x08] & ~0xFC) | ((index - 6) << 2);
437 	state->reg[0x09] = (state->reg[0x09] & ~0x0C) | 0x08;
438 	if (fe->ops.i2c_gate_ctrl)
439 		stat = fe->ops.i2c_gate_ctrl(fe, 1);
440 	if (!stat) {
441 		write_regs(state, 0x08, 2);
442 		wait_for_call_done(state, 0x08);
443 	}
444 	if (fe->ops.i2c_gate_ctrl && !stat)
445 		fe->ops.i2c_gate_ctrl(fe, 0);
446 	return stat;
447 }
448 
449 static int set_lof(struct stv *state, u32 local_frequency, u32 cutoff_frequency)
450 {
451 	u32 index = (cutoff_frequency + 999999) / 1000000;
452 	u32 frequency = (local_frequency + 500) / 1000;
453 	u32 p = 1, psel = 0, fvco, div, frac;
454 	u8 icp, tmp;
455 
456 	if (index < 6)
457 		index = 6;
458 	if (index > 50)
459 		index = 50;
460 
461 	if (frequency <= 1300000) {
462 		p =  4;
463 		psel = 1;
464 	} else {
465 		p =  2;
466 		psel = 0;
467 	}
468 	fvco = frequency * p;
469 	div = fvco / state->ref_freq;
470 	frac = fvco % state->ref_freq;
471 	frac = muldiv32(frac, 0x40000, state->ref_freq);
472 
473 	icp = 0;
474 	if (fvco < 2700000)
475 		icp = 0;
476 	else if (fvco < 2950000)
477 		icp = 1;
478 	else if (fvco < 3300000)
479 		icp = 2;
480 	else if (fvco < 3700000)
481 		icp = 3;
482 	else if (fvco < 4200000)
483 		icp = 5;
484 	else if (fvco < 4800000)
485 		icp = 6;
486 	else
487 		icp = 7;
488 
489 	state->reg[0x02] |= 0x80; /* LNA IIP3 Mode */
490 
491 	state->reg[0x03] = (state->reg[0x03] & ~0x80) | (psel << 7);
492 	state->reg[0x04] = (div & 0xFF);
493 	state->reg[0x05] = (((div >> 8) & 0x01) | ((frac & 0x7F) << 1)) & 0xff;
494 	state->reg[0x06] = ((frac >> 7) & 0xFF);
495 	state->reg[0x07] = (state->reg[0x07] & ~0x07) | ((frac >> 15) & 0x07);
496 	state->reg[0x07] = (state->reg[0x07] & ~0xE0) | (icp << 5);
497 
498 	state->reg[0x08] = (state->reg[0x08] & ~0xFC) | ((index - 6) << 2);
499 	/* Start cal vco,CF */
500 	state->reg[0x09] = (state->reg[0x09] & ~0x0C) | 0x0C;
501 	write_regs(state, 2, 8);
502 
503 	wait_for_call_done(state, 0x0C);
504 
505 	usleep_range(10000, 12000);
506 
507 	read_reg(state, 0x03, &tmp);
508 	if (tmp & 0x10)	{
509 		state->reg[0x02] &= ~0x80; /* LNA NF Mode */
510 		write_regs(state, 2, 1);
511 	}
512 	read_reg(state, 0x08, &tmp);
513 
514 	state->frequency = frequency;
515 
516 	return 0;
517 }
518 
519 static int set_params(struct dvb_frontend *fe)
520 {
521 	struct stv *state = fe->tuner_priv;
522 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
523 	u32 freq, cutoff;
524 	int stat = 0;
525 
526 	if (p->delivery_system != SYS_DVBS && p->delivery_system != SYS_DVBS2)
527 		return -EINVAL;
528 
529 	freq = p->frequency * 1000;
530 	cutoff = 5000000 + muldiv32(p->symbol_rate, 135, 200);
531 
532 	if (fe->ops.i2c_gate_ctrl)
533 		stat = fe->ops.i2c_gate_ctrl(fe, 1);
534 	if (!stat)
535 		set_lof(state, freq, cutoff);
536 	if (fe->ops.i2c_gate_ctrl && !stat)
537 		fe->ops.i2c_gate_ctrl(fe, 0);
538 	return 0;
539 }
540 
541 static s32 table_lookup(const struct slookup *table,
542 			int table_size, u16 reg_value)
543 {
544 	s32 gain;
545 	s32 reg_diff;
546 	int imin = 0;
547 	int imax = table_size - 1;
548 	int i;
549 
550 	/* Assumes Table[0].RegValue < Table[imax].RegValue */
551 	if (reg_value <= table[0].reg_value) {
552 		gain = table[0].value;
553 	} else if (reg_value >= table[imax].reg_value) {
554 		gain = table[imax].value;
555 	} else {
556 		while ((imax - imin) > 1) {
557 			i = (imax + imin) / 2;
558 			if ((table[imin].reg_value <= reg_value) &&
559 			    (reg_value <= table[i].reg_value))
560 				imax = i;
561 			else
562 				imin = i;
563 		}
564 		reg_diff = table[imax].reg_value - table[imin].reg_value;
565 		gain = table[imin].value;
566 		if (reg_diff != 0)
567 			gain += ((s32)(reg_value - table[imin].reg_value) *
568 				(s32)(table[imax].value
569 				- table[imin].value)) / reg_diff;
570 	}
571 	return gain;
572 }
573 
574 static int get_rf_strength(struct dvb_frontend *fe, u16 *st)
575 {
576 	struct stv *state = fe->tuner_priv;
577 	u16 rfagc = *st;
578 	s32 gain;
579 
580 	if ((state->reg[0x03] & 0x60) == 0) {
581 		/* RF Mode, Read AGC ADC */
582 		u8 reg = 0;
583 		int stat = 0;
584 
585 		if (fe->ops.i2c_gate_ctrl)
586 			stat = fe->ops.i2c_gate_ctrl(fe, 1);
587 		if (!stat) {
588 			write_reg(state, 0x02, state->reg[0x02] | 0x20);
589 			read_reg(state, 2, &reg);
590 			if (reg & 0x20)
591 				read_reg(state, 2, &reg);
592 		}
593 		if (fe->ops.i2c_gate_ctrl && !stat)
594 			fe->ops.i2c_gate_ctrl(fe, 0);
595 
596 		if ((state->reg[0x02] & 0x80) == 0)
597 			/* NF */
598 			gain = table_lookup(lnagain_nf_lookup,
599 					    ARRAY_SIZE(lnagain_nf_lookup),
600 					    reg & 0x1F);
601 		else
602 			/* IIP3 */
603 			gain = table_lookup(lnagain_iip3_lookup,
604 					    ARRAY_SIZE(lnagain_iip3_lookup),
605 					    reg & 0x1F);
606 
607 		gain += table_lookup(gain_rfagc_lookup,
608 				     ARRAY_SIZE(gain_rfagc_lookup), rfagc);
609 
610 		gain -= 2400;
611 	} else {
612 		/* Channel Mode */
613 		if ((state->reg[0x02] & 0x80) == 0) {
614 			/* NF */
615 			gain = table_lookup(
616 				gain_channel_agc_nf_lookup,
617 				ARRAY_SIZE(gain_channel_agc_nf_lookup), rfagc);
618 
619 			gain += 600;
620 		} else {
621 			/* IIP3 */
622 			gain = table_lookup(
623 				gain_channel_agc_iip3_lookup,
624 				ARRAY_SIZE(gain_channel_agc_iip3_lookup),
625 				rfagc);
626 		}
627 	}
628 
629 	if (state->frequency > 0)
630 		/* Tilt correction ( 0.00016 dB/MHz ) */
631 		gain -= ((((s32)(state->frequency / 1000) - 1550) * 2) / 12);
632 
633 	/* + (BBGain * 10); */
634 	gain +=  (s32)((state->reg[0x01] & 0xC0) >> 6) * 600 - 1300;
635 
636 	if (gain < 0)
637 		gain = 0;
638 	else if (gain > 10000)
639 		gain = 10000;
640 
641 	*st = 10000 - gain;
642 
643 	return 0;
644 }
645 
646 static const struct dvb_tuner_ops tuner_ops = {
647 	.info = {
648 		.name		= "ST STV6111",
649 		.frequency_min	= 950000,
650 		.frequency_max	= 2150000,
651 		.frequency_step	= 0
652 	},
653 	.set_params		= set_params,
654 	.release		= release,
655 	.get_rf_strength	= get_rf_strength,
656 	.set_bandwidth		= set_bandwidth,
657 };
658 
659 struct dvb_frontend *stv6111_attach(struct dvb_frontend *fe,
660 				    struct i2c_adapter *i2c, u8 adr)
661 {
662 	struct stv *state;
663 	int stat = -ENODEV;
664 	int gatestat = 0;
665 
666 	state = kzalloc(sizeof(*state), GFP_KERNEL);
667 	if (!state)
668 		return NULL;
669 	state->adr = adr;
670 	state->i2c = i2c;
671 	memcpy(&fe->ops.tuner_ops, &tuner_ops, sizeof(struct dvb_tuner_ops));
672 	init_state(state);
673 
674 	if (fe->ops.i2c_gate_ctrl)
675 		gatestat = fe->ops.i2c_gate_ctrl(fe, 1);
676 	if (!gatestat)
677 		stat = attach_init(state);
678 	if (fe->ops.i2c_gate_ctrl && !gatestat)
679 		fe->ops.i2c_gate_ctrl(fe, 0);
680 	if (stat < 0) {
681 		kfree(state);
682 		return NULL;
683 	}
684 	fe->tuner_priv = state;
685 	return fe;
686 }
687 EXPORT_SYMBOL_GPL(stv6111_attach);
688 
689 MODULE_DESCRIPTION("ST STV6111 satellite tuner driver");
690 MODULE_AUTHOR("Ralph Metzler, Manfred Voelkel");
691 MODULE_LICENSE("GPL");
692