1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Driver for the ST STV0910 DVB-S/S2 demodulator. 4 * 5 * Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de> 6 * Marcus Metzler <mocm@metzlerbros.de> 7 * developed for Digital Devices GmbH 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * version 2 only, as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/init.h> 23 #include <linux/delay.h> 24 #include <linux/firmware.h> 25 #include <linux/i2c.h> 26 #include <asm/div64.h> 27 28 #include <media/dvb_frontend.h> 29 #include "stv0910.h" 30 #include "stv0910_regs.h" 31 32 #define EXT_CLOCK 30000000 33 #define TUNING_DELAY 200 34 #define BER_SRC_S 0x20 35 #define BER_SRC_S2 0x20 36 37 static LIST_HEAD(stvlist); 38 39 enum receive_mode { RCVMODE_NONE, RCVMODE_DVBS, RCVMODE_DVBS2, RCVMODE_AUTO }; 40 41 enum dvbs2_fectype { DVBS2_64K, DVBS2_16K }; 42 43 enum dvbs2_mod_cod { 44 DVBS2_DUMMY_PLF, DVBS2_QPSK_1_4, DVBS2_QPSK_1_3, DVBS2_QPSK_2_5, 45 DVBS2_QPSK_1_2, DVBS2_QPSK_3_5, DVBS2_QPSK_2_3, DVBS2_QPSK_3_4, 46 DVBS2_QPSK_4_5, DVBS2_QPSK_5_6, DVBS2_QPSK_8_9, DVBS2_QPSK_9_10, 47 DVBS2_8PSK_3_5, DVBS2_8PSK_2_3, DVBS2_8PSK_3_4, DVBS2_8PSK_5_6, 48 DVBS2_8PSK_8_9, DVBS2_8PSK_9_10, DVBS2_16APSK_2_3, DVBS2_16APSK_3_4, 49 DVBS2_16APSK_4_5, DVBS2_16APSK_5_6, DVBS2_16APSK_8_9, DVBS2_16APSK_9_10, 50 DVBS2_32APSK_3_4, DVBS2_32APSK_4_5, DVBS2_32APSK_5_6, DVBS2_32APSK_8_9, 51 DVBS2_32APSK_9_10 52 }; 53 54 enum fe_stv0910_mod_cod { 55 FE_DUMMY_PLF, FE_QPSK_14, FE_QPSK_13, FE_QPSK_25, 56 FE_QPSK_12, FE_QPSK_35, FE_QPSK_23, FE_QPSK_34, 57 FE_QPSK_45, FE_QPSK_56, FE_QPSK_89, FE_QPSK_910, 58 FE_8PSK_35, FE_8PSK_23, FE_8PSK_34, FE_8PSK_56, 59 FE_8PSK_89, FE_8PSK_910, FE_16APSK_23, FE_16APSK_34, 60 FE_16APSK_45, FE_16APSK_56, FE_16APSK_89, FE_16APSK_910, 61 FE_32APSK_34, FE_32APSK_45, FE_32APSK_56, FE_32APSK_89, 62 FE_32APSK_910 63 }; 64 65 enum fe_stv0910_roll_off { FE_SAT_35, FE_SAT_25, FE_SAT_20, FE_SAT_15 }; 66 67 static inline u32 muldiv32(u32 a, u32 b, u32 c) 68 { 69 u64 tmp64; 70 71 tmp64 = (u64)a * (u64)b; 72 do_div(tmp64, c); 73 74 return (u32)tmp64; 75 } 76 77 struct stv_base { 78 struct list_head stvlist; 79 80 u8 adr; 81 struct i2c_adapter *i2c; 82 struct mutex i2c_lock; /* shared I2C access protect */ 83 struct mutex reg_lock; /* shared register write protect */ 84 int count; 85 86 u32 extclk; 87 u32 mclk; 88 }; 89 90 struct stv { 91 struct stv_base *base; 92 struct dvb_frontend fe; 93 int nr; 94 u16 regoff; 95 u8 i2crpt; 96 u8 tscfgh; 97 u8 tsgeneral; 98 u8 tsspeed; 99 u8 single; 100 unsigned long tune_time; 101 102 s32 search_range; 103 u32 started; 104 u32 demod_lock_time; 105 enum receive_mode receive_mode; 106 u32 demod_timeout; 107 u32 fec_timeout; 108 u32 first_time_lock; 109 u8 demod_bits; 110 u32 symbol_rate; 111 112 u8 last_viterbi_rate; 113 enum fe_code_rate puncture_rate; 114 enum fe_stv0910_mod_cod mod_cod; 115 enum dvbs2_fectype fectype; 116 u32 pilots; 117 enum fe_stv0910_roll_off feroll_off; 118 119 int is_standard_broadcast; 120 int is_vcm; 121 122 u32 cur_scrambling_code; 123 124 u32 last_bernumerator; 125 u32 last_berdenominator; 126 u8 berscale; 127 128 u8 vth[6]; 129 }; 130 131 struct sinit_table { 132 u16 address; 133 u8 data; 134 }; 135 136 struct slookup { 137 s16 value; 138 u32 reg_value; 139 }; 140 141 static int write_reg(struct stv *state, u16 reg, u8 val) 142 { 143 struct i2c_adapter *adap = state->base->i2c; 144 u8 data[3] = {reg >> 8, reg & 0xff, val}; 145 struct i2c_msg msg = {.addr = state->base->adr, .flags = 0, 146 .buf = data, .len = 3}; 147 148 if (i2c_transfer(adap, &msg, 1) != 1) { 149 dev_warn(&adap->dev, "i2c write error ([%02x] %04x: %02x)\n", 150 state->base->adr, reg, val); 151 return -EIO; 152 } 153 return 0; 154 } 155 156 static inline int i2c_read_regs16(struct i2c_adapter *adapter, u8 adr, 157 u16 reg, u8 *val, int count) 158 { 159 u8 msg[2] = {reg >> 8, reg & 0xff}; 160 struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0, 161 .buf = msg, .len = 2}, 162 {.addr = adr, .flags = I2C_M_RD, 163 .buf = val, .len = count } }; 164 165 if (i2c_transfer(adapter, msgs, 2) != 2) { 166 dev_warn(&adapter->dev, "i2c read error ([%02x] %04x)\n", 167 adr, reg); 168 return -EIO; 169 } 170 return 0; 171 } 172 173 static int read_reg(struct stv *state, u16 reg, u8 *val) 174 { 175 return i2c_read_regs16(state->base->i2c, state->base->adr, 176 reg, val, 1); 177 } 178 179 static int read_regs(struct stv *state, u16 reg, u8 *val, int len) 180 { 181 return i2c_read_regs16(state->base->i2c, state->base->adr, 182 reg, val, len); 183 } 184 185 static int write_shared_reg(struct stv *state, u16 reg, u8 mask, u8 val) 186 { 187 int status; 188 u8 tmp; 189 190 mutex_lock(&state->base->reg_lock); 191 status = read_reg(state, reg, &tmp); 192 if (!status) 193 status = write_reg(state, reg, (tmp & ~mask) | (val & mask)); 194 mutex_unlock(&state->base->reg_lock); 195 return status; 196 } 197 198 static int write_field(struct stv *state, u32 field, u8 val) 199 { 200 int status; 201 u8 shift, mask, old, new; 202 203 status = read_reg(state, field >> 16, &old); 204 if (status) 205 return status; 206 mask = field & 0xff; 207 shift = (field >> 12) & 0xf; 208 new = ((val << shift) & mask) | (old & ~mask); 209 if (new == old) 210 return 0; 211 return write_reg(state, field >> 16, new); 212 } 213 214 #define SET_FIELD(_reg, _val) \ 215 write_field(state, state->nr ? FSTV0910_P2_##_reg : \ 216 FSTV0910_P1_##_reg, _val) 217 218 #define SET_REG(_reg, _val) \ 219 write_reg(state, state->nr ? RSTV0910_P2_##_reg : \ 220 RSTV0910_P1_##_reg, _val) 221 222 #define GET_REG(_reg, _val) \ 223 read_reg(state, state->nr ? RSTV0910_P2_##_reg : \ 224 RSTV0910_P1_##_reg, _val) 225 226 static const struct slookup s1_sn_lookup[] = { 227 { 0, 9242 }, /* C/N= 0dB */ 228 { 5, 9105 }, /* C/N= 0.5dB */ 229 { 10, 8950 }, /* C/N= 1.0dB */ 230 { 15, 8780 }, /* C/N= 1.5dB */ 231 { 20, 8566 }, /* C/N= 2.0dB */ 232 { 25, 8366 }, /* C/N= 2.5dB */ 233 { 30, 8146 }, /* C/N= 3.0dB */ 234 { 35, 7908 }, /* C/N= 3.5dB */ 235 { 40, 7666 }, /* C/N= 4.0dB */ 236 { 45, 7405 }, /* C/N= 4.5dB */ 237 { 50, 7136 }, /* C/N= 5.0dB */ 238 { 55, 6861 }, /* C/N= 5.5dB */ 239 { 60, 6576 }, /* C/N= 6.0dB */ 240 { 65, 6330 }, /* C/N= 6.5dB */ 241 { 70, 6048 }, /* C/N= 7.0dB */ 242 { 75, 5768 }, /* C/N= 7.5dB */ 243 { 80, 5492 }, /* C/N= 8.0dB */ 244 { 85, 5224 }, /* C/N= 8.5dB */ 245 { 90, 4959 }, /* C/N= 9.0dB */ 246 { 95, 4709 }, /* C/N= 9.5dB */ 247 { 100, 4467 }, /* C/N=10.0dB */ 248 { 105, 4236 }, /* C/N=10.5dB */ 249 { 110, 4013 }, /* C/N=11.0dB */ 250 { 115, 3800 }, /* C/N=11.5dB */ 251 { 120, 3598 }, /* C/N=12.0dB */ 252 { 125, 3406 }, /* C/N=12.5dB */ 253 { 130, 3225 }, /* C/N=13.0dB */ 254 { 135, 3052 }, /* C/N=13.5dB */ 255 { 140, 2889 }, /* C/N=14.0dB */ 256 { 145, 2733 }, /* C/N=14.5dB */ 257 { 150, 2587 }, /* C/N=15.0dB */ 258 { 160, 2318 }, /* C/N=16.0dB */ 259 { 170, 2077 }, /* C/N=17.0dB */ 260 { 180, 1862 }, /* C/N=18.0dB */ 261 { 190, 1670 }, /* C/N=19.0dB */ 262 { 200, 1499 }, /* C/N=20.0dB */ 263 { 210, 1347 }, /* C/N=21.0dB */ 264 { 220, 1213 }, /* C/N=22.0dB */ 265 { 230, 1095 }, /* C/N=23.0dB */ 266 { 240, 992 }, /* C/N=24.0dB */ 267 { 250, 900 }, /* C/N=25.0dB */ 268 { 260, 826 }, /* C/N=26.0dB */ 269 { 270, 758 }, /* C/N=27.0dB */ 270 { 280, 702 }, /* C/N=28.0dB */ 271 { 290, 653 }, /* C/N=29.0dB */ 272 { 300, 613 }, /* C/N=30.0dB */ 273 { 310, 579 }, /* C/N=31.0dB */ 274 { 320, 550 }, /* C/N=32.0dB */ 275 { 330, 526 }, /* C/N=33.0dB */ 276 { 350, 490 }, /* C/N=33.0dB */ 277 { 400, 445 }, /* C/N=40.0dB */ 278 { 450, 430 }, /* C/N=45.0dB */ 279 { 500, 426 }, /* C/N=50.0dB */ 280 { 510, 425 } /* C/N=51.0dB */ 281 }; 282 283 static const struct slookup s2_sn_lookup[] = { 284 { -30, 13950 }, /* C/N=-2.5dB */ 285 { -25, 13580 }, /* C/N=-2.5dB */ 286 { -20, 13150 }, /* C/N=-2.0dB */ 287 { -15, 12760 }, /* C/N=-1.5dB */ 288 { -10, 12345 }, /* C/N=-1.0dB */ 289 { -5, 11900 }, /* C/N=-0.5dB */ 290 { 0, 11520 }, /* C/N= 0dB */ 291 { 5, 11080 }, /* C/N= 0.5dB */ 292 { 10, 10630 }, /* C/N= 1.0dB */ 293 { 15, 10210 }, /* C/N= 1.5dB */ 294 { 20, 9790 }, /* C/N= 2.0dB */ 295 { 25, 9390 }, /* C/N= 2.5dB */ 296 { 30, 8970 }, /* C/N= 3.0dB */ 297 { 35, 8575 }, /* C/N= 3.5dB */ 298 { 40, 8180 }, /* C/N= 4.0dB */ 299 { 45, 7800 }, /* C/N= 4.5dB */ 300 { 50, 7430 }, /* C/N= 5.0dB */ 301 { 55, 7080 }, /* C/N= 5.5dB */ 302 { 60, 6720 }, /* C/N= 6.0dB */ 303 { 65, 6320 }, /* C/N= 6.5dB */ 304 { 70, 6060 }, /* C/N= 7.0dB */ 305 { 75, 5760 }, /* C/N= 7.5dB */ 306 { 80, 5480 }, /* C/N= 8.0dB */ 307 { 85, 5200 }, /* C/N= 8.5dB */ 308 { 90, 4930 }, /* C/N= 9.0dB */ 309 { 95, 4680 }, /* C/N= 9.5dB */ 310 { 100, 4425 }, /* C/N=10.0dB */ 311 { 105, 4210 }, /* C/N=10.5dB */ 312 { 110, 3980 }, /* C/N=11.0dB */ 313 { 115, 3765 }, /* C/N=11.5dB */ 314 { 120, 3570 }, /* C/N=12.0dB */ 315 { 125, 3315 }, /* C/N=12.5dB */ 316 { 130, 3140 }, /* C/N=13.0dB */ 317 { 135, 2980 }, /* C/N=13.5dB */ 318 { 140, 2820 }, /* C/N=14.0dB */ 319 { 145, 2670 }, /* C/N=14.5dB */ 320 { 150, 2535 }, /* C/N=15.0dB */ 321 { 160, 2270 }, /* C/N=16.0dB */ 322 { 170, 2035 }, /* C/N=17.0dB */ 323 { 180, 1825 }, /* C/N=18.0dB */ 324 { 190, 1650 }, /* C/N=19.0dB */ 325 { 200, 1485 }, /* C/N=20.0dB */ 326 { 210, 1340 }, /* C/N=21.0dB */ 327 { 220, 1212 }, /* C/N=22.0dB */ 328 { 230, 1100 }, /* C/N=23.0dB */ 329 { 240, 1000 }, /* C/N=24.0dB */ 330 { 250, 910 }, /* C/N=25.0dB */ 331 { 260, 836 }, /* C/N=26.0dB */ 332 { 270, 772 }, /* C/N=27.0dB */ 333 { 280, 718 }, /* C/N=28.0dB */ 334 { 290, 671 }, /* C/N=29.0dB */ 335 { 300, 635 }, /* C/N=30.0dB */ 336 { 310, 602 }, /* C/N=31.0dB */ 337 { 320, 575 }, /* C/N=32.0dB */ 338 { 330, 550 }, /* C/N=33.0dB */ 339 { 350, 517 }, /* C/N=35.0dB */ 340 { 400, 480 }, /* C/N=40.0dB */ 341 { 450, 466 }, /* C/N=45.0dB */ 342 { 500, 464 }, /* C/N=50.0dB */ 343 { 510, 463 }, /* C/N=51.0dB */ 344 }; 345 346 static const struct slookup padc_lookup[] = { 347 { 0, 118000 }, /* PADC= +0dBm */ 348 { -100, 93600 }, /* PADC= -1dBm */ 349 { -200, 74500 }, /* PADC= -2dBm */ 350 { -300, 59100 }, /* PADC= -3dBm */ 351 { -400, 47000 }, /* PADC= -4dBm */ 352 { -500, 37300 }, /* PADC= -5dBm */ 353 { -600, 29650 }, /* PADC= -6dBm */ 354 { -700, 23520 }, /* PADC= -7dBm */ 355 { -900, 14850 }, /* PADC= -9dBm */ 356 { -1100, 9380 }, /* PADC=-11dBm */ 357 { -1300, 5910 }, /* PADC=-13dBm */ 358 { -1500, 3730 }, /* PADC=-15dBm */ 359 { -1700, 2354 }, /* PADC=-17dBm */ 360 { -1900, 1485 }, /* PADC=-19dBm */ 361 { -2000, 1179 }, /* PADC=-20dBm */ 362 { -2100, 1000 }, /* PADC=-21dBm */ 363 }; 364 365 /********************************************************************* 366 * Tracking carrier loop carrier QPSK 1/4 to 8PSK 9/10 long Frame 367 *********************************************************************/ 368 static const u8 s2car_loop[] = { 369 /* 370 * Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff 371 * 20MPon 20MPoff 30MPon 30MPoff 372 */ 373 374 /* FE_QPSK_14 */ 375 0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x2A, 0x1C, 0x3A, 0x3B, 376 /* FE_QPSK_13 */ 377 0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x3A, 0x0C, 0x3A, 0x2B, 378 /* FE_QPSK_25 */ 379 0x1C, 0x3C, 0x1B, 0x3C, 0x3A, 0x1C, 0x3A, 0x3B, 0x3A, 0x2B, 380 /* FE_QPSK_12 */ 381 0x0C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B, 382 /* FE_QPSK_35 */ 383 0x1C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B, 384 /* FE_QPSK_23 */ 385 0x2C, 0x2C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B, 386 /* FE_QPSK_34 */ 387 0x3C, 0x2C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B, 388 /* FE_QPSK_45 */ 389 0x0D, 0x3C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B, 390 /* FE_QPSK_56 */ 391 0x1D, 0x3C, 0x0C, 0x2C, 0x2B, 0x1C, 0x1B, 0x3B, 0x0B, 0x1B, 392 /* FE_QPSK_89 */ 393 0x3D, 0x0D, 0x0C, 0x2C, 0x2B, 0x0C, 0x2B, 0x2B, 0x0B, 0x0B, 394 /* FE_QPSK_910 */ 395 0x1E, 0x0D, 0x1C, 0x2C, 0x3B, 0x0C, 0x2B, 0x2B, 0x1B, 0x0B, 396 /* FE_8PSK_35 */ 397 0x28, 0x09, 0x28, 0x09, 0x28, 0x09, 0x28, 0x08, 0x28, 0x27, 398 /* FE_8PSK_23 */ 399 0x19, 0x29, 0x19, 0x29, 0x19, 0x29, 0x38, 0x19, 0x28, 0x09, 400 /* FE_8PSK_34 */ 401 0x1A, 0x0B, 0x1A, 0x3A, 0x0A, 0x2A, 0x39, 0x2A, 0x39, 0x1A, 402 /* FE_8PSK_56 */ 403 0x2B, 0x2B, 0x1B, 0x1B, 0x0B, 0x1B, 0x1A, 0x0B, 0x1A, 0x1A, 404 /* FE_8PSK_89 */ 405 0x0C, 0x0C, 0x3B, 0x3B, 0x1B, 0x1B, 0x2A, 0x0B, 0x2A, 0x2A, 406 /* FE_8PSK_910 */ 407 0x0C, 0x1C, 0x0C, 0x3B, 0x2B, 0x1B, 0x3A, 0x0B, 0x2A, 0x2A, 408 409 /********************************************************************** 410 * Tracking carrier loop carrier 16APSK 2/3 to 32APSK 9/10 long Frame 411 **********************************************************************/ 412 413 /* 414 * Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff 20MPon 415 * 20MPoff 30MPon 30MPoff 416 */ 417 418 /* FE_16APSK_23 */ 419 0x0A, 0x0A, 0x0A, 0x0A, 0x1A, 0x0A, 0x39, 0x0A, 0x29, 0x0A, 420 /* FE_16APSK_34 */ 421 0x0A, 0x0A, 0x0A, 0x0A, 0x0B, 0x0A, 0x2A, 0x0A, 0x1A, 0x0A, 422 /* FE_16APSK_45 */ 423 0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A, 424 /* FE_16APSK_56 */ 425 0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A, 426 /* FE_16APSK_89 */ 427 0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A, 428 /* FE_16APSK_910 */ 429 0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A, 430 /* FE_32APSK_34 */ 431 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 432 /* FE_32APSK_45 */ 433 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 434 /* FE_32APSK_56 */ 435 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 436 /* FE_32APSK_89 */ 437 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 438 /* FE_32APSK_910 */ 439 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 440 }; 441 442 static u8 get_optim_cloop(struct stv *state, 443 enum fe_stv0910_mod_cod mod_cod, u32 pilots) 444 { 445 int i = 0; 446 447 if (mod_cod >= FE_32APSK_910) 448 i = ((int)FE_32APSK_910 - (int)FE_QPSK_14) * 10; 449 else if (mod_cod >= FE_QPSK_14) 450 i = ((int)mod_cod - (int)FE_QPSK_14) * 10; 451 452 if (state->symbol_rate <= 3000000) 453 i += 0; 454 else if (state->symbol_rate <= 7000000) 455 i += 2; 456 else if (state->symbol_rate <= 15000000) 457 i += 4; 458 else if (state->symbol_rate <= 25000000) 459 i += 6; 460 else 461 i += 8; 462 463 if (!pilots) 464 i += 1; 465 466 return s2car_loop[i]; 467 } 468 469 static int get_cur_symbol_rate(struct stv *state, u32 *p_symbol_rate) 470 { 471 int status = 0; 472 u8 symb_freq0; 473 u8 symb_freq1; 474 u8 symb_freq2; 475 u8 symb_freq3; 476 u8 tim_offs0; 477 u8 tim_offs1; 478 u8 tim_offs2; 479 u32 symbol_rate; 480 s32 timing_offset; 481 482 *p_symbol_rate = 0; 483 if (!state->started) 484 return status; 485 486 read_reg(state, RSTV0910_P2_SFR3 + state->regoff, &symb_freq3); 487 read_reg(state, RSTV0910_P2_SFR2 + state->regoff, &symb_freq2); 488 read_reg(state, RSTV0910_P2_SFR1 + state->regoff, &symb_freq1); 489 read_reg(state, RSTV0910_P2_SFR0 + state->regoff, &symb_freq0); 490 read_reg(state, RSTV0910_P2_TMGREG2 + state->regoff, &tim_offs2); 491 read_reg(state, RSTV0910_P2_TMGREG1 + state->regoff, &tim_offs1); 492 read_reg(state, RSTV0910_P2_TMGREG0 + state->regoff, &tim_offs0); 493 494 symbol_rate = ((u32)symb_freq3 << 24) | ((u32)symb_freq2 << 16) | 495 ((u32)symb_freq1 << 8) | (u32)symb_freq0; 496 timing_offset = ((u32)tim_offs2 << 16) | ((u32)tim_offs1 << 8) | 497 (u32)tim_offs0; 498 499 if ((timing_offset & (1 << 23)) != 0) 500 timing_offset |= 0xFF000000; /* Sign extent */ 501 502 symbol_rate = (u32)(((u64)symbol_rate * state->base->mclk) >> 32); 503 timing_offset = (s32)(((s64)symbol_rate * (s64)timing_offset) >> 29); 504 505 *p_symbol_rate = symbol_rate + timing_offset; 506 507 return 0; 508 } 509 510 static int get_signal_parameters(struct stv *state) 511 { 512 u8 tmp; 513 514 if (!state->started) 515 return -EINVAL; 516 517 if (state->receive_mode == RCVMODE_DVBS2) { 518 read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp); 519 state->mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2); 520 state->pilots = (tmp & 0x01) != 0; 521 state->fectype = (enum dvbs2_fectype)((tmp & 0x02) >> 1); 522 523 } else if (state->receive_mode == RCVMODE_DVBS) { 524 read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp); 525 state->puncture_rate = FEC_NONE; 526 switch (tmp & 0x1F) { 527 case 0x0d: 528 state->puncture_rate = FEC_1_2; 529 break; 530 case 0x12: 531 state->puncture_rate = FEC_2_3; 532 break; 533 case 0x15: 534 state->puncture_rate = FEC_3_4; 535 break; 536 case 0x18: 537 state->puncture_rate = FEC_5_6; 538 break; 539 case 0x1a: 540 state->puncture_rate = FEC_7_8; 541 break; 542 } 543 state->is_vcm = 0; 544 state->is_standard_broadcast = 1; 545 state->feroll_off = FE_SAT_35; 546 } 547 return 0; 548 } 549 550 static int tracking_optimization(struct stv *state) 551 { 552 u8 tmp; 553 554 read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &tmp); 555 tmp &= ~0xC0; 556 557 switch (state->receive_mode) { 558 case RCVMODE_DVBS: 559 tmp |= 0x40; 560 break; 561 case RCVMODE_DVBS2: 562 tmp |= 0x80; 563 break; 564 default: 565 tmp |= 0xC0; 566 break; 567 } 568 write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, tmp); 569 570 if (state->receive_mode == RCVMODE_DVBS2) { 571 /* Disable Reed-Solomon */ 572 write_shared_reg(state, 573 RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01, 574 0x03); 575 576 if (state->fectype == DVBS2_64K) { 577 u8 aclc = get_optim_cloop(state, state->mod_cod, 578 state->pilots); 579 580 if (state->mod_cod <= FE_QPSK_910) { 581 write_reg(state, RSTV0910_P2_ACLC2S2Q + 582 state->regoff, aclc); 583 } else if (state->mod_cod <= FE_8PSK_910) { 584 write_reg(state, RSTV0910_P2_ACLC2S2Q + 585 state->regoff, 0x2a); 586 write_reg(state, RSTV0910_P2_ACLC2S28 + 587 state->regoff, aclc); 588 } else if (state->mod_cod <= FE_16APSK_910) { 589 write_reg(state, RSTV0910_P2_ACLC2S2Q + 590 state->regoff, 0x2a); 591 write_reg(state, RSTV0910_P2_ACLC2S216A + 592 state->regoff, aclc); 593 } else if (state->mod_cod <= FE_32APSK_910) { 594 write_reg(state, RSTV0910_P2_ACLC2S2Q + 595 state->regoff, 0x2a); 596 write_reg(state, RSTV0910_P2_ACLC2S232A + 597 state->regoff, aclc); 598 } 599 } 600 } 601 return 0; 602 } 603 604 static s32 table_lookup(const struct slookup *table, 605 int table_size, u32 reg_value) 606 { 607 s32 value; 608 int imin = 0; 609 int imax = table_size - 1; 610 int i; 611 s32 reg_diff; 612 613 /* Assumes Table[0].RegValue > Table[imax].RegValue */ 614 if (reg_value >= table[0].reg_value) { 615 value = table[0].value; 616 } else if (reg_value <= table[imax].reg_value) { 617 value = table[imax].value; 618 } else { 619 while ((imax - imin) > 1) { 620 i = (imax + imin) / 2; 621 if ((table[imin].reg_value >= reg_value) && 622 (reg_value >= table[i].reg_value)) 623 imax = i; 624 else 625 imin = i; 626 } 627 628 reg_diff = table[imax].reg_value - table[imin].reg_value; 629 value = table[imin].value; 630 if (reg_diff != 0) 631 value += ((s32)(reg_value - table[imin].reg_value) * 632 (s32)(table[imax].value 633 - table[imin].value)) 634 / (reg_diff); 635 } 636 637 return value; 638 } 639 640 static int get_signal_to_noise(struct stv *state, s32 *signal_to_noise) 641 { 642 u8 data0; 643 u8 data1; 644 u16 data; 645 int n_lookup; 646 const struct slookup *lookup; 647 648 *signal_to_noise = 0; 649 650 if (!state->started) 651 return -EINVAL; 652 653 if (state->receive_mode == RCVMODE_DVBS2) { 654 read_reg(state, RSTV0910_P2_NNOSPLHT1 + state->regoff, 655 &data1); 656 read_reg(state, RSTV0910_P2_NNOSPLHT0 + state->regoff, 657 &data0); 658 n_lookup = ARRAY_SIZE(s2_sn_lookup); 659 lookup = s2_sn_lookup; 660 } else { 661 read_reg(state, RSTV0910_P2_NNOSDATAT1 + state->regoff, 662 &data1); 663 read_reg(state, RSTV0910_P2_NNOSDATAT0 + state->regoff, 664 &data0); 665 n_lookup = ARRAY_SIZE(s1_sn_lookup); 666 lookup = s1_sn_lookup; 667 } 668 data = (((u16)data1) << 8) | (u16)data0; 669 *signal_to_noise = table_lookup(lookup, n_lookup, data); 670 return 0; 671 } 672 673 static int get_bit_error_rate_s(struct stv *state, u32 *bernumerator, 674 u32 *berdenominator) 675 { 676 u8 regs[3]; 677 678 int status = read_regs(state, 679 RSTV0910_P2_ERRCNT12 + state->regoff, 680 regs, 3); 681 682 if (status) 683 return -EINVAL; 684 685 if ((regs[0] & 0x80) == 0) { 686 state->last_berdenominator = 1ULL << ((state->berscale * 2) + 687 10 + 3); 688 state->last_bernumerator = ((u32)(regs[0] & 0x7F) << 16) | 689 ((u32)regs[1] << 8) | regs[2]; 690 if (state->last_bernumerator < 256 && state->berscale < 6) { 691 state->berscale += 1; 692 status = write_reg(state, RSTV0910_P2_ERRCTRL1 + 693 state->regoff, 694 0x20 | state->berscale); 695 } else if (state->last_bernumerator > 1024 && 696 state->berscale > 2) { 697 state->berscale -= 1; 698 status = write_reg(state, RSTV0910_P2_ERRCTRL1 + 699 state->regoff, 0x20 | 700 state->berscale); 701 } 702 } 703 *bernumerator = state->last_bernumerator; 704 *berdenominator = state->last_berdenominator; 705 return 0; 706 } 707 708 static u32 dvbs2_nbch(enum dvbs2_mod_cod mod_cod, enum dvbs2_fectype fectype) 709 { 710 static const u32 nbch[][2] = { 711 { 0, 0}, /* DUMMY_PLF */ 712 {16200, 3240}, /* QPSK_1_4, */ 713 {21600, 5400}, /* QPSK_1_3, */ 714 {25920, 6480}, /* QPSK_2_5, */ 715 {32400, 7200}, /* QPSK_1_2, */ 716 {38880, 9720}, /* QPSK_3_5, */ 717 {43200, 10800}, /* QPSK_2_3, */ 718 {48600, 11880}, /* QPSK_3_4, */ 719 {51840, 12600}, /* QPSK_4_5, */ 720 {54000, 13320}, /* QPSK_5_6, */ 721 {57600, 14400}, /* QPSK_8_9, */ 722 {58320, 16000}, /* QPSK_9_10, */ 723 {43200, 9720}, /* 8PSK_3_5, */ 724 {48600, 10800}, /* 8PSK_2_3, */ 725 {51840, 11880}, /* 8PSK_3_4, */ 726 {54000, 13320}, /* 8PSK_5_6, */ 727 {57600, 14400}, /* 8PSK_8_9, */ 728 {58320, 16000}, /* 8PSK_9_10, */ 729 {43200, 10800}, /* 16APSK_2_3, */ 730 {48600, 11880}, /* 16APSK_3_4, */ 731 {51840, 12600}, /* 16APSK_4_5, */ 732 {54000, 13320}, /* 16APSK_5_6, */ 733 {57600, 14400}, /* 16APSK_8_9, */ 734 {58320, 16000}, /* 16APSK_9_10 */ 735 {48600, 11880}, /* 32APSK_3_4, */ 736 {51840, 12600}, /* 32APSK_4_5, */ 737 {54000, 13320}, /* 32APSK_5_6, */ 738 {57600, 14400}, /* 32APSK_8_9, */ 739 {58320, 16000}, /* 32APSK_9_10 */ 740 }; 741 742 if (mod_cod >= DVBS2_QPSK_1_4 && 743 mod_cod <= DVBS2_32APSK_9_10 && fectype <= DVBS2_16K) 744 return nbch[mod_cod][fectype]; 745 return 64800; 746 } 747 748 static int get_bit_error_rate_s2(struct stv *state, u32 *bernumerator, 749 u32 *berdenominator) 750 { 751 u8 regs[3]; 752 753 int status = read_regs(state, RSTV0910_P2_ERRCNT12 + state->regoff, 754 regs, 3); 755 756 if (status) 757 return -EINVAL; 758 759 if ((regs[0] & 0x80) == 0) { 760 state->last_berdenominator = 761 dvbs2_nbch((enum dvbs2_mod_cod)state->mod_cod, 762 state->fectype) << 763 (state->berscale * 2); 764 state->last_bernumerator = (((u32)regs[0] & 0x7F) << 16) | 765 ((u32)regs[1] << 8) | regs[2]; 766 if (state->last_bernumerator < 256 && state->berscale < 6) { 767 state->berscale += 1; 768 write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff, 769 0x20 | state->berscale); 770 } else if (state->last_bernumerator > 1024 && 771 state->berscale > 2) { 772 state->berscale -= 1; 773 write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff, 774 0x20 | state->berscale); 775 } 776 } 777 *bernumerator = state->last_bernumerator; 778 *berdenominator = state->last_berdenominator; 779 return status; 780 } 781 782 static int get_bit_error_rate(struct stv *state, u32 *bernumerator, 783 u32 *berdenominator) 784 { 785 *bernumerator = 0; 786 *berdenominator = 1; 787 788 switch (state->receive_mode) { 789 case RCVMODE_DVBS: 790 return get_bit_error_rate_s(state, 791 bernumerator, berdenominator); 792 case RCVMODE_DVBS2: 793 return get_bit_error_rate_s2(state, 794 bernumerator, berdenominator); 795 default: 796 break; 797 } 798 return 0; 799 } 800 801 static int set_mclock(struct stv *state, u32 master_clock) 802 { 803 u32 idf = 1; 804 u32 odf = 4; 805 u32 quartz = state->base->extclk / 1000000; 806 u32 fphi = master_clock / 1000000; 807 u32 ndiv = (fphi * odf * idf) / quartz; 808 u32 cp = 7; 809 u32 fvco; 810 811 if (ndiv >= 7 && ndiv <= 71) 812 cp = 7; 813 else if (ndiv >= 72 && ndiv <= 79) 814 cp = 8; 815 else if (ndiv >= 80 && ndiv <= 87) 816 cp = 9; 817 else if (ndiv >= 88 && ndiv <= 95) 818 cp = 10; 819 else if (ndiv >= 96 && ndiv <= 103) 820 cp = 11; 821 else if (ndiv >= 104 && ndiv <= 111) 822 cp = 12; 823 else if (ndiv >= 112 && ndiv <= 119) 824 cp = 13; 825 else if (ndiv >= 120 && ndiv <= 127) 826 cp = 14; 827 else if (ndiv >= 128 && ndiv <= 135) 828 cp = 15; 829 else if (ndiv >= 136 && ndiv <= 143) 830 cp = 16; 831 else if (ndiv >= 144 && ndiv <= 151) 832 cp = 17; 833 else if (ndiv >= 152 && ndiv <= 159) 834 cp = 18; 835 else if (ndiv >= 160 && ndiv <= 167) 836 cp = 19; 837 else if (ndiv >= 168 && ndiv <= 175) 838 cp = 20; 839 else if (ndiv >= 176 && ndiv <= 183) 840 cp = 21; 841 else if (ndiv >= 184 && ndiv <= 191) 842 cp = 22; 843 else if (ndiv >= 192 && ndiv <= 199) 844 cp = 23; 845 else if (ndiv >= 200 && ndiv <= 207) 846 cp = 24; 847 else if (ndiv >= 208 && ndiv <= 215) 848 cp = 25; 849 else if (ndiv >= 216 && ndiv <= 223) 850 cp = 26; 851 else if (ndiv >= 224 && ndiv <= 225) 852 cp = 27; 853 854 write_reg(state, RSTV0910_NCOARSE, (cp << 3) | idf); 855 write_reg(state, RSTV0910_NCOARSE2, odf); 856 write_reg(state, RSTV0910_NCOARSE1, ndiv); 857 858 fvco = (quartz * 2 * ndiv) / idf; 859 state->base->mclk = fvco / (2 * odf) * 1000000; 860 861 return 0; 862 } 863 864 static int stop(struct stv *state) 865 { 866 if (state->started) { 867 u8 tmp; 868 869 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff, 870 state->tscfgh | 0x01); 871 read_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, &tmp); 872 tmp &= ~0x01; /* release reset DVBS2 packet delin */ 873 write_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, tmp); 874 /* Blind optim*/ 875 write_reg(state, RSTV0910_P2_AGC2O + state->regoff, 0x5B); 876 /* Stop the demod */ 877 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5c); 878 state->started = 0; 879 } 880 state->receive_mode = RCVMODE_NONE; 881 return 0; 882 } 883 884 static void set_pls(struct stv *state, u32 pls_code) 885 { 886 if (pls_code == state->cur_scrambling_code) 887 return; 888 889 /* PLROOT2 bit 2 = gold code */ 890 write_reg(state, RSTV0910_P2_PLROOT0 + state->regoff, 891 pls_code & 0xff); 892 write_reg(state, RSTV0910_P2_PLROOT1 + state->regoff, 893 (pls_code >> 8) & 0xff); 894 write_reg(state, RSTV0910_P2_PLROOT2 + state->regoff, 895 0x04 | ((pls_code >> 16) & 0x03)); 896 state->cur_scrambling_code = pls_code; 897 } 898 899 static void set_isi(struct stv *state, u32 isi) 900 { 901 if (isi == NO_STREAM_ID_FILTER) 902 return; 903 if (isi == 0x80000000) { 904 SET_FIELD(FORCE_CONTINUOUS, 1); 905 SET_FIELD(TSOUT_NOSYNC, 1); 906 } else { 907 SET_FIELD(FILTER_EN, 1); 908 write_reg(state, RSTV0910_P2_ISIENTRY + state->regoff, 909 isi & 0xff); 910 write_reg(state, RSTV0910_P2_ISIBITENA + state->regoff, 0xff); 911 } 912 SET_FIELD(ALGOSWRST, 1); 913 SET_FIELD(ALGOSWRST, 0); 914 } 915 916 static void set_stream_modes(struct stv *state, 917 struct dtv_frontend_properties *p) 918 { 919 set_isi(state, p->stream_id); 920 set_pls(state, p->scrambling_sequence_index); 921 } 922 923 static int init_search_param(struct stv *state, 924 struct dtv_frontend_properties *p) 925 { 926 SET_FIELD(FORCE_CONTINUOUS, 0); 927 SET_FIELD(FRAME_MODE, 0); 928 SET_FIELD(FILTER_EN, 0); 929 SET_FIELD(TSOUT_NOSYNC, 0); 930 SET_FIELD(TSFIFO_EMBINDVB, 0); 931 SET_FIELD(TSDEL_SYNCBYTE, 0); 932 SET_REG(UPLCCST0, 0xe0); 933 SET_FIELD(TSINS_TOKEN, 0); 934 SET_FIELD(HYSTERESIS_THRESHOLD, 0); 935 SET_FIELD(ISIOBS_MODE, 1); 936 937 set_stream_modes(state, p); 938 return 0; 939 } 940 941 static int enable_puncture_rate(struct stv *state, enum fe_code_rate rate) 942 { 943 u8 val; 944 945 switch (rate) { 946 case FEC_1_2: 947 val = 0x01; 948 break; 949 case FEC_2_3: 950 val = 0x02; 951 break; 952 case FEC_3_4: 953 val = 0x04; 954 break; 955 case FEC_5_6: 956 val = 0x08; 957 break; 958 case FEC_7_8: 959 val = 0x20; 960 break; 961 case FEC_NONE: 962 default: 963 val = 0x2f; 964 break; 965 } 966 967 return write_reg(state, RSTV0910_P2_PRVIT + state->regoff, val); 968 } 969 970 static int set_vth_default(struct stv *state) 971 { 972 state->vth[0] = 0xd7; 973 state->vth[1] = 0x85; 974 state->vth[2] = 0x58; 975 state->vth[3] = 0x3a; 976 state->vth[4] = 0x34; 977 state->vth[5] = 0x28; 978 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]); 979 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]); 980 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]); 981 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]); 982 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]); 983 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]); 984 return 0; 985 } 986 987 static int set_vth(struct stv *state) 988 { 989 static const struct slookup vthlookup_table[] = { 990 {250, 8780}, /* C/N= 1.5dB */ 991 {100, 7405}, /* C/N= 4.5dB */ 992 {40, 6330}, /* C/N= 6.5dB */ 993 {12, 5224}, /* C/N= 8.5dB */ 994 {5, 4236} /* C/N=10.5dB */ 995 }; 996 997 int i; 998 u8 tmp[2]; 999 int status = read_regs(state, 1000 RSTV0910_P2_NNOSDATAT1 + state->regoff, 1001 tmp, 2); 1002 u16 reg_value = (tmp[0] << 8) | tmp[1]; 1003 s32 vth = table_lookup(vthlookup_table, ARRAY_SIZE(vthlookup_table), 1004 reg_value); 1005 1006 for (i = 0; i < 6; i += 1) 1007 if (state->vth[i] > vth) 1008 state->vth[i] = vth; 1009 1010 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]); 1011 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]); 1012 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]); 1013 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]); 1014 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]); 1015 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]); 1016 return status; 1017 } 1018 1019 static int start(struct stv *state, struct dtv_frontend_properties *p) 1020 { 1021 s32 freq; 1022 u8 reg_dmdcfgmd; 1023 u16 symb; 1024 1025 if (p->symbol_rate < 100000 || p->symbol_rate > 70000000) 1026 return -EINVAL; 1027 1028 state->receive_mode = RCVMODE_NONE; 1029 state->demod_lock_time = 0; 1030 1031 /* Demod Stop */ 1032 if (state->started) 1033 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5C); 1034 1035 init_search_param(state, p); 1036 1037 if (p->symbol_rate <= 1000000) { /* SR <=1Msps */ 1038 state->demod_timeout = 3000; 1039 state->fec_timeout = 2000; 1040 } else if (p->symbol_rate <= 2000000) { /* 1Msps < SR <=2Msps */ 1041 state->demod_timeout = 2500; 1042 state->fec_timeout = 1300; 1043 } else if (p->symbol_rate <= 5000000) { /* 2Msps< SR <=5Msps */ 1044 state->demod_timeout = 1000; 1045 state->fec_timeout = 650; 1046 } else if (p->symbol_rate <= 10000000) { /* 5Msps< SR <=10Msps */ 1047 state->demod_timeout = 700; 1048 state->fec_timeout = 350; 1049 } else if (p->symbol_rate < 20000000) { /* 10Msps< SR <=20Msps */ 1050 state->demod_timeout = 400; 1051 state->fec_timeout = 200; 1052 } else { /* SR >=20Msps */ 1053 state->demod_timeout = 300; 1054 state->fec_timeout = 200; 1055 } 1056 1057 /* Set the Init Symbol rate */ 1058 symb = muldiv32(p->symbol_rate, 65536, state->base->mclk); 1059 write_reg(state, RSTV0910_P2_SFRINIT1 + state->regoff, 1060 ((symb >> 8) & 0x7F)); 1061 write_reg(state, RSTV0910_P2_SFRINIT0 + state->regoff, (symb & 0xFF)); 1062 1063 state->demod_bits |= 0x80; 1064 write_reg(state, RSTV0910_P2_DEMOD + state->regoff, state->demod_bits); 1065 1066 /* FE_STV0910_SetSearchStandard */ 1067 read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, ®_dmdcfgmd); 1068 write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, 1069 reg_dmdcfgmd |= 0xC0); 1070 1071 write_shared_reg(state, 1072 RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01, 0x00); 1073 1074 /* Disable DSS */ 1075 write_reg(state, RSTV0910_P2_FECM + state->regoff, 0x00); 1076 write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x2F); 1077 1078 enable_puncture_rate(state, FEC_NONE); 1079 1080 /* 8PSK 3/5, 8PSK 2/3 Poff tracking optimization WA */ 1081 write_reg(state, RSTV0910_P2_ACLC2S2Q + state->regoff, 0x0B); 1082 write_reg(state, RSTV0910_P2_ACLC2S28 + state->regoff, 0x0A); 1083 write_reg(state, RSTV0910_P2_BCLC2S2Q + state->regoff, 0x84); 1084 write_reg(state, RSTV0910_P2_BCLC2S28 + state->regoff, 0x84); 1085 write_reg(state, RSTV0910_P2_CARHDR + state->regoff, 0x1C); 1086 write_reg(state, RSTV0910_P2_CARFREQ + state->regoff, 0x79); 1087 1088 write_reg(state, RSTV0910_P2_ACLC2S216A + state->regoff, 0x29); 1089 write_reg(state, RSTV0910_P2_ACLC2S232A + state->regoff, 0x09); 1090 write_reg(state, RSTV0910_P2_BCLC2S216A + state->regoff, 0x84); 1091 write_reg(state, RSTV0910_P2_BCLC2S232A + state->regoff, 0x84); 1092 1093 /* 1094 * Reset CAR3, bug DVBS2->DVBS1 lock 1095 * Note: The bit is only pulsed -> no lock on shared register needed 1096 */ 1097 write_reg(state, RSTV0910_TSTRES0, state->nr ? 0x04 : 0x08); 1098 write_reg(state, RSTV0910_TSTRES0, 0); 1099 1100 set_vth_default(state); 1101 /* Reset demod */ 1102 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F); 1103 1104 write_reg(state, RSTV0910_P2_CARCFG + state->regoff, 0x46); 1105 1106 if (p->symbol_rate <= 5000000) 1107 freq = (state->search_range / 2000) + 80; 1108 else 1109 freq = (state->search_range / 2000) + 1600; 1110 freq = (freq << 16) / (state->base->mclk / 1000); 1111 1112 write_reg(state, RSTV0910_P2_CFRUP1 + state->regoff, 1113 (freq >> 8) & 0xff); 1114 write_reg(state, RSTV0910_P2_CFRUP0 + state->regoff, (freq & 0xff)); 1115 /* CFR Low Setting */ 1116 freq = -freq; 1117 write_reg(state, RSTV0910_P2_CFRLOW1 + state->regoff, 1118 (freq >> 8) & 0xff); 1119 write_reg(state, RSTV0910_P2_CFRLOW0 + state->regoff, (freq & 0xff)); 1120 1121 /* init the demod frequency offset to 0 */ 1122 write_reg(state, RSTV0910_P2_CFRINIT1 + state->regoff, 0); 1123 write_reg(state, RSTV0910_P2_CFRINIT0 + state->regoff, 0); 1124 1125 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F); 1126 /* Trigger acq */ 1127 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x15); 1128 1129 state->demod_lock_time += TUNING_DELAY; 1130 state->started = 1; 1131 1132 return 0; 1133 } 1134 1135 static int init_diseqc(struct stv *state) 1136 { 1137 u16 offs = state->nr ? 0x40 : 0; /* Address offset */ 1138 u8 freq = ((state->base->mclk + 11000 * 32) / (22000 * 32)); 1139 1140 /* Disable receiver */ 1141 write_reg(state, RSTV0910_P1_DISRXCFG + offs, 0x00); 1142 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0xBA); /* Reset = 1 */ 1143 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A); /* Reset = 0 */ 1144 write_reg(state, RSTV0910_P1_DISTXF22 + offs, freq); 1145 return 0; 1146 } 1147 1148 static int probe(struct stv *state) 1149 { 1150 u8 id; 1151 1152 state->receive_mode = RCVMODE_NONE; 1153 state->started = 0; 1154 1155 if (read_reg(state, RSTV0910_MID, &id) < 0) 1156 return -ENODEV; 1157 1158 if (id != 0x51) 1159 return -EINVAL; 1160 1161 /* Configure the I2C repeater to off */ 1162 write_reg(state, RSTV0910_P1_I2CRPT, 0x24); 1163 /* Configure the I2C repeater to off */ 1164 write_reg(state, RSTV0910_P2_I2CRPT, 0x24); 1165 /* Set the I2C to oversampling ratio */ 1166 write_reg(state, RSTV0910_I2CCFG, 0x88); /* state->i2ccfg */ 1167 1168 write_reg(state, RSTV0910_OUTCFG, 0x00); /* OUTCFG */ 1169 write_reg(state, RSTV0910_PADCFG, 0x05); /* RFAGC Pads Dev = 05 */ 1170 write_reg(state, RSTV0910_SYNTCTRL, 0x02); /* SYNTCTRL */ 1171 write_reg(state, RSTV0910_TSGENERAL, state->tsgeneral); /* TSGENERAL */ 1172 write_reg(state, RSTV0910_CFGEXT, 0x02); /* CFGEXT */ 1173 1174 if (state->single) 1175 write_reg(state, RSTV0910_GENCFG, 0x14); /* GENCFG */ 1176 else 1177 write_reg(state, RSTV0910_GENCFG, 0x15); /* GENCFG */ 1178 1179 write_reg(state, RSTV0910_P1_TNRCFG2, 0x02); /* IQSWAP = 0 */ 1180 write_reg(state, RSTV0910_P2_TNRCFG2, 0x82); /* IQSWAP = 1 */ 1181 1182 write_reg(state, RSTV0910_P1_CAR3CFG, 0x02); 1183 write_reg(state, RSTV0910_P2_CAR3CFG, 0x02); 1184 write_reg(state, RSTV0910_P1_DMDCFG4, 0x04); 1185 write_reg(state, RSTV0910_P2_DMDCFG4, 0x04); 1186 1187 write_reg(state, RSTV0910_TSTRES0, 0x80); /* LDPC Reset */ 1188 write_reg(state, RSTV0910_TSTRES0, 0x00); 1189 1190 write_reg(state, RSTV0910_P1_TSPIDFLT1, 0x00); 1191 write_reg(state, RSTV0910_P2_TSPIDFLT1, 0x00); 1192 1193 write_reg(state, RSTV0910_P1_TMGCFG2, 0x80); 1194 write_reg(state, RSTV0910_P2_TMGCFG2, 0x80); 1195 1196 set_mclock(state, 135000000); 1197 1198 /* TS output */ 1199 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01); 1200 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh); 1201 write_reg(state, RSTV0910_P1_TSCFGM, 0xC0); /* Manual speed */ 1202 write_reg(state, RSTV0910_P1_TSCFGL, 0x20); 1203 1204 write_reg(state, RSTV0910_P1_TSSPEED, state->tsspeed); 1205 1206 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01); 1207 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh); 1208 write_reg(state, RSTV0910_P2_TSCFGM, 0xC0); /* Manual speed */ 1209 write_reg(state, RSTV0910_P2_TSCFGL, 0x20); 1210 1211 write_reg(state, RSTV0910_P2_TSSPEED, state->tsspeed); 1212 1213 /* Reset stream merger */ 1214 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01); 1215 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01); 1216 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh); 1217 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh); 1218 1219 write_reg(state, RSTV0910_P1_I2CRPT, state->i2crpt); 1220 write_reg(state, RSTV0910_P2_I2CRPT, state->i2crpt); 1221 1222 write_reg(state, RSTV0910_P1_TSINSDELM, 0x17); 1223 write_reg(state, RSTV0910_P1_TSINSDELL, 0xff); 1224 1225 write_reg(state, RSTV0910_P2_TSINSDELM, 0x17); 1226 write_reg(state, RSTV0910_P2_TSINSDELL, 0xff); 1227 1228 init_diseqc(state); 1229 return 0; 1230 } 1231 1232 static int gate_ctrl(struct dvb_frontend *fe, int enable) 1233 { 1234 struct stv *state = fe->demodulator_priv; 1235 u8 i2crpt = state->i2crpt & ~0x86; 1236 1237 /* 1238 * mutex_lock note: Concurrent I2C gate bus accesses must be 1239 * prevented (STV0910 = dual demod on a single IC with a single I2C 1240 * gate/bus, and two tuners attached), similar to most (if not all) 1241 * other I2C host interfaces/buses. 1242 * 1243 * enable=1 (open I2C gate) will grab the lock 1244 * enable=0 (close I2C gate) releases the lock 1245 */ 1246 1247 if (enable) { 1248 mutex_lock(&state->base->i2c_lock); 1249 i2crpt |= 0x80; 1250 } else { 1251 i2crpt |= 0x02; 1252 } 1253 1254 if (write_reg(state, state->nr ? RSTV0910_P2_I2CRPT : 1255 RSTV0910_P1_I2CRPT, i2crpt) < 0) { 1256 /* don't hold the I2C bus lock on failure */ 1257 if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock))) 1258 mutex_unlock(&state->base->i2c_lock); 1259 dev_err(&state->base->i2c->dev, 1260 "%s() write_reg failure (enable=%d)\n", 1261 __func__, enable); 1262 return -EIO; 1263 } 1264 1265 state->i2crpt = i2crpt; 1266 1267 if (!enable) 1268 if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock))) 1269 mutex_unlock(&state->base->i2c_lock); 1270 return 0; 1271 } 1272 1273 static void release(struct dvb_frontend *fe) 1274 { 1275 struct stv *state = fe->demodulator_priv; 1276 1277 state->base->count--; 1278 if (state->base->count == 0) { 1279 list_del(&state->base->stvlist); 1280 kfree(state->base); 1281 } 1282 kfree(state); 1283 } 1284 1285 static int set_parameters(struct dvb_frontend *fe) 1286 { 1287 int stat = 0; 1288 struct stv *state = fe->demodulator_priv; 1289 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 1290 1291 stop(state); 1292 if (fe->ops.tuner_ops.set_params) 1293 fe->ops.tuner_ops.set_params(fe); 1294 state->symbol_rate = p->symbol_rate; 1295 stat = start(state, p); 1296 return stat; 1297 } 1298 1299 static int manage_matype_info(struct stv *state) 1300 { 1301 if (!state->started) 1302 return -EINVAL; 1303 if (state->receive_mode == RCVMODE_DVBS2) { 1304 u8 bbheader[2]; 1305 1306 read_regs(state, RSTV0910_P2_MATSTR1 + state->regoff, 1307 bbheader, 2); 1308 state->feroll_off = 1309 (enum fe_stv0910_roll_off)(bbheader[0] & 0x03); 1310 state->is_vcm = (bbheader[0] & 0x10) == 0; 1311 state->is_standard_broadcast = (bbheader[0] & 0xFC) == 0xF0; 1312 } else if (state->receive_mode == RCVMODE_DVBS) { 1313 state->is_vcm = 0; 1314 state->is_standard_broadcast = 1; 1315 state->feroll_off = FE_SAT_35; 1316 } 1317 return 0; 1318 } 1319 1320 static int read_snr(struct dvb_frontend *fe) 1321 { 1322 struct stv *state = fe->demodulator_priv; 1323 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 1324 s32 snrval; 1325 1326 if (!get_signal_to_noise(state, &snrval)) { 1327 p->cnr.stat[0].scale = FE_SCALE_DECIBEL; 1328 p->cnr.stat[0].svalue = 100 * snrval; /* fix scale */ 1329 } else { 1330 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1331 } 1332 1333 return 0; 1334 } 1335 1336 static int read_ber(struct dvb_frontend *fe) 1337 { 1338 struct stv *state = fe->demodulator_priv; 1339 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 1340 u32 n, d; 1341 1342 get_bit_error_rate(state, &n, &d); 1343 1344 p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER; 1345 p->pre_bit_error.stat[0].uvalue = n; 1346 p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER; 1347 p->pre_bit_count.stat[0].uvalue = d; 1348 1349 return 0; 1350 } 1351 1352 static void read_signal_strength(struct dvb_frontend *fe) 1353 { 1354 struct stv *state = fe->demodulator_priv; 1355 struct dtv_frontend_properties *p = &state->fe.dtv_property_cache; 1356 u8 reg[2]; 1357 u16 agc; 1358 s32 padc, power = 0; 1359 int i; 1360 1361 read_regs(state, RSTV0910_P2_AGCIQIN1 + state->regoff, reg, 2); 1362 1363 agc = (((u32)reg[0]) << 8) | reg[1]; 1364 1365 for (i = 0; i < 5; i += 1) { 1366 read_regs(state, RSTV0910_P2_POWERI + state->regoff, reg, 2); 1367 power += (u32)reg[0] * (u32)reg[0] 1368 + (u32)reg[1] * (u32)reg[1]; 1369 usleep_range(3000, 4000); 1370 } 1371 power /= 5; 1372 1373 padc = table_lookup(padc_lookup, ARRAY_SIZE(padc_lookup), power) + 352; 1374 1375 p->strength.stat[0].scale = FE_SCALE_DECIBEL; 1376 p->strength.stat[0].svalue = (padc - agc); 1377 } 1378 1379 static int read_status(struct dvb_frontend *fe, enum fe_status *status) 1380 { 1381 struct stv *state = fe->demodulator_priv; 1382 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 1383 u8 dmd_state = 0; 1384 u8 dstatus = 0; 1385 enum receive_mode cur_receive_mode = RCVMODE_NONE; 1386 u32 feclock = 0; 1387 1388 *status = 0; 1389 1390 read_reg(state, RSTV0910_P2_DMDSTATE + state->regoff, &dmd_state); 1391 1392 if (dmd_state & 0x40) { 1393 read_reg(state, RSTV0910_P2_DSTATUS + state->regoff, &dstatus); 1394 if (dstatus & 0x08) 1395 cur_receive_mode = (dmd_state & 0x20) ? 1396 RCVMODE_DVBS : RCVMODE_DVBS2; 1397 } 1398 if (cur_receive_mode == RCVMODE_NONE) { 1399 set_vth(state); 1400 1401 /* reset signal statistics */ 1402 p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1403 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1404 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1405 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1406 1407 return 0; 1408 } 1409 1410 *status |= (FE_HAS_SIGNAL 1411 | FE_HAS_CARRIER 1412 | FE_HAS_VITERBI 1413 | FE_HAS_SYNC); 1414 1415 if (state->receive_mode == RCVMODE_NONE) { 1416 state->receive_mode = cur_receive_mode; 1417 state->demod_lock_time = jiffies; 1418 state->first_time_lock = 1; 1419 1420 get_signal_parameters(state); 1421 tracking_optimization(state); 1422 1423 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff, 1424 state->tscfgh); 1425 usleep_range(3000, 4000); 1426 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff, 1427 state->tscfgh | 0x01); 1428 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff, 1429 state->tscfgh); 1430 } 1431 if (dmd_state & 0x40) { 1432 if (state->receive_mode == RCVMODE_DVBS2) { 1433 u8 pdelstatus; 1434 1435 read_reg(state, 1436 RSTV0910_P2_PDELSTATUS1 + state->regoff, 1437 &pdelstatus); 1438 feclock = (pdelstatus & 0x02) != 0; 1439 } else { 1440 u8 vstatus; 1441 1442 read_reg(state, 1443 RSTV0910_P2_VSTATUSVIT + state->regoff, 1444 &vstatus); 1445 feclock = (vstatus & 0x08) != 0; 1446 } 1447 } 1448 1449 if (feclock) { 1450 *status |= FE_HAS_LOCK; 1451 1452 if (state->first_time_lock) { 1453 u8 tmp; 1454 1455 state->first_time_lock = 0; 1456 1457 manage_matype_info(state); 1458 1459 if (state->receive_mode == RCVMODE_DVBS2) { 1460 /* 1461 * FSTV0910_P2_MANUALSX_ROLLOFF, 1462 * FSTV0910_P2_MANUALS2_ROLLOFF = 0 1463 */ 1464 state->demod_bits &= ~0x84; 1465 write_reg(state, 1466 RSTV0910_P2_DEMOD + state->regoff, 1467 state->demod_bits); 1468 read_reg(state, 1469 RSTV0910_P2_PDELCTRL2 + state->regoff, 1470 &tmp); 1471 /* reset DVBS2 packet delinator error counter */ 1472 tmp |= 0x40; 1473 write_reg(state, 1474 RSTV0910_P2_PDELCTRL2 + state->regoff, 1475 tmp); 1476 /* reset DVBS2 packet delinator error counter */ 1477 tmp &= ~0x40; 1478 write_reg(state, 1479 RSTV0910_P2_PDELCTRL2 + state->regoff, 1480 tmp); 1481 1482 state->berscale = 2; 1483 state->last_bernumerator = 0; 1484 state->last_berdenominator = 1; 1485 /* force to PRE BCH Rate */ 1486 write_reg(state, 1487 RSTV0910_P2_ERRCTRL1 + state->regoff, 1488 BER_SRC_S2 | state->berscale); 1489 } else { 1490 state->berscale = 2; 1491 state->last_bernumerator = 0; 1492 state->last_berdenominator = 1; 1493 /* force to PRE RS Rate */ 1494 write_reg(state, 1495 RSTV0910_P2_ERRCTRL1 + state->regoff, 1496 BER_SRC_S | state->berscale); 1497 } 1498 /* Reset the Total packet counter */ 1499 write_reg(state, 1500 RSTV0910_P2_FBERCPT4 + state->regoff, 0x00); 1501 /* 1502 * Reset the packet Error counter2 (and Set it to 1503 * infinite error count mode) 1504 */ 1505 write_reg(state, 1506 RSTV0910_P2_ERRCTRL2 + state->regoff, 0xc1); 1507 1508 set_vth_default(state); 1509 if (state->receive_mode == RCVMODE_DVBS) 1510 enable_puncture_rate(state, 1511 state->puncture_rate); 1512 } 1513 1514 /* Use highest signaled ModCod for quality */ 1515 if (state->is_vcm) { 1516 u8 tmp; 1517 enum fe_stv0910_mod_cod mod_cod; 1518 1519 read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, 1520 &tmp); 1521 mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2); 1522 1523 if (mod_cod > state->mod_cod) 1524 state->mod_cod = mod_cod; 1525 } 1526 } 1527 1528 /* read signal statistics */ 1529 1530 /* read signal strength */ 1531 read_signal_strength(fe); 1532 1533 /* read carrier/noise on FE_HAS_CARRIER */ 1534 if (*status & FE_HAS_CARRIER) 1535 read_snr(fe); 1536 else 1537 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1538 1539 /* read ber */ 1540 if (*status & FE_HAS_VITERBI) { 1541 read_ber(fe); 1542 } else { 1543 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1544 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1545 } 1546 1547 return 0; 1548 } 1549 1550 static int get_frontend(struct dvb_frontend *fe, 1551 struct dtv_frontend_properties *p) 1552 { 1553 struct stv *state = fe->demodulator_priv; 1554 u8 tmp; 1555 u32 symbolrate; 1556 1557 if (state->receive_mode == RCVMODE_DVBS2) { 1558 u32 mc; 1559 const enum fe_modulation modcod2mod[0x20] = { 1560 QPSK, QPSK, QPSK, QPSK, 1561 QPSK, QPSK, QPSK, QPSK, 1562 QPSK, QPSK, QPSK, QPSK, 1563 PSK_8, PSK_8, PSK_8, PSK_8, 1564 PSK_8, PSK_8, APSK_16, APSK_16, 1565 APSK_16, APSK_16, APSK_16, APSK_16, 1566 APSK_32, APSK_32, APSK_32, APSK_32, 1567 APSK_32, 1568 }; 1569 const enum fe_code_rate modcod2fec[0x20] = { 1570 FEC_NONE, FEC_NONE, FEC_NONE, FEC_2_5, 1571 FEC_1_2, FEC_3_5, FEC_2_3, FEC_3_4, 1572 FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10, 1573 FEC_3_5, FEC_2_3, FEC_3_4, FEC_5_6, 1574 FEC_8_9, FEC_9_10, FEC_2_3, FEC_3_4, 1575 FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10, 1576 FEC_3_4, FEC_4_5, FEC_5_6, FEC_8_9, 1577 FEC_9_10 1578 }; 1579 read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp); 1580 mc = ((tmp & 0x7c) >> 2); 1581 p->pilot = (tmp & 0x01) ? PILOT_ON : PILOT_OFF; 1582 p->modulation = modcod2mod[mc]; 1583 p->fec_inner = modcod2fec[mc]; 1584 } else if (state->receive_mode == RCVMODE_DVBS) { 1585 read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp); 1586 switch (tmp & 0x1F) { 1587 case 0x0d: 1588 p->fec_inner = FEC_1_2; 1589 break; 1590 case 0x12: 1591 p->fec_inner = FEC_2_3; 1592 break; 1593 case 0x15: 1594 p->fec_inner = FEC_3_4; 1595 break; 1596 case 0x18: 1597 p->fec_inner = FEC_5_6; 1598 break; 1599 case 0x1a: 1600 p->fec_inner = FEC_7_8; 1601 break; 1602 default: 1603 p->fec_inner = FEC_NONE; 1604 break; 1605 } 1606 p->rolloff = ROLLOFF_35; 1607 } 1608 1609 if (state->receive_mode != RCVMODE_NONE) { 1610 get_cur_symbol_rate(state, &symbolrate); 1611 p->symbol_rate = symbolrate; 1612 } 1613 return 0; 1614 } 1615 1616 static int tune(struct dvb_frontend *fe, bool re_tune, 1617 unsigned int mode_flags, 1618 unsigned int *delay, enum fe_status *status) 1619 { 1620 struct stv *state = fe->demodulator_priv; 1621 int r; 1622 1623 if (re_tune) { 1624 r = set_parameters(fe); 1625 if (r) 1626 return r; 1627 state->tune_time = jiffies; 1628 } 1629 1630 r = read_status(fe, status); 1631 if (r) 1632 return r; 1633 1634 if (*status & FE_HAS_LOCK) 1635 return 0; 1636 *delay = HZ; 1637 1638 return 0; 1639 } 1640 1641 static enum dvbfe_algo get_algo(struct dvb_frontend *fe) 1642 { 1643 return DVBFE_ALGO_HW; 1644 } 1645 1646 static int set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone) 1647 { 1648 struct stv *state = fe->demodulator_priv; 1649 u16 offs = state->nr ? 0x40 : 0; 1650 1651 switch (tone) { 1652 case SEC_TONE_ON: 1653 return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x38); 1654 case SEC_TONE_OFF: 1655 return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3a); 1656 default: 1657 break; 1658 } 1659 return -EINVAL; 1660 } 1661 1662 static int wait_dis(struct stv *state, u8 flag, u8 val) 1663 { 1664 int i; 1665 u8 stat; 1666 u16 offs = state->nr ? 0x40 : 0; 1667 1668 for (i = 0; i < 10; i++) { 1669 read_reg(state, RSTV0910_P1_DISTXSTATUS + offs, &stat); 1670 if ((stat & flag) == val) 1671 return 0; 1672 usleep_range(10000, 11000); 1673 } 1674 return -ETIMEDOUT; 1675 } 1676 1677 static int send_master_cmd(struct dvb_frontend *fe, 1678 struct dvb_diseqc_master_cmd *cmd) 1679 { 1680 struct stv *state = fe->demodulator_priv; 1681 int i; 1682 1683 SET_FIELD(DISEQC_MODE, 2); 1684 SET_FIELD(DIS_PRECHARGE, 1); 1685 for (i = 0; i < cmd->msg_len; i++) { 1686 wait_dis(state, 0x40, 0x00); 1687 SET_REG(DISTXFIFO, cmd->msg[i]); 1688 } 1689 SET_FIELD(DIS_PRECHARGE, 0); 1690 wait_dis(state, 0x20, 0x20); 1691 return 0; 1692 } 1693 1694 static int send_burst(struct dvb_frontend *fe, enum fe_sec_mini_cmd burst) 1695 { 1696 struct stv *state = fe->demodulator_priv; 1697 u8 value; 1698 1699 if (burst == SEC_MINI_A) { 1700 SET_FIELD(DISEQC_MODE, 3); 1701 value = 0x00; 1702 } else { 1703 SET_FIELD(DISEQC_MODE, 2); 1704 value = 0xFF; 1705 } 1706 1707 SET_FIELD(DIS_PRECHARGE, 1); 1708 wait_dis(state, 0x40, 0x00); 1709 SET_REG(DISTXFIFO, value); 1710 SET_FIELD(DIS_PRECHARGE, 0); 1711 wait_dis(state, 0x20, 0x20); 1712 1713 return 0; 1714 } 1715 1716 static int sleep(struct dvb_frontend *fe) 1717 { 1718 struct stv *state = fe->demodulator_priv; 1719 1720 stop(state); 1721 return 0; 1722 } 1723 1724 static const struct dvb_frontend_ops stv0910_ops = { 1725 .delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS }, 1726 .info = { 1727 .name = "ST STV0910", 1728 .frequency_min_hz = 950 * MHz, 1729 .frequency_max_hz = 2150 * MHz, 1730 .symbol_rate_min = 100000, 1731 .symbol_rate_max = 70000000, 1732 .caps = FE_CAN_INVERSION_AUTO | 1733 FE_CAN_FEC_AUTO | 1734 FE_CAN_QPSK | 1735 FE_CAN_2G_MODULATION | 1736 FE_CAN_MULTISTREAM 1737 }, 1738 .sleep = sleep, 1739 .release = release, 1740 .i2c_gate_ctrl = gate_ctrl, 1741 .set_frontend = set_parameters, 1742 .get_frontend_algo = get_algo, 1743 .get_frontend = get_frontend, 1744 .tune = tune, 1745 .read_status = read_status, 1746 .set_tone = set_tone, 1747 1748 .diseqc_send_master_cmd = send_master_cmd, 1749 .diseqc_send_burst = send_burst, 1750 }; 1751 1752 static struct stv_base *match_base(struct i2c_adapter *i2c, u8 adr) 1753 { 1754 struct stv_base *p; 1755 1756 list_for_each_entry(p, &stvlist, stvlist) 1757 if (p->i2c == i2c && p->adr == adr) 1758 return p; 1759 return NULL; 1760 } 1761 1762 static void stv0910_init_stats(struct stv *state) 1763 { 1764 struct dtv_frontend_properties *p = &state->fe.dtv_property_cache; 1765 1766 p->strength.len = 1; 1767 p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1768 p->cnr.len = 1; 1769 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1770 p->pre_bit_error.len = 1; 1771 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1772 p->pre_bit_count.len = 1; 1773 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1774 } 1775 1776 struct dvb_frontend *stv0910_attach(struct i2c_adapter *i2c, 1777 struct stv0910_cfg *cfg, 1778 int nr) 1779 { 1780 struct stv *state; 1781 struct stv_base *base; 1782 1783 state = kzalloc(sizeof(*state), GFP_KERNEL); 1784 if (!state) 1785 return NULL; 1786 1787 state->tscfgh = 0x20 | (cfg->parallel ? 0 : 0x40); 1788 state->tsgeneral = (cfg->parallel == 2) ? 0x02 : 0x00; 1789 state->i2crpt = 0x0A | ((cfg->rptlvl & 0x07) << 4); 1790 /* use safe tsspeed value if unspecified through stv0910_cfg */ 1791 state->tsspeed = (cfg->tsspeed ? cfg->tsspeed : 0x28); 1792 state->nr = nr; 1793 state->regoff = state->nr ? 0 : 0x200; 1794 state->search_range = 16000000; 1795 state->demod_bits = 0x10; /* Inversion : Auto with reset to 0 */ 1796 state->receive_mode = RCVMODE_NONE; 1797 state->cur_scrambling_code = (~0U); 1798 state->single = cfg->single ? 1 : 0; 1799 1800 base = match_base(i2c, cfg->adr); 1801 if (base) { 1802 base->count++; 1803 state->base = base; 1804 } else { 1805 base = kzalloc(sizeof(*base), GFP_KERNEL); 1806 if (!base) 1807 goto fail; 1808 base->i2c = i2c; 1809 base->adr = cfg->adr; 1810 base->count = 1; 1811 base->extclk = cfg->clk ? cfg->clk : 30000000; 1812 1813 mutex_init(&base->i2c_lock); 1814 mutex_init(&base->reg_lock); 1815 state->base = base; 1816 if (probe(state) < 0) { 1817 dev_info(&i2c->dev, "No demod found at adr %02X on %s\n", 1818 cfg->adr, dev_name(&i2c->dev)); 1819 kfree(base); 1820 goto fail; 1821 } 1822 list_add(&base->stvlist, &stvlist); 1823 } 1824 state->fe.ops = stv0910_ops; 1825 state->fe.demodulator_priv = state; 1826 state->nr = nr; 1827 1828 dev_info(&i2c->dev, "%s demod found at adr %02X on %s\n", 1829 state->fe.ops.info.name, cfg->adr, dev_name(&i2c->dev)); 1830 1831 stv0910_init_stats(state); 1832 1833 return &state->fe; 1834 1835 fail: 1836 kfree(state); 1837 return NULL; 1838 } 1839 EXPORT_SYMBOL_GPL(stv0910_attach); 1840 1841 MODULE_DESCRIPTION("ST STV0910 multistandard frontend driver"); 1842 MODULE_AUTHOR("Ralph and Marcus Metzler, Manfred Voelkel"); 1843 MODULE_LICENSE("GPL v2"); 1844