1 /* 2 * Driver for the ST STV0910 DVB-S/S2 demodulator. 3 * 4 * Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de> 5 * Marcus Metzler <mocm@metzlerbros.de> 6 * developed for Digital Devices GmbH 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * version 2 only, as published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/module.h> 20 #include <linux/moduleparam.h> 21 #include <linux/init.h> 22 #include <linux/delay.h> 23 #include <linux/firmware.h> 24 #include <linux/i2c.h> 25 #include <asm/div64.h> 26 27 #include <media/dvb_frontend.h> 28 #include "stv0910.h" 29 #include "stv0910_regs.h" 30 31 #define EXT_CLOCK 30000000 32 #define TUNING_DELAY 200 33 #define BER_SRC_S 0x20 34 #define BER_SRC_S2 0x20 35 36 static LIST_HEAD(stvlist); 37 38 enum receive_mode { RCVMODE_NONE, RCVMODE_DVBS, RCVMODE_DVBS2, RCVMODE_AUTO }; 39 40 enum dvbs2_fectype { DVBS2_64K, DVBS2_16K }; 41 42 enum dvbs2_mod_cod { 43 DVBS2_DUMMY_PLF, DVBS2_QPSK_1_4, DVBS2_QPSK_1_3, DVBS2_QPSK_2_5, 44 DVBS2_QPSK_1_2, DVBS2_QPSK_3_5, DVBS2_QPSK_2_3, DVBS2_QPSK_3_4, 45 DVBS2_QPSK_4_5, DVBS2_QPSK_5_6, DVBS2_QPSK_8_9, DVBS2_QPSK_9_10, 46 DVBS2_8PSK_3_5, DVBS2_8PSK_2_3, DVBS2_8PSK_3_4, DVBS2_8PSK_5_6, 47 DVBS2_8PSK_8_9, DVBS2_8PSK_9_10, DVBS2_16APSK_2_3, DVBS2_16APSK_3_4, 48 DVBS2_16APSK_4_5, DVBS2_16APSK_5_6, DVBS2_16APSK_8_9, DVBS2_16APSK_9_10, 49 DVBS2_32APSK_3_4, DVBS2_32APSK_4_5, DVBS2_32APSK_5_6, DVBS2_32APSK_8_9, 50 DVBS2_32APSK_9_10 51 }; 52 53 enum fe_stv0910_mod_cod { 54 FE_DUMMY_PLF, FE_QPSK_14, FE_QPSK_13, FE_QPSK_25, 55 FE_QPSK_12, FE_QPSK_35, FE_QPSK_23, FE_QPSK_34, 56 FE_QPSK_45, FE_QPSK_56, FE_QPSK_89, FE_QPSK_910, 57 FE_8PSK_35, FE_8PSK_23, FE_8PSK_34, FE_8PSK_56, 58 FE_8PSK_89, FE_8PSK_910, FE_16APSK_23, FE_16APSK_34, 59 FE_16APSK_45, FE_16APSK_56, FE_16APSK_89, FE_16APSK_910, 60 FE_32APSK_34, FE_32APSK_45, FE_32APSK_56, FE_32APSK_89, 61 FE_32APSK_910 62 }; 63 64 enum fe_stv0910_roll_off { FE_SAT_35, FE_SAT_25, FE_SAT_20, FE_SAT_15 }; 65 66 static inline u32 muldiv32(u32 a, u32 b, u32 c) 67 { 68 u64 tmp64; 69 70 tmp64 = (u64)a * (u64)b; 71 do_div(tmp64, c); 72 73 return (u32)tmp64; 74 } 75 76 struct stv_base { 77 struct list_head stvlist; 78 79 u8 adr; 80 struct i2c_adapter *i2c; 81 struct mutex i2c_lock; /* shared I2C access protect */ 82 struct mutex reg_lock; /* shared register write protect */ 83 int count; 84 85 u32 extclk; 86 u32 mclk; 87 }; 88 89 struct stv { 90 struct stv_base *base; 91 struct dvb_frontend fe; 92 int nr; 93 u16 regoff; 94 u8 i2crpt; 95 u8 tscfgh; 96 u8 tsgeneral; 97 u8 tsspeed; 98 u8 single; 99 unsigned long tune_time; 100 101 s32 search_range; 102 u32 started; 103 u32 demod_lock_time; 104 enum receive_mode receive_mode; 105 u32 demod_timeout; 106 u32 fec_timeout; 107 u32 first_time_lock; 108 u8 demod_bits; 109 u32 symbol_rate; 110 111 u8 last_viterbi_rate; 112 enum fe_code_rate puncture_rate; 113 enum fe_stv0910_mod_cod mod_cod; 114 enum dvbs2_fectype fectype; 115 u32 pilots; 116 enum fe_stv0910_roll_off feroll_off; 117 118 int is_standard_broadcast; 119 int is_vcm; 120 121 u32 cur_scrambling_code; 122 123 u32 last_bernumerator; 124 u32 last_berdenominator; 125 u8 berscale; 126 127 u8 vth[6]; 128 }; 129 130 struct sinit_table { 131 u16 address; 132 u8 data; 133 }; 134 135 struct slookup { 136 s16 value; 137 u32 reg_value; 138 }; 139 140 static int write_reg(struct stv *state, u16 reg, u8 val) 141 { 142 struct i2c_adapter *adap = state->base->i2c; 143 u8 data[3] = {reg >> 8, reg & 0xff, val}; 144 struct i2c_msg msg = {.addr = state->base->adr, .flags = 0, 145 .buf = data, .len = 3}; 146 147 if (i2c_transfer(adap, &msg, 1) != 1) { 148 dev_warn(&adap->dev, "i2c write error ([%02x] %04x: %02x)\n", 149 state->base->adr, reg, val); 150 return -EIO; 151 } 152 return 0; 153 } 154 155 static inline int i2c_read_regs16(struct i2c_adapter *adapter, u8 adr, 156 u16 reg, u8 *val, int count) 157 { 158 u8 msg[2] = {reg >> 8, reg & 0xff}; 159 struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0, 160 .buf = msg, .len = 2}, 161 {.addr = adr, .flags = I2C_M_RD, 162 .buf = val, .len = count } }; 163 164 if (i2c_transfer(adapter, msgs, 2) != 2) { 165 dev_warn(&adapter->dev, "i2c read error ([%02x] %04x)\n", 166 adr, reg); 167 return -EIO; 168 } 169 return 0; 170 } 171 172 static int read_reg(struct stv *state, u16 reg, u8 *val) 173 { 174 return i2c_read_regs16(state->base->i2c, state->base->adr, 175 reg, val, 1); 176 } 177 178 static int read_regs(struct stv *state, u16 reg, u8 *val, int len) 179 { 180 return i2c_read_regs16(state->base->i2c, state->base->adr, 181 reg, val, len); 182 } 183 184 static int write_shared_reg(struct stv *state, u16 reg, u8 mask, u8 val) 185 { 186 int status; 187 u8 tmp; 188 189 mutex_lock(&state->base->reg_lock); 190 status = read_reg(state, reg, &tmp); 191 if (!status) 192 status = write_reg(state, reg, (tmp & ~mask) | (val & mask)); 193 mutex_unlock(&state->base->reg_lock); 194 return status; 195 } 196 197 static int write_field(struct stv *state, u32 field, u8 val) 198 { 199 int status; 200 u8 shift, mask, old, new; 201 202 status = read_reg(state, field >> 16, &old); 203 if (status) 204 return status; 205 mask = field & 0xff; 206 shift = (field >> 12) & 0xf; 207 new = ((val << shift) & mask) | (old & ~mask); 208 if (new == old) 209 return 0; 210 return write_reg(state, field >> 16, new); 211 } 212 213 #define SET_FIELD(_reg, _val) \ 214 write_field(state, state->nr ? FSTV0910_P2_##_reg : \ 215 FSTV0910_P1_##_reg, _val) 216 217 #define SET_REG(_reg, _val) \ 218 write_reg(state, state->nr ? RSTV0910_P2_##_reg : \ 219 RSTV0910_P1_##_reg, _val) 220 221 #define GET_REG(_reg, _val) \ 222 read_reg(state, state->nr ? RSTV0910_P2_##_reg : \ 223 RSTV0910_P1_##_reg, _val) 224 225 static const struct slookup s1_sn_lookup[] = { 226 { 0, 9242 }, /* C/N= 0dB */ 227 { 5, 9105 }, /* C/N= 0.5dB */ 228 { 10, 8950 }, /* C/N= 1.0dB */ 229 { 15, 8780 }, /* C/N= 1.5dB */ 230 { 20, 8566 }, /* C/N= 2.0dB */ 231 { 25, 8366 }, /* C/N= 2.5dB */ 232 { 30, 8146 }, /* C/N= 3.0dB */ 233 { 35, 7908 }, /* C/N= 3.5dB */ 234 { 40, 7666 }, /* C/N= 4.0dB */ 235 { 45, 7405 }, /* C/N= 4.5dB */ 236 { 50, 7136 }, /* C/N= 5.0dB */ 237 { 55, 6861 }, /* C/N= 5.5dB */ 238 { 60, 6576 }, /* C/N= 6.0dB */ 239 { 65, 6330 }, /* C/N= 6.5dB */ 240 { 70, 6048 }, /* C/N= 7.0dB */ 241 { 75, 5768 }, /* C/N= 7.5dB */ 242 { 80, 5492 }, /* C/N= 8.0dB */ 243 { 85, 5224 }, /* C/N= 8.5dB */ 244 { 90, 4959 }, /* C/N= 9.0dB */ 245 { 95, 4709 }, /* C/N= 9.5dB */ 246 { 100, 4467 }, /* C/N=10.0dB */ 247 { 105, 4236 }, /* C/N=10.5dB */ 248 { 110, 4013 }, /* C/N=11.0dB */ 249 { 115, 3800 }, /* C/N=11.5dB */ 250 { 120, 3598 }, /* C/N=12.0dB */ 251 { 125, 3406 }, /* C/N=12.5dB */ 252 { 130, 3225 }, /* C/N=13.0dB */ 253 { 135, 3052 }, /* C/N=13.5dB */ 254 { 140, 2889 }, /* C/N=14.0dB */ 255 { 145, 2733 }, /* C/N=14.5dB */ 256 { 150, 2587 }, /* C/N=15.0dB */ 257 { 160, 2318 }, /* C/N=16.0dB */ 258 { 170, 2077 }, /* C/N=17.0dB */ 259 { 180, 1862 }, /* C/N=18.0dB */ 260 { 190, 1670 }, /* C/N=19.0dB */ 261 { 200, 1499 }, /* C/N=20.0dB */ 262 { 210, 1347 }, /* C/N=21.0dB */ 263 { 220, 1213 }, /* C/N=22.0dB */ 264 { 230, 1095 }, /* C/N=23.0dB */ 265 { 240, 992 }, /* C/N=24.0dB */ 266 { 250, 900 }, /* C/N=25.0dB */ 267 { 260, 826 }, /* C/N=26.0dB */ 268 { 270, 758 }, /* C/N=27.0dB */ 269 { 280, 702 }, /* C/N=28.0dB */ 270 { 290, 653 }, /* C/N=29.0dB */ 271 { 300, 613 }, /* C/N=30.0dB */ 272 { 310, 579 }, /* C/N=31.0dB */ 273 { 320, 550 }, /* C/N=32.0dB */ 274 { 330, 526 }, /* C/N=33.0dB */ 275 { 350, 490 }, /* C/N=33.0dB */ 276 { 400, 445 }, /* C/N=40.0dB */ 277 { 450, 430 }, /* C/N=45.0dB */ 278 { 500, 426 }, /* C/N=50.0dB */ 279 { 510, 425 } /* C/N=51.0dB */ 280 }; 281 282 static const struct slookup s2_sn_lookup[] = { 283 { -30, 13950 }, /* C/N=-2.5dB */ 284 { -25, 13580 }, /* C/N=-2.5dB */ 285 { -20, 13150 }, /* C/N=-2.0dB */ 286 { -15, 12760 }, /* C/N=-1.5dB */ 287 { -10, 12345 }, /* C/N=-1.0dB */ 288 { -5, 11900 }, /* C/N=-0.5dB */ 289 { 0, 11520 }, /* C/N= 0dB */ 290 { 5, 11080 }, /* C/N= 0.5dB */ 291 { 10, 10630 }, /* C/N= 1.0dB */ 292 { 15, 10210 }, /* C/N= 1.5dB */ 293 { 20, 9790 }, /* C/N= 2.0dB */ 294 { 25, 9390 }, /* C/N= 2.5dB */ 295 { 30, 8970 }, /* C/N= 3.0dB */ 296 { 35, 8575 }, /* C/N= 3.5dB */ 297 { 40, 8180 }, /* C/N= 4.0dB */ 298 { 45, 7800 }, /* C/N= 4.5dB */ 299 { 50, 7430 }, /* C/N= 5.0dB */ 300 { 55, 7080 }, /* C/N= 5.5dB */ 301 { 60, 6720 }, /* C/N= 6.0dB */ 302 { 65, 6320 }, /* C/N= 6.5dB */ 303 { 70, 6060 }, /* C/N= 7.0dB */ 304 { 75, 5760 }, /* C/N= 7.5dB */ 305 { 80, 5480 }, /* C/N= 8.0dB */ 306 { 85, 5200 }, /* C/N= 8.5dB */ 307 { 90, 4930 }, /* C/N= 9.0dB */ 308 { 95, 4680 }, /* C/N= 9.5dB */ 309 { 100, 4425 }, /* C/N=10.0dB */ 310 { 105, 4210 }, /* C/N=10.5dB */ 311 { 110, 3980 }, /* C/N=11.0dB */ 312 { 115, 3765 }, /* C/N=11.5dB */ 313 { 120, 3570 }, /* C/N=12.0dB */ 314 { 125, 3315 }, /* C/N=12.5dB */ 315 { 130, 3140 }, /* C/N=13.0dB */ 316 { 135, 2980 }, /* C/N=13.5dB */ 317 { 140, 2820 }, /* C/N=14.0dB */ 318 { 145, 2670 }, /* C/N=14.5dB */ 319 { 150, 2535 }, /* C/N=15.0dB */ 320 { 160, 2270 }, /* C/N=16.0dB */ 321 { 170, 2035 }, /* C/N=17.0dB */ 322 { 180, 1825 }, /* C/N=18.0dB */ 323 { 190, 1650 }, /* C/N=19.0dB */ 324 { 200, 1485 }, /* C/N=20.0dB */ 325 { 210, 1340 }, /* C/N=21.0dB */ 326 { 220, 1212 }, /* C/N=22.0dB */ 327 { 230, 1100 }, /* C/N=23.0dB */ 328 { 240, 1000 }, /* C/N=24.0dB */ 329 { 250, 910 }, /* C/N=25.0dB */ 330 { 260, 836 }, /* C/N=26.0dB */ 331 { 270, 772 }, /* C/N=27.0dB */ 332 { 280, 718 }, /* C/N=28.0dB */ 333 { 290, 671 }, /* C/N=29.0dB */ 334 { 300, 635 }, /* C/N=30.0dB */ 335 { 310, 602 }, /* C/N=31.0dB */ 336 { 320, 575 }, /* C/N=32.0dB */ 337 { 330, 550 }, /* C/N=33.0dB */ 338 { 350, 517 }, /* C/N=35.0dB */ 339 { 400, 480 }, /* C/N=40.0dB */ 340 { 450, 466 }, /* C/N=45.0dB */ 341 { 500, 464 }, /* C/N=50.0dB */ 342 { 510, 463 }, /* C/N=51.0dB */ 343 }; 344 345 static const struct slookup padc_lookup[] = { 346 { 0, 118000 }, /* PADC= +0dBm */ 347 { -100, 93600 }, /* PADC= -1dBm */ 348 { -200, 74500 }, /* PADC= -2dBm */ 349 { -300, 59100 }, /* PADC= -3dBm */ 350 { -400, 47000 }, /* PADC= -4dBm */ 351 { -500, 37300 }, /* PADC= -5dBm */ 352 { -600, 29650 }, /* PADC= -6dBm */ 353 { -700, 23520 }, /* PADC= -7dBm */ 354 { -900, 14850 }, /* PADC= -9dBm */ 355 { -1100, 9380 }, /* PADC=-11dBm */ 356 { -1300, 5910 }, /* PADC=-13dBm */ 357 { -1500, 3730 }, /* PADC=-15dBm */ 358 { -1700, 2354 }, /* PADC=-17dBm */ 359 { -1900, 1485 }, /* PADC=-19dBm */ 360 { -2000, 1179 }, /* PADC=-20dBm */ 361 { -2100, 1000 }, /* PADC=-21dBm */ 362 }; 363 364 /********************************************************************* 365 * Tracking carrier loop carrier QPSK 1/4 to 8PSK 9/10 long Frame 366 *********************************************************************/ 367 static const u8 s2car_loop[] = { 368 /* 369 * Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff 370 * 20MPon 20MPoff 30MPon 30MPoff 371 */ 372 373 /* FE_QPSK_14 */ 374 0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x2A, 0x1C, 0x3A, 0x3B, 375 /* FE_QPSK_13 */ 376 0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x3A, 0x0C, 0x3A, 0x2B, 377 /* FE_QPSK_25 */ 378 0x1C, 0x3C, 0x1B, 0x3C, 0x3A, 0x1C, 0x3A, 0x3B, 0x3A, 0x2B, 379 /* FE_QPSK_12 */ 380 0x0C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B, 381 /* FE_QPSK_35 */ 382 0x1C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B, 383 /* FE_QPSK_23 */ 384 0x2C, 0x2C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B, 385 /* FE_QPSK_34 */ 386 0x3C, 0x2C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B, 387 /* FE_QPSK_45 */ 388 0x0D, 0x3C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B, 389 /* FE_QPSK_56 */ 390 0x1D, 0x3C, 0x0C, 0x2C, 0x2B, 0x1C, 0x1B, 0x3B, 0x0B, 0x1B, 391 /* FE_QPSK_89 */ 392 0x3D, 0x0D, 0x0C, 0x2C, 0x2B, 0x0C, 0x2B, 0x2B, 0x0B, 0x0B, 393 /* FE_QPSK_910 */ 394 0x1E, 0x0D, 0x1C, 0x2C, 0x3B, 0x0C, 0x2B, 0x2B, 0x1B, 0x0B, 395 /* FE_8PSK_35 */ 396 0x28, 0x09, 0x28, 0x09, 0x28, 0x09, 0x28, 0x08, 0x28, 0x27, 397 /* FE_8PSK_23 */ 398 0x19, 0x29, 0x19, 0x29, 0x19, 0x29, 0x38, 0x19, 0x28, 0x09, 399 /* FE_8PSK_34 */ 400 0x1A, 0x0B, 0x1A, 0x3A, 0x0A, 0x2A, 0x39, 0x2A, 0x39, 0x1A, 401 /* FE_8PSK_56 */ 402 0x2B, 0x2B, 0x1B, 0x1B, 0x0B, 0x1B, 0x1A, 0x0B, 0x1A, 0x1A, 403 /* FE_8PSK_89 */ 404 0x0C, 0x0C, 0x3B, 0x3B, 0x1B, 0x1B, 0x2A, 0x0B, 0x2A, 0x2A, 405 /* FE_8PSK_910 */ 406 0x0C, 0x1C, 0x0C, 0x3B, 0x2B, 0x1B, 0x3A, 0x0B, 0x2A, 0x2A, 407 408 /********************************************************************** 409 * Tracking carrier loop carrier 16APSK 2/3 to 32APSK 9/10 long Frame 410 **********************************************************************/ 411 412 /* 413 * Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff 20MPon 414 * 20MPoff 30MPon 30MPoff 415 */ 416 417 /* FE_16APSK_23 */ 418 0x0A, 0x0A, 0x0A, 0x0A, 0x1A, 0x0A, 0x39, 0x0A, 0x29, 0x0A, 419 /* FE_16APSK_34 */ 420 0x0A, 0x0A, 0x0A, 0x0A, 0x0B, 0x0A, 0x2A, 0x0A, 0x1A, 0x0A, 421 /* FE_16APSK_45 */ 422 0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A, 423 /* FE_16APSK_56 */ 424 0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A, 425 /* FE_16APSK_89 */ 426 0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A, 427 /* FE_16APSK_910 */ 428 0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A, 429 /* FE_32APSK_34 */ 430 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 431 /* FE_32APSK_45 */ 432 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 433 /* FE_32APSK_56 */ 434 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 435 /* FE_32APSK_89 */ 436 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 437 /* FE_32APSK_910 */ 438 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 439 }; 440 441 static u8 get_optim_cloop(struct stv *state, 442 enum fe_stv0910_mod_cod mod_cod, u32 pilots) 443 { 444 int i = 0; 445 446 if (mod_cod >= FE_32APSK_910) 447 i = ((int)FE_32APSK_910 - (int)FE_QPSK_14) * 10; 448 else if (mod_cod >= FE_QPSK_14) 449 i = ((int)mod_cod - (int)FE_QPSK_14) * 10; 450 451 if (state->symbol_rate <= 3000000) 452 i += 0; 453 else if (state->symbol_rate <= 7000000) 454 i += 2; 455 else if (state->symbol_rate <= 15000000) 456 i += 4; 457 else if (state->symbol_rate <= 25000000) 458 i += 6; 459 else 460 i += 8; 461 462 if (!pilots) 463 i += 1; 464 465 return s2car_loop[i]; 466 } 467 468 static int get_cur_symbol_rate(struct stv *state, u32 *p_symbol_rate) 469 { 470 int status = 0; 471 u8 symb_freq0; 472 u8 symb_freq1; 473 u8 symb_freq2; 474 u8 symb_freq3; 475 u8 tim_offs0; 476 u8 tim_offs1; 477 u8 tim_offs2; 478 u32 symbol_rate; 479 s32 timing_offset; 480 481 *p_symbol_rate = 0; 482 if (!state->started) 483 return status; 484 485 read_reg(state, RSTV0910_P2_SFR3 + state->regoff, &symb_freq3); 486 read_reg(state, RSTV0910_P2_SFR2 + state->regoff, &symb_freq2); 487 read_reg(state, RSTV0910_P2_SFR1 + state->regoff, &symb_freq1); 488 read_reg(state, RSTV0910_P2_SFR0 + state->regoff, &symb_freq0); 489 read_reg(state, RSTV0910_P2_TMGREG2 + state->regoff, &tim_offs2); 490 read_reg(state, RSTV0910_P2_TMGREG1 + state->regoff, &tim_offs1); 491 read_reg(state, RSTV0910_P2_TMGREG0 + state->regoff, &tim_offs0); 492 493 symbol_rate = ((u32)symb_freq3 << 24) | ((u32)symb_freq2 << 16) | 494 ((u32)symb_freq1 << 8) | (u32)symb_freq0; 495 timing_offset = ((u32)tim_offs2 << 16) | ((u32)tim_offs1 << 8) | 496 (u32)tim_offs0; 497 498 if ((timing_offset & (1 << 23)) != 0) 499 timing_offset |= 0xFF000000; /* Sign extent */ 500 501 symbol_rate = (u32)(((u64)symbol_rate * state->base->mclk) >> 32); 502 timing_offset = (s32)(((s64)symbol_rate * (s64)timing_offset) >> 29); 503 504 *p_symbol_rate = symbol_rate + timing_offset; 505 506 return 0; 507 } 508 509 static int get_signal_parameters(struct stv *state) 510 { 511 u8 tmp; 512 513 if (!state->started) 514 return -EINVAL; 515 516 if (state->receive_mode == RCVMODE_DVBS2) { 517 read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp); 518 state->mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2); 519 state->pilots = (tmp & 0x01) != 0; 520 state->fectype = (enum dvbs2_fectype)((tmp & 0x02) >> 1); 521 522 } else if (state->receive_mode == RCVMODE_DVBS) { 523 read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp); 524 state->puncture_rate = FEC_NONE; 525 switch (tmp & 0x1F) { 526 case 0x0d: 527 state->puncture_rate = FEC_1_2; 528 break; 529 case 0x12: 530 state->puncture_rate = FEC_2_3; 531 break; 532 case 0x15: 533 state->puncture_rate = FEC_3_4; 534 break; 535 case 0x18: 536 state->puncture_rate = FEC_5_6; 537 break; 538 case 0x1a: 539 state->puncture_rate = FEC_7_8; 540 break; 541 } 542 state->is_vcm = 0; 543 state->is_standard_broadcast = 1; 544 state->feroll_off = FE_SAT_35; 545 } 546 return 0; 547 } 548 549 static int tracking_optimization(struct stv *state) 550 { 551 u8 tmp; 552 553 read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &tmp); 554 tmp &= ~0xC0; 555 556 switch (state->receive_mode) { 557 case RCVMODE_DVBS: 558 tmp |= 0x40; 559 break; 560 case RCVMODE_DVBS2: 561 tmp |= 0x80; 562 break; 563 default: 564 tmp |= 0xC0; 565 break; 566 } 567 write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, tmp); 568 569 if (state->receive_mode == RCVMODE_DVBS2) { 570 /* Disable Reed-Solomon */ 571 write_shared_reg(state, 572 RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01, 573 0x03); 574 575 if (state->fectype == DVBS2_64K) { 576 u8 aclc = get_optim_cloop(state, state->mod_cod, 577 state->pilots); 578 579 if (state->mod_cod <= FE_QPSK_910) { 580 write_reg(state, RSTV0910_P2_ACLC2S2Q + 581 state->regoff, aclc); 582 } else if (state->mod_cod <= FE_8PSK_910) { 583 write_reg(state, RSTV0910_P2_ACLC2S2Q + 584 state->regoff, 0x2a); 585 write_reg(state, RSTV0910_P2_ACLC2S28 + 586 state->regoff, aclc); 587 } else if (state->mod_cod <= FE_16APSK_910) { 588 write_reg(state, RSTV0910_P2_ACLC2S2Q + 589 state->regoff, 0x2a); 590 write_reg(state, RSTV0910_P2_ACLC2S216A + 591 state->regoff, aclc); 592 } else if (state->mod_cod <= FE_32APSK_910) { 593 write_reg(state, RSTV0910_P2_ACLC2S2Q + 594 state->regoff, 0x2a); 595 write_reg(state, RSTV0910_P2_ACLC2S232A + 596 state->regoff, aclc); 597 } 598 } 599 } 600 return 0; 601 } 602 603 static s32 table_lookup(const struct slookup *table, 604 int table_size, u32 reg_value) 605 { 606 s32 value; 607 int imin = 0; 608 int imax = table_size - 1; 609 int i; 610 s32 reg_diff; 611 612 /* Assumes Table[0].RegValue > Table[imax].RegValue */ 613 if (reg_value >= table[0].reg_value) { 614 value = table[0].value; 615 } else if (reg_value <= table[imax].reg_value) { 616 value = table[imax].value; 617 } else { 618 while ((imax - imin) > 1) { 619 i = (imax + imin) / 2; 620 if ((table[imin].reg_value >= reg_value) && 621 (reg_value >= table[i].reg_value)) 622 imax = i; 623 else 624 imin = i; 625 } 626 627 reg_diff = table[imax].reg_value - table[imin].reg_value; 628 value = table[imin].value; 629 if (reg_diff != 0) 630 value += ((s32)(reg_value - table[imin].reg_value) * 631 (s32)(table[imax].value 632 - table[imin].value)) 633 / (reg_diff); 634 } 635 636 return value; 637 } 638 639 static int get_signal_to_noise(struct stv *state, s32 *signal_to_noise) 640 { 641 u8 data0; 642 u8 data1; 643 u16 data; 644 int n_lookup; 645 const struct slookup *lookup; 646 647 *signal_to_noise = 0; 648 649 if (!state->started) 650 return -EINVAL; 651 652 if (state->receive_mode == RCVMODE_DVBS2) { 653 read_reg(state, RSTV0910_P2_NNOSPLHT1 + state->regoff, 654 &data1); 655 read_reg(state, RSTV0910_P2_NNOSPLHT0 + state->regoff, 656 &data0); 657 n_lookup = ARRAY_SIZE(s2_sn_lookup); 658 lookup = s2_sn_lookup; 659 } else { 660 read_reg(state, RSTV0910_P2_NNOSDATAT1 + state->regoff, 661 &data1); 662 read_reg(state, RSTV0910_P2_NNOSDATAT0 + state->regoff, 663 &data0); 664 n_lookup = ARRAY_SIZE(s1_sn_lookup); 665 lookup = s1_sn_lookup; 666 } 667 data = (((u16)data1) << 8) | (u16)data0; 668 *signal_to_noise = table_lookup(lookup, n_lookup, data); 669 return 0; 670 } 671 672 static int get_bit_error_rate_s(struct stv *state, u32 *bernumerator, 673 u32 *berdenominator) 674 { 675 u8 regs[3]; 676 677 int status = read_regs(state, 678 RSTV0910_P2_ERRCNT12 + state->regoff, 679 regs, 3); 680 681 if (status) 682 return -EINVAL; 683 684 if ((regs[0] & 0x80) == 0) { 685 state->last_berdenominator = 1 << ((state->berscale * 2) + 686 10 + 3); 687 state->last_bernumerator = ((u32)(regs[0] & 0x7F) << 16) | 688 ((u32)regs[1] << 8) | regs[2]; 689 if (state->last_bernumerator < 256 && state->berscale < 6) { 690 state->berscale += 1; 691 status = write_reg(state, RSTV0910_P2_ERRCTRL1 + 692 state->regoff, 693 0x20 | state->berscale); 694 } else if (state->last_bernumerator > 1024 && 695 state->berscale > 2) { 696 state->berscale -= 1; 697 status = write_reg(state, RSTV0910_P2_ERRCTRL1 + 698 state->regoff, 0x20 | 699 state->berscale); 700 } 701 } 702 *bernumerator = state->last_bernumerator; 703 *berdenominator = state->last_berdenominator; 704 return 0; 705 } 706 707 static u32 dvbs2_nbch(enum dvbs2_mod_cod mod_cod, enum dvbs2_fectype fectype) 708 { 709 static const u32 nbch[][2] = { 710 { 0, 0}, /* DUMMY_PLF */ 711 {16200, 3240}, /* QPSK_1_4, */ 712 {21600, 5400}, /* QPSK_1_3, */ 713 {25920, 6480}, /* QPSK_2_5, */ 714 {32400, 7200}, /* QPSK_1_2, */ 715 {38880, 9720}, /* QPSK_3_5, */ 716 {43200, 10800}, /* QPSK_2_3, */ 717 {48600, 11880}, /* QPSK_3_4, */ 718 {51840, 12600}, /* QPSK_4_5, */ 719 {54000, 13320}, /* QPSK_5_6, */ 720 {57600, 14400}, /* QPSK_8_9, */ 721 {58320, 16000}, /* QPSK_9_10, */ 722 {43200, 9720}, /* 8PSK_3_5, */ 723 {48600, 10800}, /* 8PSK_2_3, */ 724 {51840, 11880}, /* 8PSK_3_4, */ 725 {54000, 13320}, /* 8PSK_5_6, */ 726 {57600, 14400}, /* 8PSK_8_9, */ 727 {58320, 16000}, /* 8PSK_9_10, */ 728 {43200, 10800}, /* 16APSK_2_3, */ 729 {48600, 11880}, /* 16APSK_3_4, */ 730 {51840, 12600}, /* 16APSK_4_5, */ 731 {54000, 13320}, /* 16APSK_5_6, */ 732 {57600, 14400}, /* 16APSK_8_9, */ 733 {58320, 16000}, /* 16APSK_9_10 */ 734 {48600, 11880}, /* 32APSK_3_4, */ 735 {51840, 12600}, /* 32APSK_4_5, */ 736 {54000, 13320}, /* 32APSK_5_6, */ 737 {57600, 14400}, /* 32APSK_8_9, */ 738 {58320, 16000}, /* 32APSK_9_10 */ 739 }; 740 741 if (mod_cod >= DVBS2_QPSK_1_4 && 742 mod_cod <= DVBS2_32APSK_9_10 && fectype <= DVBS2_16K) 743 return nbch[mod_cod][fectype]; 744 return 64800; 745 } 746 747 static int get_bit_error_rate_s2(struct stv *state, u32 *bernumerator, 748 u32 *berdenominator) 749 { 750 u8 regs[3]; 751 752 int status = read_regs(state, RSTV0910_P2_ERRCNT12 + state->regoff, 753 regs, 3); 754 755 if (status) 756 return -EINVAL; 757 758 if ((regs[0] & 0x80) == 0) { 759 state->last_berdenominator = 760 dvbs2_nbch((enum dvbs2_mod_cod)state->mod_cod, 761 state->fectype) << 762 (state->berscale * 2); 763 state->last_bernumerator = (((u32)regs[0] & 0x7F) << 16) | 764 ((u32)regs[1] << 8) | regs[2]; 765 if (state->last_bernumerator < 256 && state->berscale < 6) { 766 state->berscale += 1; 767 write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff, 768 0x20 | state->berscale); 769 } else if (state->last_bernumerator > 1024 && 770 state->berscale > 2) { 771 state->berscale -= 1; 772 write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff, 773 0x20 | state->berscale); 774 } 775 } 776 *bernumerator = state->last_bernumerator; 777 *berdenominator = state->last_berdenominator; 778 return status; 779 } 780 781 static int get_bit_error_rate(struct stv *state, u32 *bernumerator, 782 u32 *berdenominator) 783 { 784 *bernumerator = 0; 785 *berdenominator = 1; 786 787 switch (state->receive_mode) { 788 case RCVMODE_DVBS: 789 return get_bit_error_rate_s(state, 790 bernumerator, berdenominator); 791 case RCVMODE_DVBS2: 792 return get_bit_error_rate_s2(state, 793 bernumerator, berdenominator); 794 default: 795 break; 796 } 797 return 0; 798 } 799 800 static int set_mclock(struct stv *state, u32 master_clock) 801 { 802 u32 idf = 1; 803 u32 odf = 4; 804 u32 quartz = state->base->extclk / 1000000; 805 u32 fphi = master_clock / 1000000; 806 u32 ndiv = (fphi * odf * idf) / quartz; 807 u32 cp = 7; 808 u32 fvco; 809 810 if (ndiv >= 7 && ndiv <= 71) 811 cp = 7; 812 else if (ndiv >= 72 && ndiv <= 79) 813 cp = 8; 814 else if (ndiv >= 80 && ndiv <= 87) 815 cp = 9; 816 else if (ndiv >= 88 && ndiv <= 95) 817 cp = 10; 818 else if (ndiv >= 96 && ndiv <= 103) 819 cp = 11; 820 else if (ndiv >= 104 && ndiv <= 111) 821 cp = 12; 822 else if (ndiv >= 112 && ndiv <= 119) 823 cp = 13; 824 else if (ndiv >= 120 && ndiv <= 127) 825 cp = 14; 826 else if (ndiv >= 128 && ndiv <= 135) 827 cp = 15; 828 else if (ndiv >= 136 && ndiv <= 143) 829 cp = 16; 830 else if (ndiv >= 144 && ndiv <= 151) 831 cp = 17; 832 else if (ndiv >= 152 && ndiv <= 159) 833 cp = 18; 834 else if (ndiv >= 160 && ndiv <= 167) 835 cp = 19; 836 else if (ndiv >= 168 && ndiv <= 175) 837 cp = 20; 838 else if (ndiv >= 176 && ndiv <= 183) 839 cp = 21; 840 else if (ndiv >= 184 && ndiv <= 191) 841 cp = 22; 842 else if (ndiv >= 192 && ndiv <= 199) 843 cp = 23; 844 else if (ndiv >= 200 && ndiv <= 207) 845 cp = 24; 846 else if (ndiv >= 208 && ndiv <= 215) 847 cp = 25; 848 else if (ndiv >= 216 && ndiv <= 223) 849 cp = 26; 850 else if (ndiv >= 224 && ndiv <= 225) 851 cp = 27; 852 853 write_reg(state, RSTV0910_NCOARSE, (cp << 3) | idf); 854 write_reg(state, RSTV0910_NCOARSE2, odf); 855 write_reg(state, RSTV0910_NCOARSE1, ndiv); 856 857 fvco = (quartz * 2 * ndiv) / idf; 858 state->base->mclk = fvco / (2 * odf) * 1000000; 859 860 return 0; 861 } 862 863 static int stop(struct stv *state) 864 { 865 if (state->started) { 866 u8 tmp; 867 868 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff, 869 state->tscfgh | 0x01); 870 read_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, &tmp); 871 tmp &= ~0x01; /* release reset DVBS2 packet delin */ 872 write_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, tmp); 873 /* Blind optim*/ 874 write_reg(state, RSTV0910_P2_AGC2O + state->regoff, 0x5B); 875 /* Stop the demod */ 876 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5c); 877 state->started = 0; 878 } 879 state->receive_mode = RCVMODE_NONE; 880 return 0; 881 } 882 883 static void set_pls(struct stv *state, u32 pls_code) 884 { 885 if (pls_code == state->cur_scrambling_code) 886 return; 887 888 /* PLROOT2 bit 2 = gold code */ 889 write_reg(state, RSTV0910_P2_PLROOT0 + state->regoff, 890 pls_code & 0xff); 891 write_reg(state, RSTV0910_P2_PLROOT1 + state->regoff, 892 (pls_code >> 8) & 0xff); 893 write_reg(state, RSTV0910_P2_PLROOT2 + state->regoff, 894 0x04 | ((pls_code >> 16) & 0x03)); 895 state->cur_scrambling_code = pls_code; 896 } 897 898 static void set_isi(struct stv *state, u32 isi) 899 { 900 if (isi == NO_STREAM_ID_FILTER) 901 return; 902 if (isi == 0x80000000) { 903 SET_FIELD(FORCE_CONTINUOUS, 1); 904 SET_FIELD(TSOUT_NOSYNC, 1); 905 } else { 906 SET_FIELD(FILTER_EN, 1); 907 write_reg(state, RSTV0910_P2_ISIENTRY + state->regoff, 908 isi & 0xff); 909 write_reg(state, RSTV0910_P2_ISIBITENA + state->regoff, 0xff); 910 } 911 SET_FIELD(ALGOSWRST, 1); 912 SET_FIELD(ALGOSWRST, 0); 913 } 914 915 static void set_stream_modes(struct stv *state, 916 struct dtv_frontend_properties *p) 917 { 918 set_isi(state, p->stream_id); 919 set_pls(state, p->scrambling_sequence_index); 920 } 921 922 static int init_search_param(struct stv *state, 923 struct dtv_frontend_properties *p) 924 { 925 SET_FIELD(FORCE_CONTINUOUS, 0); 926 SET_FIELD(FRAME_MODE, 0); 927 SET_FIELD(FILTER_EN, 0); 928 SET_FIELD(TSOUT_NOSYNC, 0); 929 SET_FIELD(TSFIFO_EMBINDVB, 0); 930 SET_FIELD(TSDEL_SYNCBYTE, 0); 931 SET_REG(UPLCCST0, 0xe0); 932 SET_FIELD(TSINS_TOKEN, 0); 933 SET_FIELD(HYSTERESIS_THRESHOLD, 0); 934 SET_FIELD(ISIOBS_MODE, 1); 935 936 set_stream_modes(state, p); 937 return 0; 938 } 939 940 static int enable_puncture_rate(struct stv *state, enum fe_code_rate rate) 941 { 942 u8 val; 943 944 switch (rate) { 945 case FEC_1_2: 946 val = 0x01; 947 break; 948 case FEC_2_3: 949 val = 0x02; 950 break; 951 case FEC_3_4: 952 val = 0x04; 953 break; 954 case FEC_5_6: 955 val = 0x08; 956 break; 957 case FEC_7_8: 958 val = 0x20; 959 break; 960 case FEC_NONE: 961 default: 962 val = 0x2f; 963 break; 964 } 965 966 return write_reg(state, RSTV0910_P2_PRVIT + state->regoff, val); 967 } 968 969 static int set_vth_default(struct stv *state) 970 { 971 state->vth[0] = 0xd7; 972 state->vth[1] = 0x85; 973 state->vth[2] = 0x58; 974 state->vth[3] = 0x3a; 975 state->vth[4] = 0x34; 976 state->vth[5] = 0x28; 977 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]); 978 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]); 979 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]); 980 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]); 981 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]); 982 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]); 983 return 0; 984 } 985 986 static int set_vth(struct stv *state) 987 { 988 static const struct slookup vthlookup_table[] = { 989 {250, 8780}, /* C/N= 1.5dB */ 990 {100, 7405}, /* C/N= 4.5dB */ 991 {40, 6330}, /* C/N= 6.5dB */ 992 {12, 5224}, /* C/N= 8.5dB */ 993 {5, 4236} /* C/N=10.5dB */ 994 }; 995 996 int i; 997 u8 tmp[2]; 998 int status = read_regs(state, 999 RSTV0910_P2_NNOSDATAT1 + state->regoff, 1000 tmp, 2); 1001 u16 reg_value = (tmp[0] << 8) | tmp[1]; 1002 s32 vth = table_lookup(vthlookup_table, ARRAY_SIZE(vthlookup_table), 1003 reg_value); 1004 1005 for (i = 0; i < 6; i += 1) 1006 if (state->vth[i] > vth) 1007 state->vth[i] = vth; 1008 1009 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]); 1010 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]); 1011 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]); 1012 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]); 1013 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]); 1014 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]); 1015 return status; 1016 } 1017 1018 static int start(struct stv *state, struct dtv_frontend_properties *p) 1019 { 1020 s32 freq; 1021 u8 reg_dmdcfgmd; 1022 u16 symb; 1023 1024 if (p->symbol_rate < 100000 || p->symbol_rate > 70000000) 1025 return -EINVAL; 1026 1027 state->receive_mode = RCVMODE_NONE; 1028 state->demod_lock_time = 0; 1029 1030 /* Demod Stop */ 1031 if (state->started) 1032 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5C); 1033 1034 init_search_param(state, p); 1035 1036 if (p->symbol_rate <= 1000000) { /* SR <=1Msps */ 1037 state->demod_timeout = 3000; 1038 state->fec_timeout = 2000; 1039 } else if (p->symbol_rate <= 2000000) { /* 1Msps < SR <=2Msps */ 1040 state->demod_timeout = 2500; 1041 state->fec_timeout = 1300; 1042 } else if (p->symbol_rate <= 5000000) { /* 2Msps< SR <=5Msps */ 1043 state->demod_timeout = 1000; 1044 state->fec_timeout = 650; 1045 } else if (p->symbol_rate <= 10000000) { /* 5Msps< SR <=10Msps */ 1046 state->demod_timeout = 700; 1047 state->fec_timeout = 350; 1048 } else if (p->symbol_rate < 20000000) { /* 10Msps< SR <=20Msps */ 1049 state->demod_timeout = 400; 1050 state->fec_timeout = 200; 1051 } else { /* SR >=20Msps */ 1052 state->demod_timeout = 300; 1053 state->fec_timeout = 200; 1054 } 1055 1056 /* Set the Init Symbol rate */ 1057 symb = muldiv32(p->symbol_rate, 65536, state->base->mclk); 1058 write_reg(state, RSTV0910_P2_SFRINIT1 + state->regoff, 1059 ((symb >> 8) & 0x7F)); 1060 write_reg(state, RSTV0910_P2_SFRINIT0 + state->regoff, (symb & 0xFF)); 1061 1062 state->demod_bits |= 0x80; 1063 write_reg(state, RSTV0910_P2_DEMOD + state->regoff, state->demod_bits); 1064 1065 /* FE_STV0910_SetSearchStandard */ 1066 read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, ®_dmdcfgmd); 1067 write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, 1068 reg_dmdcfgmd |= 0xC0); 1069 1070 write_shared_reg(state, 1071 RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01, 0x00); 1072 1073 /* Disable DSS */ 1074 write_reg(state, RSTV0910_P2_FECM + state->regoff, 0x00); 1075 write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x2F); 1076 1077 enable_puncture_rate(state, FEC_NONE); 1078 1079 /* 8PSK 3/5, 8PSK 2/3 Poff tracking optimization WA */ 1080 write_reg(state, RSTV0910_P2_ACLC2S2Q + state->regoff, 0x0B); 1081 write_reg(state, RSTV0910_P2_ACLC2S28 + state->regoff, 0x0A); 1082 write_reg(state, RSTV0910_P2_BCLC2S2Q + state->regoff, 0x84); 1083 write_reg(state, RSTV0910_P2_BCLC2S28 + state->regoff, 0x84); 1084 write_reg(state, RSTV0910_P2_CARHDR + state->regoff, 0x1C); 1085 write_reg(state, RSTV0910_P2_CARFREQ + state->regoff, 0x79); 1086 1087 write_reg(state, RSTV0910_P2_ACLC2S216A + state->regoff, 0x29); 1088 write_reg(state, RSTV0910_P2_ACLC2S232A + state->regoff, 0x09); 1089 write_reg(state, RSTV0910_P2_BCLC2S216A + state->regoff, 0x84); 1090 write_reg(state, RSTV0910_P2_BCLC2S232A + state->regoff, 0x84); 1091 1092 /* 1093 * Reset CAR3, bug DVBS2->DVBS1 lock 1094 * Note: The bit is only pulsed -> no lock on shared register needed 1095 */ 1096 write_reg(state, RSTV0910_TSTRES0, state->nr ? 0x04 : 0x08); 1097 write_reg(state, RSTV0910_TSTRES0, 0); 1098 1099 set_vth_default(state); 1100 /* Reset demod */ 1101 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F); 1102 1103 write_reg(state, RSTV0910_P2_CARCFG + state->regoff, 0x46); 1104 1105 if (p->symbol_rate <= 5000000) 1106 freq = (state->search_range / 2000) + 80; 1107 else 1108 freq = (state->search_range / 2000) + 1600; 1109 freq = (freq << 16) / (state->base->mclk / 1000); 1110 1111 write_reg(state, RSTV0910_P2_CFRUP1 + state->regoff, 1112 (freq >> 8) & 0xff); 1113 write_reg(state, RSTV0910_P2_CFRUP0 + state->regoff, (freq & 0xff)); 1114 /* CFR Low Setting */ 1115 freq = -freq; 1116 write_reg(state, RSTV0910_P2_CFRLOW1 + state->regoff, 1117 (freq >> 8) & 0xff); 1118 write_reg(state, RSTV0910_P2_CFRLOW0 + state->regoff, (freq & 0xff)); 1119 1120 /* init the demod frequency offset to 0 */ 1121 write_reg(state, RSTV0910_P2_CFRINIT1 + state->regoff, 0); 1122 write_reg(state, RSTV0910_P2_CFRINIT0 + state->regoff, 0); 1123 1124 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F); 1125 /* Trigger acq */ 1126 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x15); 1127 1128 state->demod_lock_time += TUNING_DELAY; 1129 state->started = 1; 1130 1131 return 0; 1132 } 1133 1134 static int init_diseqc(struct stv *state) 1135 { 1136 u16 offs = state->nr ? 0x40 : 0; /* Address offset */ 1137 u8 freq = ((state->base->mclk + 11000 * 32) / (22000 * 32)); 1138 1139 /* Disable receiver */ 1140 write_reg(state, RSTV0910_P1_DISRXCFG + offs, 0x00); 1141 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0xBA); /* Reset = 1 */ 1142 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A); /* Reset = 0 */ 1143 write_reg(state, RSTV0910_P1_DISTXF22 + offs, freq); 1144 return 0; 1145 } 1146 1147 static int probe(struct stv *state) 1148 { 1149 u8 id; 1150 1151 state->receive_mode = RCVMODE_NONE; 1152 state->started = 0; 1153 1154 if (read_reg(state, RSTV0910_MID, &id) < 0) 1155 return -ENODEV; 1156 1157 if (id != 0x51) 1158 return -EINVAL; 1159 1160 /* Configure the I2C repeater to off */ 1161 write_reg(state, RSTV0910_P1_I2CRPT, 0x24); 1162 /* Configure the I2C repeater to off */ 1163 write_reg(state, RSTV0910_P2_I2CRPT, 0x24); 1164 /* Set the I2C to oversampling ratio */ 1165 write_reg(state, RSTV0910_I2CCFG, 0x88); /* state->i2ccfg */ 1166 1167 write_reg(state, RSTV0910_OUTCFG, 0x00); /* OUTCFG */ 1168 write_reg(state, RSTV0910_PADCFG, 0x05); /* RFAGC Pads Dev = 05 */ 1169 write_reg(state, RSTV0910_SYNTCTRL, 0x02); /* SYNTCTRL */ 1170 write_reg(state, RSTV0910_TSGENERAL, state->tsgeneral); /* TSGENERAL */ 1171 write_reg(state, RSTV0910_CFGEXT, 0x02); /* CFGEXT */ 1172 1173 if (state->single) 1174 write_reg(state, RSTV0910_GENCFG, 0x14); /* GENCFG */ 1175 else 1176 write_reg(state, RSTV0910_GENCFG, 0x15); /* GENCFG */ 1177 1178 write_reg(state, RSTV0910_P1_TNRCFG2, 0x02); /* IQSWAP = 0 */ 1179 write_reg(state, RSTV0910_P2_TNRCFG2, 0x82); /* IQSWAP = 1 */ 1180 1181 write_reg(state, RSTV0910_P1_CAR3CFG, 0x02); 1182 write_reg(state, RSTV0910_P2_CAR3CFG, 0x02); 1183 write_reg(state, RSTV0910_P1_DMDCFG4, 0x04); 1184 write_reg(state, RSTV0910_P2_DMDCFG4, 0x04); 1185 1186 write_reg(state, RSTV0910_TSTRES0, 0x80); /* LDPC Reset */ 1187 write_reg(state, RSTV0910_TSTRES0, 0x00); 1188 1189 write_reg(state, RSTV0910_P1_TSPIDFLT1, 0x00); 1190 write_reg(state, RSTV0910_P2_TSPIDFLT1, 0x00); 1191 1192 write_reg(state, RSTV0910_P1_TMGCFG2, 0x80); 1193 write_reg(state, RSTV0910_P2_TMGCFG2, 0x80); 1194 1195 set_mclock(state, 135000000); 1196 1197 /* TS output */ 1198 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01); 1199 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh); 1200 write_reg(state, RSTV0910_P1_TSCFGM, 0xC0); /* Manual speed */ 1201 write_reg(state, RSTV0910_P1_TSCFGL, 0x20); 1202 1203 /* Speed = 67.5 MHz */ 1204 write_reg(state, RSTV0910_P1_TSSPEED, state->tsspeed); 1205 1206 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01); 1207 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh); 1208 write_reg(state, RSTV0910_P2_TSCFGM, 0xC0); /* Manual speed */ 1209 write_reg(state, RSTV0910_P2_TSCFGL, 0x20); 1210 1211 /* Speed = 67.5 MHz */ 1212 write_reg(state, RSTV0910_P2_TSSPEED, state->tsspeed); 1213 1214 /* Reset stream merger */ 1215 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01); 1216 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01); 1217 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh); 1218 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh); 1219 1220 write_reg(state, RSTV0910_P1_I2CRPT, state->i2crpt); 1221 write_reg(state, RSTV0910_P2_I2CRPT, state->i2crpt); 1222 1223 init_diseqc(state); 1224 return 0; 1225 } 1226 1227 static int gate_ctrl(struct dvb_frontend *fe, int enable) 1228 { 1229 struct stv *state = fe->demodulator_priv; 1230 u8 i2crpt = state->i2crpt & ~0x86; 1231 1232 /* 1233 * mutex_lock note: Concurrent I2C gate bus accesses must be 1234 * prevented (STV0910 = dual demod on a single IC with a single I2C 1235 * gate/bus, and two tuners attached), similar to most (if not all) 1236 * other I2C host interfaces/busses. 1237 * 1238 * enable=1 (open I2C gate) will grab the lock 1239 * enable=0 (close I2C gate) releases the lock 1240 */ 1241 1242 if (enable) { 1243 mutex_lock(&state->base->i2c_lock); 1244 i2crpt |= 0x80; 1245 } else { 1246 i2crpt |= 0x02; 1247 } 1248 1249 if (write_reg(state, state->nr ? RSTV0910_P2_I2CRPT : 1250 RSTV0910_P1_I2CRPT, i2crpt) < 0) { 1251 /* don't hold the I2C bus lock on failure */ 1252 if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock))) 1253 mutex_unlock(&state->base->i2c_lock); 1254 dev_err(&state->base->i2c->dev, 1255 "%s() write_reg failure (enable=%d)\n", 1256 __func__, enable); 1257 return -EIO; 1258 } 1259 1260 state->i2crpt = i2crpt; 1261 1262 if (!enable) 1263 if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock))) 1264 mutex_unlock(&state->base->i2c_lock); 1265 return 0; 1266 } 1267 1268 static void release(struct dvb_frontend *fe) 1269 { 1270 struct stv *state = fe->demodulator_priv; 1271 1272 state->base->count--; 1273 if (state->base->count == 0) { 1274 list_del(&state->base->stvlist); 1275 kfree(state->base); 1276 } 1277 kfree(state); 1278 } 1279 1280 static int set_parameters(struct dvb_frontend *fe) 1281 { 1282 int stat = 0; 1283 struct stv *state = fe->demodulator_priv; 1284 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 1285 1286 stop(state); 1287 if (fe->ops.tuner_ops.set_params) 1288 fe->ops.tuner_ops.set_params(fe); 1289 state->symbol_rate = p->symbol_rate; 1290 stat = start(state, p); 1291 return stat; 1292 } 1293 1294 static int manage_matype_info(struct stv *state) 1295 { 1296 if (!state->started) 1297 return -EINVAL; 1298 if (state->receive_mode == RCVMODE_DVBS2) { 1299 u8 bbheader[2]; 1300 1301 read_regs(state, RSTV0910_P2_MATSTR1 + state->regoff, 1302 bbheader, 2); 1303 state->feroll_off = 1304 (enum fe_stv0910_roll_off)(bbheader[0] & 0x03); 1305 state->is_vcm = (bbheader[0] & 0x10) == 0; 1306 state->is_standard_broadcast = (bbheader[0] & 0xFC) == 0xF0; 1307 } else if (state->receive_mode == RCVMODE_DVBS) { 1308 state->is_vcm = 0; 1309 state->is_standard_broadcast = 1; 1310 state->feroll_off = FE_SAT_35; 1311 } 1312 return 0; 1313 } 1314 1315 static int read_snr(struct dvb_frontend *fe) 1316 { 1317 struct stv *state = fe->demodulator_priv; 1318 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 1319 s32 snrval; 1320 1321 if (!get_signal_to_noise(state, &snrval)) { 1322 p->cnr.stat[0].scale = FE_SCALE_DECIBEL; 1323 p->cnr.stat[0].uvalue = 100 * snrval; /* fix scale */ 1324 } else { 1325 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1326 } 1327 1328 return 0; 1329 } 1330 1331 static int read_ber(struct dvb_frontend *fe) 1332 { 1333 struct stv *state = fe->demodulator_priv; 1334 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 1335 u32 n, d; 1336 1337 get_bit_error_rate(state, &n, &d); 1338 1339 p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER; 1340 p->pre_bit_error.stat[0].uvalue = n; 1341 p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER; 1342 p->pre_bit_count.stat[0].uvalue = d; 1343 1344 return 0; 1345 } 1346 1347 static void read_signal_strength(struct dvb_frontend *fe) 1348 { 1349 struct stv *state = fe->demodulator_priv; 1350 struct dtv_frontend_properties *p = &state->fe.dtv_property_cache; 1351 u8 reg[2]; 1352 u16 agc; 1353 s32 padc, power = 0; 1354 int i; 1355 1356 read_regs(state, RSTV0910_P2_AGCIQIN1 + state->regoff, reg, 2); 1357 1358 agc = (((u32)reg[0]) << 8) | reg[1]; 1359 1360 for (i = 0; i < 5; i += 1) { 1361 read_regs(state, RSTV0910_P2_POWERI + state->regoff, reg, 2); 1362 power += (u32)reg[0] * (u32)reg[0] 1363 + (u32)reg[1] * (u32)reg[1]; 1364 usleep_range(3000, 4000); 1365 } 1366 power /= 5; 1367 1368 padc = table_lookup(padc_lookup, ARRAY_SIZE(padc_lookup), power) + 352; 1369 1370 p->strength.stat[0].scale = FE_SCALE_DECIBEL; 1371 p->strength.stat[0].svalue = (padc - agc); 1372 } 1373 1374 static int read_status(struct dvb_frontend *fe, enum fe_status *status) 1375 { 1376 struct stv *state = fe->demodulator_priv; 1377 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 1378 u8 dmd_state = 0; 1379 u8 dstatus = 0; 1380 enum receive_mode cur_receive_mode = RCVMODE_NONE; 1381 u32 feclock = 0; 1382 1383 *status = 0; 1384 1385 read_reg(state, RSTV0910_P2_DMDSTATE + state->regoff, &dmd_state); 1386 1387 if (dmd_state & 0x40) { 1388 read_reg(state, RSTV0910_P2_DSTATUS + state->regoff, &dstatus); 1389 if (dstatus & 0x08) 1390 cur_receive_mode = (dmd_state & 0x20) ? 1391 RCVMODE_DVBS : RCVMODE_DVBS2; 1392 } 1393 if (cur_receive_mode == RCVMODE_NONE) { 1394 set_vth(state); 1395 1396 /* reset signal statistics */ 1397 p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1398 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1399 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1400 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1401 1402 return 0; 1403 } 1404 1405 *status |= (FE_HAS_SIGNAL 1406 | FE_HAS_CARRIER 1407 | FE_HAS_VITERBI 1408 | FE_HAS_SYNC); 1409 1410 if (state->receive_mode == RCVMODE_NONE) { 1411 state->receive_mode = cur_receive_mode; 1412 state->demod_lock_time = jiffies; 1413 state->first_time_lock = 1; 1414 1415 get_signal_parameters(state); 1416 tracking_optimization(state); 1417 1418 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff, 1419 state->tscfgh); 1420 usleep_range(3000, 4000); 1421 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff, 1422 state->tscfgh | 0x01); 1423 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff, 1424 state->tscfgh); 1425 } 1426 if (dmd_state & 0x40) { 1427 if (state->receive_mode == RCVMODE_DVBS2) { 1428 u8 pdelstatus; 1429 1430 read_reg(state, 1431 RSTV0910_P2_PDELSTATUS1 + state->regoff, 1432 &pdelstatus); 1433 feclock = (pdelstatus & 0x02) != 0; 1434 } else { 1435 u8 vstatus; 1436 1437 read_reg(state, 1438 RSTV0910_P2_VSTATUSVIT + state->regoff, 1439 &vstatus); 1440 feclock = (vstatus & 0x08) != 0; 1441 } 1442 } 1443 1444 if (feclock) { 1445 *status |= FE_HAS_LOCK; 1446 1447 if (state->first_time_lock) { 1448 u8 tmp; 1449 1450 state->first_time_lock = 0; 1451 1452 manage_matype_info(state); 1453 1454 if (state->receive_mode == RCVMODE_DVBS2) { 1455 /* 1456 * FSTV0910_P2_MANUALSX_ROLLOFF, 1457 * FSTV0910_P2_MANUALS2_ROLLOFF = 0 1458 */ 1459 state->demod_bits &= ~0x84; 1460 write_reg(state, 1461 RSTV0910_P2_DEMOD + state->regoff, 1462 state->demod_bits); 1463 read_reg(state, 1464 RSTV0910_P2_PDELCTRL2 + state->regoff, 1465 &tmp); 1466 /* reset DVBS2 packet delinator error counter */ 1467 tmp |= 0x40; 1468 write_reg(state, 1469 RSTV0910_P2_PDELCTRL2 + state->regoff, 1470 tmp); 1471 /* reset DVBS2 packet delinator error counter */ 1472 tmp &= ~0x40; 1473 write_reg(state, 1474 RSTV0910_P2_PDELCTRL2 + state->regoff, 1475 tmp); 1476 1477 state->berscale = 2; 1478 state->last_bernumerator = 0; 1479 state->last_berdenominator = 1; 1480 /* force to PRE BCH Rate */ 1481 write_reg(state, 1482 RSTV0910_P2_ERRCTRL1 + state->regoff, 1483 BER_SRC_S2 | state->berscale); 1484 } else { 1485 state->berscale = 2; 1486 state->last_bernumerator = 0; 1487 state->last_berdenominator = 1; 1488 /* force to PRE RS Rate */ 1489 write_reg(state, 1490 RSTV0910_P2_ERRCTRL1 + state->regoff, 1491 BER_SRC_S | state->berscale); 1492 } 1493 /* Reset the Total packet counter */ 1494 write_reg(state, 1495 RSTV0910_P2_FBERCPT4 + state->regoff, 0x00); 1496 /* 1497 * Reset the packet Error counter2 (and Set it to 1498 * infinit error count mode) 1499 */ 1500 write_reg(state, 1501 RSTV0910_P2_ERRCTRL2 + state->regoff, 0xc1); 1502 1503 set_vth_default(state); 1504 if (state->receive_mode == RCVMODE_DVBS) 1505 enable_puncture_rate(state, 1506 state->puncture_rate); 1507 } 1508 1509 /* Use highest signaled ModCod for quality */ 1510 if (state->is_vcm) { 1511 u8 tmp; 1512 enum fe_stv0910_mod_cod mod_cod; 1513 1514 read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, 1515 &tmp); 1516 mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2); 1517 1518 if (mod_cod > state->mod_cod) 1519 state->mod_cod = mod_cod; 1520 } 1521 } 1522 1523 /* read signal statistics */ 1524 1525 /* read signal strength */ 1526 read_signal_strength(fe); 1527 1528 /* read carrier/noise on FE_HAS_CARRIER */ 1529 if (*status & FE_HAS_CARRIER) 1530 read_snr(fe); 1531 else 1532 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1533 1534 /* read ber */ 1535 if (*status & FE_HAS_VITERBI) { 1536 read_ber(fe); 1537 } else { 1538 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1539 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1540 } 1541 1542 return 0; 1543 } 1544 1545 static int get_frontend(struct dvb_frontend *fe, 1546 struct dtv_frontend_properties *p) 1547 { 1548 struct stv *state = fe->demodulator_priv; 1549 u8 tmp; 1550 u32 symbolrate; 1551 1552 if (state->receive_mode == RCVMODE_DVBS2) { 1553 u32 mc; 1554 const enum fe_modulation modcod2mod[0x20] = { 1555 QPSK, QPSK, QPSK, QPSK, 1556 QPSK, QPSK, QPSK, QPSK, 1557 QPSK, QPSK, QPSK, QPSK, 1558 PSK_8, PSK_8, PSK_8, PSK_8, 1559 PSK_8, PSK_8, APSK_16, APSK_16, 1560 APSK_16, APSK_16, APSK_16, APSK_16, 1561 APSK_32, APSK_32, APSK_32, APSK_32, 1562 APSK_32, 1563 }; 1564 const enum fe_code_rate modcod2fec[0x20] = { 1565 FEC_NONE, FEC_NONE, FEC_NONE, FEC_2_5, 1566 FEC_1_2, FEC_3_5, FEC_2_3, FEC_3_4, 1567 FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10, 1568 FEC_3_5, FEC_2_3, FEC_3_4, FEC_5_6, 1569 FEC_8_9, FEC_9_10, FEC_2_3, FEC_3_4, 1570 FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10, 1571 FEC_3_4, FEC_4_5, FEC_5_6, FEC_8_9, 1572 FEC_9_10 1573 }; 1574 read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp); 1575 mc = ((tmp & 0x7c) >> 2); 1576 p->pilot = (tmp & 0x01) ? PILOT_ON : PILOT_OFF; 1577 p->modulation = modcod2mod[mc]; 1578 p->fec_inner = modcod2fec[mc]; 1579 } else if (state->receive_mode == RCVMODE_DVBS) { 1580 read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp); 1581 switch (tmp & 0x1F) { 1582 case 0x0d: 1583 p->fec_inner = FEC_1_2; 1584 break; 1585 case 0x12: 1586 p->fec_inner = FEC_2_3; 1587 break; 1588 case 0x15: 1589 p->fec_inner = FEC_3_4; 1590 break; 1591 case 0x18: 1592 p->fec_inner = FEC_5_6; 1593 break; 1594 case 0x1a: 1595 p->fec_inner = FEC_7_8; 1596 break; 1597 default: 1598 p->fec_inner = FEC_NONE; 1599 break; 1600 } 1601 p->rolloff = ROLLOFF_35; 1602 } 1603 1604 if (state->receive_mode != RCVMODE_NONE) { 1605 get_cur_symbol_rate(state, &symbolrate); 1606 p->symbol_rate = symbolrate; 1607 } 1608 return 0; 1609 } 1610 1611 static int tune(struct dvb_frontend *fe, bool re_tune, 1612 unsigned int mode_flags, 1613 unsigned int *delay, enum fe_status *status) 1614 { 1615 struct stv *state = fe->demodulator_priv; 1616 int r; 1617 1618 if (re_tune) { 1619 r = set_parameters(fe); 1620 if (r) 1621 return r; 1622 state->tune_time = jiffies; 1623 } 1624 1625 r = read_status(fe, status); 1626 if (r) 1627 return r; 1628 1629 if (*status & FE_HAS_LOCK) 1630 return 0; 1631 *delay = HZ; 1632 1633 return 0; 1634 } 1635 1636 static int get_algo(struct dvb_frontend *fe) 1637 { 1638 return DVBFE_ALGO_HW; 1639 } 1640 1641 static int set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone) 1642 { 1643 struct stv *state = fe->demodulator_priv; 1644 u16 offs = state->nr ? 0x40 : 0; 1645 1646 switch (tone) { 1647 case SEC_TONE_ON: 1648 return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x38); 1649 case SEC_TONE_OFF: 1650 return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3a); 1651 default: 1652 break; 1653 } 1654 return -EINVAL; 1655 } 1656 1657 static int wait_dis(struct stv *state, u8 flag, u8 val) 1658 { 1659 int i; 1660 u8 stat; 1661 u16 offs = state->nr ? 0x40 : 0; 1662 1663 for (i = 0; i < 10; i++) { 1664 read_reg(state, RSTV0910_P1_DISTXSTATUS + offs, &stat); 1665 if ((stat & flag) == val) 1666 return 0; 1667 usleep_range(10000, 11000); 1668 } 1669 return -ETIMEDOUT; 1670 } 1671 1672 static int send_master_cmd(struct dvb_frontend *fe, 1673 struct dvb_diseqc_master_cmd *cmd) 1674 { 1675 struct stv *state = fe->demodulator_priv; 1676 u16 offs = state->nr ? 0x40 : 0; 1677 int i; 1678 1679 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3E); 1680 for (i = 0; i < cmd->msg_len; i++) { 1681 wait_dis(state, 0x40, 0x00); 1682 write_reg(state, RSTV0910_P1_DISTXFIFO + offs, cmd->msg[i]); 1683 } 1684 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A); 1685 wait_dis(state, 0x20, 0x20); 1686 return 0; 1687 } 1688 1689 static int send_burst(struct dvb_frontend *fe, enum fe_sec_mini_cmd burst) 1690 { 1691 struct stv *state = fe->demodulator_priv; 1692 u16 offs = state->nr ? 0x40 : 0; 1693 u8 value; 1694 1695 if (burst == SEC_MINI_A) { 1696 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3F); 1697 value = 0x00; 1698 } else { 1699 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3E); 1700 value = 0xFF; 1701 } 1702 wait_dis(state, 0x40, 0x00); 1703 write_reg(state, RSTV0910_P1_DISTXFIFO + offs, value); 1704 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A); 1705 wait_dis(state, 0x20, 0x20); 1706 1707 return 0; 1708 } 1709 1710 static int sleep(struct dvb_frontend *fe) 1711 { 1712 struct stv *state = fe->demodulator_priv; 1713 1714 stop(state); 1715 return 0; 1716 } 1717 1718 static const struct dvb_frontend_ops stv0910_ops = { 1719 .delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS }, 1720 .info = { 1721 .name = "ST STV0910", 1722 .frequency_min = 950000, 1723 .frequency_max = 2150000, 1724 .frequency_stepsize = 0, 1725 .frequency_tolerance = 0, 1726 .symbol_rate_min = 100000, 1727 .symbol_rate_max = 70000000, 1728 .caps = FE_CAN_INVERSION_AUTO | 1729 FE_CAN_FEC_AUTO | 1730 FE_CAN_QPSK | 1731 FE_CAN_2G_MODULATION | 1732 FE_CAN_MULTISTREAM 1733 }, 1734 .sleep = sleep, 1735 .release = release, 1736 .i2c_gate_ctrl = gate_ctrl, 1737 .set_frontend = set_parameters, 1738 .get_frontend_algo = get_algo, 1739 .get_frontend = get_frontend, 1740 .tune = tune, 1741 .read_status = read_status, 1742 .set_tone = set_tone, 1743 1744 .diseqc_send_master_cmd = send_master_cmd, 1745 .diseqc_send_burst = send_burst, 1746 }; 1747 1748 static struct stv_base *match_base(struct i2c_adapter *i2c, u8 adr) 1749 { 1750 struct stv_base *p; 1751 1752 list_for_each_entry(p, &stvlist, stvlist) 1753 if (p->i2c == i2c && p->adr == adr) 1754 return p; 1755 return NULL; 1756 } 1757 1758 static void stv0910_init_stats(struct stv *state) 1759 { 1760 struct dtv_frontend_properties *p = &state->fe.dtv_property_cache; 1761 1762 p->strength.len = 1; 1763 p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1764 p->cnr.len = 1; 1765 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1766 p->pre_bit_error.len = 1; 1767 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1768 p->pre_bit_count.len = 1; 1769 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1770 } 1771 1772 struct dvb_frontend *stv0910_attach(struct i2c_adapter *i2c, 1773 struct stv0910_cfg *cfg, 1774 int nr) 1775 { 1776 struct stv *state; 1777 struct stv_base *base; 1778 1779 state = kzalloc(sizeof(*state), GFP_KERNEL); 1780 if (!state) 1781 return NULL; 1782 1783 state->tscfgh = 0x20 | (cfg->parallel ? 0 : 0x40); 1784 state->tsgeneral = (cfg->parallel == 2) ? 0x02 : 0x00; 1785 state->i2crpt = 0x0A | ((cfg->rptlvl & 0x07) << 4); 1786 state->tsspeed = 0x28; 1787 state->nr = nr; 1788 state->regoff = state->nr ? 0 : 0x200; 1789 state->search_range = 16000000; 1790 state->demod_bits = 0x10; /* Inversion : Auto with reset to 0 */ 1791 state->receive_mode = RCVMODE_NONE; 1792 state->cur_scrambling_code = (~0U); 1793 state->single = cfg->single ? 1 : 0; 1794 1795 base = match_base(i2c, cfg->adr); 1796 if (base) { 1797 base->count++; 1798 state->base = base; 1799 } else { 1800 base = kzalloc(sizeof(*base), GFP_KERNEL); 1801 if (!base) 1802 goto fail; 1803 base->i2c = i2c; 1804 base->adr = cfg->adr; 1805 base->count = 1; 1806 base->extclk = cfg->clk ? cfg->clk : 30000000; 1807 1808 mutex_init(&base->i2c_lock); 1809 mutex_init(&base->reg_lock); 1810 state->base = base; 1811 if (probe(state) < 0) { 1812 dev_info(&i2c->dev, "No demod found at adr %02X on %s\n", 1813 cfg->adr, dev_name(&i2c->dev)); 1814 kfree(base); 1815 goto fail; 1816 } 1817 list_add(&base->stvlist, &stvlist); 1818 } 1819 state->fe.ops = stv0910_ops; 1820 state->fe.demodulator_priv = state; 1821 state->nr = nr; 1822 1823 dev_info(&i2c->dev, "%s demod found at adr %02X on %s\n", 1824 state->fe.ops.info.name, cfg->adr, dev_name(&i2c->dev)); 1825 1826 stv0910_init_stats(state); 1827 1828 return &state->fe; 1829 1830 fail: 1831 kfree(state); 1832 return NULL; 1833 } 1834 EXPORT_SYMBOL_GPL(stv0910_attach); 1835 1836 MODULE_DESCRIPTION("ST STV0910 multistandard frontend driver"); 1837 MODULE_AUTHOR("Ralph and Marcus Metzler, Manfred Voelkel"); 1838 MODULE_LICENSE("GPL"); 1839