1 /*
2  * Driver for the ST STV0910 DVB-S/S2 demodulator.
3  *
4  * Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de>
5  *                         Marcus Metzler <mocm@metzlerbros.de>
6  *                         developed for Digital Devices GmbH
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * version 2 only, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/init.h>
22 #include <linux/delay.h>
23 #include <linux/firmware.h>
24 #include <linux/i2c.h>
25 #include <asm/div64.h>
26 
27 #include <media/dvb_frontend.h>
28 #include "stv0910.h"
29 #include "stv0910_regs.h"
30 
31 #define EXT_CLOCK    30000000
32 #define TUNING_DELAY 200
33 #define BER_SRC_S    0x20
34 #define BER_SRC_S2   0x20
35 
36 static LIST_HEAD(stvlist);
37 
38 enum receive_mode { RCVMODE_NONE, RCVMODE_DVBS, RCVMODE_DVBS2, RCVMODE_AUTO };
39 
40 enum dvbs2_fectype { DVBS2_64K, DVBS2_16K };
41 
42 enum dvbs2_mod_cod {
43 	DVBS2_DUMMY_PLF, DVBS2_QPSK_1_4, DVBS2_QPSK_1_3, DVBS2_QPSK_2_5,
44 	DVBS2_QPSK_1_2, DVBS2_QPSK_3_5, DVBS2_QPSK_2_3,	DVBS2_QPSK_3_4,
45 	DVBS2_QPSK_4_5,	DVBS2_QPSK_5_6,	DVBS2_QPSK_8_9,	DVBS2_QPSK_9_10,
46 	DVBS2_8PSK_3_5,	DVBS2_8PSK_2_3,	DVBS2_8PSK_3_4,	DVBS2_8PSK_5_6,
47 	DVBS2_8PSK_8_9,	DVBS2_8PSK_9_10, DVBS2_16APSK_2_3, DVBS2_16APSK_3_4,
48 	DVBS2_16APSK_4_5, DVBS2_16APSK_5_6, DVBS2_16APSK_8_9, DVBS2_16APSK_9_10,
49 	DVBS2_32APSK_3_4, DVBS2_32APSK_4_5, DVBS2_32APSK_5_6, DVBS2_32APSK_8_9,
50 	DVBS2_32APSK_9_10
51 };
52 
53 enum fe_stv0910_mod_cod {
54 	FE_DUMMY_PLF, FE_QPSK_14, FE_QPSK_13, FE_QPSK_25,
55 	FE_QPSK_12, FE_QPSK_35, FE_QPSK_23, FE_QPSK_34,
56 	FE_QPSK_45, FE_QPSK_56, FE_QPSK_89, FE_QPSK_910,
57 	FE_8PSK_35, FE_8PSK_23, FE_8PSK_34, FE_8PSK_56,
58 	FE_8PSK_89, FE_8PSK_910, FE_16APSK_23, FE_16APSK_34,
59 	FE_16APSK_45, FE_16APSK_56, FE_16APSK_89, FE_16APSK_910,
60 	FE_32APSK_34, FE_32APSK_45, FE_32APSK_56, FE_32APSK_89,
61 	FE_32APSK_910
62 };
63 
64 enum fe_stv0910_roll_off { FE_SAT_35, FE_SAT_25, FE_SAT_20, FE_SAT_15 };
65 
66 static inline u32 muldiv32(u32 a, u32 b, u32 c)
67 {
68 	u64 tmp64;
69 
70 	tmp64 = (u64)a * (u64)b;
71 	do_div(tmp64, c);
72 
73 	return (u32)tmp64;
74 }
75 
76 struct stv_base {
77 	struct list_head     stvlist;
78 
79 	u8                   adr;
80 	struct i2c_adapter  *i2c;
81 	struct mutex         i2c_lock; /* shared I2C access protect */
82 	struct mutex         reg_lock; /* shared register write protect */
83 	int                  count;
84 
85 	u32                  extclk;
86 	u32                  mclk;
87 };
88 
89 struct stv {
90 	struct stv_base     *base;
91 	struct dvb_frontend  fe;
92 	int                  nr;
93 	u16                  regoff;
94 	u8                   i2crpt;
95 	u8                   tscfgh;
96 	u8                   tsgeneral;
97 	u8                   tsspeed;
98 	u8                   single;
99 	unsigned long        tune_time;
100 
101 	s32                  search_range;
102 	u32                  started;
103 	u32                  demod_lock_time;
104 	enum receive_mode    receive_mode;
105 	u32                  demod_timeout;
106 	u32                  fec_timeout;
107 	u32                  first_time_lock;
108 	u8                   demod_bits;
109 	u32                  symbol_rate;
110 
111 	u8                       last_viterbi_rate;
112 	enum fe_code_rate        puncture_rate;
113 	enum fe_stv0910_mod_cod  mod_cod;
114 	enum dvbs2_fectype       fectype;
115 	u32                      pilots;
116 	enum fe_stv0910_roll_off feroll_off;
117 
118 	int   is_standard_broadcast;
119 	int   is_vcm;
120 
121 	u32   cur_scrambling_code;
122 
123 	u32   last_bernumerator;
124 	u32   last_berdenominator;
125 	u8    berscale;
126 
127 	u8    vth[6];
128 };
129 
130 struct sinit_table {
131 	u16  address;
132 	u8   data;
133 };
134 
135 struct slookup {
136 	s16  value;
137 	u32  reg_value;
138 };
139 
140 static int write_reg(struct stv *state, u16 reg, u8 val)
141 {
142 	struct i2c_adapter *adap = state->base->i2c;
143 	u8 data[3] = {reg >> 8, reg & 0xff, val};
144 	struct i2c_msg msg = {.addr = state->base->adr, .flags = 0,
145 			      .buf = data, .len = 3};
146 
147 	if (i2c_transfer(adap, &msg, 1) != 1) {
148 		dev_warn(&adap->dev, "i2c write error ([%02x] %04x: %02x)\n",
149 			 state->base->adr, reg, val);
150 		return -EIO;
151 	}
152 	return 0;
153 }
154 
155 static inline int i2c_read_regs16(struct i2c_adapter *adapter, u8 adr,
156 				  u16 reg, u8 *val, int count)
157 {
158 	u8 msg[2] = {reg >> 8, reg & 0xff};
159 	struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
160 				   .buf  = msg, .len   = 2},
161 				  {.addr = adr, .flags = I2C_M_RD,
162 				   .buf  = val, .len   = count } };
163 
164 	if (i2c_transfer(adapter, msgs, 2) != 2) {
165 		dev_warn(&adapter->dev, "i2c read error ([%02x] %04x)\n",
166 			 adr, reg);
167 		return -EIO;
168 	}
169 	return 0;
170 }
171 
172 static int read_reg(struct stv *state, u16 reg, u8 *val)
173 {
174 	return i2c_read_regs16(state->base->i2c, state->base->adr,
175 			       reg, val, 1);
176 }
177 
178 static int read_regs(struct stv *state, u16 reg, u8 *val, int len)
179 {
180 	return i2c_read_regs16(state->base->i2c, state->base->adr,
181 			       reg, val, len);
182 }
183 
184 static int write_shared_reg(struct stv *state, u16 reg, u8 mask, u8 val)
185 {
186 	int status;
187 	u8 tmp;
188 
189 	mutex_lock(&state->base->reg_lock);
190 	status = read_reg(state, reg, &tmp);
191 	if (!status)
192 		status = write_reg(state, reg, (tmp & ~mask) | (val & mask));
193 	mutex_unlock(&state->base->reg_lock);
194 	return status;
195 }
196 
197 static int write_field(struct stv *state, u32 field, u8 val)
198 {
199 	int status;
200 	u8 shift, mask, old, new;
201 
202 	status = read_reg(state, field >> 16, &old);
203 	if (status)
204 		return status;
205 	mask = field & 0xff;
206 	shift = (field >> 12) & 0xf;
207 	new = ((val << shift) & mask) | (old & ~mask);
208 	if (new == old)
209 		return 0;
210 	return write_reg(state, field >> 16, new);
211 }
212 
213 #define SET_FIELD(_reg, _val)					\
214 	write_field(state, state->nr ? FSTV0910_P2_##_reg :	\
215 		    FSTV0910_P1_##_reg, _val)
216 
217 #define SET_REG(_reg, _val)					\
218 	write_reg(state, state->nr ? RSTV0910_P2_##_reg :	\
219 		  RSTV0910_P1_##_reg, _val)
220 
221 #define GET_REG(_reg, _val)					\
222 	read_reg(state, state->nr ? RSTV0910_P2_##_reg :	\
223 		 RSTV0910_P1_##_reg, _val)
224 
225 static const struct slookup s1_sn_lookup[] = {
226 	{   0,    9242  }, /* C/N=   0dB */
227 	{   5,    9105  }, /* C/N= 0.5dB */
228 	{  10,    8950  }, /* C/N= 1.0dB */
229 	{  15,    8780  }, /* C/N= 1.5dB */
230 	{  20,    8566  }, /* C/N= 2.0dB */
231 	{  25,    8366  }, /* C/N= 2.5dB */
232 	{  30,    8146  }, /* C/N= 3.0dB */
233 	{  35,    7908  }, /* C/N= 3.5dB */
234 	{  40,    7666  }, /* C/N= 4.0dB */
235 	{  45,    7405  }, /* C/N= 4.5dB */
236 	{  50,    7136  }, /* C/N= 5.0dB */
237 	{  55,    6861  }, /* C/N= 5.5dB */
238 	{  60,    6576  }, /* C/N= 6.0dB */
239 	{  65,    6330  }, /* C/N= 6.5dB */
240 	{  70,    6048  }, /* C/N= 7.0dB */
241 	{  75,    5768  }, /* C/N= 7.5dB */
242 	{  80,    5492  }, /* C/N= 8.0dB */
243 	{  85,    5224  }, /* C/N= 8.5dB */
244 	{  90,    4959  }, /* C/N= 9.0dB */
245 	{  95,    4709  }, /* C/N= 9.5dB */
246 	{  100,   4467  }, /* C/N=10.0dB */
247 	{  105,   4236  }, /* C/N=10.5dB */
248 	{  110,   4013  }, /* C/N=11.0dB */
249 	{  115,   3800  }, /* C/N=11.5dB */
250 	{  120,   3598  }, /* C/N=12.0dB */
251 	{  125,   3406  }, /* C/N=12.5dB */
252 	{  130,   3225  }, /* C/N=13.0dB */
253 	{  135,   3052  }, /* C/N=13.5dB */
254 	{  140,   2889  }, /* C/N=14.0dB */
255 	{  145,   2733  }, /* C/N=14.5dB */
256 	{  150,   2587  }, /* C/N=15.0dB */
257 	{  160,   2318  }, /* C/N=16.0dB */
258 	{  170,   2077  }, /* C/N=17.0dB */
259 	{  180,   1862  }, /* C/N=18.0dB */
260 	{  190,   1670  }, /* C/N=19.0dB */
261 	{  200,   1499  }, /* C/N=20.0dB */
262 	{  210,   1347  }, /* C/N=21.0dB */
263 	{  220,   1213  }, /* C/N=22.0dB */
264 	{  230,   1095  }, /* C/N=23.0dB */
265 	{  240,    992  }, /* C/N=24.0dB */
266 	{  250,    900  }, /* C/N=25.0dB */
267 	{  260,    826  }, /* C/N=26.0dB */
268 	{  270,    758  }, /* C/N=27.0dB */
269 	{  280,    702  }, /* C/N=28.0dB */
270 	{  290,    653  }, /* C/N=29.0dB */
271 	{  300,    613  }, /* C/N=30.0dB */
272 	{  310,    579  }, /* C/N=31.0dB */
273 	{  320,    550  }, /* C/N=32.0dB */
274 	{  330,    526  }, /* C/N=33.0dB */
275 	{  350,    490  }, /* C/N=33.0dB */
276 	{  400,    445  }, /* C/N=40.0dB */
277 	{  450,    430  }, /* C/N=45.0dB */
278 	{  500,    426  }, /* C/N=50.0dB */
279 	{  510,    425  }  /* C/N=51.0dB */
280 };
281 
282 static const struct slookup s2_sn_lookup[] = {
283 	{  -30,  13950  }, /* C/N=-2.5dB */
284 	{  -25,  13580  }, /* C/N=-2.5dB */
285 	{  -20,  13150  }, /* C/N=-2.0dB */
286 	{  -15,  12760  }, /* C/N=-1.5dB */
287 	{  -10,  12345  }, /* C/N=-1.0dB */
288 	{   -5,  11900  }, /* C/N=-0.5dB */
289 	{    0,  11520  }, /* C/N=   0dB */
290 	{    5,  11080  }, /* C/N= 0.5dB */
291 	{   10,  10630  }, /* C/N= 1.0dB */
292 	{   15,  10210  }, /* C/N= 1.5dB */
293 	{   20,   9790  }, /* C/N= 2.0dB */
294 	{   25,   9390  }, /* C/N= 2.5dB */
295 	{   30,   8970  }, /* C/N= 3.0dB */
296 	{   35,   8575  }, /* C/N= 3.5dB */
297 	{   40,   8180  }, /* C/N= 4.0dB */
298 	{   45,   7800  }, /* C/N= 4.5dB */
299 	{   50,   7430  }, /* C/N= 5.0dB */
300 	{   55,   7080  }, /* C/N= 5.5dB */
301 	{   60,   6720  }, /* C/N= 6.0dB */
302 	{   65,   6320  }, /* C/N= 6.5dB */
303 	{   70,   6060  }, /* C/N= 7.0dB */
304 	{   75,   5760  }, /* C/N= 7.5dB */
305 	{   80,   5480  }, /* C/N= 8.0dB */
306 	{   85,   5200  }, /* C/N= 8.5dB */
307 	{   90,   4930  }, /* C/N= 9.0dB */
308 	{   95,   4680  }, /* C/N= 9.5dB */
309 	{  100,   4425  }, /* C/N=10.0dB */
310 	{  105,   4210  }, /* C/N=10.5dB */
311 	{  110,   3980  }, /* C/N=11.0dB */
312 	{  115,   3765  }, /* C/N=11.5dB */
313 	{  120,   3570  }, /* C/N=12.0dB */
314 	{  125,   3315  }, /* C/N=12.5dB */
315 	{  130,   3140  }, /* C/N=13.0dB */
316 	{  135,   2980  }, /* C/N=13.5dB */
317 	{  140,   2820  }, /* C/N=14.0dB */
318 	{  145,   2670  }, /* C/N=14.5dB */
319 	{  150,   2535  }, /* C/N=15.0dB */
320 	{  160,   2270  }, /* C/N=16.0dB */
321 	{  170,   2035  }, /* C/N=17.0dB */
322 	{  180,   1825  }, /* C/N=18.0dB */
323 	{  190,   1650  }, /* C/N=19.0dB */
324 	{  200,   1485  }, /* C/N=20.0dB */
325 	{  210,   1340  }, /* C/N=21.0dB */
326 	{  220,   1212  }, /* C/N=22.0dB */
327 	{  230,   1100  }, /* C/N=23.0dB */
328 	{  240,   1000  }, /* C/N=24.0dB */
329 	{  250,    910  }, /* C/N=25.0dB */
330 	{  260,    836  }, /* C/N=26.0dB */
331 	{  270,    772  }, /* C/N=27.0dB */
332 	{  280,    718  }, /* C/N=28.0dB */
333 	{  290,    671  }, /* C/N=29.0dB */
334 	{  300,    635  }, /* C/N=30.0dB */
335 	{  310,    602  }, /* C/N=31.0dB */
336 	{  320,    575  }, /* C/N=32.0dB */
337 	{  330,    550  }, /* C/N=33.0dB */
338 	{  350,    517  }, /* C/N=35.0dB */
339 	{  400,    480  }, /* C/N=40.0dB */
340 	{  450,    466  }, /* C/N=45.0dB */
341 	{  500,    464  }, /* C/N=50.0dB */
342 	{  510,    463  }, /* C/N=51.0dB */
343 };
344 
345 static const struct slookup padc_lookup[] = {
346 	{    0,  118000 }, /* PADC= +0dBm */
347 	{ -100,  93600  }, /* PADC= -1dBm */
348 	{ -200,  74500  }, /* PADC= -2dBm */
349 	{ -300,  59100  }, /* PADC= -3dBm */
350 	{ -400,  47000  }, /* PADC= -4dBm */
351 	{ -500,  37300  }, /* PADC= -5dBm */
352 	{ -600,  29650  }, /* PADC= -6dBm */
353 	{ -700,  23520  }, /* PADC= -7dBm */
354 	{ -900,  14850  }, /* PADC= -9dBm */
355 	{ -1100, 9380   }, /* PADC=-11dBm */
356 	{ -1300, 5910   }, /* PADC=-13dBm */
357 	{ -1500, 3730   }, /* PADC=-15dBm */
358 	{ -1700, 2354   }, /* PADC=-17dBm */
359 	{ -1900, 1485   }, /* PADC=-19dBm */
360 	{ -2000, 1179   }, /* PADC=-20dBm */
361 	{ -2100, 1000   }, /* PADC=-21dBm */
362 };
363 
364 /*********************************************************************
365  * Tracking carrier loop carrier QPSK 1/4 to 8PSK 9/10 long Frame
366  *********************************************************************/
367 static const u8 s2car_loop[] =	{
368 	/*
369 	 * Modcod  2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff
370 	 * 20MPon 20MPoff 30MPon 30MPoff
371 	 */
372 
373 	/* FE_QPSK_14  */
374 	0x0C,  0x3C,  0x0B,  0x3C,  0x2A,  0x2C,  0x2A,  0x1C,  0x3A,  0x3B,
375 	/* FE_QPSK_13  */
376 	0x0C,  0x3C,  0x0B,  0x3C,  0x2A,  0x2C,  0x3A,  0x0C,  0x3A,  0x2B,
377 	/* FE_QPSK_25  */
378 	0x1C,  0x3C,  0x1B,  0x3C,  0x3A,  0x1C,  0x3A,  0x3B,  0x3A,  0x2B,
379 	/* FE_QPSK_12  */
380 	0x0C,  0x1C,  0x2B,  0x1C,  0x0B,  0x2C,  0x0B,  0x0C,  0x2A,  0x2B,
381 	/* FE_QPSK_35  */
382 	0x1C,  0x1C,  0x2B,  0x1C,  0x0B,  0x2C,  0x0B,  0x0C,  0x2A,  0x2B,
383 	/* FE_QPSK_23  */
384 	0x2C,  0x2C,  0x2B,  0x1C,  0x0B,  0x2C,  0x0B,  0x0C,  0x2A,  0x2B,
385 	/* FE_QPSK_34  */
386 	0x3C,  0x2C,  0x3B,  0x2C,  0x1B,  0x1C,  0x1B,  0x3B,  0x3A,  0x1B,
387 	/* FE_QPSK_45  */
388 	0x0D,  0x3C,  0x3B,  0x2C,  0x1B,  0x1C,  0x1B,  0x3B,  0x3A,  0x1B,
389 	/* FE_QPSK_56  */
390 	0x1D,  0x3C,  0x0C,  0x2C,  0x2B,  0x1C,  0x1B,  0x3B,  0x0B,  0x1B,
391 	/* FE_QPSK_89  */
392 	0x3D,  0x0D,  0x0C,  0x2C,  0x2B,  0x0C,  0x2B,  0x2B,  0x0B,  0x0B,
393 	/* FE_QPSK_910 */
394 	0x1E,  0x0D,  0x1C,  0x2C,  0x3B,  0x0C,  0x2B,  0x2B,  0x1B,  0x0B,
395 	/* FE_8PSK_35  */
396 	0x28,  0x09,  0x28,  0x09,  0x28,  0x09,  0x28,  0x08,  0x28,  0x27,
397 	/* FE_8PSK_23  */
398 	0x19,  0x29,  0x19,  0x29,  0x19,  0x29,  0x38,  0x19,  0x28,  0x09,
399 	/* FE_8PSK_34  */
400 	0x1A,  0x0B,  0x1A,  0x3A,  0x0A,  0x2A,  0x39,  0x2A,  0x39,  0x1A,
401 	/* FE_8PSK_56  */
402 	0x2B,  0x2B,  0x1B,  0x1B,  0x0B,  0x1B,  0x1A,  0x0B,  0x1A,  0x1A,
403 	/* FE_8PSK_89  */
404 	0x0C,  0x0C,  0x3B,  0x3B,  0x1B,  0x1B,  0x2A,  0x0B,  0x2A,  0x2A,
405 	/* FE_8PSK_910 */
406 	0x0C,  0x1C,  0x0C,  0x3B,  0x2B,  0x1B,  0x3A,  0x0B,  0x2A,  0x2A,
407 
408 	/**********************************************************************
409 	 * Tracking carrier loop carrier 16APSK 2/3 to 32APSK 9/10 long Frame
410 	 **********************************************************************/
411 
412 	/*
413 	 * Modcod 2MPon  2MPoff 5MPon 5MPoff 10MPon 10MPoff 20MPon
414 	 * 20MPoff 30MPon 30MPoff
415 	 */
416 
417 	/* FE_16APSK_23  */
418 	0x0A,  0x0A,  0x0A,  0x0A,  0x1A,  0x0A,  0x39,  0x0A,  0x29,  0x0A,
419 	/* FE_16APSK_34  */
420 	0x0A,  0x0A,  0x0A,  0x0A,  0x0B,  0x0A,  0x2A,  0x0A,  0x1A,  0x0A,
421 	/* FE_16APSK_45  */
422 	0x0A,  0x0A,  0x0A,  0x0A,  0x1B,  0x0A,  0x3A,  0x0A,  0x2A,  0x0A,
423 	/* FE_16APSK_56  */
424 	0x0A,  0x0A,  0x0A,  0x0A,  0x1B,  0x0A,  0x3A,  0x0A,  0x2A,  0x0A,
425 	/* FE_16APSK_89  */
426 	0x0A,  0x0A,  0x0A,  0x0A,  0x2B,  0x0A,  0x0B,  0x0A,  0x3A,  0x0A,
427 	/* FE_16APSK_910 */
428 	0x0A,  0x0A,  0x0A,  0x0A,  0x2B,  0x0A,  0x0B,  0x0A,  0x3A,  0x0A,
429 	/* FE_32APSK_34  */
430 	0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
431 	/* FE_32APSK_45  */
432 	0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
433 	/* FE_32APSK_56  */
434 	0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
435 	/* FE_32APSK_89  */
436 	0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
437 	/* FE_32APSK_910 */
438 	0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
439 };
440 
441 static u8 get_optim_cloop(struct stv *state,
442 			  enum fe_stv0910_mod_cod mod_cod, u32 pilots)
443 {
444 	int i = 0;
445 
446 	if (mod_cod >= FE_32APSK_910)
447 		i = ((int)FE_32APSK_910 - (int)FE_QPSK_14) * 10;
448 	else if (mod_cod >= FE_QPSK_14)
449 		i = ((int)mod_cod - (int)FE_QPSK_14) * 10;
450 
451 	if (state->symbol_rate <= 3000000)
452 		i += 0;
453 	else if (state->symbol_rate <=  7000000)
454 		i += 2;
455 	else if (state->symbol_rate <= 15000000)
456 		i += 4;
457 	else if (state->symbol_rate <= 25000000)
458 		i += 6;
459 	else
460 		i += 8;
461 
462 	if (!pilots)
463 		i += 1;
464 
465 	return s2car_loop[i];
466 }
467 
468 static int get_cur_symbol_rate(struct stv *state, u32 *p_symbol_rate)
469 {
470 	int status = 0;
471 	u8 symb_freq0;
472 	u8 symb_freq1;
473 	u8 symb_freq2;
474 	u8 symb_freq3;
475 	u8 tim_offs0;
476 	u8 tim_offs1;
477 	u8 tim_offs2;
478 	u32 symbol_rate;
479 	s32 timing_offset;
480 
481 	*p_symbol_rate = 0;
482 	if (!state->started)
483 		return status;
484 
485 	read_reg(state, RSTV0910_P2_SFR3 + state->regoff, &symb_freq3);
486 	read_reg(state, RSTV0910_P2_SFR2 + state->regoff, &symb_freq2);
487 	read_reg(state, RSTV0910_P2_SFR1 + state->regoff, &symb_freq1);
488 	read_reg(state, RSTV0910_P2_SFR0 + state->regoff, &symb_freq0);
489 	read_reg(state, RSTV0910_P2_TMGREG2 + state->regoff, &tim_offs2);
490 	read_reg(state, RSTV0910_P2_TMGREG1 + state->regoff, &tim_offs1);
491 	read_reg(state, RSTV0910_P2_TMGREG0 + state->regoff, &tim_offs0);
492 
493 	symbol_rate = ((u32)symb_freq3 << 24) | ((u32)symb_freq2 << 16) |
494 		((u32)symb_freq1 << 8) | (u32)symb_freq0;
495 	timing_offset = ((u32)tim_offs2 << 16) | ((u32)tim_offs1 << 8) |
496 		(u32)tim_offs0;
497 
498 	if ((timing_offset & (1 << 23)) != 0)
499 		timing_offset |= 0xFF000000; /* Sign extent */
500 
501 	symbol_rate = (u32)(((u64)symbol_rate * state->base->mclk) >> 32);
502 	timing_offset = (s32)(((s64)symbol_rate * (s64)timing_offset) >> 29);
503 
504 	*p_symbol_rate = symbol_rate + timing_offset;
505 
506 	return 0;
507 }
508 
509 static int get_signal_parameters(struct stv *state)
510 {
511 	u8 tmp;
512 
513 	if (!state->started)
514 		return -EINVAL;
515 
516 	if (state->receive_mode == RCVMODE_DVBS2) {
517 		read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
518 		state->mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2);
519 		state->pilots = (tmp & 0x01) != 0;
520 		state->fectype = (enum dvbs2_fectype)((tmp & 0x02) >> 1);
521 
522 	} else if (state->receive_mode == RCVMODE_DVBS) {
523 		read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
524 		state->puncture_rate = FEC_NONE;
525 		switch (tmp & 0x1F) {
526 		case 0x0d:
527 			state->puncture_rate = FEC_1_2;
528 			break;
529 		case 0x12:
530 			state->puncture_rate = FEC_2_3;
531 			break;
532 		case 0x15:
533 			state->puncture_rate = FEC_3_4;
534 			break;
535 		case 0x18:
536 			state->puncture_rate = FEC_5_6;
537 			break;
538 		case 0x1a:
539 			state->puncture_rate = FEC_7_8;
540 			break;
541 		}
542 		state->is_vcm = 0;
543 		state->is_standard_broadcast = 1;
544 		state->feroll_off = FE_SAT_35;
545 	}
546 	return 0;
547 }
548 
549 static int tracking_optimization(struct stv *state)
550 {
551 	u8 tmp;
552 
553 	read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &tmp);
554 	tmp &= ~0xC0;
555 
556 	switch (state->receive_mode) {
557 	case RCVMODE_DVBS:
558 		tmp |= 0x40;
559 		break;
560 	case RCVMODE_DVBS2:
561 		tmp |= 0x80;
562 		break;
563 	default:
564 		tmp |= 0xC0;
565 		break;
566 	}
567 	write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, tmp);
568 
569 	if (state->receive_mode == RCVMODE_DVBS2) {
570 		/* Disable Reed-Solomon */
571 		write_shared_reg(state,
572 				 RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01,
573 				 0x03);
574 
575 		if (state->fectype == DVBS2_64K) {
576 			u8 aclc = get_optim_cloop(state, state->mod_cod,
577 						  state->pilots);
578 
579 			if (state->mod_cod <= FE_QPSK_910) {
580 				write_reg(state, RSTV0910_P2_ACLC2S2Q +
581 					  state->regoff, aclc);
582 			} else if (state->mod_cod <= FE_8PSK_910) {
583 				write_reg(state, RSTV0910_P2_ACLC2S2Q +
584 					  state->regoff, 0x2a);
585 				write_reg(state, RSTV0910_P2_ACLC2S28 +
586 					  state->regoff, aclc);
587 			} else if (state->mod_cod <= FE_16APSK_910) {
588 				write_reg(state, RSTV0910_P2_ACLC2S2Q +
589 					  state->regoff, 0x2a);
590 				write_reg(state, RSTV0910_P2_ACLC2S216A +
591 					  state->regoff, aclc);
592 			} else if (state->mod_cod <= FE_32APSK_910) {
593 				write_reg(state, RSTV0910_P2_ACLC2S2Q +
594 					  state->regoff, 0x2a);
595 				write_reg(state, RSTV0910_P2_ACLC2S232A +
596 					  state->regoff, aclc);
597 			}
598 		}
599 	}
600 	return 0;
601 }
602 
603 static s32 table_lookup(const struct slookup *table,
604 			int table_size, u32 reg_value)
605 {
606 	s32 value;
607 	int imin = 0;
608 	int imax = table_size - 1;
609 	int i;
610 	s32 reg_diff;
611 
612 	/* Assumes Table[0].RegValue > Table[imax].RegValue */
613 	if (reg_value >= table[0].reg_value) {
614 		value = table[0].value;
615 	} else if (reg_value <= table[imax].reg_value) {
616 		value = table[imax].value;
617 	} else {
618 		while ((imax - imin) > 1) {
619 			i = (imax + imin) / 2;
620 			if ((table[imin].reg_value >= reg_value) &&
621 			    (reg_value >= table[i].reg_value))
622 				imax = i;
623 			else
624 				imin = i;
625 		}
626 
627 		reg_diff = table[imax].reg_value - table[imin].reg_value;
628 		value = table[imin].value;
629 		if (reg_diff != 0)
630 			value += ((s32)(reg_value - table[imin].reg_value) *
631 				  (s32)(table[imax].value
632 					- table[imin].value))
633 					/ (reg_diff);
634 	}
635 
636 	return value;
637 }
638 
639 static int get_signal_to_noise(struct stv *state, s32 *signal_to_noise)
640 {
641 	u8 data0;
642 	u8 data1;
643 	u16 data;
644 	int n_lookup;
645 	const struct slookup *lookup;
646 
647 	*signal_to_noise = 0;
648 
649 	if (!state->started)
650 		return -EINVAL;
651 
652 	if (state->receive_mode == RCVMODE_DVBS2) {
653 		read_reg(state, RSTV0910_P2_NNOSPLHT1 + state->regoff,
654 			 &data1);
655 		read_reg(state, RSTV0910_P2_NNOSPLHT0 + state->regoff,
656 			 &data0);
657 		n_lookup = ARRAY_SIZE(s2_sn_lookup);
658 		lookup = s2_sn_lookup;
659 	} else {
660 		read_reg(state, RSTV0910_P2_NNOSDATAT1 + state->regoff,
661 			 &data1);
662 		read_reg(state, RSTV0910_P2_NNOSDATAT0 + state->regoff,
663 			 &data0);
664 		n_lookup = ARRAY_SIZE(s1_sn_lookup);
665 		lookup = s1_sn_lookup;
666 	}
667 	data = (((u16)data1) << 8) | (u16)data0;
668 	*signal_to_noise = table_lookup(lookup, n_lookup, data);
669 	return 0;
670 }
671 
672 static int get_bit_error_rate_s(struct stv *state, u32 *bernumerator,
673 				u32 *berdenominator)
674 {
675 	u8 regs[3];
676 
677 	int status = read_regs(state,
678 			       RSTV0910_P2_ERRCNT12 + state->regoff,
679 			       regs, 3);
680 
681 	if (status)
682 		return -EINVAL;
683 
684 	if ((regs[0] & 0x80) == 0) {
685 		state->last_berdenominator = 1 << ((state->berscale * 2) +
686 						  10 + 3);
687 		state->last_bernumerator = ((u32)(regs[0] & 0x7F) << 16) |
688 			((u32)regs[1] << 8) | regs[2];
689 		if (state->last_bernumerator < 256 && state->berscale < 6) {
690 			state->berscale += 1;
691 			status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
692 					   state->regoff,
693 					   0x20 | state->berscale);
694 		} else if (state->last_bernumerator > 1024 &&
695 			   state->berscale > 2) {
696 			state->berscale -= 1;
697 			status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
698 					   state->regoff, 0x20 |
699 					   state->berscale);
700 		}
701 	}
702 	*bernumerator = state->last_bernumerator;
703 	*berdenominator = state->last_berdenominator;
704 	return 0;
705 }
706 
707 static u32 dvbs2_nbch(enum dvbs2_mod_cod mod_cod, enum dvbs2_fectype fectype)
708 {
709 	static const u32 nbch[][2] = {
710 		{    0,     0}, /* DUMMY_PLF   */
711 		{16200,  3240}, /* QPSK_1_4,   */
712 		{21600,  5400}, /* QPSK_1_3,   */
713 		{25920,  6480}, /* QPSK_2_5,   */
714 		{32400,  7200}, /* QPSK_1_2,   */
715 		{38880,  9720}, /* QPSK_3_5,   */
716 		{43200, 10800}, /* QPSK_2_3,   */
717 		{48600, 11880}, /* QPSK_3_4,   */
718 		{51840, 12600}, /* QPSK_4_5,   */
719 		{54000, 13320}, /* QPSK_5_6,   */
720 		{57600, 14400}, /* QPSK_8_9,   */
721 		{58320, 16000}, /* QPSK_9_10,  */
722 		{43200,  9720}, /* 8PSK_3_5,   */
723 		{48600, 10800}, /* 8PSK_2_3,   */
724 		{51840, 11880}, /* 8PSK_3_4,   */
725 		{54000, 13320}, /* 8PSK_5_6,   */
726 		{57600, 14400}, /* 8PSK_8_9,   */
727 		{58320, 16000}, /* 8PSK_9_10,  */
728 		{43200, 10800}, /* 16APSK_2_3, */
729 		{48600, 11880}, /* 16APSK_3_4, */
730 		{51840, 12600}, /* 16APSK_4_5, */
731 		{54000, 13320}, /* 16APSK_5_6, */
732 		{57600, 14400}, /* 16APSK_8_9, */
733 		{58320, 16000}, /* 16APSK_9_10 */
734 		{48600, 11880}, /* 32APSK_3_4, */
735 		{51840, 12600}, /* 32APSK_4_5, */
736 		{54000, 13320}, /* 32APSK_5_6, */
737 		{57600, 14400}, /* 32APSK_8_9, */
738 		{58320, 16000}, /* 32APSK_9_10 */
739 	};
740 
741 	if (mod_cod >= DVBS2_QPSK_1_4 &&
742 	    mod_cod <= DVBS2_32APSK_9_10 && fectype <= DVBS2_16K)
743 		return nbch[mod_cod][fectype];
744 	return 64800;
745 }
746 
747 static int get_bit_error_rate_s2(struct stv *state, u32 *bernumerator,
748 				 u32 *berdenominator)
749 {
750 	u8 regs[3];
751 
752 	int status = read_regs(state, RSTV0910_P2_ERRCNT12 + state->regoff,
753 			       regs, 3);
754 
755 	if (status)
756 		return -EINVAL;
757 
758 	if ((regs[0] & 0x80) == 0) {
759 		state->last_berdenominator =
760 			dvbs2_nbch((enum dvbs2_mod_cod)state->mod_cod,
761 				   state->fectype) <<
762 			(state->berscale * 2);
763 		state->last_bernumerator = (((u32)regs[0] & 0x7F) << 16) |
764 			((u32)regs[1] << 8) | regs[2];
765 		if (state->last_bernumerator < 256 && state->berscale < 6) {
766 			state->berscale += 1;
767 			write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
768 				  0x20 | state->berscale);
769 		} else if (state->last_bernumerator > 1024 &&
770 			   state->berscale > 2) {
771 			state->berscale -= 1;
772 			write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
773 				  0x20 | state->berscale);
774 		}
775 	}
776 	*bernumerator = state->last_bernumerator;
777 	*berdenominator = state->last_berdenominator;
778 	return status;
779 }
780 
781 static int get_bit_error_rate(struct stv *state, u32 *bernumerator,
782 			      u32 *berdenominator)
783 {
784 	*bernumerator = 0;
785 	*berdenominator = 1;
786 
787 	switch (state->receive_mode) {
788 	case RCVMODE_DVBS:
789 		return get_bit_error_rate_s(state,
790 					    bernumerator, berdenominator);
791 	case RCVMODE_DVBS2:
792 		return get_bit_error_rate_s2(state,
793 					     bernumerator, berdenominator);
794 	default:
795 		break;
796 	}
797 	return 0;
798 }
799 
800 static int set_mclock(struct stv *state, u32 master_clock)
801 {
802 	u32 idf = 1;
803 	u32 odf = 4;
804 	u32 quartz = state->base->extclk / 1000000;
805 	u32 fphi = master_clock / 1000000;
806 	u32 ndiv = (fphi * odf * idf) / quartz;
807 	u32 cp = 7;
808 	u32 fvco;
809 
810 	if (ndiv >= 7 && ndiv <= 71)
811 		cp = 7;
812 	else if (ndiv >=  72 && ndiv <=  79)
813 		cp = 8;
814 	else if (ndiv >=  80 && ndiv <=  87)
815 		cp = 9;
816 	else if (ndiv >=  88 && ndiv <=  95)
817 		cp = 10;
818 	else if (ndiv >=  96 && ndiv <= 103)
819 		cp = 11;
820 	else if (ndiv >= 104 && ndiv <= 111)
821 		cp = 12;
822 	else if (ndiv >= 112 && ndiv <= 119)
823 		cp = 13;
824 	else if (ndiv >= 120 && ndiv <= 127)
825 		cp = 14;
826 	else if (ndiv >= 128 && ndiv <= 135)
827 		cp = 15;
828 	else if (ndiv >= 136 && ndiv <= 143)
829 		cp = 16;
830 	else if (ndiv >= 144 && ndiv <= 151)
831 		cp = 17;
832 	else if (ndiv >= 152 && ndiv <= 159)
833 		cp = 18;
834 	else if (ndiv >= 160 && ndiv <= 167)
835 		cp = 19;
836 	else if (ndiv >= 168 && ndiv <= 175)
837 		cp = 20;
838 	else if (ndiv >= 176 && ndiv <= 183)
839 		cp = 21;
840 	else if (ndiv >= 184 && ndiv <= 191)
841 		cp = 22;
842 	else if (ndiv >= 192 && ndiv <= 199)
843 		cp = 23;
844 	else if (ndiv >= 200 && ndiv <= 207)
845 		cp = 24;
846 	else if (ndiv >= 208 && ndiv <= 215)
847 		cp = 25;
848 	else if (ndiv >= 216 && ndiv <= 223)
849 		cp = 26;
850 	else if (ndiv >= 224 && ndiv <= 225)
851 		cp = 27;
852 
853 	write_reg(state, RSTV0910_NCOARSE, (cp << 3) | idf);
854 	write_reg(state, RSTV0910_NCOARSE2, odf);
855 	write_reg(state, RSTV0910_NCOARSE1, ndiv);
856 
857 	fvco = (quartz * 2 * ndiv) / idf;
858 	state->base->mclk = fvco / (2 * odf) * 1000000;
859 
860 	return 0;
861 }
862 
863 static int stop(struct stv *state)
864 {
865 	if (state->started) {
866 		u8 tmp;
867 
868 		write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
869 			  state->tscfgh | 0x01);
870 		read_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, &tmp);
871 		tmp &= ~0x01; /* release reset DVBS2 packet delin */
872 		write_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, tmp);
873 		/* Blind optim*/
874 		write_reg(state, RSTV0910_P2_AGC2O + state->regoff, 0x5B);
875 		/* Stop the demod */
876 		write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5c);
877 		state->started = 0;
878 	}
879 	state->receive_mode = RCVMODE_NONE;
880 	return 0;
881 }
882 
883 static void set_pls(struct stv *state, u32 pls_code)
884 {
885 	if (pls_code == state->cur_scrambling_code)
886 		return;
887 
888 	/* PLROOT2 bit 2 = gold code */
889 	write_reg(state, RSTV0910_P2_PLROOT0 + state->regoff,
890 		  pls_code & 0xff);
891 	write_reg(state, RSTV0910_P2_PLROOT1 + state->regoff,
892 		  (pls_code >> 8) & 0xff);
893 	write_reg(state, RSTV0910_P2_PLROOT2 + state->regoff,
894 		  0x04 | ((pls_code >> 16) & 0x03));
895 	state->cur_scrambling_code = pls_code;
896 }
897 
898 static void set_isi(struct stv *state, u32 isi)
899 {
900 	if (isi == NO_STREAM_ID_FILTER)
901 		return;
902 	if (isi == 0x80000000) {
903 		SET_FIELD(FORCE_CONTINUOUS, 1);
904 		SET_FIELD(TSOUT_NOSYNC, 1);
905 	} else {
906 		SET_FIELD(FILTER_EN, 1);
907 		write_reg(state, RSTV0910_P2_ISIENTRY + state->regoff,
908 			  isi & 0xff);
909 		write_reg(state, RSTV0910_P2_ISIBITENA + state->regoff, 0xff);
910 	}
911 	SET_FIELD(ALGOSWRST, 1);
912 	SET_FIELD(ALGOSWRST, 0);
913 }
914 
915 static void set_stream_modes(struct stv *state,
916 			     struct dtv_frontend_properties *p)
917 {
918 	set_isi(state, p->stream_id);
919 	set_pls(state, p->scrambling_sequence_index);
920 }
921 
922 static int init_search_param(struct stv *state,
923 			     struct dtv_frontend_properties *p)
924 {
925 	SET_FIELD(FORCE_CONTINUOUS, 0);
926 	SET_FIELD(FRAME_MODE, 0);
927 	SET_FIELD(FILTER_EN, 0);
928 	SET_FIELD(TSOUT_NOSYNC, 0);
929 	SET_FIELD(TSFIFO_EMBINDVB, 0);
930 	SET_FIELD(TSDEL_SYNCBYTE, 0);
931 	SET_REG(UPLCCST0, 0xe0);
932 	SET_FIELD(TSINS_TOKEN, 0);
933 	SET_FIELD(HYSTERESIS_THRESHOLD, 0);
934 	SET_FIELD(ISIOBS_MODE, 1);
935 
936 	set_stream_modes(state, p);
937 	return 0;
938 }
939 
940 static int enable_puncture_rate(struct stv *state, enum fe_code_rate rate)
941 {
942 	u8 val;
943 
944 	switch (rate) {
945 	case FEC_1_2:
946 		val = 0x01;
947 		break;
948 	case FEC_2_3:
949 		val = 0x02;
950 		break;
951 	case FEC_3_4:
952 		val = 0x04;
953 		break;
954 	case FEC_5_6:
955 		val = 0x08;
956 		break;
957 	case FEC_7_8:
958 		val = 0x20;
959 		break;
960 	case FEC_NONE:
961 	default:
962 		val = 0x2f;
963 		break;
964 	}
965 
966 	return write_reg(state, RSTV0910_P2_PRVIT + state->regoff, val);
967 }
968 
969 static int set_vth_default(struct stv *state)
970 {
971 	state->vth[0] = 0xd7;
972 	state->vth[1] = 0x85;
973 	state->vth[2] = 0x58;
974 	state->vth[3] = 0x3a;
975 	state->vth[4] = 0x34;
976 	state->vth[5] = 0x28;
977 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]);
978 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]);
979 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]);
980 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]);
981 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]);
982 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]);
983 	return 0;
984 }
985 
986 static int set_vth(struct stv *state)
987 {
988 	static const struct slookup vthlookup_table[] = {
989 		{250,	8780}, /* C/N= 1.5dB */
990 		{100,	7405}, /* C/N= 4.5dB */
991 		{40,	6330}, /* C/N= 6.5dB */
992 		{12,	5224}, /* C/N= 8.5dB */
993 		{5,	4236}  /* C/N=10.5dB */
994 	};
995 
996 	int i;
997 	u8 tmp[2];
998 	int status = read_regs(state,
999 			       RSTV0910_P2_NNOSDATAT1 + state->regoff,
1000 			       tmp, 2);
1001 	u16 reg_value = (tmp[0] << 8) | tmp[1];
1002 	s32 vth = table_lookup(vthlookup_table, ARRAY_SIZE(vthlookup_table),
1003 			      reg_value);
1004 
1005 	for (i = 0; i < 6; i += 1)
1006 		if (state->vth[i] > vth)
1007 			state->vth[i] = vth;
1008 
1009 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]);
1010 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]);
1011 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]);
1012 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]);
1013 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]);
1014 	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]);
1015 	return status;
1016 }
1017 
1018 static int start(struct stv *state, struct dtv_frontend_properties *p)
1019 {
1020 	s32 freq;
1021 	u8  reg_dmdcfgmd;
1022 	u16 symb;
1023 
1024 	if (p->symbol_rate < 100000 || p->symbol_rate > 70000000)
1025 		return -EINVAL;
1026 
1027 	state->receive_mode = RCVMODE_NONE;
1028 	state->demod_lock_time = 0;
1029 
1030 	/* Demod Stop */
1031 	if (state->started)
1032 		write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5C);
1033 
1034 	init_search_param(state, p);
1035 
1036 	if (p->symbol_rate <= 1000000) { /* SR <=1Msps */
1037 		state->demod_timeout = 3000;
1038 		state->fec_timeout = 2000;
1039 	} else if (p->symbol_rate <= 2000000) { /* 1Msps < SR <=2Msps */
1040 		state->demod_timeout = 2500;
1041 		state->fec_timeout = 1300;
1042 	} else if (p->symbol_rate <= 5000000) { /* 2Msps< SR <=5Msps */
1043 		state->demod_timeout = 1000;
1044 		state->fec_timeout = 650;
1045 	} else if (p->symbol_rate <= 10000000) { /* 5Msps< SR <=10Msps */
1046 		state->demod_timeout = 700;
1047 		state->fec_timeout = 350;
1048 	} else if (p->symbol_rate < 20000000) { /* 10Msps< SR <=20Msps */
1049 		state->demod_timeout = 400;
1050 		state->fec_timeout = 200;
1051 	} else { /* SR >=20Msps */
1052 		state->demod_timeout = 300;
1053 		state->fec_timeout = 200;
1054 	}
1055 
1056 	/* Set the Init Symbol rate */
1057 	symb = muldiv32(p->symbol_rate, 65536, state->base->mclk);
1058 	write_reg(state, RSTV0910_P2_SFRINIT1 + state->regoff,
1059 		  ((symb >> 8) & 0x7F));
1060 	write_reg(state, RSTV0910_P2_SFRINIT0 + state->regoff, (symb & 0xFF));
1061 
1062 	state->demod_bits |= 0x80;
1063 	write_reg(state, RSTV0910_P2_DEMOD + state->regoff, state->demod_bits);
1064 
1065 	/* FE_STV0910_SetSearchStandard */
1066 	read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &reg_dmdcfgmd);
1067 	write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff,
1068 		  reg_dmdcfgmd |= 0xC0);
1069 
1070 	write_shared_reg(state,
1071 			 RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01, 0x00);
1072 
1073 	/* Disable DSS */
1074 	write_reg(state, RSTV0910_P2_FECM  + state->regoff, 0x00);
1075 	write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x2F);
1076 
1077 	enable_puncture_rate(state, FEC_NONE);
1078 
1079 	/* 8PSK 3/5, 8PSK 2/3 Poff tracking optimization WA */
1080 	write_reg(state, RSTV0910_P2_ACLC2S2Q + state->regoff, 0x0B);
1081 	write_reg(state, RSTV0910_P2_ACLC2S28 + state->regoff, 0x0A);
1082 	write_reg(state, RSTV0910_P2_BCLC2S2Q + state->regoff, 0x84);
1083 	write_reg(state, RSTV0910_P2_BCLC2S28 + state->regoff, 0x84);
1084 	write_reg(state, RSTV0910_P2_CARHDR + state->regoff, 0x1C);
1085 	write_reg(state, RSTV0910_P2_CARFREQ + state->regoff, 0x79);
1086 
1087 	write_reg(state, RSTV0910_P2_ACLC2S216A + state->regoff, 0x29);
1088 	write_reg(state, RSTV0910_P2_ACLC2S232A + state->regoff, 0x09);
1089 	write_reg(state, RSTV0910_P2_BCLC2S216A + state->regoff, 0x84);
1090 	write_reg(state, RSTV0910_P2_BCLC2S232A + state->regoff, 0x84);
1091 
1092 	/*
1093 	 * Reset CAR3, bug DVBS2->DVBS1 lock
1094 	 * Note: The bit is only pulsed -> no lock on shared register needed
1095 	 */
1096 	write_reg(state, RSTV0910_TSTRES0, state->nr ? 0x04 : 0x08);
1097 	write_reg(state, RSTV0910_TSTRES0, 0);
1098 
1099 	set_vth_default(state);
1100 	/* Reset demod */
1101 	write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
1102 
1103 	write_reg(state, RSTV0910_P2_CARCFG + state->regoff, 0x46);
1104 
1105 	if (p->symbol_rate <= 5000000)
1106 		freq = (state->search_range / 2000) + 80;
1107 	else
1108 		freq = (state->search_range / 2000) + 1600;
1109 	freq = (freq << 16) / (state->base->mclk / 1000);
1110 
1111 	write_reg(state, RSTV0910_P2_CFRUP1 + state->regoff,
1112 		  (freq >> 8) & 0xff);
1113 	write_reg(state, RSTV0910_P2_CFRUP0 + state->regoff, (freq & 0xff));
1114 	/* CFR Low Setting */
1115 	freq = -freq;
1116 	write_reg(state, RSTV0910_P2_CFRLOW1 + state->regoff,
1117 		  (freq >> 8) & 0xff);
1118 	write_reg(state, RSTV0910_P2_CFRLOW0 + state->regoff, (freq & 0xff));
1119 
1120 	/* init the demod frequency offset to 0 */
1121 	write_reg(state, RSTV0910_P2_CFRINIT1 + state->regoff, 0);
1122 	write_reg(state, RSTV0910_P2_CFRINIT0 + state->regoff, 0);
1123 
1124 	write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
1125 	/* Trigger acq */
1126 	write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x15);
1127 
1128 	state->demod_lock_time += TUNING_DELAY;
1129 	state->started = 1;
1130 
1131 	return 0;
1132 }
1133 
1134 static int init_diseqc(struct stv *state)
1135 {
1136 	u16 offs = state->nr ? 0x40 : 0; /* Address offset */
1137 	u8 freq = ((state->base->mclk + 11000 * 32) / (22000 * 32));
1138 
1139 	/* Disable receiver */
1140 	write_reg(state, RSTV0910_P1_DISRXCFG + offs, 0x00);
1141 	write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0xBA); /* Reset = 1 */
1142 	write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A); /* Reset = 0 */
1143 	write_reg(state, RSTV0910_P1_DISTXF22 + offs, freq);
1144 	return 0;
1145 }
1146 
1147 static int probe(struct stv *state)
1148 {
1149 	u8 id;
1150 
1151 	state->receive_mode = RCVMODE_NONE;
1152 	state->started = 0;
1153 
1154 	if (read_reg(state, RSTV0910_MID, &id) < 0)
1155 		return -ENODEV;
1156 
1157 	if (id != 0x51)
1158 		return -EINVAL;
1159 
1160 	/* Configure the I2C repeater to off */
1161 	write_reg(state, RSTV0910_P1_I2CRPT, 0x24);
1162 	/* Configure the I2C repeater to off */
1163 	write_reg(state, RSTV0910_P2_I2CRPT, 0x24);
1164 	/* Set the I2C to oversampling ratio */
1165 	write_reg(state, RSTV0910_I2CCFG, 0x88); /* state->i2ccfg */
1166 
1167 	write_reg(state, RSTV0910_OUTCFG,    0x00); /* OUTCFG */
1168 	write_reg(state, RSTV0910_PADCFG,    0x05); /* RFAGC Pads Dev = 05 */
1169 	write_reg(state, RSTV0910_SYNTCTRL,  0x02); /* SYNTCTRL */
1170 	write_reg(state, RSTV0910_TSGENERAL, state->tsgeneral); /* TSGENERAL */
1171 	write_reg(state, RSTV0910_CFGEXT,    0x02); /* CFGEXT */
1172 
1173 	if (state->single)
1174 		write_reg(state, RSTV0910_GENCFG, 0x14); /* GENCFG */
1175 	else
1176 		write_reg(state, RSTV0910_GENCFG, 0x15); /* GENCFG */
1177 
1178 	write_reg(state, RSTV0910_P1_TNRCFG2, 0x02); /* IQSWAP = 0 */
1179 	write_reg(state, RSTV0910_P2_TNRCFG2, 0x82); /* IQSWAP = 1 */
1180 
1181 	write_reg(state, RSTV0910_P1_CAR3CFG, 0x02);
1182 	write_reg(state, RSTV0910_P2_CAR3CFG, 0x02);
1183 	write_reg(state, RSTV0910_P1_DMDCFG4, 0x04);
1184 	write_reg(state, RSTV0910_P2_DMDCFG4, 0x04);
1185 
1186 	write_reg(state, RSTV0910_TSTRES0, 0x80); /* LDPC Reset */
1187 	write_reg(state, RSTV0910_TSTRES0, 0x00);
1188 
1189 	write_reg(state, RSTV0910_P1_TSPIDFLT1, 0x00);
1190 	write_reg(state, RSTV0910_P2_TSPIDFLT1, 0x00);
1191 
1192 	write_reg(state, RSTV0910_P1_TMGCFG2, 0x80);
1193 	write_reg(state, RSTV0910_P2_TMGCFG2, 0x80);
1194 
1195 	set_mclock(state, 135000000);
1196 
1197 	/* TS output */
1198 	write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01);
1199 	write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh);
1200 	write_reg(state, RSTV0910_P1_TSCFGM, 0xC0); /* Manual speed */
1201 	write_reg(state, RSTV0910_P1_TSCFGL, 0x20);
1202 
1203 	/* Speed = 67.5 MHz */
1204 	write_reg(state, RSTV0910_P1_TSSPEED, state->tsspeed);
1205 
1206 	write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01);
1207 	write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh);
1208 	write_reg(state, RSTV0910_P2_TSCFGM, 0xC0); /* Manual speed */
1209 	write_reg(state, RSTV0910_P2_TSCFGL, 0x20);
1210 
1211 	/* Speed = 67.5 MHz */
1212 	write_reg(state, RSTV0910_P2_TSSPEED, state->tsspeed);
1213 
1214 	/* Reset stream merger */
1215 	write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01);
1216 	write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01);
1217 	write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh);
1218 	write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh);
1219 
1220 	write_reg(state, RSTV0910_P1_I2CRPT, state->i2crpt);
1221 	write_reg(state, RSTV0910_P2_I2CRPT, state->i2crpt);
1222 
1223 	init_diseqc(state);
1224 	return 0;
1225 }
1226 
1227 static int gate_ctrl(struct dvb_frontend *fe, int enable)
1228 {
1229 	struct stv *state = fe->demodulator_priv;
1230 	u8 i2crpt = state->i2crpt & ~0x86;
1231 
1232 	/*
1233 	 * mutex_lock note: Concurrent I2C gate bus accesses must be
1234 	 * prevented (STV0910 = dual demod on a single IC with a single I2C
1235 	 * gate/bus, and two tuners attached), similar to most (if not all)
1236 	 * other I2C host interfaces/busses.
1237 	 *
1238 	 * enable=1 (open I2C gate) will grab the lock
1239 	 * enable=0 (close I2C gate) releases the lock
1240 	 */
1241 
1242 	if (enable) {
1243 		mutex_lock(&state->base->i2c_lock);
1244 		i2crpt |= 0x80;
1245 	} else {
1246 		i2crpt |= 0x02;
1247 	}
1248 
1249 	if (write_reg(state, state->nr ? RSTV0910_P2_I2CRPT :
1250 		      RSTV0910_P1_I2CRPT, i2crpt) < 0) {
1251 		/* don't hold the I2C bus lock on failure */
1252 		if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock)))
1253 			mutex_unlock(&state->base->i2c_lock);
1254 		dev_err(&state->base->i2c->dev,
1255 			"%s() write_reg failure (enable=%d)\n",
1256 			__func__, enable);
1257 		return -EIO;
1258 	}
1259 
1260 	state->i2crpt = i2crpt;
1261 
1262 	if (!enable)
1263 		if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock)))
1264 			mutex_unlock(&state->base->i2c_lock);
1265 	return 0;
1266 }
1267 
1268 static void release(struct dvb_frontend *fe)
1269 {
1270 	struct stv *state = fe->demodulator_priv;
1271 
1272 	state->base->count--;
1273 	if (state->base->count == 0) {
1274 		list_del(&state->base->stvlist);
1275 		kfree(state->base);
1276 	}
1277 	kfree(state);
1278 }
1279 
1280 static int set_parameters(struct dvb_frontend *fe)
1281 {
1282 	int stat = 0;
1283 	struct stv *state = fe->demodulator_priv;
1284 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1285 
1286 	stop(state);
1287 	if (fe->ops.tuner_ops.set_params)
1288 		fe->ops.tuner_ops.set_params(fe);
1289 	state->symbol_rate = p->symbol_rate;
1290 	stat = start(state, p);
1291 	return stat;
1292 }
1293 
1294 static int manage_matype_info(struct stv *state)
1295 {
1296 	if (!state->started)
1297 		return -EINVAL;
1298 	if (state->receive_mode == RCVMODE_DVBS2) {
1299 		u8 bbheader[2];
1300 
1301 		read_regs(state, RSTV0910_P2_MATSTR1 + state->regoff,
1302 			  bbheader, 2);
1303 		state->feroll_off =
1304 			(enum fe_stv0910_roll_off)(bbheader[0] & 0x03);
1305 		state->is_vcm = (bbheader[0] & 0x10) == 0;
1306 		state->is_standard_broadcast = (bbheader[0] & 0xFC) == 0xF0;
1307 	} else if (state->receive_mode == RCVMODE_DVBS) {
1308 		state->is_vcm = 0;
1309 		state->is_standard_broadcast = 1;
1310 		state->feroll_off = FE_SAT_35;
1311 	}
1312 	return 0;
1313 }
1314 
1315 static int read_snr(struct dvb_frontend *fe)
1316 {
1317 	struct stv *state = fe->demodulator_priv;
1318 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1319 	s32 snrval;
1320 
1321 	if (!get_signal_to_noise(state, &snrval)) {
1322 		p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1323 		p->cnr.stat[0].uvalue = 100 * snrval; /* fix scale */
1324 	} else {
1325 		p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1326 	}
1327 
1328 	return 0;
1329 }
1330 
1331 static int read_ber(struct dvb_frontend *fe)
1332 {
1333 	struct stv *state = fe->demodulator_priv;
1334 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1335 	u32 n, d;
1336 
1337 	get_bit_error_rate(state, &n, &d);
1338 
1339 	p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1340 	p->pre_bit_error.stat[0].uvalue = n;
1341 	p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1342 	p->pre_bit_count.stat[0].uvalue = d;
1343 
1344 	return 0;
1345 }
1346 
1347 static void read_signal_strength(struct dvb_frontend *fe)
1348 {
1349 	struct stv *state = fe->demodulator_priv;
1350 	struct dtv_frontend_properties *p = &state->fe.dtv_property_cache;
1351 	u8 reg[2];
1352 	u16 agc;
1353 	s32 padc, power = 0;
1354 	int i;
1355 
1356 	read_regs(state, RSTV0910_P2_AGCIQIN1 + state->regoff, reg, 2);
1357 
1358 	agc = (((u32)reg[0]) << 8) | reg[1];
1359 
1360 	for (i = 0; i < 5; i += 1) {
1361 		read_regs(state, RSTV0910_P2_POWERI + state->regoff, reg, 2);
1362 		power += (u32)reg[0] * (u32)reg[0]
1363 			+ (u32)reg[1] * (u32)reg[1];
1364 		usleep_range(3000, 4000);
1365 	}
1366 	power /= 5;
1367 
1368 	padc = table_lookup(padc_lookup, ARRAY_SIZE(padc_lookup), power) + 352;
1369 
1370 	p->strength.stat[0].scale = FE_SCALE_DECIBEL;
1371 	p->strength.stat[0].svalue = (padc - agc);
1372 }
1373 
1374 static int read_status(struct dvb_frontend *fe, enum fe_status *status)
1375 {
1376 	struct stv *state = fe->demodulator_priv;
1377 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1378 	u8 dmd_state = 0;
1379 	u8 dstatus  = 0;
1380 	enum receive_mode cur_receive_mode = RCVMODE_NONE;
1381 	u32 feclock = 0;
1382 
1383 	*status = 0;
1384 
1385 	read_reg(state, RSTV0910_P2_DMDSTATE + state->regoff, &dmd_state);
1386 
1387 	if (dmd_state & 0x40) {
1388 		read_reg(state, RSTV0910_P2_DSTATUS + state->regoff, &dstatus);
1389 		if (dstatus & 0x08)
1390 			cur_receive_mode = (dmd_state & 0x20) ?
1391 				RCVMODE_DVBS : RCVMODE_DVBS2;
1392 	}
1393 	if (cur_receive_mode == RCVMODE_NONE) {
1394 		set_vth(state);
1395 
1396 		/* reset signal statistics */
1397 		p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1398 		p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1399 		p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1400 		p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1401 
1402 		return 0;
1403 	}
1404 
1405 	*status |= (FE_HAS_SIGNAL
1406 		| FE_HAS_CARRIER
1407 		| FE_HAS_VITERBI
1408 		| FE_HAS_SYNC);
1409 
1410 	if (state->receive_mode == RCVMODE_NONE) {
1411 		state->receive_mode = cur_receive_mode;
1412 		state->demod_lock_time = jiffies;
1413 		state->first_time_lock = 1;
1414 
1415 		get_signal_parameters(state);
1416 		tracking_optimization(state);
1417 
1418 		write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1419 			  state->tscfgh);
1420 		usleep_range(3000, 4000);
1421 		write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1422 			  state->tscfgh | 0x01);
1423 		write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1424 			  state->tscfgh);
1425 	}
1426 	if (dmd_state & 0x40) {
1427 		if (state->receive_mode == RCVMODE_DVBS2) {
1428 			u8 pdelstatus;
1429 
1430 			read_reg(state,
1431 				 RSTV0910_P2_PDELSTATUS1 + state->regoff,
1432 				 &pdelstatus);
1433 			feclock = (pdelstatus & 0x02) != 0;
1434 		} else {
1435 			u8 vstatus;
1436 
1437 			read_reg(state,
1438 				 RSTV0910_P2_VSTATUSVIT + state->regoff,
1439 				 &vstatus);
1440 			feclock = (vstatus & 0x08) != 0;
1441 		}
1442 	}
1443 
1444 	if (feclock) {
1445 		*status |= FE_HAS_LOCK;
1446 
1447 		if (state->first_time_lock) {
1448 			u8 tmp;
1449 
1450 			state->first_time_lock = 0;
1451 
1452 			manage_matype_info(state);
1453 
1454 			if (state->receive_mode == RCVMODE_DVBS2) {
1455 				/*
1456 				 * FSTV0910_P2_MANUALSX_ROLLOFF,
1457 				 * FSTV0910_P2_MANUALS2_ROLLOFF = 0
1458 				 */
1459 				state->demod_bits &= ~0x84;
1460 				write_reg(state,
1461 					  RSTV0910_P2_DEMOD + state->regoff,
1462 					  state->demod_bits);
1463 				read_reg(state,
1464 					 RSTV0910_P2_PDELCTRL2 + state->regoff,
1465 					 &tmp);
1466 				/* reset DVBS2 packet delinator error counter */
1467 				tmp |= 0x40;
1468 				write_reg(state,
1469 					  RSTV0910_P2_PDELCTRL2 + state->regoff,
1470 					  tmp);
1471 				/* reset DVBS2 packet delinator error counter */
1472 				tmp &= ~0x40;
1473 				write_reg(state,
1474 					  RSTV0910_P2_PDELCTRL2 + state->regoff,
1475 					  tmp);
1476 
1477 				state->berscale = 2;
1478 				state->last_bernumerator = 0;
1479 				state->last_berdenominator = 1;
1480 				/* force to PRE BCH Rate */
1481 				write_reg(state,
1482 					  RSTV0910_P2_ERRCTRL1 + state->regoff,
1483 					  BER_SRC_S2 | state->berscale);
1484 			} else {
1485 				state->berscale = 2;
1486 				state->last_bernumerator = 0;
1487 				state->last_berdenominator = 1;
1488 				/* force to PRE RS Rate */
1489 				write_reg(state,
1490 					  RSTV0910_P2_ERRCTRL1 + state->regoff,
1491 					  BER_SRC_S | state->berscale);
1492 			}
1493 			/* Reset the Total packet counter */
1494 			write_reg(state,
1495 				  RSTV0910_P2_FBERCPT4 + state->regoff, 0x00);
1496 			/*
1497 			 * Reset the packet Error counter2 (and Set it to
1498 			 * infinit error count mode)
1499 			 */
1500 			write_reg(state,
1501 				  RSTV0910_P2_ERRCTRL2 + state->regoff, 0xc1);
1502 
1503 			set_vth_default(state);
1504 			if (state->receive_mode == RCVMODE_DVBS)
1505 				enable_puncture_rate(state,
1506 						     state->puncture_rate);
1507 		}
1508 
1509 		/* Use highest signaled ModCod for quality */
1510 		if (state->is_vcm) {
1511 			u8 tmp;
1512 			enum fe_stv0910_mod_cod mod_cod;
1513 
1514 			read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff,
1515 				 &tmp);
1516 			mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2);
1517 
1518 			if (mod_cod > state->mod_cod)
1519 				state->mod_cod = mod_cod;
1520 		}
1521 	}
1522 
1523 	/* read signal statistics */
1524 
1525 	/* read signal strength */
1526 	read_signal_strength(fe);
1527 
1528 	/* read carrier/noise on FE_HAS_CARRIER */
1529 	if (*status & FE_HAS_CARRIER)
1530 		read_snr(fe);
1531 	else
1532 		p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1533 
1534 	/* read ber */
1535 	if (*status & FE_HAS_VITERBI) {
1536 		read_ber(fe);
1537 	} else {
1538 		p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1539 		p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1540 	}
1541 
1542 	return 0;
1543 }
1544 
1545 static int get_frontend(struct dvb_frontend *fe,
1546 			struct dtv_frontend_properties *p)
1547 {
1548 	struct stv *state = fe->demodulator_priv;
1549 	u8 tmp;
1550 	u32 symbolrate;
1551 
1552 	if (state->receive_mode == RCVMODE_DVBS2) {
1553 		u32 mc;
1554 		const enum fe_modulation modcod2mod[0x20] = {
1555 			QPSK, QPSK, QPSK, QPSK,
1556 			QPSK, QPSK, QPSK, QPSK,
1557 			QPSK, QPSK, QPSK, QPSK,
1558 			PSK_8, PSK_8, PSK_8, PSK_8,
1559 			PSK_8, PSK_8, APSK_16, APSK_16,
1560 			APSK_16, APSK_16, APSK_16, APSK_16,
1561 			APSK_32, APSK_32, APSK_32, APSK_32,
1562 			APSK_32,
1563 		};
1564 		const enum fe_code_rate modcod2fec[0x20] = {
1565 			FEC_NONE, FEC_NONE, FEC_NONE, FEC_2_5,
1566 			FEC_1_2, FEC_3_5, FEC_2_3, FEC_3_4,
1567 			FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
1568 			FEC_3_5, FEC_2_3, FEC_3_4, FEC_5_6,
1569 			FEC_8_9, FEC_9_10, FEC_2_3, FEC_3_4,
1570 			FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
1571 			FEC_3_4, FEC_4_5, FEC_5_6, FEC_8_9,
1572 			FEC_9_10
1573 		};
1574 		read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
1575 		mc = ((tmp & 0x7c) >> 2);
1576 		p->pilot = (tmp & 0x01) ? PILOT_ON : PILOT_OFF;
1577 		p->modulation = modcod2mod[mc];
1578 		p->fec_inner = modcod2fec[mc];
1579 	} else if (state->receive_mode == RCVMODE_DVBS) {
1580 		read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
1581 		switch (tmp & 0x1F) {
1582 		case 0x0d:
1583 			p->fec_inner = FEC_1_2;
1584 			break;
1585 		case 0x12:
1586 			p->fec_inner = FEC_2_3;
1587 			break;
1588 		case 0x15:
1589 			p->fec_inner = FEC_3_4;
1590 			break;
1591 		case 0x18:
1592 			p->fec_inner = FEC_5_6;
1593 			break;
1594 		case 0x1a:
1595 			p->fec_inner = FEC_7_8;
1596 			break;
1597 		default:
1598 			p->fec_inner = FEC_NONE;
1599 			break;
1600 		}
1601 		p->rolloff = ROLLOFF_35;
1602 	}
1603 
1604 	if (state->receive_mode != RCVMODE_NONE) {
1605 		get_cur_symbol_rate(state, &symbolrate);
1606 		p->symbol_rate = symbolrate;
1607 	}
1608 	return 0;
1609 }
1610 
1611 static int tune(struct dvb_frontend *fe, bool re_tune,
1612 		unsigned int mode_flags,
1613 		unsigned int *delay, enum fe_status *status)
1614 {
1615 	struct stv *state = fe->demodulator_priv;
1616 	int r;
1617 
1618 	if (re_tune) {
1619 		r = set_parameters(fe);
1620 		if (r)
1621 			return r;
1622 		state->tune_time = jiffies;
1623 	}
1624 
1625 	r = read_status(fe, status);
1626 	if (r)
1627 		return r;
1628 
1629 	if (*status & FE_HAS_LOCK)
1630 		return 0;
1631 	*delay = HZ;
1632 
1633 	return 0;
1634 }
1635 
1636 static int get_algo(struct dvb_frontend *fe)
1637 {
1638 	return DVBFE_ALGO_HW;
1639 }
1640 
1641 static int set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
1642 {
1643 	struct stv *state = fe->demodulator_priv;
1644 	u16 offs = state->nr ? 0x40 : 0;
1645 
1646 	switch (tone) {
1647 	case SEC_TONE_ON:
1648 		return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x38);
1649 	case SEC_TONE_OFF:
1650 		return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3a);
1651 	default:
1652 		break;
1653 	}
1654 	return -EINVAL;
1655 }
1656 
1657 static int wait_dis(struct stv *state, u8 flag, u8 val)
1658 {
1659 	int i;
1660 	u8 stat;
1661 	u16 offs = state->nr ? 0x40 : 0;
1662 
1663 	for (i = 0; i < 10; i++) {
1664 		read_reg(state, RSTV0910_P1_DISTXSTATUS + offs, &stat);
1665 		if ((stat & flag) == val)
1666 			return 0;
1667 		usleep_range(10000, 11000);
1668 	}
1669 	return -ETIMEDOUT;
1670 }
1671 
1672 static int send_master_cmd(struct dvb_frontend *fe,
1673 			   struct dvb_diseqc_master_cmd *cmd)
1674 {
1675 	struct stv *state = fe->demodulator_priv;
1676 	u16 offs = state->nr ? 0x40 : 0;
1677 	int i;
1678 
1679 	write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3E);
1680 	for (i = 0; i < cmd->msg_len; i++) {
1681 		wait_dis(state, 0x40, 0x00);
1682 		write_reg(state, RSTV0910_P1_DISTXFIFO + offs, cmd->msg[i]);
1683 	}
1684 	write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A);
1685 	wait_dis(state, 0x20, 0x20);
1686 	return 0;
1687 }
1688 
1689 static int send_burst(struct dvb_frontend *fe, enum fe_sec_mini_cmd burst)
1690 {
1691 	struct stv *state = fe->demodulator_priv;
1692 	u16 offs = state->nr ? 0x40 : 0;
1693 	u8 value;
1694 
1695 	if (burst == SEC_MINI_A) {
1696 		write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3F);
1697 		value = 0x00;
1698 	} else {
1699 		write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3E);
1700 		value = 0xFF;
1701 	}
1702 	wait_dis(state, 0x40, 0x00);
1703 	write_reg(state, RSTV0910_P1_DISTXFIFO + offs, value);
1704 	write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A);
1705 	wait_dis(state, 0x20, 0x20);
1706 
1707 	return 0;
1708 }
1709 
1710 static int sleep(struct dvb_frontend *fe)
1711 {
1712 	struct stv *state = fe->demodulator_priv;
1713 
1714 	stop(state);
1715 	return 0;
1716 }
1717 
1718 static const struct dvb_frontend_ops stv0910_ops = {
1719 	.delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
1720 	.info = {
1721 		.name			= "ST STV0910",
1722 		.frequency_min		= 950000,
1723 		.frequency_max		= 2150000,
1724 		.frequency_stepsize	= 0,
1725 		.frequency_tolerance	= 0,
1726 		.symbol_rate_min	= 100000,
1727 		.symbol_rate_max	= 70000000,
1728 		.caps			= FE_CAN_INVERSION_AUTO |
1729 					  FE_CAN_FEC_AUTO       |
1730 					  FE_CAN_QPSK           |
1731 					  FE_CAN_2G_MODULATION  |
1732 					  FE_CAN_MULTISTREAM
1733 	},
1734 	.sleep				= sleep,
1735 	.release			= release,
1736 	.i2c_gate_ctrl			= gate_ctrl,
1737 	.set_frontend			= set_parameters,
1738 	.get_frontend_algo		= get_algo,
1739 	.get_frontend			= get_frontend,
1740 	.tune				= tune,
1741 	.read_status			= read_status,
1742 	.set_tone			= set_tone,
1743 
1744 	.diseqc_send_master_cmd		= send_master_cmd,
1745 	.diseqc_send_burst		= send_burst,
1746 };
1747 
1748 static struct stv_base *match_base(struct i2c_adapter *i2c, u8 adr)
1749 {
1750 	struct stv_base *p;
1751 
1752 	list_for_each_entry(p, &stvlist, stvlist)
1753 		if (p->i2c == i2c && p->adr == adr)
1754 			return p;
1755 	return NULL;
1756 }
1757 
1758 static void stv0910_init_stats(struct stv *state)
1759 {
1760 	struct dtv_frontend_properties *p = &state->fe.dtv_property_cache;
1761 
1762 	p->strength.len = 1;
1763 	p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1764 	p->cnr.len = 1;
1765 	p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1766 	p->pre_bit_error.len = 1;
1767 	p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1768 	p->pre_bit_count.len = 1;
1769 	p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1770 }
1771 
1772 struct dvb_frontend *stv0910_attach(struct i2c_adapter *i2c,
1773 				    struct stv0910_cfg *cfg,
1774 				    int nr)
1775 {
1776 	struct stv *state;
1777 	struct stv_base *base;
1778 
1779 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1780 	if (!state)
1781 		return NULL;
1782 
1783 	state->tscfgh = 0x20 | (cfg->parallel ? 0 : 0x40);
1784 	state->tsgeneral = (cfg->parallel == 2) ? 0x02 : 0x00;
1785 	state->i2crpt = 0x0A | ((cfg->rptlvl & 0x07) << 4);
1786 	state->tsspeed = 0x28;
1787 	state->nr = nr;
1788 	state->regoff = state->nr ? 0 : 0x200;
1789 	state->search_range = 16000000;
1790 	state->demod_bits = 0x10; /* Inversion : Auto with reset to 0 */
1791 	state->receive_mode = RCVMODE_NONE;
1792 	state->cur_scrambling_code = (~0U);
1793 	state->single = cfg->single ? 1 : 0;
1794 
1795 	base = match_base(i2c, cfg->adr);
1796 	if (base) {
1797 		base->count++;
1798 		state->base = base;
1799 	} else {
1800 		base = kzalloc(sizeof(*base), GFP_KERNEL);
1801 		if (!base)
1802 			goto fail;
1803 		base->i2c = i2c;
1804 		base->adr = cfg->adr;
1805 		base->count = 1;
1806 		base->extclk = cfg->clk ? cfg->clk : 30000000;
1807 
1808 		mutex_init(&base->i2c_lock);
1809 		mutex_init(&base->reg_lock);
1810 		state->base = base;
1811 		if (probe(state) < 0) {
1812 			dev_info(&i2c->dev, "No demod found at adr %02X on %s\n",
1813 				 cfg->adr, dev_name(&i2c->dev));
1814 			kfree(base);
1815 			goto fail;
1816 		}
1817 		list_add(&base->stvlist, &stvlist);
1818 	}
1819 	state->fe.ops = stv0910_ops;
1820 	state->fe.demodulator_priv = state;
1821 	state->nr = nr;
1822 
1823 	dev_info(&i2c->dev, "%s demod found at adr %02X on %s\n",
1824 		 state->fe.ops.info.name, cfg->adr, dev_name(&i2c->dev));
1825 
1826 	stv0910_init_stats(state);
1827 
1828 	return &state->fe;
1829 
1830 fail:
1831 	kfree(state);
1832 	return NULL;
1833 }
1834 EXPORT_SYMBOL_GPL(stv0910_attach);
1835 
1836 MODULE_DESCRIPTION("ST STV0910 multistandard frontend driver");
1837 MODULE_AUTHOR("Ralph and Marcus Metzler, Manfred Voelkel");
1838 MODULE_LICENSE("GPL");
1839