1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Driver for the ST STV0910 DVB-S/S2 demodulator.
4 *
5 * Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de>
6 * Marcus Metzler <mocm@metzlerbros.de>
7 * developed for Digital Devices GmbH
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/delay.h>
15 #include <linux/firmware.h>
16 #include <linux/i2c.h>
17 #include <asm/div64.h>
18
19 #include <media/dvb_frontend.h>
20 #include "stv0910.h"
21 #include "stv0910_regs.h"
22
23 #define EXT_CLOCK 30000000
24 #define TUNING_DELAY 200
25 #define BER_SRC_S 0x20
26 #define BER_SRC_S2 0x20
27
28 static LIST_HEAD(stvlist);
29
30 enum receive_mode { RCVMODE_NONE, RCVMODE_DVBS, RCVMODE_DVBS2, RCVMODE_AUTO };
31
32 enum dvbs2_fectype { DVBS2_64K, DVBS2_16K };
33
34 enum dvbs2_mod_cod {
35 DVBS2_DUMMY_PLF, DVBS2_QPSK_1_4, DVBS2_QPSK_1_3, DVBS2_QPSK_2_5,
36 DVBS2_QPSK_1_2, DVBS2_QPSK_3_5, DVBS2_QPSK_2_3, DVBS2_QPSK_3_4,
37 DVBS2_QPSK_4_5, DVBS2_QPSK_5_6, DVBS2_QPSK_8_9, DVBS2_QPSK_9_10,
38 DVBS2_8PSK_3_5, DVBS2_8PSK_2_3, DVBS2_8PSK_3_4, DVBS2_8PSK_5_6,
39 DVBS2_8PSK_8_9, DVBS2_8PSK_9_10, DVBS2_16APSK_2_3, DVBS2_16APSK_3_4,
40 DVBS2_16APSK_4_5, DVBS2_16APSK_5_6, DVBS2_16APSK_8_9, DVBS2_16APSK_9_10,
41 DVBS2_32APSK_3_4, DVBS2_32APSK_4_5, DVBS2_32APSK_5_6, DVBS2_32APSK_8_9,
42 DVBS2_32APSK_9_10
43 };
44
45 enum fe_stv0910_mod_cod {
46 FE_DUMMY_PLF, FE_QPSK_14, FE_QPSK_13, FE_QPSK_25,
47 FE_QPSK_12, FE_QPSK_35, FE_QPSK_23, FE_QPSK_34,
48 FE_QPSK_45, FE_QPSK_56, FE_QPSK_89, FE_QPSK_910,
49 FE_8PSK_35, FE_8PSK_23, FE_8PSK_34, FE_8PSK_56,
50 FE_8PSK_89, FE_8PSK_910, FE_16APSK_23, FE_16APSK_34,
51 FE_16APSK_45, FE_16APSK_56, FE_16APSK_89, FE_16APSK_910,
52 FE_32APSK_34, FE_32APSK_45, FE_32APSK_56, FE_32APSK_89,
53 FE_32APSK_910
54 };
55
56 enum fe_stv0910_roll_off { FE_SAT_35, FE_SAT_25, FE_SAT_20, FE_SAT_15 };
57
muldiv32(u32 a,u32 b,u32 c)58 static inline u32 muldiv32(u32 a, u32 b, u32 c)
59 {
60 u64 tmp64;
61
62 tmp64 = (u64)a * (u64)b;
63 do_div(tmp64, c);
64
65 return (u32)tmp64;
66 }
67
68 struct stv_base {
69 struct list_head stvlist;
70
71 u8 adr;
72 struct i2c_adapter *i2c;
73 struct mutex i2c_lock; /* shared I2C access protect */
74 struct mutex reg_lock; /* shared register write protect */
75 int count;
76
77 u32 extclk;
78 u32 mclk;
79 };
80
81 struct stv {
82 struct stv_base *base;
83 struct dvb_frontend fe;
84 int nr;
85 u16 regoff;
86 u8 i2crpt;
87 u8 tscfgh;
88 u8 tsgeneral;
89 u8 tsspeed;
90 u8 single;
91 unsigned long tune_time;
92
93 s32 search_range;
94 u32 started;
95 u32 demod_lock_time;
96 enum receive_mode receive_mode;
97 u32 demod_timeout;
98 u32 fec_timeout;
99 u32 first_time_lock;
100 u8 demod_bits;
101 u32 symbol_rate;
102
103 u8 last_viterbi_rate;
104 enum fe_code_rate puncture_rate;
105 enum fe_stv0910_mod_cod mod_cod;
106 enum dvbs2_fectype fectype;
107 u32 pilots;
108 enum fe_stv0910_roll_off feroll_off;
109
110 int is_standard_broadcast;
111 int is_vcm;
112
113 u32 cur_scrambling_code;
114
115 u32 last_bernumerator;
116 u32 last_berdenominator;
117 u8 berscale;
118
119 u8 vth[6];
120 };
121
122 struct sinit_table {
123 u16 address;
124 u8 data;
125 };
126
127 struct slookup {
128 s16 value;
129 u32 reg_value;
130 };
131
write_reg(struct stv * state,u16 reg,u8 val)132 static int write_reg(struct stv *state, u16 reg, u8 val)
133 {
134 struct i2c_adapter *adap = state->base->i2c;
135 u8 data[3] = {reg >> 8, reg & 0xff, val};
136 struct i2c_msg msg = {.addr = state->base->adr, .flags = 0,
137 .buf = data, .len = 3};
138
139 if (i2c_transfer(adap, &msg, 1) != 1) {
140 dev_warn(&adap->dev, "i2c write error ([%02x] %04x: %02x)\n",
141 state->base->adr, reg, val);
142 return -EIO;
143 }
144 return 0;
145 }
146
i2c_read_regs16(struct i2c_adapter * adapter,u8 adr,u16 reg,u8 * val,int count)147 static inline int i2c_read_regs16(struct i2c_adapter *adapter, u8 adr,
148 u16 reg, u8 *val, int count)
149 {
150 u8 msg[2] = {reg >> 8, reg & 0xff};
151 struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
152 .buf = msg, .len = 2},
153 {.addr = adr, .flags = I2C_M_RD,
154 .buf = val, .len = count } };
155
156 if (i2c_transfer(adapter, msgs, 2) != 2) {
157 dev_warn(&adapter->dev, "i2c read error ([%02x] %04x)\n",
158 adr, reg);
159 return -EIO;
160 }
161 return 0;
162 }
163
read_reg(struct stv * state,u16 reg,u8 * val)164 static int read_reg(struct stv *state, u16 reg, u8 *val)
165 {
166 return i2c_read_regs16(state->base->i2c, state->base->adr,
167 reg, val, 1);
168 }
169
read_regs(struct stv * state,u16 reg,u8 * val,int len)170 static int read_regs(struct stv *state, u16 reg, u8 *val, int len)
171 {
172 return i2c_read_regs16(state->base->i2c, state->base->adr,
173 reg, val, len);
174 }
175
write_shared_reg(struct stv * state,u16 reg,u8 mask,u8 val)176 static int write_shared_reg(struct stv *state, u16 reg, u8 mask, u8 val)
177 {
178 int status;
179 u8 tmp;
180
181 mutex_lock(&state->base->reg_lock);
182 status = read_reg(state, reg, &tmp);
183 if (!status)
184 status = write_reg(state, reg, (tmp & ~mask) | (val & mask));
185 mutex_unlock(&state->base->reg_lock);
186 return status;
187 }
188
write_field(struct stv * state,u32 field,u8 val)189 static int write_field(struct stv *state, u32 field, u8 val)
190 {
191 int status;
192 u8 shift, mask, old, new;
193
194 status = read_reg(state, field >> 16, &old);
195 if (status)
196 return status;
197 mask = field & 0xff;
198 shift = (field >> 12) & 0xf;
199 new = ((val << shift) & mask) | (old & ~mask);
200 if (new == old)
201 return 0;
202 return write_reg(state, field >> 16, new);
203 }
204
205 #define SET_FIELD(_reg, _val) \
206 write_field(state, state->nr ? FSTV0910_P2_##_reg : \
207 FSTV0910_P1_##_reg, _val)
208
209 #define SET_REG(_reg, _val) \
210 write_reg(state, state->nr ? RSTV0910_P2_##_reg : \
211 RSTV0910_P1_##_reg, _val)
212
213 #define GET_REG(_reg, _val) \
214 read_reg(state, state->nr ? RSTV0910_P2_##_reg : \
215 RSTV0910_P1_##_reg, _val)
216
217 static const struct slookup s1_sn_lookup[] = {
218 { 0, 9242 }, /* C/N= 0dB */
219 { 5, 9105 }, /* C/N= 0.5dB */
220 { 10, 8950 }, /* C/N= 1.0dB */
221 { 15, 8780 }, /* C/N= 1.5dB */
222 { 20, 8566 }, /* C/N= 2.0dB */
223 { 25, 8366 }, /* C/N= 2.5dB */
224 { 30, 8146 }, /* C/N= 3.0dB */
225 { 35, 7908 }, /* C/N= 3.5dB */
226 { 40, 7666 }, /* C/N= 4.0dB */
227 { 45, 7405 }, /* C/N= 4.5dB */
228 { 50, 7136 }, /* C/N= 5.0dB */
229 { 55, 6861 }, /* C/N= 5.5dB */
230 { 60, 6576 }, /* C/N= 6.0dB */
231 { 65, 6330 }, /* C/N= 6.5dB */
232 { 70, 6048 }, /* C/N= 7.0dB */
233 { 75, 5768 }, /* C/N= 7.5dB */
234 { 80, 5492 }, /* C/N= 8.0dB */
235 { 85, 5224 }, /* C/N= 8.5dB */
236 { 90, 4959 }, /* C/N= 9.0dB */
237 { 95, 4709 }, /* C/N= 9.5dB */
238 { 100, 4467 }, /* C/N=10.0dB */
239 { 105, 4236 }, /* C/N=10.5dB */
240 { 110, 4013 }, /* C/N=11.0dB */
241 { 115, 3800 }, /* C/N=11.5dB */
242 { 120, 3598 }, /* C/N=12.0dB */
243 { 125, 3406 }, /* C/N=12.5dB */
244 { 130, 3225 }, /* C/N=13.0dB */
245 { 135, 3052 }, /* C/N=13.5dB */
246 { 140, 2889 }, /* C/N=14.0dB */
247 { 145, 2733 }, /* C/N=14.5dB */
248 { 150, 2587 }, /* C/N=15.0dB */
249 { 160, 2318 }, /* C/N=16.0dB */
250 { 170, 2077 }, /* C/N=17.0dB */
251 { 180, 1862 }, /* C/N=18.0dB */
252 { 190, 1670 }, /* C/N=19.0dB */
253 { 200, 1499 }, /* C/N=20.0dB */
254 { 210, 1347 }, /* C/N=21.0dB */
255 { 220, 1213 }, /* C/N=22.0dB */
256 { 230, 1095 }, /* C/N=23.0dB */
257 { 240, 992 }, /* C/N=24.0dB */
258 { 250, 900 }, /* C/N=25.0dB */
259 { 260, 826 }, /* C/N=26.0dB */
260 { 270, 758 }, /* C/N=27.0dB */
261 { 280, 702 }, /* C/N=28.0dB */
262 { 290, 653 }, /* C/N=29.0dB */
263 { 300, 613 }, /* C/N=30.0dB */
264 { 310, 579 }, /* C/N=31.0dB */
265 { 320, 550 }, /* C/N=32.0dB */
266 { 330, 526 }, /* C/N=33.0dB */
267 { 350, 490 }, /* C/N=33.0dB */
268 { 400, 445 }, /* C/N=40.0dB */
269 { 450, 430 }, /* C/N=45.0dB */
270 { 500, 426 }, /* C/N=50.0dB */
271 { 510, 425 } /* C/N=51.0dB */
272 };
273
274 static const struct slookup s2_sn_lookup[] = {
275 { -30, 13950 }, /* C/N=-2.5dB */
276 { -25, 13580 }, /* C/N=-2.5dB */
277 { -20, 13150 }, /* C/N=-2.0dB */
278 { -15, 12760 }, /* C/N=-1.5dB */
279 { -10, 12345 }, /* C/N=-1.0dB */
280 { -5, 11900 }, /* C/N=-0.5dB */
281 { 0, 11520 }, /* C/N= 0dB */
282 { 5, 11080 }, /* C/N= 0.5dB */
283 { 10, 10630 }, /* C/N= 1.0dB */
284 { 15, 10210 }, /* C/N= 1.5dB */
285 { 20, 9790 }, /* C/N= 2.0dB */
286 { 25, 9390 }, /* C/N= 2.5dB */
287 { 30, 8970 }, /* C/N= 3.0dB */
288 { 35, 8575 }, /* C/N= 3.5dB */
289 { 40, 8180 }, /* C/N= 4.0dB */
290 { 45, 7800 }, /* C/N= 4.5dB */
291 { 50, 7430 }, /* C/N= 5.0dB */
292 { 55, 7080 }, /* C/N= 5.5dB */
293 { 60, 6720 }, /* C/N= 6.0dB */
294 { 65, 6320 }, /* C/N= 6.5dB */
295 { 70, 6060 }, /* C/N= 7.0dB */
296 { 75, 5760 }, /* C/N= 7.5dB */
297 { 80, 5480 }, /* C/N= 8.0dB */
298 { 85, 5200 }, /* C/N= 8.5dB */
299 { 90, 4930 }, /* C/N= 9.0dB */
300 { 95, 4680 }, /* C/N= 9.5dB */
301 { 100, 4425 }, /* C/N=10.0dB */
302 { 105, 4210 }, /* C/N=10.5dB */
303 { 110, 3980 }, /* C/N=11.0dB */
304 { 115, 3765 }, /* C/N=11.5dB */
305 { 120, 3570 }, /* C/N=12.0dB */
306 { 125, 3315 }, /* C/N=12.5dB */
307 { 130, 3140 }, /* C/N=13.0dB */
308 { 135, 2980 }, /* C/N=13.5dB */
309 { 140, 2820 }, /* C/N=14.0dB */
310 { 145, 2670 }, /* C/N=14.5dB */
311 { 150, 2535 }, /* C/N=15.0dB */
312 { 160, 2270 }, /* C/N=16.0dB */
313 { 170, 2035 }, /* C/N=17.0dB */
314 { 180, 1825 }, /* C/N=18.0dB */
315 { 190, 1650 }, /* C/N=19.0dB */
316 { 200, 1485 }, /* C/N=20.0dB */
317 { 210, 1340 }, /* C/N=21.0dB */
318 { 220, 1212 }, /* C/N=22.0dB */
319 { 230, 1100 }, /* C/N=23.0dB */
320 { 240, 1000 }, /* C/N=24.0dB */
321 { 250, 910 }, /* C/N=25.0dB */
322 { 260, 836 }, /* C/N=26.0dB */
323 { 270, 772 }, /* C/N=27.0dB */
324 { 280, 718 }, /* C/N=28.0dB */
325 { 290, 671 }, /* C/N=29.0dB */
326 { 300, 635 }, /* C/N=30.0dB */
327 { 310, 602 }, /* C/N=31.0dB */
328 { 320, 575 }, /* C/N=32.0dB */
329 { 330, 550 }, /* C/N=33.0dB */
330 { 350, 517 }, /* C/N=35.0dB */
331 { 400, 480 }, /* C/N=40.0dB */
332 { 450, 466 }, /* C/N=45.0dB */
333 { 500, 464 }, /* C/N=50.0dB */
334 { 510, 463 }, /* C/N=51.0dB */
335 };
336
337 static const struct slookup padc_lookup[] = {
338 { 0, 118000 }, /* PADC= +0dBm */
339 { -100, 93600 }, /* PADC= -1dBm */
340 { -200, 74500 }, /* PADC= -2dBm */
341 { -300, 59100 }, /* PADC= -3dBm */
342 { -400, 47000 }, /* PADC= -4dBm */
343 { -500, 37300 }, /* PADC= -5dBm */
344 { -600, 29650 }, /* PADC= -6dBm */
345 { -700, 23520 }, /* PADC= -7dBm */
346 { -900, 14850 }, /* PADC= -9dBm */
347 { -1100, 9380 }, /* PADC=-11dBm */
348 { -1300, 5910 }, /* PADC=-13dBm */
349 { -1500, 3730 }, /* PADC=-15dBm */
350 { -1700, 2354 }, /* PADC=-17dBm */
351 { -1900, 1485 }, /* PADC=-19dBm */
352 { -2000, 1179 }, /* PADC=-20dBm */
353 { -2100, 1000 }, /* PADC=-21dBm */
354 };
355
356 /*********************************************************************
357 * Tracking carrier loop carrier QPSK 1/4 to 8PSK 9/10 long Frame
358 *********************************************************************/
359 static const u8 s2car_loop[] = {
360 /*
361 * Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff
362 * 20MPon 20MPoff 30MPon 30MPoff
363 */
364
365 /* FE_QPSK_14 */
366 0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x2A, 0x1C, 0x3A, 0x3B,
367 /* FE_QPSK_13 */
368 0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x3A, 0x0C, 0x3A, 0x2B,
369 /* FE_QPSK_25 */
370 0x1C, 0x3C, 0x1B, 0x3C, 0x3A, 0x1C, 0x3A, 0x3B, 0x3A, 0x2B,
371 /* FE_QPSK_12 */
372 0x0C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B,
373 /* FE_QPSK_35 */
374 0x1C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B,
375 /* FE_QPSK_23 */
376 0x2C, 0x2C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B,
377 /* FE_QPSK_34 */
378 0x3C, 0x2C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B,
379 /* FE_QPSK_45 */
380 0x0D, 0x3C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B,
381 /* FE_QPSK_56 */
382 0x1D, 0x3C, 0x0C, 0x2C, 0x2B, 0x1C, 0x1B, 0x3B, 0x0B, 0x1B,
383 /* FE_QPSK_89 */
384 0x3D, 0x0D, 0x0C, 0x2C, 0x2B, 0x0C, 0x2B, 0x2B, 0x0B, 0x0B,
385 /* FE_QPSK_910 */
386 0x1E, 0x0D, 0x1C, 0x2C, 0x3B, 0x0C, 0x2B, 0x2B, 0x1B, 0x0B,
387 /* FE_8PSK_35 */
388 0x28, 0x09, 0x28, 0x09, 0x28, 0x09, 0x28, 0x08, 0x28, 0x27,
389 /* FE_8PSK_23 */
390 0x19, 0x29, 0x19, 0x29, 0x19, 0x29, 0x38, 0x19, 0x28, 0x09,
391 /* FE_8PSK_34 */
392 0x1A, 0x0B, 0x1A, 0x3A, 0x0A, 0x2A, 0x39, 0x2A, 0x39, 0x1A,
393 /* FE_8PSK_56 */
394 0x2B, 0x2B, 0x1B, 0x1B, 0x0B, 0x1B, 0x1A, 0x0B, 0x1A, 0x1A,
395 /* FE_8PSK_89 */
396 0x0C, 0x0C, 0x3B, 0x3B, 0x1B, 0x1B, 0x2A, 0x0B, 0x2A, 0x2A,
397 /* FE_8PSK_910 */
398 0x0C, 0x1C, 0x0C, 0x3B, 0x2B, 0x1B, 0x3A, 0x0B, 0x2A, 0x2A,
399
400 /**********************************************************************
401 * Tracking carrier loop carrier 16APSK 2/3 to 32APSK 9/10 long Frame
402 **********************************************************************/
403
404 /*
405 * Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff 20MPon
406 * 20MPoff 30MPon 30MPoff
407 */
408
409 /* FE_16APSK_23 */
410 0x0A, 0x0A, 0x0A, 0x0A, 0x1A, 0x0A, 0x39, 0x0A, 0x29, 0x0A,
411 /* FE_16APSK_34 */
412 0x0A, 0x0A, 0x0A, 0x0A, 0x0B, 0x0A, 0x2A, 0x0A, 0x1A, 0x0A,
413 /* FE_16APSK_45 */
414 0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A,
415 /* FE_16APSK_56 */
416 0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A,
417 /* FE_16APSK_89 */
418 0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A,
419 /* FE_16APSK_910 */
420 0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A,
421 /* FE_32APSK_34 */
422 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
423 /* FE_32APSK_45 */
424 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
425 /* FE_32APSK_56 */
426 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
427 /* FE_32APSK_89 */
428 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
429 /* FE_32APSK_910 */
430 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
431 };
432
get_optim_cloop(struct stv * state,enum fe_stv0910_mod_cod mod_cod,u32 pilots)433 static u8 get_optim_cloop(struct stv *state,
434 enum fe_stv0910_mod_cod mod_cod, u32 pilots)
435 {
436 int i = 0;
437
438 if (mod_cod >= FE_32APSK_910)
439 i = ((int)FE_32APSK_910 - (int)FE_QPSK_14) * 10;
440 else if (mod_cod >= FE_QPSK_14)
441 i = ((int)mod_cod - (int)FE_QPSK_14) * 10;
442
443 if (state->symbol_rate <= 3000000)
444 i += 0;
445 else if (state->symbol_rate <= 7000000)
446 i += 2;
447 else if (state->symbol_rate <= 15000000)
448 i += 4;
449 else if (state->symbol_rate <= 25000000)
450 i += 6;
451 else
452 i += 8;
453
454 if (!pilots)
455 i += 1;
456
457 return s2car_loop[i];
458 }
459
get_cur_symbol_rate(struct stv * state,u32 * p_symbol_rate)460 static int get_cur_symbol_rate(struct stv *state, u32 *p_symbol_rate)
461 {
462 int status = 0;
463 u8 symb_freq0;
464 u8 symb_freq1;
465 u8 symb_freq2;
466 u8 symb_freq3;
467 u8 tim_offs0;
468 u8 tim_offs1;
469 u8 tim_offs2;
470 u32 symbol_rate;
471 s32 timing_offset;
472
473 *p_symbol_rate = 0;
474 if (!state->started)
475 return status;
476
477 read_reg(state, RSTV0910_P2_SFR3 + state->regoff, &symb_freq3);
478 read_reg(state, RSTV0910_P2_SFR2 + state->regoff, &symb_freq2);
479 read_reg(state, RSTV0910_P2_SFR1 + state->regoff, &symb_freq1);
480 read_reg(state, RSTV0910_P2_SFR0 + state->regoff, &symb_freq0);
481 read_reg(state, RSTV0910_P2_TMGREG2 + state->regoff, &tim_offs2);
482 read_reg(state, RSTV0910_P2_TMGREG1 + state->regoff, &tim_offs1);
483 read_reg(state, RSTV0910_P2_TMGREG0 + state->regoff, &tim_offs0);
484
485 symbol_rate = ((u32)symb_freq3 << 24) | ((u32)symb_freq2 << 16) |
486 ((u32)symb_freq1 << 8) | (u32)symb_freq0;
487 timing_offset = ((u32)tim_offs2 << 16) | ((u32)tim_offs1 << 8) |
488 (u32)tim_offs0;
489
490 if ((timing_offset & (1 << 23)) != 0)
491 timing_offset |= 0xFF000000; /* Sign extent */
492
493 symbol_rate = (u32)(((u64)symbol_rate * state->base->mclk) >> 32);
494 timing_offset = (s32)(((s64)symbol_rate * (s64)timing_offset) >> 29);
495
496 *p_symbol_rate = symbol_rate + timing_offset;
497
498 return 0;
499 }
500
get_signal_parameters(struct stv * state)501 static int get_signal_parameters(struct stv *state)
502 {
503 u8 tmp;
504
505 if (!state->started)
506 return -EINVAL;
507
508 if (state->receive_mode == RCVMODE_DVBS2) {
509 read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
510 state->mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2);
511 state->pilots = (tmp & 0x01) != 0;
512 state->fectype = (enum dvbs2_fectype)((tmp & 0x02) >> 1);
513
514 } else if (state->receive_mode == RCVMODE_DVBS) {
515 read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
516 state->puncture_rate = FEC_NONE;
517 switch (tmp & 0x1F) {
518 case 0x0d:
519 state->puncture_rate = FEC_1_2;
520 break;
521 case 0x12:
522 state->puncture_rate = FEC_2_3;
523 break;
524 case 0x15:
525 state->puncture_rate = FEC_3_4;
526 break;
527 case 0x18:
528 state->puncture_rate = FEC_5_6;
529 break;
530 case 0x1a:
531 state->puncture_rate = FEC_7_8;
532 break;
533 }
534 state->is_vcm = 0;
535 state->is_standard_broadcast = 1;
536 state->feroll_off = FE_SAT_35;
537 }
538 return 0;
539 }
540
tracking_optimization(struct stv * state)541 static int tracking_optimization(struct stv *state)
542 {
543 u8 tmp;
544
545 read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &tmp);
546 tmp &= ~0xC0;
547
548 switch (state->receive_mode) {
549 case RCVMODE_DVBS:
550 tmp |= 0x40;
551 break;
552 case RCVMODE_DVBS2:
553 tmp |= 0x80;
554 break;
555 default:
556 tmp |= 0xC0;
557 break;
558 }
559 write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, tmp);
560
561 if (state->receive_mode == RCVMODE_DVBS2) {
562 /* Disable Reed-Solomon */
563 write_shared_reg(state,
564 RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01,
565 0x03);
566
567 if (state->fectype == DVBS2_64K) {
568 u8 aclc = get_optim_cloop(state, state->mod_cod,
569 state->pilots);
570
571 if (state->mod_cod <= FE_QPSK_910) {
572 write_reg(state, RSTV0910_P2_ACLC2S2Q +
573 state->regoff, aclc);
574 } else if (state->mod_cod <= FE_8PSK_910) {
575 write_reg(state, RSTV0910_P2_ACLC2S2Q +
576 state->regoff, 0x2a);
577 write_reg(state, RSTV0910_P2_ACLC2S28 +
578 state->regoff, aclc);
579 } else if (state->mod_cod <= FE_16APSK_910) {
580 write_reg(state, RSTV0910_P2_ACLC2S2Q +
581 state->regoff, 0x2a);
582 write_reg(state, RSTV0910_P2_ACLC2S216A +
583 state->regoff, aclc);
584 } else if (state->mod_cod <= FE_32APSK_910) {
585 write_reg(state, RSTV0910_P2_ACLC2S2Q +
586 state->regoff, 0x2a);
587 write_reg(state, RSTV0910_P2_ACLC2S232A +
588 state->regoff, aclc);
589 }
590 }
591 }
592 return 0;
593 }
594
table_lookup(const struct slookup * table,int table_size,u32 reg_value)595 static s32 table_lookup(const struct slookup *table,
596 int table_size, u32 reg_value)
597 {
598 s32 value;
599 int imin = 0;
600 int imax = table_size - 1;
601 int i;
602 s32 reg_diff;
603
604 /* Assumes Table[0].RegValue > Table[imax].RegValue */
605 if (reg_value >= table[0].reg_value) {
606 value = table[0].value;
607 } else if (reg_value <= table[imax].reg_value) {
608 value = table[imax].value;
609 } else {
610 while ((imax - imin) > 1) {
611 i = (imax + imin) / 2;
612 if ((table[imin].reg_value >= reg_value) &&
613 (reg_value >= table[i].reg_value))
614 imax = i;
615 else
616 imin = i;
617 }
618
619 reg_diff = table[imax].reg_value - table[imin].reg_value;
620 value = table[imin].value;
621 if (reg_diff != 0)
622 value += ((s32)(reg_value - table[imin].reg_value) *
623 (s32)(table[imax].value
624 - table[imin].value))
625 / (reg_diff);
626 }
627
628 return value;
629 }
630
get_signal_to_noise(struct stv * state,s32 * signal_to_noise)631 static int get_signal_to_noise(struct stv *state, s32 *signal_to_noise)
632 {
633 u8 data0;
634 u8 data1;
635 u16 data;
636 int n_lookup;
637 const struct slookup *lookup;
638
639 *signal_to_noise = 0;
640
641 if (!state->started)
642 return -EINVAL;
643
644 if (state->receive_mode == RCVMODE_DVBS2) {
645 read_reg(state, RSTV0910_P2_NNOSPLHT1 + state->regoff,
646 &data1);
647 read_reg(state, RSTV0910_P2_NNOSPLHT0 + state->regoff,
648 &data0);
649 n_lookup = ARRAY_SIZE(s2_sn_lookup);
650 lookup = s2_sn_lookup;
651 } else {
652 read_reg(state, RSTV0910_P2_NNOSDATAT1 + state->regoff,
653 &data1);
654 read_reg(state, RSTV0910_P2_NNOSDATAT0 + state->regoff,
655 &data0);
656 n_lookup = ARRAY_SIZE(s1_sn_lookup);
657 lookup = s1_sn_lookup;
658 }
659 data = (((u16)data1) << 8) | (u16)data0;
660 *signal_to_noise = table_lookup(lookup, n_lookup, data);
661 return 0;
662 }
663
get_bit_error_rate_s(struct stv * state,u32 * bernumerator,u32 * berdenominator)664 static int get_bit_error_rate_s(struct stv *state, u32 *bernumerator,
665 u32 *berdenominator)
666 {
667 u8 regs[3];
668
669 int status = read_regs(state,
670 RSTV0910_P2_ERRCNT12 + state->regoff,
671 regs, 3);
672
673 if (status)
674 return -EINVAL;
675
676 if ((regs[0] & 0x80) == 0) {
677 state->last_berdenominator = 1ULL << ((state->berscale * 2) +
678 10 + 3);
679 state->last_bernumerator = ((u32)(regs[0] & 0x7F) << 16) |
680 ((u32)regs[1] << 8) | regs[2];
681 if (state->last_bernumerator < 256 && state->berscale < 6) {
682 state->berscale += 1;
683 status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
684 state->regoff,
685 0x20 | state->berscale);
686 } else if (state->last_bernumerator > 1024 &&
687 state->berscale > 2) {
688 state->berscale -= 1;
689 status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
690 state->regoff, 0x20 |
691 state->berscale);
692 }
693 }
694 *bernumerator = state->last_bernumerator;
695 *berdenominator = state->last_berdenominator;
696 return 0;
697 }
698
dvbs2_nbch(enum dvbs2_mod_cod mod_cod,enum dvbs2_fectype fectype)699 static u32 dvbs2_nbch(enum dvbs2_mod_cod mod_cod, enum dvbs2_fectype fectype)
700 {
701 static const u32 nbch[][2] = {
702 { 0, 0}, /* DUMMY_PLF */
703 {16200, 3240}, /* QPSK_1_4, */
704 {21600, 5400}, /* QPSK_1_3, */
705 {25920, 6480}, /* QPSK_2_5, */
706 {32400, 7200}, /* QPSK_1_2, */
707 {38880, 9720}, /* QPSK_3_5, */
708 {43200, 10800}, /* QPSK_2_3, */
709 {48600, 11880}, /* QPSK_3_4, */
710 {51840, 12600}, /* QPSK_4_5, */
711 {54000, 13320}, /* QPSK_5_6, */
712 {57600, 14400}, /* QPSK_8_9, */
713 {58320, 16000}, /* QPSK_9_10, */
714 {43200, 9720}, /* 8PSK_3_5, */
715 {48600, 10800}, /* 8PSK_2_3, */
716 {51840, 11880}, /* 8PSK_3_4, */
717 {54000, 13320}, /* 8PSK_5_6, */
718 {57600, 14400}, /* 8PSK_8_9, */
719 {58320, 16000}, /* 8PSK_9_10, */
720 {43200, 10800}, /* 16APSK_2_3, */
721 {48600, 11880}, /* 16APSK_3_4, */
722 {51840, 12600}, /* 16APSK_4_5, */
723 {54000, 13320}, /* 16APSK_5_6, */
724 {57600, 14400}, /* 16APSK_8_9, */
725 {58320, 16000}, /* 16APSK_9_10 */
726 {48600, 11880}, /* 32APSK_3_4, */
727 {51840, 12600}, /* 32APSK_4_5, */
728 {54000, 13320}, /* 32APSK_5_6, */
729 {57600, 14400}, /* 32APSK_8_9, */
730 {58320, 16000}, /* 32APSK_9_10 */
731 };
732
733 if (mod_cod >= DVBS2_QPSK_1_4 &&
734 mod_cod <= DVBS2_32APSK_9_10 && fectype <= DVBS2_16K)
735 return nbch[mod_cod][fectype];
736 return 64800;
737 }
738
get_bit_error_rate_s2(struct stv * state,u32 * bernumerator,u32 * berdenominator)739 static int get_bit_error_rate_s2(struct stv *state, u32 *bernumerator,
740 u32 *berdenominator)
741 {
742 u8 regs[3];
743
744 int status = read_regs(state, RSTV0910_P2_ERRCNT12 + state->regoff,
745 regs, 3);
746
747 if (status)
748 return -EINVAL;
749
750 if ((regs[0] & 0x80) == 0) {
751 state->last_berdenominator =
752 dvbs2_nbch((enum dvbs2_mod_cod)state->mod_cod,
753 state->fectype) <<
754 (state->berscale * 2);
755 state->last_bernumerator = (((u32)regs[0] & 0x7F) << 16) |
756 ((u32)regs[1] << 8) | regs[2];
757 if (state->last_bernumerator < 256 && state->berscale < 6) {
758 state->berscale += 1;
759 write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
760 0x20 | state->berscale);
761 } else if (state->last_bernumerator > 1024 &&
762 state->berscale > 2) {
763 state->berscale -= 1;
764 write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
765 0x20 | state->berscale);
766 }
767 }
768 *bernumerator = state->last_bernumerator;
769 *berdenominator = state->last_berdenominator;
770 return status;
771 }
772
get_bit_error_rate(struct stv * state,u32 * bernumerator,u32 * berdenominator)773 static int get_bit_error_rate(struct stv *state, u32 *bernumerator,
774 u32 *berdenominator)
775 {
776 *bernumerator = 0;
777 *berdenominator = 1;
778
779 switch (state->receive_mode) {
780 case RCVMODE_DVBS:
781 return get_bit_error_rate_s(state,
782 bernumerator, berdenominator);
783 case RCVMODE_DVBS2:
784 return get_bit_error_rate_s2(state,
785 bernumerator, berdenominator);
786 default:
787 break;
788 }
789 return 0;
790 }
791
set_mclock(struct stv * state,u32 master_clock)792 static int set_mclock(struct stv *state, u32 master_clock)
793 {
794 u32 idf = 1;
795 u32 odf = 4;
796 u32 quartz = state->base->extclk / 1000000;
797 u32 fphi = master_clock / 1000000;
798 u32 ndiv = (fphi * odf * idf) / quartz;
799 u32 cp = 7;
800 u32 fvco;
801
802 if (ndiv >= 7 && ndiv <= 71)
803 cp = 7;
804 else if (ndiv >= 72 && ndiv <= 79)
805 cp = 8;
806 else if (ndiv >= 80 && ndiv <= 87)
807 cp = 9;
808 else if (ndiv >= 88 && ndiv <= 95)
809 cp = 10;
810 else if (ndiv >= 96 && ndiv <= 103)
811 cp = 11;
812 else if (ndiv >= 104 && ndiv <= 111)
813 cp = 12;
814 else if (ndiv >= 112 && ndiv <= 119)
815 cp = 13;
816 else if (ndiv >= 120 && ndiv <= 127)
817 cp = 14;
818 else if (ndiv >= 128 && ndiv <= 135)
819 cp = 15;
820 else if (ndiv >= 136 && ndiv <= 143)
821 cp = 16;
822 else if (ndiv >= 144 && ndiv <= 151)
823 cp = 17;
824 else if (ndiv >= 152 && ndiv <= 159)
825 cp = 18;
826 else if (ndiv >= 160 && ndiv <= 167)
827 cp = 19;
828 else if (ndiv >= 168 && ndiv <= 175)
829 cp = 20;
830 else if (ndiv >= 176 && ndiv <= 183)
831 cp = 21;
832 else if (ndiv >= 184 && ndiv <= 191)
833 cp = 22;
834 else if (ndiv >= 192 && ndiv <= 199)
835 cp = 23;
836 else if (ndiv >= 200 && ndiv <= 207)
837 cp = 24;
838 else if (ndiv >= 208 && ndiv <= 215)
839 cp = 25;
840 else if (ndiv >= 216 && ndiv <= 223)
841 cp = 26;
842 else if (ndiv >= 224 && ndiv <= 225)
843 cp = 27;
844
845 write_reg(state, RSTV0910_NCOARSE, (cp << 3) | idf);
846 write_reg(state, RSTV0910_NCOARSE2, odf);
847 write_reg(state, RSTV0910_NCOARSE1, ndiv);
848
849 fvco = (quartz * 2 * ndiv) / idf;
850 state->base->mclk = fvco / (2 * odf) * 1000000;
851
852 return 0;
853 }
854
stop(struct stv * state)855 static int stop(struct stv *state)
856 {
857 if (state->started) {
858 u8 tmp;
859
860 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
861 state->tscfgh | 0x01);
862 read_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, &tmp);
863 tmp &= ~0x01; /* release reset DVBS2 packet delin */
864 write_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, tmp);
865 /* Blind optim*/
866 write_reg(state, RSTV0910_P2_AGC2O + state->regoff, 0x5B);
867 /* Stop the demod */
868 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5c);
869 state->started = 0;
870 }
871 state->receive_mode = RCVMODE_NONE;
872 return 0;
873 }
874
set_pls(struct stv * state,u32 pls_code)875 static void set_pls(struct stv *state, u32 pls_code)
876 {
877 if (pls_code == state->cur_scrambling_code)
878 return;
879
880 /* PLROOT2 bit 2 = gold code */
881 write_reg(state, RSTV0910_P2_PLROOT0 + state->regoff,
882 pls_code & 0xff);
883 write_reg(state, RSTV0910_P2_PLROOT1 + state->regoff,
884 (pls_code >> 8) & 0xff);
885 write_reg(state, RSTV0910_P2_PLROOT2 + state->regoff,
886 0x04 | ((pls_code >> 16) & 0x03));
887 state->cur_scrambling_code = pls_code;
888 }
889
set_isi(struct stv * state,u32 isi)890 static void set_isi(struct stv *state, u32 isi)
891 {
892 if (isi == NO_STREAM_ID_FILTER)
893 return;
894 if (isi == 0x80000000) {
895 SET_FIELD(FORCE_CONTINUOUS, 1);
896 SET_FIELD(TSOUT_NOSYNC, 1);
897 } else {
898 SET_FIELD(FILTER_EN, 1);
899 write_reg(state, RSTV0910_P2_ISIENTRY + state->regoff,
900 isi & 0xff);
901 write_reg(state, RSTV0910_P2_ISIBITENA + state->regoff, 0xff);
902 }
903 SET_FIELD(ALGOSWRST, 1);
904 SET_FIELD(ALGOSWRST, 0);
905 }
906
set_stream_modes(struct stv * state,struct dtv_frontend_properties * p)907 static void set_stream_modes(struct stv *state,
908 struct dtv_frontend_properties *p)
909 {
910 set_isi(state, p->stream_id);
911 set_pls(state, p->scrambling_sequence_index);
912 }
913
init_search_param(struct stv * state,struct dtv_frontend_properties * p)914 static int init_search_param(struct stv *state,
915 struct dtv_frontend_properties *p)
916 {
917 SET_FIELD(FORCE_CONTINUOUS, 0);
918 SET_FIELD(FRAME_MODE, 0);
919 SET_FIELD(FILTER_EN, 0);
920 SET_FIELD(TSOUT_NOSYNC, 0);
921 SET_FIELD(TSFIFO_EMBINDVB, 0);
922 SET_FIELD(TSDEL_SYNCBYTE, 0);
923 SET_REG(UPLCCST0, 0xe0);
924 SET_FIELD(TSINS_TOKEN, 0);
925 SET_FIELD(HYSTERESIS_THRESHOLD, 0);
926 SET_FIELD(ISIOBS_MODE, 1);
927
928 set_stream_modes(state, p);
929 return 0;
930 }
931
enable_puncture_rate(struct stv * state,enum fe_code_rate rate)932 static int enable_puncture_rate(struct stv *state, enum fe_code_rate rate)
933 {
934 u8 val;
935
936 switch (rate) {
937 case FEC_1_2:
938 val = 0x01;
939 break;
940 case FEC_2_3:
941 val = 0x02;
942 break;
943 case FEC_3_4:
944 val = 0x04;
945 break;
946 case FEC_5_6:
947 val = 0x08;
948 break;
949 case FEC_7_8:
950 val = 0x20;
951 break;
952 case FEC_NONE:
953 default:
954 val = 0x2f;
955 break;
956 }
957
958 return write_reg(state, RSTV0910_P2_PRVIT + state->regoff, val);
959 }
960
set_vth_default(struct stv * state)961 static int set_vth_default(struct stv *state)
962 {
963 state->vth[0] = 0xd7;
964 state->vth[1] = 0x85;
965 state->vth[2] = 0x58;
966 state->vth[3] = 0x3a;
967 state->vth[4] = 0x34;
968 state->vth[5] = 0x28;
969 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]);
970 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]);
971 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]);
972 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]);
973 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]);
974 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]);
975 return 0;
976 }
977
set_vth(struct stv * state)978 static int set_vth(struct stv *state)
979 {
980 static const struct slookup vthlookup_table[] = {
981 {250, 8780}, /* C/N= 1.5dB */
982 {100, 7405}, /* C/N= 4.5dB */
983 {40, 6330}, /* C/N= 6.5dB */
984 {12, 5224}, /* C/N= 8.5dB */
985 {5, 4236} /* C/N=10.5dB */
986 };
987
988 int i;
989 u8 tmp[2];
990 int status = read_regs(state,
991 RSTV0910_P2_NNOSDATAT1 + state->regoff,
992 tmp, 2);
993 u16 reg_value = (tmp[0] << 8) | tmp[1];
994 s32 vth = table_lookup(vthlookup_table, ARRAY_SIZE(vthlookup_table),
995 reg_value);
996
997 for (i = 0; i < 6; i += 1)
998 if (state->vth[i] > vth)
999 state->vth[i] = vth;
1000
1001 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]);
1002 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]);
1003 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]);
1004 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]);
1005 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]);
1006 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]);
1007 return status;
1008 }
1009
start(struct stv * state,struct dtv_frontend_properties * p)1010 static int start(struct stv *state, struct dtv_frontend_properties *p)
1011 {
1012 s32 freq;
1013 u8 reg_dmdcfgmd;
1014 u16 symb;
1015
1016 if (p->symbol_rate < 100000 || p->symbol_rate > 70000000)
1017 return -EINVAL;
1018
1019 state->receive_mode = RCVMODE_NONE;
1020 state->demod_lock_time = 0;
1021
1022 /* Demod Stop */
1023 if (state->started)
1024 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5C);
1025
1026 init_search_param(state, p);
1027
1028 if (p->symbol_rate <= 1000000) { /* SR <=1Msps */
1029 state->demod_timeout = 3000;
1030 state->fec_timeout = 2000;
1031 } else if (p->symbol_rate <= 2000000) { /* 1Msps < SR <=2Msps */
1032 state->demod_timeout = 2500;
1033 state->fec_timeout = 1300;
1034 } else if (p->symbol_rate <= 5000000) { /* 2Msps< SR <=5Msps */
1035 state->demod_timeout = 1000;
1036 state->fec_timeout = 650;
1037 } else if (p->symbol_rate <= 10000000) { /* 5Msps< SR <=10Msps */
1038 state->demod_timeout = 700;
1039 state->fec_timeout = 350;
1040 } else if (p->symbol_rate < 20000000) { /* 10Msps< SR <=20Msps */
1041 state->demod_timeout = 400;
1042 state->fec_timeout = 200;
1043 } else { /* SR >=20Msps */
1044 state->demod_timeout = 300;
1045 state->fec_timeout = 200;
1046 }
1047
1048 /* Set the Init Symbol rate */
1049 symb = muldiv32(p->symbol_rate, 65536, state->base->mclk);
1050 write_reg(state, RSTV0910_P2_SFRINIT1 + state->regoff,
1051 ((symb >> 8) & 0x7F));
1052 write_reg(state, RSTV0910_P2_SFRINIT0 + state->regoff, (symb & 0xFF));
1053
1054 state->demod_bits |= 0x80;
1055 write_reg(state, RSTV0910_P2_DEMOD + state->regoff, state->demod_bits);
1056
1057 /* FE_STV0910_SetSearchStandard */
1058 read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, ®_dmdcfgmd);
1059 write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff,
1060 reg_dmdcfgmd |= 0xC0);
1061
1062 write_shared_reg(state,
1063 RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01, 0x00);
1064
1065 /* Disable DSS */
1066 write_reg(state, RSTV0910_P2_FECM + state->regoff, 0x00);
1067 write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x2F);
1068
1069 enable_puncture_rate(state, FEC_NONE);
1070
1071 /* 8PSK 3/5, 8PSK 2/3 Poff tracking optimization WA */
1072 write_reg(state, RSTV0910_P2_ACLC2S2Q + state->regoff, 0x0B);
1073 write_reg(state, RSTV0910_P2_ACLC2S28 + state->regoff, 0x0A);
1074 write_reg(state, RSTV0910_P2_BCLC2S2Q + state->regoff, 0x84);
1075 write_reg(state, RSTV0910_P2_BCLC2S28 + state->regoff, 0x84);
1076 write_reg(state, RSTV0910_P2_CARHDR + state->regoff, 0x1C);
1077 write_reg(state, RSTV0910_P2_CARFREQ + state->regoff, 0x79);
1078
1079 write_reg(state, RSTV0910_P2_ACLC2S216A + state->regoff, 0x29);
1080 write_reg(state, RSTV0910_P2_ACLC2S232A + state->regoff, 0x09);
1081 write_reg(state, RSTV0910_P2_BCLC2S216A + state->regoff, 0x84);
1082 write_reg(state, RSTV0910_P2_BCLC2S232A + state->regoff, 0x84);
1083
1084 /*
1085 * Reset CAR3, bug DVBS2->DVBS1 lock
1086 * Note: The bit is only pulsed -> no lock on shared register needed
1087 */
1088 write_reg(state, RSTV0910_TSTRES0, state->nr ? 0x04 : 0x08);
1089 write_reg(state, RSTV0910_TSTRES0, 0);
1090
1091 set_vth_default(state);
1092 /* Reset demod */
1093 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
1094
1095 write_reg(state, RSTV0910_P2_CARCFG + state->regoff, 0x46);
1096
1097 if (p->symbol_rate <= 5000000)
1098 freq = (state->search_range / 2000) + 80;
1099 else
1100 freq = (state->search_range / 2000) + 1600;
1101 freq = (freq << 16) / (state->base->mclk / 1000);
1102
1103 write_reg(state, RSTV0910_P2_CFRUP1 + state->regoff,
1104 (freq >> 8) & 0xff);
1105 write_reg(state, RSTV0910_P2_CFRUP0 + state->regoff, (freq & 0xff));
1106 /* CFR Low Setting */
1107 freq = -freq;
1108 write_reg(state, RSTV0910_P2_CFRLOW1 + state->regoff,
1109 (freq >> 8) & 0xff);
1110 write_reg(state, RSTV0910_P2_CFRLOW0 + state->regoff, (freq & 0xff));
1111
1112 /* init the demod frequency offset to 0 */
1113 write_reg(state, RSTV0910_P2_CFRINIT1 + state->regoff, 0);
1114 write_reg(state, RSTV0910_P2_CFRINIT0 + state->regoff, 0);
1115
1116 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
1117 /* Trigger acq */
1118 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x15);
1119
1120 state->demod_lock_time += TUNING_DELAY;
1121 state->started = 1;
1122
1123 return 0;
1124 }
1125
init_diseqc(struct stv * state)1126 static int init_diseqc(struct stv *state)
1127 {
1128 u16 offs = state->nr ? 0x40 : 0; /* Address offset */
1129 u8 freq = ((state->base->mclk + 11000 * 32) / (22000 * 32));
1130
1131 /* Disable receiver */
1132 write_reg(state, RSTV0910_P1_DISRXCFG + offs, 0x00);
1133 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0xBA); /* Reset = 1 */
1134 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A); /* Reset = 0 */
1135 write_reg(state, RSTV0910_P1_DISTXF22 + offs, freq);
1136 return 0;
1137 }
1138
probe(struct stv * state)1139 static int probe(struct stv *state)
1140 {
1141 u8 id;
1142
1143 state->receive_mode = RCVMODE_NONE;
1144 state->started = 0;
1145
1146 if (read_reg(state, RSTV0910_MID, &id) < 0)
1147 return -ENODEV;
1148
1149 if (id != 0x51)
1150 return -EINVAL;
1151
1152 /* Configure the I2C repeater to off */
1153 write_reg(state, RSTV0910_P1_I2CRPT, 0x24);
1154 /* Configure the I2C repeater to off */
1155 write_reg(state, RSTV0910_P2_I2CRPT, 0x24);
1156 /* Set the I2C to oversampling ratio */
1157 write_reg(state, RSTV0910_I2CCFG, 0x88); /* state->i2ccfg */
1158
1159 write_reg(state, RSTV0910_OUTCFG, 0x00); /* OUTCFG */
1160 write_reg(state, RSTV0910_PADCFG, 0x05); /* RFAGC Pads Dev = 05 */
1161 write_reg(state, RSTV0910_SYNTCTRL, 0x02); /* SYNTCTRL */
1162 write_reg(state, RSTV0910_TSGENERAL, state->tsgeneral); /* TSGENERAL */
1163 write_reg(state, RSTV0910_CFGEXT, 0x02); /* CFGEXT */
1164
1165 if (state->single)
1166 write_reg(state, RSTV0910_GENCFG, 0x14); /* GENCFG */
1167 else
1168 write_reg(state, RSTV0910_GENCFG, 0x15); /* GENCFG */
1169
1170 write_reg(state, RSTV0910_P1_TNRCFG2, 0x02); /* IQSWAP = 0 */
1171 write_reg(state, RSTV0910_P2_TNRCFG2, 0x82); /* IQSWAP = 1 */
1172
1173 write_reg(state, RSTV0910_P1_CAR3CFG, 0x02);
1174 write_reg(state, RSTV0910_P2_CAR3CFG, 0x02);
1175 write_reg(state, RSTV0910_P1_DMDCFG4, 0x04);
1176 write_reg(state, RSTV0910_P2_DMDCFG4, 0x04);
1177
1178 write_reg(state, RSTV0910_TSTRES0, 0x80); /* LDPC Reset */
1179 write_reg(state, RSTV0910_TSTRES0, 0x00);
1180
1181 write_reg(state, RSTV0910_P1_TSPIDFLT1, 0x00);
1182 write_reg(state, RSTV0910_P2_TSPIDFLT1, 0x00);
1183
1184 write_reg(state, RSTV0910_P1_TMGCFG2, 0x80);
1185 write_reg(state, RSTV0910_P2_TMGCFG2, 0x80);
1186
1187 set_mclock(state, 135000000);
1188
1189 /* TS output */
1190 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01);
1191 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh);
1192 write_reg(state, RSTV0910_P1_TSCFGM, 0xC0); /* Manual speed */
1193 write_reg(state, RSTV0910_P1_TSCFGL, 0x20);
1194
1195 write_reg(state, RSTV0910_P1_TSSPEED, state->tsspeed);
1196
1197 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01);
1198 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh);
1199 write_reg(state, RSTV0910_P2_TSCFGM, 0xC0); /* Manual speed */
1200 write_reg(state, RSTV0910_P2_TSCFGL, 0x20);
1201
1202 write_reg(state, RSTV0910_P2_TSSPEED, state->tsspeed);
1203
1204 /* Reset stream merger */
1205 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01);
1206 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01);
1207 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh);
1208 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh);
1209
1210 write_reg(state, RSTV0910_P1_I2CRPT, state->i2crpt);
1211 write_reg(state, RSTV0910_P2_I2CRPT, state->i2crpt);
1212
1213 write_reg(state, RSTV0910_P1_TSINSDELM, 0x17);
1214 write_reg(state, RSTV0910_P1_TSINSDELL, 0xff);
1215
1216 write_reg(state, RSTV0910_P2_TSINSDELM, 0x17);
1217 write_reg(state, RSTV0910_P2_TSINSDELL, 0xff);
1218
1219 init_diseqc(state);
1220 return 0;
1221 }
1222
gate_ctrl(struct dvb_frontend * fe,int enable)1223 static int gate_ctrl(struct dvb_frontend *fe, int enable)
1224 {
1225 struct stv *state = fe->demodulator_priv;
1226 u8 i2crpt = state->i2crpt & ~0x86;
1227
1228 /*
1229 * mutex_lock note: Concurrent I2C gate bus accesses must be
1230 * prevented (STV0910 = dual demod on a single IC with a single I2C
1231 * gate/bus, and two tuners attached), similar to most (if not all)
1232 * other I2C host interfaces/buses.
1233 *
1234 * enable=1 (open I2C gate) will grab the lock
1235 * enable=0 (close I2C gate) releases the lock
1236 */
1237
1238 if (enable) {
1239 mutex_lock(&state->base->i2c_lock);
1240 i2crpt |= 0x80;
1241 } else {
1242 i2crpt |= 0x02;
1243 }
1244
1245 if (write_reg(state, state->nr ? RSTV0910_P2_I2CRPT :
1246 RSTV0910_P1_I2CRPT, i2crpt) < 0) {
1247 /* don't hold the I2C bus lock on failure */
1248 if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock)))
1249 mutex_unlock(&state->base->i2c_lock);
1250 dev_err(&state->base->i2c->dev,
1251 "%s() write_reg failure (enable=%d)\n",
1252 __func__, enable);
1253 return -EIO;
1254 }
1255
1256 state->i2crpt = i2crpt;
1257
1258 if (!enable)
1259 if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock)))
1260 mutex_unlock(&state->base->i2c_lock);
1261 return 0;
1262 }
1263
release(struct dvb_frontend * fe)1264 static void release(struct dvb_frontend *fe)
1265 {
1266 struct stv *state = fe->demodulator_priv;
1267
1268 state->base->count--;
1269 if (state->base->count == 0) {
1270 list_del(&state->base->stvlist);
1271 kfree(state->base);
1272 }
1273 kfree(state);
1274 }
1275
set_parameters(struct dvb_frontend * fe)1276 static int set_parameters(struct dvb_frontend *fe)
1277 {
1278 int stat = 0;
1279 struct stv *state = fe->demodulator_priv;
1280 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1281
1282 stop(state);
1283 if (fe->ops.tuner_ops.set_params)
1284 fe->ops.tuner_ops.set_params(fe);
1285 state->symbol_rate = p->symbol_rate;
1286 stat = start(state, p);
1287 return stat;
1288 }
1289
manage_matype_info(struct stv * state)1290 static int manage_matype_info(struct stv *state)
1291 {
1292 if (!state->started)
1293 return -EINVAL;
1294 if (state->receive_mode == RCVMODE_DVBS2) {
1295 u8 bbheader[2];
1296
1297 read_regs(state, RSTV0910_P2_MATSTR1 + state->regoff,
1298 bbheader, 2);
1299 state->feroll_off =
1300 (enum fe_stv0910_roll_off)(bbheader[0] & 0x03);
1301 state->is_vcm = (bbheader[0] & 0x10) == 0;
1302 state->is_standard_broadcast = (bbheader[0] & 0xFC) == 0xF0;
1303 } else if (state->receive_mode == RCVMODE_DVBS) {
1304 state->is_vcm = 0;
1305 state->is_standard_broadcast = 1;
1306 state->feroll_off = FE_SAT_35;
1307 }
1308 return 0;
1309 }
1310
read_snr(struct dvb_frontend * fe)1311 static int read_snr(struct dvb_frontend *fe)
1312 {
1313 struct stv *state = fe->demodulator_priv;
1314 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1315 s32 snrval;
1316
1317 if (!get_signal_to_noise(state, &snrval)) {
1318 p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1319 p->cnr.stat[0].svalue = 100 * snrval; /* fix scale */
1320 } else {
1321 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1322 }
1323
1324 return 0;
1325 }
1326
read_ber(struct dvb_frontend * fe)1327 static int read_ber(struct dvb_frontend *fe)
1328 {
1329 struct stv *state = fe->demodulator_priv;
1330 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1331 u32 n, d;
1332
1333 get_bit_error_rate(state, &n, &d);
1334
1335 p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1336 p->pre_bit_error.stat[0].uvalue = n;
1337 p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1338 p->pre_bit_count.stat[0].uvalue = d;
1339
1340 return 0;
1341 }
1342
read_signal_strength(struct dvb_frontend * fe)1343 static void read_signal_strength(struct dvb_frontend *fe)
1344 {
1345 struct stv *state = fe->demodulator_priv;
1346 struct dtv_frontend_properties *p = &state->fe.dtv_property_cache;
1347 u8 reg[2];
1348 u16 agc;
1349 s32 padc, power = 0;
1350 int i;
1351
1352 read_regs(state, RSTV0910_P2_AGCIQIN1 + state->regoff, reg, 2);
1353
1354 agc = (((u32)reg[0]) << 8) | reg[1];
1355
1356 for (i = 0; i < 5; i += 1) {
1357 read_regs(state, RSTV0910_P2_POWERI + state->regoff, reg, 2);
1358 power += (u32)reg[0] * (u32)reg[0]
1359 + (u32)reg[1] * (u32)reg[1];
1360 usleep_range(3000, 4000);
1361 }
1362 power /= 5;
1363
1364 padc = table_lookup(padc_lookup, ARRAY_SIZE(padc_lookup), power) + 352;
1365
1366 p->strength.stat[0].scale = FE_SCALE_DECIBEL;
1367 p->strength.stat[0].svalue = (padc - agc);
1368 }
1369
read_status(struct dvb_frontend * fe,enum fe_status * status)1370 static int read_status(struct dvb_frontend *fe, enum fe_status *status)
1371 {
1372 struct stv *state = fe->demodulator_priv;
1373 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1374 u8 dmd_state = 0;
1375 u8 dstatus = 0;
1376 enum receive_mode cur_receive_mode = RCVMODE_NONE;
1377 u32 feclock = 0;
1378
1379 *status = 0;
1380
1381 read_reg(state, RSTV0910_P2_DMDSTATE + state->regoff, &dmd_state);
1382
1383 if (dmd_state & 0x40) {
1384 read_reg(state, RSTV0910_P2_DSTATUS + state->regoff, &dstatus);
1385 if (dstatus & 0x08)
1386 cur_receive_mode = (dmd_state & 0x20) ?
1387 RCVMODE_DVBS : RCVMODE_DVBS2;
1388 }
1389 if (cur_receive_mode == RCVMODE_NONE) {
1390 set_vth(state);
1391
1392 /* reset signal statistics */
1393 p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1394 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1395 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1396 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1397
1398 return 0;
1399 }
1400
1401 *status |= (FE_HAS_SIGNAL
1402 | FE_HAS_CARRIER
1403 | FE_HAS_VITERBI
1404 | FE_HAS_SYNC);
1405
1406 if (state->receive_mode == RCVMODE_NONE) {
1407 state->receive_mode = cur_receive_mode;
1408 state->demod_lock_time = jiffies;
1409 state->first_time_lock = 1;
1410
1411 get_signal_parameters(state);
1412 tracking_optimization(state);
1413
1414 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1415 state->tscfgh);
1416 usleep_range(3000, 4000);
1417 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1418 state->tscfgh | 0x01);
1419 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1420 state->tscfgh);
1421 }
1422 if (dmd_state & 0x40) {
1423 if (state->receive_mode == RCVMODE_DVBS2) {
1424 u8 pdelstatus;
1425
1426 read_reg(state,
1427 RSTV0910_P2_PDELSTATUS1 + state->regoff,
1428 &pdelstatus);
1429 feclock = (pdelstatus & 0x02) != 0;
1430 } else {
1431 u8 vstatus;
1432
1433 read_reg(state,
1434 RSTV0910_P2_VSTATUSVIT + state->regoff,
1435 &vstatus);
1436 feclock = (vstatus & 0x08) != 0;
1437 }
1438 }
1439
1440 if (feclock) {
1441 *status |= FE_HAS_LOCK;
1442
1443 if (state->first_time_lock) {
1444 u8 tmp;
1445
1446 state->first_time_lock = 0;
1447
1448 manage_matype_info(state);
1449
1450 if (state->receive_mode == RCVMODE_DVBS2) {
1451 /*
1452 * FSTV0910_P2_MANUALSX_ROLLOFF,
1453 * FSTV0910_P2_MANUALS2_ROLLOFF = 0
1454 */
1455 state->demod_bits &= ~0x84;
1456 write_reg(state,
1457 RSTV0910_P2_DEMOD + state->regoff,
1458 state->demod_bits);
1459 read_reg(state,
1460 RSTV0910_P2_PDELCTRL2 + state->regoff,
1461 &tmp);
1462 /* reset DVBS2 packet delinator error counter */
1463 tmp |= 0x40;
1464 write_reg(state,
1465 RSTV0910_P2_PDELCTRL2 + state->regoff,
1466 tmp);
1467 /* reset DVBS2 packet delinator error counter */
1468 tmp &= ~0x40;
1469 write_reg(state,
1470 RSTV0910_P2_PDELCTRL2 + state->regoff,
1471 tmp);
1472
1473 state->berscale = 2;
1474 state->last_bernumerator = 0;
1475 state->last_berdenominator = 1;
1476 /* force to PRE BCH Rate */
1477 write_reg(state,
1478 RSTV0910_P2_ERRCTRL1 + state->regoff,
1479 BER_SRC_S2 | state->berscale);
1480 } else {
1481 state->berscale = 2;
1482 state->last_bernumerator = 0;
1483 state->last_berdenominator = 1;
1484 /* force to PRE RS Rate */
1485 write_reg(state,
1486 RSTV0910_P2_ERRCTRL1 + state->regoff,
1487 BER_SRC_S | state->berscale);
1488 }
1489 /* Reset the Total packet counter */
1490 write_reg(state,
1491 RSTV0910_P2_FBERCPT4 + state->regoff, 0x00);
1492 /*
1493 * Reset the packet Error counter2 (and Set it to
1494 * infinite error count mode)
1495 */
1496 write_reg(state,
1497 RSTV0910_P2_ERRCTRL2 + state->regoff, 0xc1);
1498
1499 set_vth_default(state);
1500 if (state->receive_mode == RCVMODE_DVBS)
1501 enable_puncture_rate(state,
1502 state->puncture_rate);
1503 }
1504
1505 /* Use highest signaled ModCod for quality */
1506 if (state->is_vcm) {
1507 u8 tmp;
1508 enum fe_stv0910_mod_cod mod_cod;
1509
1510 read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff,
1511 &tmp);
1512 mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2);
1513
1514 if (mod_cod > state->mod_cod)
1515 state->mod_cod = mod_cod;
1516 }
1517 }
1518
1519 /* read signal statistics */
1520
1521 /* read signal strength */
1522 read_signal_strength(fe);
1523
1524 /* read carrier/noise on FE_HAS_CARRIER */
1525 if (*status & FE_HAS_CARRIER)
1526 read_snr(fe);
1527 else
1528 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1529
1530 /* read ber */
1531 if (*status & FE_HAS_VITERBI) {
1532 read_ber(fe);
1533 } else {
1534 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1535 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1536 }
1537
1538 return 0;
1539 }
1540
get_frontend(struct dvb_frontend * fe,struct dtv_frontend_properties * p)1541 static int get_frontend(struct dvb_frontend *fe,
1542 struct dtv_frontend_properties *p)
1543 {
1544 struct stv *state = fe->demodulator_priv;
1545 u8 tmp;
1546 u32 symbolrate;
1547
1548 if (state->receive_mode == RCVMODE_DVBS2) {
1549 u32 mc;
1550 const enum fe_modulation modcod2mod[0x20] = {
1551 QPSK, QPSK, QPSK, QPSK,
1552 QPSK, QPSK, QPSK, QPSK,
1553 QPSK, QPSK, QPSK, QPSK,
1554 PSK_8, PSK_8, PSK_8, PSK_8,
1555 PSK_8, PSK_8, APSK_16, APSK_16,
1556 APSK_16, APSK_16, APSK_16, APSK_16,
1557 APSK_32, APSK_32, APSK_32, APSK_32,
1558 APSK_32,
1559 };
1560 const enum fe_code_rate modcod2fec[0x20] = {
1561 FEC_NONE, FEC_NONE, FEC_NONE, FEC_2_5,
1562 FEC_1_2, FEC_3_5, FEC_2_3, FEC_3_4,
1563 FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
1564 FEC_3_5, FEC_2_3, FEC_3_4, FEC_5_6,
1565 FEC_8_9, FEC_9_10, FEC_2_3, FEC_3_4,
1566 FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
1567 FEC_3_4, FEC_4_5, FEC_5_6, FEC_8_9,
1568 FEC_9_10
1569 };
1570 read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
1571 mc = ((tmp & 0x7c) >> 2);
1572 p->pilot = (tmp & 0x01) ? PILOT_ON : PILOT_OFF;
1573 p->modulation = modcod2mod[mc];
1574 p->fec_inner = modcod2fec[mc];
1575 } else if (state->receive_mode == RCVMODE_DVBS) {
1576 read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
1577 switch (tmp & 0x1F) {
1578 case 0x0d:
1579 p->fec_inner = FEC_1_2;
1580 break;
1581 case 0x12:
1582 p->fec_inner = FEC_2_3;
1583 break;
1584 case 0x15:
1585 p->fec_inner = FEC_3_4;
1586 break;
1587 case 0x18:
1588 p->fec_inner = FEC_5_6;
1589 break;
1590 case 0x1a:
1591 p->fec_inner = FEC_7_8;
1592 break;
1593 default:
1594 p->fec_inner = FEC_NONE;
1595 break;
1596 }
1597 p->rolloff = ROLLOFF_35;
1598 }
1599
1600 if (state->receive_mode != RCVMODE_NONE) {
1601 get_cur_symbol_rate(state, &symbolrate);
1602 p->symbol_rate = symbolrate;
1603 }
1604 return 0;
1605 }
1606
tune(struct dvb_frontend * fe,bool re_tune,unsigned int mode_flags,unsigned int * delay,enum fe_status * status)1607 static int tune(struct dvb_frontend *fe, bool re_tune,
1608 unsigned int mode_flags,
1609 unsigned int *delay, enum fe_status *status)
1610 {
1611 struct stv *state = fe->demodulator_priv;
1612 int r;
1613
1614 if (re_tune) {
1615 r = set_parameters(fe);
1616 if (r)
1617 return r;
1618 state->tune_time = jiffies;
1619 }
1620
1621 r = read_status(fe, status);
1622 if (r)
1623 return r;
1624
1625 if (*status & FE_HAS_LOCK)
1626 return 0;
1627 *delay = HZ;
1628
1629 return 0;
1630 }
1631
get_algo(struct dvb_frontend * fe)1632 static enum dvbfe_algo get_algo(struct dvb_frontend *fe)
1633 {
1634 return DVBFE_ALGO_HW;
1635 }
1636
set_tone(struct dvb_frontend * fe,enum fe_sec_tone_mode tone)1637 static int set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
1638 {
1639 struct stv *state = fe->demodulator_priv;
1640 u16 offs = state->nr ? 0x40 : 0;
1641
1642 switch (tone) {
1643 case SEC_TONE_ON:
1644 return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x38);
1645 case SEC_TONE_OFF:
1646 return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3a);
1647 default:
1648 break;
1649 }
1650 return -EINVAL;
1651 }
1652
wait_dis(struct stv * state,u8 flag,u8 val)1653 static int wait_dis(struct stv *state, u8 flag, u8 val)
1654 {
1655 int i;
1656 u8 stat;
1657 u16 offs = state->nr ? 0x40 : 0;
1658
1659 for (i = 0; i < 10; i++) {
1660 read_reg(state, RSTV0910_P1_DISTXSTATUS + offs, &stat);
1661 if ((stat & flag) == val)
1662 return 0;
1663 usleep_range(10000, 11000);
1664 }
1665 return -ETIMEDOUT;
1666 }
1667
send_master_cmd(struct dvb_frontend * fe,struct dvb_diseqc_master_cmd * cmd)1668 static int send_master_cmd(struct dvb_frontend *fe,
1669 struct dvb_diseqc_master_cmd *cmd)
1670 {
1671 struct stv *state = fe->demodulator_priv;
1672 int i;
1673
1674 SET_FIELD(DISEQC_MODE, 2);
1675 SET_FIELD(DIS_PRECHARGE, 1);
1676 for (i = 0; i < cmd->msg_len; i++) {
1677 wait_dis(state, 0x40, 0x00);
1678 SET_REG(DISTXFIFO, cmd->msg[i]);
1679 }
1680 SET_FIELD(DIS_PRECHARGE, 0);
1681 wait_dis(state, 0x20, 0x20);
1682 return 0;
1683 }
1684
send_burst(struct dvb_frontend * fe,enum fe_sec_mini_cmd burst)1685 static int send_burst(struct dvb_frontend *fe, enum fe_sec_mini_cmd burst)
1686 {
1687 struct stv *state = fe->demodulator_priv;
1688 u8 value;
1689
1690 if (burst == SEC_MINI_A) {
1691 SET_FIELD(DISEQC_MODE, 3);
1692 value = 0x00;
1693 } else {
1694 SET_FIELD(DISEQC_MODE, 2);
1695 value = 0xFF;
1696 }
1697
1698 SET_FIELD(DIS_PRECHARGE, 1);
1699 wait_dis(state, 0x40, 0x00);
1700 SET_REG(DISTXFIFO, value);
1701 SET_FIELD(DIS_PRECHARGE, 0);
1702 wait_dis(state, 0x20, 0x20);
1703
1704 return 0;
1705 }
1706
sleep(struct dvb_frontend * fe)1707 static int sleep(struct dvb_frontend *fe)
1708 {
1709 struct stv *state = fe->demodulator_priv;
1710
1711 stop(state);
1712 return 0;
1713 }
1714
1715 static const struct dvb_frontend_ops stv0910_ops = {
1716 .delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
1717 .info = {
1718 .name = "ST STV0910",
1719 .frequency_min_hz = 950 * MHz,
1720 .frequency_max_hz = 2150 * MHz,
1721 .symbol_rate_min = 100000,
1722 .symbol_rate_max = 70000000,
1723 .caps = FE_CAN_INVERSION_AUTO |
1724 FE_CAN_FEC_AUTO |
1725 FE_CAN_QPSK |
1726 FE_CAN_2G_MODULATION |
1727 FE_CAN_MULTISTREAM
1728 },
1729 .sleep = sleep,
1730 .release = release,
1731 .i2c_gate_ctrl = gate_ctrl,
1732 .set_frontend = set_parameters,
1733 .get_frontend_algo = get_algo,
1734 .get_frontend = get_frontend,
1735 .tune = tune,
1736 .read_status = read_status,
1737 .set_tone = set_tone,
1738
1739 .diseqc_send_master_cmd = send_master_cmd,
1740 .diseqc_send_burst = send_burst,
1741 };
1742
match_base(struct i2c_adapter * i2c,u8 adr)1743 static struct stv_base *match_base(struct i2c_adapter *i2c, u8 adr)
1744 {
1745 struct stv_base *p;
1746
1747 list_for_each_entry(p, &stvlist, stvlist)
1748 if (p->i2c == i2c && p->adr == adr)
1749 return p;
1750 return NULL;
1751 }
1752
stv0910_init_stats(struct stv * state)1753 static void stv0910_init_stats(struct stv *state)
1754 {
1755 struct dtv_frontend_properties *p = &state->fe.dtv_property_cache;
1756
1757 p->strength.len = 1;
1758 p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1759 p->cnr.len = 1;
1760 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1761 p->pre_bit_error.len = 1;
1762 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1763 p->pre_bit_count.len = 1;
1764 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1765 }
1766
stv0910_attach(struct i2c_adapter * i2c,struct stv0910_cfg * cfg,int nr)1767 struct dvb_frontend *stv0910_attach(struct i2c_adapter *i2c,
1768 struct stv0910_cfg *cfg,
1769 int nr)
1770 {
1771 struct stv *state;
1772 struct stv_base *base;
1773
1774 state = kzalloc(sizeof(*state), GFP_KERNEL);
1775 if (!state)
1776 return NULL;
1777
1778 state->tscfgh = 0x20 | (cfg->parallel ? 0 : 0x40);
1779 state->tsgeneral = (cfg->parallel == 2) ? 0x02 : 0x00;
1780 state->i2crpt = 0x0A | ((cfg->rptlvl & 0x07) << 4);
1781 /* use safe tsspeed value if unspecified through stv0910_cfg */
1782 state->tsspeed = (cfg->tsspeed ? cfg->tsspeed : 0x28);
1783 state->nr = nr;
1784 state->regoff = state->nr ? 0 : 0x200;
1785 state->search_range = 16000000;
1786 state->demod_bits = 0x10; /* Inversion : Auto with reset to 0 */
1787 state->receive_mode = RCVMODE_NONE;
1788 state->cur_scrambling_code = (~0U);
1789 state->single = cfg->single ? 1 : 0;
1790
1791 base = match_base(i2c, cfg->adr);
1792 if (base) {
1793 base->count++;
1794 state->base = base;
1795 } else {
1796 base = kzalloc(sizeof(*base), GFP_KERNEL);
1797 if (!base)
1798 goto fail;
1799 base->i2c = i2c;
1800 base->adr = cfg->adr;
1801 base->count = 1;
1802 base->extclk = cfg->clk ? cfg->clk : 30000000;
1803
1804 mutex_init(&base->i2c_lock);
1805 mutex_init(&base->reg_lock);
1806 state->base = base;
1807 if (probe(state) < 0) {
1808 dev_info(&i2c->dev, "No demod found at adr %02X on %s\n",
1809 cfg->adr, dev_name(&i2c->dev));
1810 kfree(base);
1811 goto fail;
1812 }
1813 list_add(&base->stvlist, &stvlist);
1814 }
1815 state->fe.ops = stv0910_ops;
1816 state->fe.demodulator_priv = state;
1817 state->nr = nr;
1818
1819 dev_info(&i2c->dev, "%s demod found at adr %02X on %s\n",
1820 state->fe.ops.info.name, cfg->adr, dev_name(&i2c->dev));
1821
1822 stv0910_init_stats(state);
1823
1824 return &state->fe;
1825
1826 fail:
1827 kfree(state);
1828 return NULL;
1829 }
1830 EXPORT_SYMBOL_GPL(stv0910_attach);
1831
1832 MODULE_DESCRIPTION("ST STV0910 multistandard frontend driver");
1833 MODULE_AUTHOR("Ralph and Marcus Metzler, Manfred Voelkel");
1834 MODULE_LICENSE("GPL v2");
1835