1 /*
2  * stv0900_core.c
3  *
4  * Driver for ST STV0900 satellite demodulator IC.
5  *
6  * Copyright (C) ST Microelectronics.
7  * Copyright (C) 2009 NetUP Inc.
8  * Copyright (C) 2009 Igor M. Liplianin <liplianin@netup.ru>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  *
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/i2c.h>
31 
32 #include "stv0900.h"
33 #include "stv0900_reg.h"
34 #include "stv0900_priv.h"
35 #include "stv0900_init.h"
36 
37 int stvdebug = 1;
38 module_param_named(debug, stvdebug, int, 0644);
39 
40 /* internal params node */
41 struct stv0900_inode {
42 	/* pointer for internal params, one for each pair of demods */
43 	struct stv0900_internal		*internal;
44 	struct stv0900_inode		*next_inode;
45 };
46 
47 /* first internal params */
48 static struct stv0900_inode *stv0900_first_inode;
49 
50 /* find chip by i2c adapter and i2c address */
51 static struct stv0900_inode *find_inode(struct i2c_adapter *i2c_adap,
52 							u8 i2c_addr)
53 {
54 	struct stv0900_inode *temp_chip = stv0900_first_inode;
55 
56 	if (temp_chip != NULL) {
57 		/*
58 		 Search of the last stv0900 chip or
59 		 find it by i2c adapter and i2c address */
60 		while ((temp_chip != NULL) &&
61 			((temp_chip->internal->i2c_adap != i2c_adap) ||
62 			(temp_chip->internal->i2c_addr != i2c_addr)))
63 
64 			temp_chip = temp_chip->next_inode;
65 
66 	}
67 
68 	return temp_chip;
69 }
70 
71 /* deallocating chip */
72 static void remove_inode(struct stv0900_internal *internal)
73 {
74 	struct stv0900_inode *prev_node = stv0900_first_inode;
75 	struct stv0900_inode *del_node = find_inode(internal->i2c_adap,
76 						internal->i2c_addr);
77 
78 	if (del_node != NULL) {
79 		if (del_node == stv0900_first_inode) {
80 			stv0900_first_inode = del_node->next_inode;
81 		} else {
82 			while (prev_node->next_inode != del_node)
83 				prev_node = prev_node->next_inode;
84 
85 			if (del_node->next_inode == NULL)
86 				prev_node->next_inode = NULL;
87 			else
88 				prev_node->next_inode =
89 					prev_node->next_inode->next_inode;
90 		}
91 
92 		kfree(del_node);
93 	}
94 }
95 
96 /* allocating new chip */
97 static struct stv0900_inode *append_internal(struct stv0900_internal *internal)
98 {
99 	struct stv0900_inode *new_node = stv0900_first_inode;
100 
101 	if (new_node == NULL) {
102 		new_node = kmalloc(sizeof(struct stv0900_inode), GFP_KERNEL);
103 		stv0900_first_inode = new_node;
104 	} else {
105 		while (new_node->next_inode != NULL)
106 			new_node = new_node->next_inode;
107 
108 		new_node->next_inode = kmalloc(sizeof(struct stv0900_inode),
109 								GFP_KERNEL);
110 		if (new_node->next_inode != NULL)
111 			new_node = new_node->next_inode;
112 		else
113 			new_node = NULL;
114 	}
115 
116 	if (new_node != NULL) {
117 		new_node->internal = internal;
118 		new_node->next_inode = NULL;
119 	}
120 
121 	return new_node;
122 }
123 
124 s32 ge2comp(s32 a, s32 width)
125 {
126 	if (width == 32)
127 		return a;
128 	else
129 		return (a >= (1 << (width - 1))) ? (a - (1 << width)) : a;
130 }
131 
132 void stv0900_write_reg(struct stv0900_internal *intp, u16 reg_addr,
133 								u8 reg_data)
134 {
135 	u8 data[3];
136 	int ret;
137 	struct i2c_msg i2cmsg = {
138 		.addr  = intp->i2c_addr,
139 		.flags = 0,
140 		.len   = 3,
141 		.buf   = data,
142 	};
143 
144 	data[0] = MSB(reg_addr);
145 	data[1] = LSB(reg_addr);
146 	data[2] = reg_data;
147 
148 	ret = i2c_transfer(intp->i2c_adap, &i2cmsg, 1);
149 	if (ret != 1)
150 		dprintk("%s: i2c error %d\n", __func__, ret);
151 }
152 
153 u8 stv0900_read_reg(struct stv0900_internal *intp, u16 reg)
154 {
155 	int ret;
156 	u8 b0[] = { MSB(reg), LSB(reg) };
157 	u8 buf = 0;
158 	struct i2c_msg msg[] = {
159 		{
160 			.addr	= intp->i2c_addr,
161 			.flags	= 0,
162 			.buf = b0,
163 			.len = 2,
164 		}, {
165 			.addr	= intp->i2c_addr,
166 			.flags	= I2C_M_RD,
167 			.buf = &buf,
168 			.len = 1,
169 		},
170 	};
171 
172 	ret = i2c_transfer(intp->i2c_adap, msg, 2);
173 	if (ret != 2)
174 		dprintk("%s: i2c error %d, reg[0x%02x]\n",
175 				__func__, ret, reg);
176 
177 	return buf;
178 }
179 
180 static void extract_mask_pos(u32 label, u8 *mask, u8 *pos)
181 {
182 	u8 position = 0, i = 0;
183 
184 	(*mask) = label & 0xff;
185 
186 	while ((position == 0) && (i < 8)) {
187 		position = ((*mask) >> i) & 0x01;
188 		i++;
189 	}
190 
191 	(*pos) = (i - 1);
192 }
193 
194 void stv0900_write_bits(struct stv0900_internal *intp, u32 label, u8 val)
195 {
196 	u8 reg, mask, pos;
197 
198 	reg = stv0900_read_reg(intp, (label >> 16) & 0xffff);
199 	extract_mask_pos(label, &mask, &pos);
200 
201 	val = mask & (val << pos);
202 
203 	reg = (reg & (~mask)) | val;
204 	stv0900_write_reg(intp, (label >> 16) & 0xffff, reg);
205 
206 }
207 
208 u8 stv0900_get_bits(struct stv0900_internal *intp, u32 label)
209 {
210 	u8 val = 0xff;
211 	u8 mask, pos;
212 
213 	extract_mask_pos(label, &mask, &pos);
214 
215 	val = stv0900_read_reg(intp, label >> 16);
216 	val = (val & mask) >> pos;
217 
218 	return val;
219 }
220 
221 static enum fe_stv0900_error stv0900_initialize(struct stv0900_internal *intp)
222 {
223 	s32 i;
224 
225 	if (intp == NULL)
226 		return STV0900_INVALID_HANDLE;
227 
228 	intp->chip_id = stv0900_read_reg(intp, R0900_MID);
229 
230 	if (intp->errs != STV0900_NO_ERROR)
231 		return intp->errs;
232 
233 	/*Startup sequence*/
234 	stv0900_write_reg(intp, R0900_P1_DMDISTATE, 0x5c);
235 	stv0900_write_reg(intp, R0900_P2_DMDISTATE, 0x5c);
236 	msleep(3);
237 	stv0900_write_reg(intp, R0900_P1_TNRCFG, 0x6c);
238 	stv0900_write_reg(intp, R0900_P2_TNRCFG, 0x6f);
239 	stv0900_write_reg(intp, R0900_P1_I2CRPT, 0x20);
240 	stv0900_write_reg(intp, R0900_P2_I2CRPT, 0x20);
241 	stv0900_write_reg(intp, R0900_NCOARSE, 0x13);
242 	msleep(3);
243 	stv0900_write_reg(intp, R0900_I2CCFG, 0x08);
244 
245 	switch (intp->clkmode) {
246 	case 0:
247 	case 2:
248 		stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20
249 				| intp->clkmode);
250 		break;
251 	default:
252 		/* preserve SELOSCI bit */
253 		i = 0x02 & stv0900_read_reg(intp, R0900_SYNTCTRL);
254 		stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | i);
255 		break;
256 	}
257 
258 	msleep(3);
259 	for (i = 0; i < 181; i++)
260 		stv0900_write_reg(intp, STV0900_InitVal[i][0],
261 				STV0900_InitVal[i][1]);
262 
263 	if (stv0900_read_reg(intp, R0900_MID) >= 0x20) {
264 		stv0900_write_reg(intp, R0900_TSGENERAL, 0x0c);
265 		for (i = 0; i < 32; i++)
266 			stv0900_write_reg(intp, STV0900_Cut20_AddOnVal[i][0],
267 					STV0900_Cut20_AddOnVal[i][1]);
268 	}
269 
270 	stv0900_write_reg(intp, R0900_P1_FSPYCFG, 0x6c);
271 	stv0900_write_reg(intp, R0900_P2_FSPYCFG, 0x6c);
272 
273 	stv0900_write_reg(intp, R0900_P1_PDELCTRL2, 0x01);
274 	stv0900_write_reg(intp, R0900_P2_PDELCTRL2, 0x21);
275 
276 	stv0900_write_reg(intp, R0900_P1_PDELCTRL3, 0x20);
277 	stv0900_write_reg(intp, R0900_P2_PDELCTRL3, 0x20);
278 
279 	stv0900_write_reg(intp, R0900_TSTRES0, 0x80);
280 	stv0900_write_reg(intp, R0900_TSTRES0, 0x00);
281 
282 	return STV0900_NO_ERROR;
283 }
284 
285 static u32 stv0900_get_mclk_freq(struct stv0900_internal *intp, u32 ext_clk)
286 {
287 	u32 mclk = 90000000, div = 0, ad_div = 0;
288 
289 	div = stv0900_get_bits(intp, F0900_M_DIV);
290 	ad_div = ((stv0900_get_bits(intp, F0900_SELX1RATIO) == 1) ? 4 : 6);
291 
292 	mclk = (div + 1) * ext_clk / ad_div;
293 
294 	dprintk("%s: Calculated Mclk = %d\n", __func__, mclk);
295 
296 	return mclk;
297 }
298 
299 static enum fe_stv0900_error stv0900_set_mclk(struct stv0900_internal *intp, u32 mclk)
300 {
301 	u32 m_div, clk_sel;
302 
303 	if (intp == NULL)
304 		return STV0900_INVALID_HANDLE;
305 
306 	if (intp->errs)
307 		return STV0900_I2C_ERROR;
308 
309 	dprintk("%s: Mclk set to %d, Quartz = %d\n", __func__, mclk,
310 			intp->quartz);
311 
312 	clk_sel = ((stv0900_get_bits(intp, F0900_SELX1RATIO) == 1) ? 4 : 6);
313 	m_div = ((clk_sel * mclk) / intp->quartz) - 1;
314 	stv0900_write_bits(intp, F0900_M_DIV, m_div);
315 	intp->mclk = stv0900_get_mclk_freq(intp,
316 					intp->quartz);
317 
318 	/*Set the DiseqC frequency to 22KHz */
319 	/*
320 		Formula:
321 		DiseqC_TX_Freq= MasterClock/(32*F22TX_Reg)
322 		DiseqC_RX_Freq= MasterClock/(32*F22RX_Reg)
323 	*/
324 	m_div = intp->mclk / 704000;
325 	stv0900_write_reg(intp, R0900_P1_F22TX, m_div);
326 	stv0900_write_reg(intp, R0900_P1_F22RX, m_div);
327 
328 	stv0900_write_reg(intp, R0900_P2_F22TX, m_div);
329 	stv0900_write_reg(intp, R0900_P2_F22RX, m_div);
330 
331 	if ((intp->errs))
332 		return STV0900_I2C_ERROR;
333 
334 	return STV0900_NO_ERROR;
335 }
336 
337 static u32 stv0900_get_err_count(struct stv0900_internal *intp, int cntr,
338 					enum fe_stv0900_demod_num demod)
339 {
340 	u32 lsb, msb, hsb, err_val;
341 
342 	switch (cntr) {
343 	case 0:
344 	default:
345 		hsb = stv0900_get_bits(intp, ERR_CNT12);
346 		msb = stv0900_get_bits(intp, ERR_CNT11);
347 		lsb = stv0900_get_bits(intp, ERR_CNT10);
348 		break;
349 	case 1:
350 		hsb = stv0900_get_bits(intp, ERR_CNT22);
351 		msb = stv0900_get_bits(intp, ERR_CNT21);
352 		lsb = stv0900_get_bits(intp, ERR_CNT20);
353 		break;
354 	}
355 
356 	err_val = (hsb << 16) + (msb << 8) + (lsb);
357 
358 	return err_val;
359 }
360 
361 static int stv0900_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
362 {
363 	struct stv0900_state *state = fe->demodulator_priv;
364 	struct stv0900_internal *intp = state->internal;
365 	enum fe_stv0900_demod_num demod = state->demod;
366 
367 	stv0900_write_bits(intp, I2CT_ON, enable);
368 
369 	return 0;
370 }
371 
372 static void stv0900_set_ts_parallel_serial(struct stv0900_internal *intp,
373 					enum fe_stv0900_clock_type path1_ts,
374 					enum fe_stv0900_clock_type path2_ts)
375 {
376 
377 	dprintk("%s\n", __func__);
378 
379 	if (intp->chip_id >= 0x20) {
380 		switch (path1_ts) {
381 		case STV0900_PARALLEL_PUNCT_CLOCK:
382 		case STV0900_DVBCI_CLOCK:
383 			switch (path2_ts) {
384 			case STV0900_SERIAL_PUNCT_CLOCK:
385 			case STV0900_SERIAL_CONT_CLOCK:
386 			default:
387 				stv0900_write_reg(intp, R0900_TSGENERAL,
388 							0x00);
389 				break;
390 			case STV0900_PARALLEL_PUNCT_CLOCK:
391 			case STV0900_DVBCI_CLOCK:
392 				stv0900_write_reg(intp, R0900_TSGENERAL,
393 							0x06);
394 				stv0900_write_bits(intp,
395 						F0900_P1_TSFIFO_MANSPEED, 3);
396 				stv0900_write_bits(intp,
397 						F0900_P2_TSFIFO_MANSPEED, 0);
398 				stv0900_write_reg(intp,
399 						R0900_P1_TSSPEED, 0x14);
400 				stv0900_write_reg(intp,
401 						R0900_P2_TSSPEED, 0x28);
402 				break;
403 			}
404 			break;
405 		case STV0900_SERIAL_PUNCT_CLOCK:
406 		case STV0900_SERIAL_CONT_CLOCK:
407 		default:
408 			switch (path2_ts) {
409 			case STV0900_SERIAL_PUNCT_CLOCK:
410 			case STV0900_SERIAL_CONT_CLOCK:
411 			default:
412 				stv0900_write_reg(intp,
413 						R0900_TSGENERAL, 0x0C);
414 				break;
415 			case STV0900_PARALLEL_PUNCT_CLOCK:
416 			case STV0900_DVBCI_CLOCK:
417 				stv0900_write_reg(intp,
418 						R0900_TSGENERAL, 0x0A);
419 				dprintk("%s: 0x0a\n", __func__);
420 				break;
421 			}
422 			break;
423 		}
424 	} else {
425 		switch (path1_ts) {
426 		case STV0900_PARALLEL_PUNCT_CLOCK:
427 		case STV0900_DVBCI_CLOCK:
428 			switch (path2_ts) {
429 			case STV0900_SERIAL_PUNCT_CLOCK:
430 			case STV0900_SERIAL_CONT_CLOCK:
431 			default:
432 				stv0900_write_reg(intp, R0900_TSGENERAL1X,
433 							0x10);
434 				break;
435 			case STV0900_PARALLEL_PUNCT_CLOCK:
436 			case STV0900_DVBCI_CLOCK:
437 				stv0900_write_reg(intp, R0900_TSGENERAL1X,
438 							0x16);
439 				stv0900_write_bits(intp,
440 						F0900_P1_TSFIFO_MANSPEED, 3);
441 				stv0900_write_bits(intp,
442 						F0900_P2_TSFIFO_MANSPEED, 0);
443 				stv0900_write_reg(intp, R0900_P1_TSSPEED,
444 							0x14);
445 				stv0900_write_reg(intp, R0900_P2_TSSPEED,
446 							0x28);
447 				break;
448 			}
449 
450 			break;
451 		case STV0900_SERIAL_PUNCT_CLOCK:
452 		case STV0900_SERIAL_CONT_CLOCK:
453 		default:
454 			switch (path2_ts) {
455 			case STV0900_SERIAL_PUNCT_CLOCK:
456 			case STV0900_SERIAL_CONT_CLOCK:
457 			default:
458 				stv0900_write_reg(intp, R0900_TSGENERAL1X,
459 							0x14);
460 				break;
461 			case STV0900_PARALLEL_PUNCT_CLOCK:
462 			case STV0900_DVBCI_CLOCK:
463 				stv0900_write_reg(intp, R0900_TSGENERAL1X,
464 							0x12);
465 				dprintk("%s: 0x12\n", __func__);
466 				break;
467 			}
468 
469 			break;
470 		}
471 	}
472 
473 	switch (path1_ts) {
474 	case STV0900_PARALLEL_PUNCT_CLOCK:
475 		stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x00);
476 		stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x00);
477 		break;
478 	case STV0900_DVBCI_CLOCK:
479 		stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x00);
480 		stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x01);
481 		break;
482 	case STV0900_SERIAL_PUNCT_CLOCK:
483 		stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x01);
484 		stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x00);
485 		break;
486 	case STV0900_SERIAL_CONT_CLOCK:
487 		stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x01);
488 		stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x01);
489 		break;
490 	default:
491 		break;
492 	}
493 
494 	switch (path2_ts) {
495 	case STV0900_PARALLEL_PUNCT_CLOCK:
496 		stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x00);
497 		stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x00);
498 		break;
499 	case STV0900_DVBCI_CLOCK:
500 		stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x00);
501 		stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x01);
502 		break;
503 	case STV0900_SERIAL_PUNCT_CLOCK:
504 		stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x01);
505 		stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x00);
506 		break;
507 	case STV0900_SERIAL_CONT_CLOCK:
508 		stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x01);
509 		stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x01);
510 		break;
511 	default:
512 		break;
513 	}
514 
515 	stv0900_write_bits(intp, F0900_P2_RST_HWARE, 1);
516 	stv0900_write_bits(intp, F0900_P2_RST_HWARE, 0);
517 	stv0900_write_bits(intp, F0900_P1_RST_HWARE, 1);
518 	stv0900_write_bits(intp, F0900_P1_RST_HWARE, 0);
519 }
520 
521 void stv0900_set_tuner(struct dvb_frontend *fe, u32 frequency,
522 							u32 bandwidth)
523 {
524 	struct dvb_frontend_ops *frontend_ops = NULL;
525 	struct dvb_tuner_ops *tuner_ops = NULL;
526 
527 	frontend_ops = &fe->ops;
528 	tuner_ops = &frontend_ops->tuner_ops;
529 
530 	if (tuner_ops->set_frequency) {
531 		if ((tuner_ops->set_frequency(fe, frequency)) < 0)
532 			dprintk("%s: Invalid parameter\n", __func__);
533 		else
534 			dprintk("%s: Frequency=%d\n", __func__, frequency);
535 
536 	}
537 
538 	if (tuner_ops->set_bandwidth) {
539 		if ((tuner_ops->set_bandwidth(fe, bandwidth)) < 0)
540 			dprintk("%s: Invalid parameter\n", __func__);
541 		else
542 			dprintk("%s: Bandwidth=%d\n", __func__, bandwidth);
543 
544 	}
545 }
546 
547 void stv0900_set_bandwidth(struct dvb_frontend *fe, u32 bandwidth)
548 {
549 	struct dvb_frontend_ops *frontend_ops = NULL;
550 	struct dvb_tuner_ops *tuner_ops = NULL;
551 
552 	frontend_ops = &fe->ops;
553 	tuner_ops = &frontend_ops->tuner_ops;
554 
555 	if (tuner_ops->set_bandwidth) {
556 		if ((tuner_ops->set_bandwidth(fe, bandwidth)) < 0)
557 			dprintk("%s: Invalid parameter\n", __func__);
558 		else
559 			dprintk("%s: Bandwidth=%d\n", __func__, bandwidth);
560 
561 	}
562 }
563 
564 u32 stv0900_get_freq_auto(struct stv0900_internal *intp, int demod)
565 {
566 	u32 freq, round;
567 	/*	Formulat :
568 	Tuner_Frequency(MHz)	= Regs / 64
569 	Tuner_granularity(MHz)	= Regs / 2048
570 	real_Tuner_Frequency	= Tuner_Frequency(MHz) - Tuner_granularity(MHz)
571 	*/
572 	freq = (stv0900_get_bits(intp, TUN_RFFREQ2) << 10) +
573 		(stv0900_get_bits(intp, TUN_RFFREQ1) << 2) +
574 		stv0900_get_bits(intp, TUN_RFFREQ0);
575 
576 	freq = (freq * 1000) / 64;
577 
578 	round = (stv0900_get_bits(intp, TUN_RFRESTE1) >> 2) +
579 		stv0900_get_bits(intp, TUN_RFRESTE0);
580 
581 	round = (round * 1000) / 2048;
582 
583 	return freq + round;
584 }
585 
586 void stv0900_set_tuner_auto(struct stv0900_internal *intp, u32 Frequency,
587 						u32 Bandwidth, int demod)
588 {
589 	u32 tunerFrequency;
590 	/* Formulat:
591 	Tuner_frequency_reg= Frequency(MHz)*64
592 	*/
593 	tunerFrequency = (Frequency * 64) / 1000;
594 
595 	stv0900_write_bits(intp, TUN_RFFREQ2, (tunerFrequency >> 10));
596 	stv0900_write_bits(intp, TUN_RFFREQ1, (tunerFrequency >> 2) & 0xff);
597 	stv0900_write_bits(intp, TUN_RFFREQ0, (tunerFrequency & 0x03));
598 	/* Low Pass Filter = BW /2 (MHz)*/
599 	stv0900_write_bits(intp, TUN_BW, Bandwidth / 2000000);
600 	/* Tuner Write trig */
601 	stv0900_write_reg(intp, TNRLD, 1);
602 }
603 
604 static s32 stv0900_get_rf_level(struct stv0900_internal *intp,
605 				const struct stv0900_table *lookup,
606 				enum fe_stv0900_demod_num demod)
607 {
608 	s32 agc_gain = 0,
609 		imin,
610 		imax,
611 		i,
612 		rf_lvl = 0;
613 
614 	dprintk("%s\n", __func__);
615 
616 	if ((lookup == NULL) || (lookup->size <= 0))
617 		return 0;
618 
619 	agc_gain = MAKEWORD(stv0900_get_bits(intp, AGCIQ_VALUE1),
620 				stv0900_get_bits(intp, AGCIQ_VALUE0));
621 
622 	imin = 0;
623 	imax = lookup->size - 1;
624 	if (INRANGE(lookup->table[imin].regval, agc_gain,
625 					lookup->table[imax].regval)) {
626 		while ((imax - imin) > 1) {
627 			i = (imax + imin) >> 1;
628 
629 			if (INRANGE(lookup->table[imin].regval,
630 					agc_gain,
631 					lookup->table[i].regval))
632 				imax = i;
633 			else
634 				imin = i;
635 		}
636 
637 		rf_lvl = (s32)agc_gain - lookup->table[imin].regval;
638 		rf_lvl *= (lookup->table[imax].realval -
639 				lookup->table[imin].realval);
640 		rf_lvl /= (lookup->table[imax].regval -
641 				lookup->table[imin].regval);
642 		rf_lvl += lookup->table[imin].realval;
643 	} else if (agc_gain > lookup->table[0].regval)
644 		rf_lvl = 5;
645 	else if (agc_gain < lookup->table[lookup->size-1].regval)
646 		rf_lvl = -100;
647 
648 	dprintk("%s: RFLevel = %d\n", __func__, rf_lvl);
649 
650 	return rf_lvl;
651 }
652 
653 static int stv0900_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
654 {
655 	struct stv0900_state *state = fe->demodulator_priv;
656 	struct stv0900_internal *internal = state->internal;
657 	s32 rflevel = stv0900_get_rf_level(internal, &stv0900_rf,
658 								state->demod);
659 
660 	rflevel = (rflevel + 100) * (65535 / 70);
661 	if (rflevel < 0)
662 		rflevel = 0;
663 
664 	if (rflevel > 65535)
665 		rflevel = 65535;
666 
667 	*strength = rflevel;
668 
669 	return 0;
670 }
671 
672 static s32 stv0900_carr_get_quality(struct dvb_frontend *fe,
673 					const struct stv0900_table *lookup)
674 {
675 	struct stv0900_state *state = fe->demodulator_priv;
676 	struct stv0900_internal *intp = state->internal;
677 	enum fe_stv0900_demod_num demod = state->demod;
678 
679 	s32	c_n = -100,
680 		regval,
681 		imin,
682 		imax,
683 		i,
684 		noise_field1,
685 		noise_field0;
686 
687 	dprintk("%s\n", __func__);
688 
689 	if (stv0900_get_standard(fe, demod) == STV0900_DVBS2_STANDARD) {
690 		noise_field1 = NOSPLHT_NORMED1;
691 		noise_field0 = NOSPLHT_NORMED0;
692 	} else {
693 		noise_field1 = NOSDATAT_NORMED1;
694 		noise_field0 = NOSDATAT_NORMED0;
695 	}
696 
697 	if (stv0900_get_bits(intp, LOCK_DEFINITIF)) {
698 		if ((lookup != NULL) && lookup->size) {
699 			regval = 0;
700 			msleep(5);
701 			for (i = 0; i < 16; i++) {
702 				regval += MAKEWORD(stv0900_get_bits(intp,
703 								noise_field1),
704 						stv0900_get_bits(intp,
705 								noise_field0));
706 				msleep(1);
707 			}
708 
709 			regval /= 16;
710 			imin = 0;
711 			imax = lookup->size - 1;
712 			if (INRANGE(lookup->table[imin].regval,
713 					regval,
714 					lookup->table[imax].regval)) {
715 				while ((imax - imin) > 1) {
716 					i = (imax + imin) >> 1;
717 					if (INRANGE(lookup->table[imin].regval,
718 						    regval,
719 						    lookup->table[i].regval))
720 						imax = i;
721 					else
722 						imin = i;
723 				}
724 
725 				c_n = ((regval - lookup->table[imin].regval)
726 						* (lookup->table[imax].realval
727 						- lookup->table[imin].realval)
728 						/ (lookup->table[imax].regval
729 						- lookup->table[imin].regval))
730 						+ lookup->table[imin].realval;
731 			} else if (regval < lookup->table[imin].regval)
732 				c_n = 1000;
733 		}
734 	}
735 
736 	return c_n;
737 }
738 
739 static int stv0900_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
740 {
741 	struct stv0900_state *state = fe->demodulator_priv;
742 	struct stv0900_internal *intp = state->internal;
743 	enum fe_stv0900_demod_num demod = state->demod;
744 	u8 err_val1, err_val0;
745 	u32 header_err_val = 0;
746 
747 	*ucblocks = 0x0;
748 	if (stv0900_get_standard(fe, demod) == STV0900_DVBS2_STANDARD) {
749 		/* DVB-S2 delineator errors count */
750 
751 		/* retreiving number for errnous headers */
752 		err_val1 = stv0900_read_reg(intp, BBFCRCKO1);
753 		err_val0 = stv0900_read_reg(intp, BBFCRCKO0);
754 		header_err_val = (err_val1 << 8) | err_val0;
755 
756 		/* retreiving number for errnous packets */
757 		err_val1 = stv0900_read_reg(intp, UPCRCKO1);
758 		err_val0 = stv0900_read_reg(intp, UPCRCKO0);
759 		*ucblocks = (err_val1 << 8) | err_val0;
760 		*ucblocks += header_err_val;
761 	}
762 
763 	return 0;
764 }
765 
766 static int stv0900_read_snr(struct dvb_frontend *fe, u16 *snr)
767 {
768 	s32 snrlcl = stv0900_carr_get_quality(fe,
769 			(const struct stv0900_table *)&stv0900_s2_cn);
770 	snrlcl = (snrlcl + 30) * 384;
771 	if (snrlcl < 0)
772 		snrlcl = 0;
773 
774 	if (snrlcl > 65535)
775 		snrlcl = 65535;
776 
777 	*snr = snrlcl;
778 
779 	return 0;
780 }
781 
782 static u32 stv0900_get_ber(struct stv0900_internal *intp,
783 				enum fe_stv0900_demod_num demod)
784 {
785 	u32 ber = 10000000, i;
786 	s32 demod_state;
787 
788 	demod_state = stv0900_get_bits(intp, HEADER_MODE);
789 
790 	switch (demod_state) {
791 	case STV0900_SEARCH:
792 	case STV0900_PLH_DETECTED:
793 	default:
794 		ber = 10000000;
795 		break;
796 	case STV0900_DVBS_FOUND:
797 		ber = 0;
798 		for (i = 0; i < 5; i++) {
799 			msleep(5);
800 			ber += stv0900_get_err_count(intp, 0, demod);
801 		}
802 
803 		ber /= 5;
804 		if (stv0900_get_bits(intp, PRFVIT)) {
805 			ber *= 9766;
806 			ber = ber >> 13;
807 		}
808 
809 		break;
810 	case STV0900_DVBS2_FOUND:
811 		ber = 0;
812 		for (i = 0; i < 5; i++) {
813 			msleep(5);
814 			ber += stv0900_get_err_count(intp, 0, demod);
815 		}
816 
817 		ber /= 5;
818 		if (stv0900_get_bits(intp, PKTDELIN_LOCK)) {
819 			ber *= 9766;
820 			ber = ber >> 13;
821 		}
822 
823 		break;
824 	}
825 
826 	return ber;
827 }
828 
829 static int stv0900_read_ber(struct dvb_frontend *fe, u32 *ber)
830 {
831 	struct stv0900_state *state = fe->demodulator_priv;
832 	struct stv0900_internal *internal = state->internal;
833 
834 	*ber = stv0900_get_ber(internal, state->demod);
835 
836 	return 0;
837 }
838 
839 int stv0900_get_demod_lock(struct stv0900_internal *intp,
840 			enum fe_stv0900_demod_num demod, s32 time_out)
841 {
842 	s32 timer = 0,
843 		lock = 0;
844 
845 	enum fe_stv0900_search_state	dmd_state;
846 
847 	while ((timer < time_out) && (lock == 0)) {
848 		dmd_state = stv0900_get_bits(intp, HEADER_MODE);
849 		dprintk("Demod State = %d\n", dmd_state);
850 		switch (dmd_state) {
851 		case STV0900_SEARCH:
852 		case STV0900_PLH_DETECTED:
853 		default:
854 			lock = 0;
855 			break;
856 		case STV0900_DVBS2_FOUND:
857 		case STV0900_DVBS_FOUND:
858 			lock = stv0900_get_bits(intp, LOCK_DEFINITIF);
859 			break;
860 		}
861 
862 		if (lock == 0)
863 			msleep(10);
864 
865 		timer += 10;
866 	}
867 
868 	if (lock)
869 		dprintk("DEMOD LOCK OK\n");
870 	else
871 		dprintk("DEMOD LOCK FAIL\n");
872 
873 	return lock;
874 }
875 
876 void stv0900_stop_all_s2_modcod(struct stv0900_internal *intp,
877 				enum fe_stv0900_demod_num demod)
878 {
879 	s32 regflist,
880 	i;
881 
882 	dprintk("%s\n", __func__);
883 
884 	regflist = MODCODLST0;
885 
886 	for (i = 0; i < 16; i++)
887 		stv0900_write_reg(intp, regflist + i, 0xff);
888 }
889 
890 void stv0900_activate_s2_modcod(struct stv0900_internal *intp,
891 				enum fe_stv0900_demod_num demod)
892 {
893 	u32 matype,
894 		mod_code,
895 		fmod,
896 		reg_index,
897 		field_index;
898 
899 	dprintk("%s\n", __func__);
900 
901 	if (intp->chip_id <= 0x11) {
902 		msleep(5);
903 
904 		mod_code = stv0900_read_reg(intp, PLHMODCOD);
905 		matype = mod_code & 0x3;
906 		mod_code = (mod_code & 0x7f) >> 2;
907 
908 		reg_index = MODCODLSTF - mod_code / 2;
909 		field_index = mod_code % 2;
910 
911 		switch (matype) {
912 		case 0:
913 		default:
914 			fmod = 14;
915 			break;
916 		case 1:
917 			fmod = 13;
918 			break;
919 		case 2:
920 			fmod = 11;
921 			break;
922 		case 3:
923 			fmod = 7;
924 			break;
925 		}
926 
927 		if ((INRANGE(STV0900_QPSK_12, mod_code, STV0900_8PSK_910))
928 						&& (matype <= 1)) {
929 			if (field_index == 0)
930 				stv0900_write_reg(intp, reg_index,
931 							0xf0 | fmod);
932 			else
933 				stv0900_write_reg(intp, reg_index,
934 							(fmod << 4) | 0xf);
935 		}
936 
937 	} else if (intp->chip_id >= 0x12) {
938 		for (reg_index = 0; reg_index < 7; reg_index++)
939 			stv0900_write_reg(intp, MODCODLST0 + reg_index, 0xff);
940 
941 		stv0900_write_reg(intp, MODCODLSTE, 0xff);
942 		stv0900_write_reg(intp, MODCODLSTF, 0xcf);
943 		for (reg_index = 0; reg_index < 8; reg_index++)
944 			stv0900_write_reg(intp, MODCODLST7 + reg_index, 0xcc);
945 
946 
947 	}
948 }
949 
950 void stv0900_activate_s2_modcod_single(struct stv0900_internal *intp,
951 					enum fe_stv0900_demod_num demod)
952 {
953 	u32 reg_index;
954 
955 	dprintk("%s\n", __func__);
956 
957 	stv0900_write_reg(intp, MODCODLST0, 0xff);
958 	stv0900_write_reg(intp, MODCODLST1, 0xf0);
959 	stv0900_write_reg(intp, MODCODLSTF, 0x0f);
960 	for (reg_index = 0; reg_index < 13; reg_index++)
961 		stv0900_write_reg(intp, MODCODLST2 + reg_index, 0);
962 
963 }
964 
965 static enum dvbfe_algo stv0900_frontend_algo(struct dvb_frontend *fe)
966 {
967 	return DVBFE_ALGO_CUSTOM;
968 }
969 
970 void stv0900_start_search(struct stv0900_internal *intp,
971 				enum fe_stv0900_demod_num demod)
972 {
973 	u32 freq;
974 	s16 freq_s16 ;
975 
976 	stv0900_write_bits(intp, DEMOD_MODE, 0x1f);
977 	if (intp->chip_id == 0x10)
978 		stv0900_write_reg(intp, CORRELEXP, 0xaa);
979 
980 	if (intp->chip_id < 0x20)
981 		stv0900_write_reg(intp, CARHDR, 0x55);
982 
983 	if (intp->chip_id <= 0x20) {
984 		if (intp->symbol_rate[0] <= 5000000) {
985 			stv0900_write_reg(intp, CARCFG, 0x44);
986 			stv0900_write_reg(intp, CFRUP1, 0x0f);
987 			stv0900_write_reg(intp, CFRUP0, 0xff);
988 			stv0900_write_reg(intp, CFRLOW1, 0xf0);
989 			stv0900_write_reg(intp, CFRLOW0, 0x00);
990 			stv0900_write_reg(intp, RTCS2, 0x68);
991 		} else {
992 			stv0900_write_reg(intp, CARCFG, 0xc4);
993 			stv0900_write_reg(intp, RTCS2, 0x44);
994 		}
995 
996 	} else { /*cut 3.0 above*/
997 		if (intp->symbol_rate[demod] <= 5000000)
998 			stv0900_write_reg(intp, RTCS2, 0x68);
999 		else
1000 			stv0900_write_reg(intp, RTCS2, 0x44);
1001 
1002 		stv0900_write_reg(intp, CARCFG, 0x46);
1003 		if (intp->srch_algo[demod] == STV0900_WARM_START) {
1004 			freq = 1000 << 16;
1005 			freq /= (intp->mclk / 1000);
1006 			freq_s16 = (s16)freq;
1007 		} else {
1008 			freq = (intp->srch_range[demod] / 2000);
1009 			if (intp->symbol_rate[demod] <= 5000000)
1010 				freq += 80;
1011 			else
1012 				freq += 600;
1013 
1014 			freq = freq << 16;
1015 			freq /= (intp->mclk / 1000);
1016 			freq_s16 = (s16)freq;
1017 		}
1018 
1019 		stv0900_write_bits(intp, CFR_UP1, MSB(freq_s16));
1020 		stv0900_write_bits(intp, CFR_UP0, LSB(freq_s16));
1021 		freq_s16 *= (-1);
1022 		stv0900_write_bits(intp, CFR_LOW1, MSB(freq_s16));
1023 		stv0900_write_bits(intp, CFR_LOW0, LSB(freq_s16));
1024 	}
1025 
1026 	stv0900_write_reg(intp, CFRINIT1, 0);
1027 	stv0900_write_reg(intp, CFRINIT0, 0);
1028 
1029 	if (intp->chip_id >= 0x20) {
1030 		stv0900_write_reg(intp, EQUALCFG, 0x41);
1031 		stv0900_write_reg(intp, FFECFG, 0x41);
1032 
1033 		if ((intp->srch_standard[demod] == STV0900_SEARCH_DVBS1) ||
1034 			(intp->srch_standard[demod] == STV0900_SEARCH_DSS) ||
1035 			(intp->srch_standard[demod] == STV0900_AUTO_SEARCH)) {
1036 			stv0900_write_reg(intp, VITSCALE,
1037 								0x82);
1038 			stv0900_write_reg(intp, VAVSRVIT, 0x0);
1039 		}
1040 	}
1041 
1042 	stv0900_write_reg(intp, SFRSTEP, 0x00);
1043 	stv0900_write_reg(intp, TMGTHRISE, 0xe0);
1044 	stv0900_write_reg(intp, TMGTHFALL, 0xc0);
1045 	stv0900_write_bits(intp, SCAN_ENABLE, 0);
1046 	stv0900_write_bits(intp, CFR_AUTOSCAN, 0);
1047 	stv0900_write_bits(intp, S1S2_SEQUENTIAL, 0);
1048 	stv0900_write_reg(intp, RTC, 0x88);
1049 	if (intp->chip_id >= 0x20) {
1050 		if (intp->symbol_rate[demod] < 2000000) {
1051 			if (intp->chip_id <= 0x20)
1052 				stv0900_write_reg(intp, CARFREQ, 0x39);
1053 			else  /*cut 3.0*/
1054 				stv0900_write_reg(intp, CARFREQ, 0x89);
1055 
1056 			stv0900_write_reg(intp, CARHDR, 0x40);
1057 		} else if (intp->symbol_rate[demod] < 10000000) {
1058 			stv0900_write_reg(intp, CARFREQ, 0x4c);
1059 			stv0900_write_reg(intp, CARHDR, 0x20);
1060 		} else {
1061 			stv0900_write_reg(intp, CARFREQ, 0x4b);
1062 			stv0900_write_reg(intp, CARHDR, 0x20);
1063 		}
1064 
1065 	} else {
1066 		if (intp->symbol_rate[demod] < 10000000)
1067 			stv0900_write_reg(intp, CARFREQ, 0xef);
1068 		else
1069 			stv0900_write_reg(intp, CARFREQ, 0xed);
1070 	}
1071 
1072 	switch (intp->srch_algo[demod]) {
1073 	case STV0900_WARM_START:
1074 		stv0900_write_reg(intp, DMDISTATE, 0x1f);
1075 		stv0900_write_reg(intp, DMDISTATE, 0x18);
1076 		break;
1077 	case STV0900_COLD_START:
1078 		stv0900_write_reg(intp, DMDISTATE, 0x1f);
1079 		stv0900_write_reg(intp, DMDISTATE, 0x15);
1080 		break;
1081 	default:
1082 		break;
1083 	}
1084 }
1085 
1086 u8 stv0900_get_optim_carr_loop(s32 srate, enum fe_stv0900_modcode modcode,
1087 							s32 pilot, u8 chip_id)
1088 {
1089 	u8 aclc_value = 0x29;
1090 	s32 i, cllas2_size;
1091 	const struct stv0900_car_loop_optim *cls2, *cllqs2, *cllas2;
1092 
1093 	dprintk("%s\n", __func__);
1094 
1095 	if (chip_id <= 0x12) {
1096 		cls2 = FE_STV0900_S2CarLoop;
1097 		cllqs2 = FE_STV0900_S2LowQPCarLoopCut30;
1098 		cllas2 = FE_STV0900_S2APSKCarLoopCut30;
1099 		cllas2_size = ARRAY_SIZE(FE_STV0900_S2APSKCarLoopCut30);
1100 	} else if (chip_id == 0x20) {
1101 		cls2 = FE_STV0900_S2CarLoopCut20;
1102 		cllqs2 = FE_STV0900_S2LowQPCarLoopCut20;
1103 		cllas2 = FE_STV0900_S2APSKCarLoopCut20;
1104 		cllas2_size = ARRAY_SIZE(FE_STV0900_S2APSKCarLoopCut20);
1105 	} else {
1106 		cls2 = FE_STV0900_S2CarLoopCut30;
1107 		cllqs2 = FE_STV0900_S2LowQPCarLoopCut30;
1108 		cllas2 = FE_STV0900_S2APSKCarLoopCut30;
1109 		cllas2_size = ARRAY_SIZE(FE_STV0900_S2APSKCarLoopCut30);
1110 	}
1111 
1112 	if (modcode < STV0900_QPSK_12) {
1113 		i = 0;
1114 		while ((i < 3) && (modcode != cllqs2[i].modcode))
1115 			i++;
1116 
1117 		if (i >= 3)
1118 			i = 2;
1119 	} else {
1120 		i = 0;
1121 		while ((i < 14) && (modcode != cls2[i].modcode))
1122 			i++;
1123 
1124 		if (i >= 14) {
1125 			i = 0;
1126 			while ((i < 11) && (modcode != cllas2[i].modcode))
1127 				i++;
1128 
1129 			if (i >= 11)
1130 				i = 10;
1131 		}
1132 	}
1133 
1134 	if (modcode <= STV0900_QPSK_25) {
1135 		if (pilot) {
1136 			if (srate <= 3000000)
1137 				aclc_value = cllqs2[i].car_loop_pilots_on_2;
1138 			else if (srate <= 7000000)
1139 				aclc_value = cllqs2[i].car_loop_pilots_on_5;
1140 			else if (srate <= 15000000)
1141 				aclc_value = cllqs2[i].car_loop_pilots_on_10;
1142 			else if (srate <= 25000000)
1143 				aclc_value = cllqs2[i].car_loop_pilots_on_20;
1144 			else
1145 				aclc_value = cllqs2[i].car_loop_pilots_on_30;
1146 		} else {
1147 			if (srate <= 3000000)
1148 				aclc_value = cllqs2[i].car_loop_pilots_off_2;
1149 			else if (srate <= 7000000)
1150 				aclc_value = cllqs2[i].car_loop_pilots_off_5;
1151 			else if (srate <= 15000000)
1152 				aclc_value = cllqs2[i].car_loop_pilots_off_10;
1153 			else if (srate <= 25000000)
1154 				aclc_value = cllqs2[i].car_loop_pilots_off_20;
1155 			else
1156 				aclc_value = cllqs2[i].car_loop_pilots_off_30;
1157 		}
1158 
1159 	} else if (modcode <= STV0900_8PSK_910) {
1160 		if (pilot) {
1161 			if (srate <= 3000000)
1162 				aclc_value = cls2[i].car_loop_pilots_on_2;
1163 			else if (srate <= 7000000)
1164 				aclc_value = cls2[i].car_loop_pilots_on_5;
1165 			else if (srate <= 15000000)
1166 				aclc_value = cls2[i].car_loop_pilots_on_10;
1167 			else if (srate <= 25000000)
1168 				aclc_value = cls2[i].car_loop_pilots_on_20;
1169 			else
1170 				aclc_value = cls2[i].car_loop_pilots_on_30;
1171 		} else {
1172 			if (srate <= 3000000)
1173 				aclc_value = cls2[i].car_loop_pilots_off_2;
1174 			else if (srate <= 7000000)
1175 				aclc_value = cls2[i].car_loop_pilots_off_5;
1176 			else if (srate <= 15000000)
1177 				aclc_value = cls2[i].car_loop_pilots_off_10;
1178 			else if (srate <= 25000000)
1179 				aclc_value = cls2[i].car_loop_pilots_off_20;
1180 			else
1181 				aclc_value = cls2[i].car_loop_pilots_off_30;
1182 		}
1183 
1184 	} else if (i < cllas2_size) {
1185 		if (srate <= 3000000)
1186 			aclc_value = cllas2[i].car_loop_pilots_on_2;
1187 		else if (srate <= 7000000)
1188 			aclc_value = cllas2[i].car_loop_pilots_on_5;
1189 		else if (srate <= 15000000)
1190 			aclc_value = cllas2[i].car_loop_pilots_on_10;
1191 		else if (srate <= 25000000)
1192 			aclc_value = cllas2[i].car_loop_pilots_on_20;
1193 		else
1194 			aclc_value = cllas2[i].car_loop_pilots_on_30;
1195 	}
1196 
1197 	return aclc_value;
1198 }
1199 
1200 u8 stv0900_get_optim_short_carr_loop(s32 srate,
1201 				enum fe_stv0900_modulation modulation,
1202 				u8 chip_id)
1203 {
1204 	const struct stv0900_short_frames_car_loop_optim *s2scl;
1205 	const struct stv0900_short_frames_car_loop_optim_vs_mod *s2sclc30;
1206 	s32 mod_index = 0;
1207 	u8 aclc_value = 0x0b;
1208 
1209 	dprintk("%s\n", __func__);
1210 
1211 	s2scl = FE_STV0900_S2ShortCarLoop;
1212 	s2sclc30 = FE_STV0900_S2ShortCarLoopCut30;
1213 
1214 	switch (modulation) {
1215 	case STV0900_QPSK:
1216 	default:
1217 		mod_index = 0;
1218 		break;
1219 	case STV0900_8PSK:
1220 		mod_index = 1;
1221 		break;
1222 	case STV0900_16APSK:
1223 		mod_index = 2;
1224 		break;
1225 	case STV0900_32APSK:
1226 		mod_index = 3;
1227 		break;
1228 	}
1229 
1230 	if (chip_id >= 0x30) {
1231 		if (srate <= 3000000)
1232 			aclc_value = s2sclc30[mod_index].car_loop_2;
1233 		else if (srate <= 7000000)
1234 			aclc_value = s2sclc30[mod_index].car_loop_5;
1235 		else if (srate <= 15000000)
1236 			aclc_value = s2sclc30[mod_index].car_loop_10;
1237 		else if (srate <= 25000000)
1238 			aclc_value = s2sclc30[mod_index].car_loop_20;
1239 		else
1240 			aclc_value = s2sclc30[mod_index].car_loop_30;
1241 
1242 	} else if (chip_id >= 0x20) {
1243 		if (srate <= 3000000)
1244 			aclc_value = s2scl[mod_index].car_loop_cut20_2;
1245 		else if (srate <= 7000000)
1246 			aclc_value = s2scl[mod_index].car_loop_cut20_5;
1247 		else if (srate <= 15000000)
1248 			aclc_value = s2scl[mod_index].car_loop_cut20_10;
1249 		else if (srate <= 25000000)
1250 			aclc_value = s2scl[mod_index].car_loop_cut20_20;
1251 		else
1252 			aclc_value = s2scl[mod_index].car_loop_cut20_30;
1253 
1254 	} else {
1255 		if (srate <= 3000000)
1256 			aclc_value = s2scl[mod_index].car_loop_cut12_2;
1257 		else if (srate <= 7000000)
1258 			aclc_value = s2scl[mod_index].car_loop_cut12_5;
1259 		else if (srate <= 15000000)
1260 			aclc_value = s2scl[mod_index].car_loop_cut12_10;
1261 		else if (srate <= 25000000)
1262 			aclc_value = s2scl[mod_index].car_loop_cut12_20;
1263 		else
1264 			aclc_value = s2scl[mod_index].car_loop_cut12_30;
1265 
1266 	}
1267 
1268 	return aclc_value;
1269 }
1270 
1271 static
1272 enum fe_stv0900_error stv0900_st_dvbs2_single(struct stv0900_internal *intp,
1273 					enum fe_stv0900_demod_mode LDPC_Mode,
1274 					enum fe_stv0900_demod_num demod)
1275 {
1276 	s32 reg_ind;
1277 
1278 	dprintk("%s\n", __func__);
1279 
1280 	switch (LDPC_Mode) {
1281 	case STV0900_DUAL:
1282 	default:
1283 		if ((intp->demod_mode != STV0900_DUAL)
1284 			|| (stv0900_get_bits(intp, F0900_DDEMOD) != 1)) {
1285 			stv0900_write_reg(intp, R0900_GENCFG, 0x1d);
1286 
1287 			intp->demod_mode = STV0900_DUAL;
1288 
1289 			stv0900_write_bits(intp, F0900_FRESFEC, 1);
1290 			stv0900_write_bits(intp, F0900_FRESFEC, 0);
1291 
1292 			for (reg_ind = 0; reg_ind < 7; reg_ind++)
1293 				stv0900_write_reg(intp,
1294 						R0900_P1_MODCODLST0 + reg_ind,
1295 						0xff);
1296 			for (reg_ind = 0; reg_ind < 8; reg_ind++)
1297 				stv0900_write_reg(intp,
1298 						R0900_P1_MODCODLST7 + reg_ind,
1299 						0xcc);
1300 
1301 			stv0900_write_reg(intp, R0900_P1_MODCODLSTE, 0xff);
1302 			stv0900_write_reg(intp, R0900_P1_MODCODLSTF, 0xcf);
1303 
1304 			for (reg_ind = 0; reg_ind < 7; reg_ind++)
1305 				stv0900_write_reg(intp,
1306 						R0900_P2_MODCODLST0 + reg_ind,
1307 						0xff);
1308 			for (reg_ind = 0; reg_ind < 8; reg_ind++)
1309 				stv0900_write_reg(intp,
1310 						R0900_P2_MODCODLST7 + reg_ind,
1311 						0xcc);
1312 
1313 			stv0900_write_reg(intp, R0900_P2_MODCODLSTE, 0xff);
1314 			stv0900_write_reg(intp, R0900_P2_MODCODLSTF, 0xcf);
1315 		}
1316 
1317 		break;
1318 	case STV0900_SINGLE:
1319 		if (demod == STV0900_DEMOD_2) {
1320 			stv0900_stop_all_s2_modcod(intp, STV0900_DEMOD_1);
1321 			stv0900_activate_s2_modcod_single(intp,
1322 							STV0900_DEMOD_2);
1323 			stv0900_write_reg(intp, R0900_GENCFG, 0x06);
1324 		} else {
1325 			stv0900_stop_all_s2_modcod(intp, STV0900_DEMOD_2);
1326 			stv0900_activate_s2_modcod_single(intp,
1327 							STV0900_DEMOD_1);
1328 			stv0900_write_reg(intp, R0900_GENCFG, 0x04);
1329 		}
1330 
1331 		intp->demod_mode = STV0900_SINGLE;
1332 
1333 		stv0900_write_bits(intp, F0900_FRESFEC, 1);
1334 		stv0900_write_bits(intp, F0900_FRESFEC, 0);
1335 		stv0900_write_bits(intp, F0900_P1_ALGOSWRST, 1);
1336 		stv0900_write_bits(intp, F0900_P1_ALGOSWRST, 0);
1337 		stv0900_write_bits(intp, F0900_P2_ALGOSWRST, 1);
1338 		stv0900_write_bits(intp, F0900_P2_ALGOSWRST, 0);
1339 		break;
1340 	}
1341 
1342 	return STV0900_NO_ERROR;
1343 }
1344 
1345 static enum fe_stv0900_error stv0900_init_internal(struct dvb_frontend *fe,
1346 					struct stv0900_init_params *p_init)
1347 {
1348 	struct stv0900_state *state = fe->demodulator_priv;
1349 	enum fe_stv0900_error error = STV0900_NO_ERROR;
1350 	enum fe_stv0900_error demodError = STV0900_NO_ERROR;
1351 	struct stv0900_internal *intp = NULL;
1352 	int selosci, i;
1353 
1354 	struct stv0900_inode *temp_int = find_inode(state->i2c_adap,
1355 						state->config->demod_address);
1356 
1357 	dprintk("%s\n", __func__);
1358 
1359 	if ((temp_int != NULL) && (p_init->demod_mode == STV0900_DUAL)) {
1360 		state->internal = temp_int->internal;
1361 		(state->internal->dmds_used)++;
1362 		dprintk("%s: Find Internal Structure!\n", __func__);
1363 		return STV0900_NO_ERROR;
1364 	} else {
1365 		state->internal = kmalloc(sizeof(struct stv0900_internal),
1366 								GFP_KERNEL);
1367 		if (state->internal == NULL)
1368 			return STV0900_INVALID_HANDLE;
1369 		temp_int = append_internal(state->internal);
1370 		if (temp_int == NULL) {
1371 			kfree(state->internal);
1372 			state->internal = NULL;
1373 			return STV0900_INVALID_HANDLE;
1374 		}
1375 		state->internal->dmds_used = 1;
1376 		state->internal->i2c_adap = state->i2c_adap;
1377 		state->internal->i2c_addr = state->config->demod_address;
1378 		state->internal->clkmode = state->config->clkmode;
1379 		state->internal->errs = STV0900_NO_ERROR;
1380 		dprintk("%s: Create New Internal Structure!\n", __func__);
1381 	}
1382 
1383 	if (state->internal == NULL) {
1384 		error = STV0900_INVALID_HANDLE;
1385 		return error;
1386 	}
1387 
1388 	demodError = stv0900_initialize(state->internal);
1389 	if (demodError == STV0900_NO_ERROR) {
1390 			error = STV0900_NO_ERROR;
1391 	} else {
1392 		if (demodError == STV0900_INVALID_HANDLE)
1393 			error = STV0900_INVALID_HANDLE;
1394 		else
1395 			error = STV0900_I2C_ERROR;
1396 
1397 		return error;
1398 	}
1399 
1400 	intp = state->internal;
1401 
1402 	intp->demod_mode = p_init->demod_mode;
1403 	stv0900_st_dvbs2_single(intp, intp->demod_mode,	STV0900_DEMOD_1);
1404 	intp->chip_id = stv0900_read_reg(intp, R0900_MID);
1405 	intp->rolloff = p_init->rolloff;
1406 	intp->quartz = p_init->dmd_ref_clk;
1407 
1408 	stv0900_write_bits(intp, F0900_P1_ROLLOFF_CONTROL, p_init->rolloff);
1409 	stv0900_write_bits(intp, F0900_P2_ROLLOFF_CONTROL, p_init->rolloff);
1410 
1411 	intp->ts_config = p_init->ts_config;
1412 	if (intp->ts_config == NULL)
1413 		stv0900_set_ts_parallel_serial(intp,
1414 				p_init->path1_ts_clock,
1415 				p_init->path2_ts_clock);
1416 	else {
1417 		for (i = 0; intp->ts_config[i].addr != 0xffff; i++)
1418 			stv0900_write_reg(intp,
1419 					intp->ts_config[i].addr,
1420 					intp->ts_config[i].val);
1421 
1422 		stv0900_write_bits(intp, F0900_P2_RST_HWARE, 1);
1423 		stv0900_write_bits(intp, F0900_P2_RST_HWARE, 0);
1424 		stv0900_write_bits(intp, F0900_P1_RST_HWARE, 1);
1425 		stv0900_write_bits(intp, F0900_P1_RST_HWARE, 0);
1426 	}
1427 
1428 	intp->tuner_type[0] = p_init->tuner1_type;
1429 	intp->tuner_type[1] = p_init->tuner2_type;
1430 	/* tuner init */
1431 	switch (p_init->tuner1_type) {
1432 	case 3: /*FE_AUTO_STB6100:*/
1433 		stv0900_write_reg(intp, R0900_P1_TNRCFG, 0x3c);
1434 		stv0900_write_reg(intp, R0900_P1_TNRCFG2, 0x86);
1435 		stv0900_write_reg(intp, R0900_P1_TNRCFG3, 0x18);
1436 		stv0900_write_reg(intp, R0900_P1_TNRXTAL, 27); /* 27MHz */
1437 		stv0900_write_reg(intp, R0900_P1_TNRSTEPS, 0x05);
1438 		stv0900_write_reg(intp, R0900_P1_TNRGAIN, 0x17);
1439 		stv0900_write_reg(intp, R0900_P1_TNRADJ, 0x1f);
1440 		stv0900_write_reg(intp, R0900_P1_TNRCTL2, 0x0);
1441 		stv0900_write_bits(intp, F0900_P1_TUN_TYPE, 3);
1442 		break;
1443 	/* case FE_SW_TUNER: */
1444 	default:
1445 		stv0900_write_bits(intp, F0900_P1_TUN_TYPE, 6);
1446 		break;
1447 	}
1448 
1449 	stv0900_write_bits(intp, F0900_P1_TUN_MADDRESS, p_init->tun1_maddress);
1450 	switch (p_init->tuner1_adc) {
1451 	case 1:
1452 		stv0900_write_reg(intp, R0900_TSTTNR1, 0x26);
1453 		break;
1454 	default:
1455 		break;
1456 	}
1457 
1458 	stv0900_write_reg(intp, R0900_P1_TNRLD, 1); /* hw tuner */
1459 
1460 	/* tuner init */
1461 	switch (p_init->tuner2_type) {
1462 	case 3: /*FE_AUTO_STB6100:*/
1463 		stv0900_write_reg(intp, R0900_P2_TNRCFG, 0x3c);
1464 		stv0900_write_reg(intp, R0900_P2_TNRCFG2, 0x86);
1465 		stv0900_write_reg(intp, R0900_P2_TNRCFG3, 0x18);
1466 		stv0900_write_reg(intp, R0900_P2_TNRXTAL, 27); /* 27MHz */
1467 		stv0900_write_reg(intp, R0900_P2_TNRSTEPS, 0x05);
1468 		stv0900_write_reg(intp, R0900_P2_TNRGAIN, 0x17);
1469 		stv0900_write_reg(intp, R0900_P2_TNRADJ, 0x1f);
1470 		stv0900_write_reg(intp, R0900_P2_TNRCTL2, 0x0);
1471 		stv0900_write_bits(intp, F0900_P2_TUN_TYPE, 3);
1472 		break;
1473 	/* case FE_SW_TUNER: */
1474 	default:
1475 		stv0900_write_bits(intp, F0900_P2_TUN_TYPE, 6);
1476 		break;
1477 	}
1478 
1479 	stv0900_write_bits(intp, F0900_P2_TUN_MADDRESS, p_init->tun2_maddress);
1480 	switch (p_init->tuner2_adc) {
1481 	case 1:
1482 		stv0900_write_reg(intp, R0900_TSTTNR3, 0x26);
1483 		break;
1484 	default:
1485 		break;
1486 	}
1487 
1488 	stv0900_write_reg(intp, R0900_P2_TNRLD, 1); /* hw tuner */
1489 
1490 	stv0900_write_bits(intp, F0900_P1_TUN_IQSWAP, p_init->tun1_iq_inv);
1491 	stv0900_write_bits(intp, F0900_P2_TUN_IQSWAP, p_init->tun2_iq_inv);
1492 	stv0900_set_mclk(intp, 135000000);
1493 	msleep(3);
1494 
1495 	switch (intp->clkmode) {
1496 	case 0:
1497 	case 2:
1498 		stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | intp->clkmode);
1499 		break;
1500 	default:
1501 		selosci = 0x02 & stv0900_read_reg(intp, R0900_SYNTCTRL);
1502 		stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | selosci);
1503 		break;
1504 	}
1505 	msleep(3);
1506 
1507 	intp->mclk = stv0900_get_mclk_freq(intp, intp->quartz);
1508 	if (intp->errs)
1509 		error = STV0900_I2C_ERROR;
1510 
1511 	return error;
1512 }
1513 
1514 static int stv0900_status(struct stv0900_internal *intp,
1515 					enum fe_stv0900_demod_num demod)
1516 {
1517 	enum fe_stv0900_search_state demod_state;
1518 	int locked = FALSE;
1519 	u8 tsbitrate0_val, tsbitrate1_val;
1520 	s32 bitrate;
1521 
1522 	demod_state = stv0900_get_bits(intp, HEADER_MODE);
1523 	switch (demod_state) {
1524 	case STV0900_SEARCH:
1525 	case STV0900_PLH_DETECTED:
1526 	default:
1527 		locked = FALSE;
1528 		break;
1529 	case STV0900_DVBS2_FOUND:
1530 		locked = stv0900_get_bits(intp, LOCK_DEFINITIF) &&
1531 				stv0900_get_bits(intp, PKTDELIN_LOCK) &&
1532 				stv0900_get_bits(intp, TSFIFO_LINEOK);
1533 		break;
1534 	case STV0900_DVBS_FOUND:
1535 		locked = stv0900_get_bits(intp, LOCK_DEFINITIF) &&
1536 				stv0900_get_bits(intp, LOCKEDVIT) &&
1537 				stv0900_get_bits(intp, TSFIFO_LINEOK);
1538 		break;
1539 	}
1540 
1541 	dprintk("%s: locked = %d\n", __func__, locked);
1542 
1543 	if (stvdebug) {
1544 		/* Print TS bitrate */
1545 		tsbitrate0_val = stv0900_read_reg(intp, TSBITRATE0);
1546 		tsbitrate1_val = stv0900_read_reg(intp, TSBITRATE1);
1547 		/* Formula Bit rate = Mclk * px_tsfifo_bitrate / 16384 */
1548 		bitrate = (stv0900_get_mclk_freq(intp, intp->quartz)/1000000)
1549 			* (tsbitrate1_val << 8 | tsbitrate0_val);
1550 		bitrate /= 16384;
1551 		dprintk("TS bitrate = %d Mbit/sec\n", bitrate);
1552 	}
1553 
1554 	return locked;
1555 }
1556 
1557 static int stv0900_set_mis(struct stv0900_internal *intp,
1558 				enum fe_stv0900_demod_num demod, int mis)
1559 {
1560 	dprintk("%s\n", __func__);
1561 
1562 	if (mis < 0 || mis > 255) {
1563 		dprintk("Disable MIS filtering\n");
1564 		stv0900_write_bits(intp, FILTER_EN, 0);
1565 	} else {
1566 		dprintk("Enable MIS filtering - %d\n", mis);
1567 		stv0900_write_bits(intp, FILTER_EN, 1);
1568 		stv0900_write_reg(intp, ISIENTRY, mis);
1569 		stv0900_write_reg(intp, ISIBITENA, 0xff);
1570 	}
1571 
1572 	return STV0900_NO_ERROR;
1573 }
1574 
1575 
1576 static enum dvbfe_search stv0900_search(struct dvb_frontend *fe)
1577 {
1578 	struct stv0900_state *state = fe->demodulator_priv;
1579 	struct stv0900_internal *intp = state->internal;
1580 	enum fe_stv0900_demod_num demod = state->demod;
1581 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1582 
1583 	struct stv0900_search_params p_search;
1584 	struct stv0900_signal_info p_result = intp->result[demod];
1585 
1586 	enum fe_stv0900_error error = STV0900_NO_ERROR;
1587 
1588 	dprintk("%s: ", __func__);
1589 
1590 	if (!(INRANGE(100000, c->symbol_rate, 70000000)))
1591 		return DVBFE_ALGO_SEARCH_FAILED;
1592 
1593 	if (state->config->set_ts_params)
1594 		state->config->set_ts_params(fe, 0);
1595 
1596 	stv0900_set_mis(intp, demod, c->stream_id);
1597 
1598 	p_result.locked = FALSE;
1599 	p_search.path = demod;
1600 	p_search.frequency = c->frequency;
1601 	p_search.symbol_rate = c->symbol_rate;
1602 	p_search.search_range = 10000000;
1603 	p_search.fec = STV0900_FEC_UNKNOWN;
1604 	p_search.standard = STV0900_AUTO_SEARCH;
1605 	p_search.iq_inversion = STV0900_IQ_AUTO;
1606 	p_search.search_algo = STV0900_BLIND_SEARCH;
1607 	/* Speeds up DVB-S searching */
1608 	if (c->delivery_system == SYS_DVBS)
1609 		p_search.standard = STV0900_SEARCH_DVBS1;
1610 
1611 	intp->srch_standard[demod] = p_search.standard;
1612 	intp->symbol_rate[demod] = p_search.symbol_rate;
1613 	intp->srch_range[demod] = p_search.search_range;
1614 	intp->freq[demod] = p_search.frequency;
1615 	intp->srch_algo[demod] = p_search.search_algo;
1616 	intp->srch_iq_inv[demod] = p_search.iq_inversion;
1617 	intp->fec[demod] = p_search.fec;
1618 	if ((stv0900_algo(fe) == STV0900_RANGEOK) &&
1619 				(intp->errs == STV0900_NO_ERROR)) {
1620 		p_result.locked = intp->result[demod].locked;
1621 		p_result.standard = intp->result[demod].standard;
1622 		p_result.frequency = intp->result[demod].frequency;
1623 		p_result.symbol_rate = intp->result[demod].symbol_rate;
1624 		p_result.fec = intp->result[demod].fec;
1625 		p_result.modcode = intp->result[demod].modcode;
1626 		p_result.pilot = intp->result[demod].pilot;
1627 		p_result.frame_len = intp->result[demod].frame_len;
1628 		p_result.spectrum = intp->result[demod].spectrum;
1629 		p_result.rolloff = intp->result[demod].rolloff;
1630 		p_result.modulation = intp->result[demod].modulation;
1631 	} else {
1632 		p_result.locked = FALSE;
1633 		switch (intp->err[demod]) {
1634 		case STV0900_I2C_ERROR:
1635 			error = STV0900_I2C_ERROR;
1636 			break;
1637 		case STV0900_NO_ERROR:
1638 		default:
1639 			error = STV0900_SEARCH_FAILED;
1640 			break;
1641 		}
1642 	}
1643 
1644 	if ((p_result.locked == TRUE) && (error == STV0900_NO_ERROR)) {
1645 		dprintk("Search Success\n");
1646 		return DVBFE_ALGO_SEARCH_SUCCESS;
1647 	} else {
1648 		dprintk("Search Fail\n");
1649 		return DVBFE_ALGO_SEARCH_FAILED;
1650 	}
1651 
1652 }
1653 
1654 static int stv0900_read_status(struct dvb_frontend *fe, enum fe_status *status)
1655 {
1656 	struct stv0900_state *state = fe->demodulator_priv;
1657 
1658 	dprintk("%s: ", __func__);
1659 
1660 	if ((stv0900_status(state->internal, state->demod)) == TRUE) {
1661 		dprintk("DEMOD LOCK OK\n");
1662 		*status = FE_HAS_CARRIER
1663 			| FE_HAS_VITERBI
1664 			| FE_HAS_SYNC
1665 			| FE_HAS_LOCK;
1666 		if (state->config->set_lock_led)
1667 			state->config->set_lock_led(fe, 1);
1668 	} else {
1669 		*status = 0;
1670 		if (state->config->set_lock_led)
1671 			state->config->set_lock_led(fe, 0);
1672 		dprintk("DEMOD LOCK FAIL\n");
1673 	}
1674 
1675 	return 0;
1676 }
1677 
1678 static int stv0900_stop_ts(struct dvb_frontend *fe, int stop_ts)
1679 {
1680 
1681 	struct stv0900_state *state = fe->demodulator_priv;
1682 	struct stv0900_internal *intp = state->internal;
1683 	enum fe_stv0900_demod_num demod = state->demod;
1684 
1685 	if (stop_ts == TRUE)
1686 		stv0900_write_bits(intp, RST_HWARE, 1);
1687 	else
1688 		stv0900_write_bits(intp, RST_HWARE, 0);
1689 
1690 	return 0;
1691 }
1692 
1693 static int stv0900_diseqc_init(struct dvb_frontend *fe)
1694 {
1695 	struct stv0900_state *state = fe->demodulator_priv;
1696 	struct stv0900_internal *intp = state->internal;
1697 	enum fe_stv0900_demod_num demod = state->demod;
1698 
1699 	stv0900_write_bits(intp, DISTX_MODE, state->config->diseqc_mode);
1700 	stv0900_write_bits(intp, DISEQC_RESET, 1);
1701 	stv0900_write_bits(intp, DISEQC_RESET, 0);
1702 
1703 	return 0;
1704 }
1705 
1706 static int stv0900_init(struct dvb_frontend *fe)
1707 {
1708 	dprintk("%s\n", __func__);
1709 
1710 	stv0900_stop_ts(fe, 1);
1711 	stv0900_diseqc_init(fe);
1712 
1713 	return 0;
1714 }
1715 
1716 static int stv0900_diseqc_send(struct stv0900_internal *intp , u8 *data,
1717 				u32 NbData, enum fe_stv0900_demod_num demod)
1718 {
1719 	s32 i = 0;
1720 
1721 	stv0900_write_bits(intp, DIS_PRECHARGE, 1);
1722 	while (i < NbData) {
1723 		while (stv0900_get_bits(intp, FIFO_FULL))
1724 			;/* checkpatch complains */
1725 		stv0900_write_reg(intp, DISTXDATA, data[i]);
1726 		i++;
1727 	}
1728 
1729 	stv0900_write_bits(intp, DIS_PRECHARGE, 0);
1730 	i = 0;
1731 	while ((stv0900_get_bits(intp, TX_IDLE) != 1) && (i < 10)) {
1732 		msleep(10);
1733 		i++;
1734 	}
1735 
1736 	return 0;
1737 }
1738 
1739 static int stv0900_send_master_cmd(struct dvb_frontend *fe,
1740 					struct dvb_diseqc_master_cmd *cmd)
1741 {
1742 	struct stv0900_state *state = fe->demodulator_priv;
1743 
1744 	return stv0900_diseqc_send(state->internal,
1745 				cmd->msg,
1746 				cmd->msg_len,
1747 				state->demod);
1748 }
1749 
1750 static int stv0900_send_burst(struct dvb_frontend *fe,
1751 			      enum fe_sec_mini_cmd burst)
1752 {
1753 	struct stv0900_state *state = fe->demodulator_priv;
1754 	struct stv0900_internal *intp = state->internal;
1755 	enum fe_stv0900_demod_num demod = state->demod;
1756 	u8 data;
1757 
1758 
1759 	switch (burst) {
1760 	case SEC_MINI_A:
1761 		stv0900_write_bits(intp, DISTX_MODE, 3);/* Unmodulated */
1762 		data = 0x00;
1763 		stv0900_diseqc_send(intp, &data, 1, state->demod);
1764 		break;
1765 	case SEC_MINI_B:
1766 		stv0900_write_bits(intp, DISTX_MODE, 2);/* Modulated */
1767 		data = 0xff;
1768 		stv0900_diseqc_send(intp, &data, 1, state->demod);
1769 		break;
1770 	}
1771 
1772 	return 0;
1773 }
1774 
1775 static int stv0900_recv_slave_reply(struct dvb_frontend *fe,
1776 				struct dvb_diseqc_slave_reply *reply)
1777 {
1778 	struct stv0900_state *state = fe->demodulator_priv;
1779 	struct stv0900_internal *intp = state->internal;
1780 	enum fe_stv0900_demod_num demod = state->demod;
1781 	s32 i = 0;
1782 
1783 	reply->msg_len = 0;
1784 
1785 	while ((stv0900_get_bits(intp, RX_END) != 1) && (i < 10)) {
1786 		msleep(10);
1787 		i++;
1788 	}
1789 
1790 	if (stv0900_get_bits(intp, RX_END)) {
1791 		reply->msg_len = stv0900_get_bits(intp, FIFO_BYTENBR);
1792 
1793 		for (i = 0; i < reply->msg_len; i++)
1794 			reply->msg[i] = stv0900_read_reg(intp, DISRXDATA);
1795 	}
1796 
1797 	return 0;
1798 }
1799 
1800 static int stv0900_set_tone(struct dvb_frontend *fe,
1801 			    enum fe_sec_tone_mode toneoff)
1802 {
1803 	struct stv0900_state *state = fe->demodulator_priv;
1804 	struct stv0900_internal *intp = state->internal;
1805 	enum fe_stv0900_demod_num demod = state->demod;
1806 
1807 	dprintk("%s: %s\n", __func__, ((toneoff == 0) ? "On" : "Off"));
1808 
1809 	switch (toneoff) {
1810 	case SEC_TONE_ON:
1811 		/*Set the DiseqC mode to 22Khz _continues_ tone*/
1812 		stv0900_write_bits(intp, DISTX_MODE, 0);
1813 		stv0900_write_bits(intp, DISEQC_RESET, 1);
1814 		/*release DiseqC reset to enable the 22KHz tone*/
1815 		stv0900_write_bits(intp, DISEQC_RESET, 0);
1816 		break;
1817 	case SEC_TONE_OFF:
1818 		/*return diseqc mode to config->diseqc_mode.
1819 		Usually it's without _continues_ tone */
1820 		stv0900_write_bits(intp, DISTX_MODE,
1821 				state->config->diseqc_mode);
1822 		/*maintain the DiseqC reset to disable the 22KHz tone*/
1823 		stv0900_write_bits(intp, DISEQC_RESET, 1);
1824 		stv0900_write_bits(intp, DISEQC_RESET, 0);
1825 		break;
1826 	default:
1827 		return -EINVAL;
1828 	}
1829 
1830 	return 0;
1831 }
1832 
1833 static void stv0900_release(struct dvb_frontend *fe)
1834 {
1835 	struct stv0900_state *state = fe->demodulator_priv;
1836 
1837 	dprintk("%s\n", __func__);
1838 
1839 	if (state->config->set_lock_led)
1840 		state->config->set_lock_led(fe, 0);
1841 
1842 	if ((--(state->internal->dmds_used)) <= 0) {
1843 
1844 		dprintk("%s: Actually removing\n", __func__);
1845 
1846 		remove_inode(state->internal);
1847 		kfree(state->internal);
1848 	}
1849 
1850 	kfree(state);
1851 }
1852 
1853 static int stv0900_sleep(struct dvb_frontend *fe)
1854 {
1855 	struct stv0900_state *state = fe->demodulator_priv;
1856 
1857 	dprintk("%s\n", __func__);
1858 
1859 	if (state->config->set_lock_led)
1860 		state->config->set_lock_led(fe, 0);
1861 
1862 	return 0;
1863 }
1864 
1865 static int stv0900_get_frontend(struct dvb_frontend *fe,
1866 				struct dtv_frontend_properties *p)
1867 {
1868 	struct stv0900_state *state = fe->demodulator_priv;
1869 	struct stv0900_internal *intp = state->internal;
1870 	enum fe_stv0900_demod_num demod = state->demod;
1871 	struct stv0900_signal_info p_result = intp->result[demod];
1872 
1873 	p->frequency = p_result.locked ? p_result.frequency : 0;
1874 	p->symbol_rate = p_result.locked ? p_result.symbol_rate : 0;
1875 	return 0;
1876 }
1877 
1878 static const struct dvb_frontend_ops stv0900_ops = {
1879 	.delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
1880 	.info = {
1881 		.name			= "STV0900 frontend",
1882 		.frequency_min		= 950000,
1883 		.frequency_max		= 2150000,
1884 		.frequency_stepsize	= 125,
1885 		.frequency_tolerance	= 0,
1886 		.symbol_rate_min	= 1000000,
1887 		.symbol_rate_max	= 45000000,
1888 		.symbol_rate_tolerance	= 500,
1889 		.caps			= FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
1890 					  FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
1891 					  FE_CAN_FEC_7_8 | FE_CAN_QPSK    |
1892 					  FE_CAN_2G_MODULATION |
1893 					  FE_CAN_FEC_AUTO
1894 	},
1895 	.release			= stv0900_release,
1896 	.init				= stv0900_init,
1897 	.get_frontend                   = stv0900_get_frontend,
1898 	.sleep				= stv0900_sleep,
1899 	.get_frontend_algo		= stv0900_frontend_algo,
1900 	.i2c_gate_ctrl			= stv0900_i2c_gate_ctrl,
1901 	.diseqc_send_master_cmd		= stv0900_send_master_cmd,
1902 	.diseqc_send_burst		= stv0900_send_burst,
1903 	.diseqc_recv_slave_reply	= stv0900_recv_slave_reply,
1904 	.set_tone			= stv0900_set_tone,
1905 	.search				= stv0900_search,
1906 	.read_status			= stv0900_read_status,
1907 	.read_ber			= stv0900_read_ber,
1908 	.read_signal_strength		= stv0900_read_signal_strength,
1909 	.read_snr			= stv0900_read_snr,
1910 	.read_ucblocks                  = stv0900_read_ucblocks,
1911 };
1912 
1913 struct dvb_frontend *stv0900_attach(const struct stv0900_config *config,
1914 					struct i2c_adapter *i2c,
1915 					int demod)
1916 {
1917 	struct stv0900_state *state = NULL;
1918 	struct stv0900_init_params init_params;
1919 	enum fe_stv0900_error err_stv0900;
1920 
1921 	state = kzalloc(sizeof(struct stv0900_state), GFP_KERNEL);
1922 	if (state == NULL)
1923 		goto error;
1924 
1925 	state->demod		= demod;
1926 	state->config		= config;
1927 	state->i2c_adap		= i2c;
1928 
1929 	memcpy(&state->frontend.ops, &stv0900_ops,
1930 			sizeof(struct dvb_frontend_ops));
1931 	state->frontend.demodulator_priv = state;
1932 
1933 	switch (demod) {
1934 	case 0:
1935 	case 1:
1936 		init_params.dmd_ref_clk  	= config->xtal;
1937 		init_params.demod_mode		= config->demod_mode;
1938 		init_params.rolloff		= STV0900_35;
1939 		init_params.path1_ts_clock	= config->path1_mode;
1940 		init_params.tun1_maddress	= config->tun1_maddress;
1941 		init_params.tun1_iq_inv		= STV0900_IQ_NORMAL;
1942 		init_params.tuner1_adc		= config->tun1_adc;
1943 		init_params.tuner1_type		= config->tun1_type;
1944 		init_params.path2_ts_clock	= config->path2_mode;
1945 		init_params.ts_config		= config->ts_config_regs;
1946 		init_params.tun2_maddress	= config->tun2_maddress;
1947 		init_params.tuner2_adc		= config->tun2_adc;
1948 		init_params.tuner2_type		= config->tun2_type;
1949 		init_params.tun2_iq_inv		= STV0900_IQ_SWAPPED;
1950 
1951 		err_stv0900 = stv0900_init_internal(&state->frontend,
1952 							&init_params);
1953 
1954 		if (err_stv0900)
1955 			goto error;
1956 
1957 		if (state->internal->chip_id >= 0x30)
1958 			state->frontend.ops.info.caps |= FE_CAN_MULTISTREAM;
1959 
1960 		break;
1961 	default:
1962 		goto error;
1963 		break;
1964 	}
1965 
1966 	dprintk("%s: Attaching STV0900 demodulator(%d) \n", __func__, demod);
1967 	return &state->frontend;
1968 
1969 error:
1970 	dprintk("%s: Failed to attach STV0900 demodulator(%d) \n",
1971 		__func__, demod);
1972 	kfree(state);
1973 	return NULL;
1974 }
1975 EXPORT_SYMBOL(stv0900_attach);
1976 
1977 MODULE_PARM_DESC(debug, "Set debug");
1978 
1979 MODULE_AUTHOR("Igor M. Liplianin");
1980 MODULE_DESCRIPTION("ST STV0900 frontend");
1981 MODULE_LICENSE("GPL");
1982