1 /* DVB compliant Linux driver for the DVB-S si2109/2110 demodulator 2 * 3 * Copyright (C) 2008 Igor M. Liplianin (liplianin@me.by) 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 */ 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/string.h> 15 #include <linux/slab.h> 16 #include <linux/jiffies.h> 17 #include <asm/div64.h> 18 19 #include "dvb_frontend.h" 20 #include "si21xx.h" 21 22 #define REVISION_REG 0x00 23 #define SYSTEM_MODE_REG 0x01 24 #define TS_CTRL_REG_1 0x02 25 #define TS_CTRL_REG_2 0x03 26 #define PIN_CTRL_REG_1 0x04 27 #define PIN_CTRL_REG_2 0x05 28 #define LOCK_STATUS_REG_1 0x0f 29 #define LOCK_STATUS_REG_2 0x10 30 #define ACQ_STATUS_REG 0x11 31 #define ACQ_CTRL_REG_1 0x13 32 #define ACQ_CTRL_REG_2 0x14 33 #define PLL_DIVISOR_REG 0x15 34 #define COARSE_TUNE_REG 0x16 35 #define FINE_TUNE_REG_L 0x17 36 #define FINE_TUNE_REG_H 0x18 37 38 #define ANALOG_AGC_POWER_LEVEL_REG 0x28 39 #define CFO_ESTIMATOR_CTRL_REG_1 0x29 40 #define CFO_ESTIMATOR_CTRL_REG_2 0x2a 41 #define CFO_ESTIMATOR_CTRL_REG_3 0x2b 42 43 #define SYM_RATE_ESTIMATE_REG_L 0x31 44 #define SYM_RATE_ESTIMATE_REG_M 0x32 45 #define SYM_RATE_ESTIMATE_REG_H 0x33 46 47 #define CFO_ESTIMATOR_OFFSET_REG_L 0x36 48 #define CFO_ESTIMATOR_OFFSET_REG_H 0x37 49 #define CFO_ERROR_REG_L 0x38 50 #define CFO_ERROR_REG_H 0x39 51 #define SYM_RATE_ESTIMATOR_CTRL_REG 0x3a 52 53 #define SYM_RATE_REG_L 0x3f 54 #define SYM_RATE_REG_M 0x40 55 #define SYM_RATE_REG_H 0x41 56 #define SYM_RATE_ESTIMATOR_MAXIMUM_REG 0x42 57 #define SYM_RATE_ESTIMATOR_MINIMUM_REG 0x43 58 59 #define C_N_ESTIMATOR_CTRL_REG 0x7c 60 #define C_N_ESTIMATOR_THRSHLD_REG 0x7d 61 #define C_N_ESTIMATOR_LEVEL_REG_L 0x7e 62 #define C_N_ESTIMATOR_LEVEL_REG_H 0x7f 63 64 #define BLIND_SCAN_CTRL_REG 0x80 65 66 #define LSA_CTRL_REG_1 0x8D 67 #define SPCTRM_TILT_CORR_THRSHLD_REG 0x8f 68 #define ONE_DB_BNDWDTH_THRSHLD_REG 0x90 69 #define TWO_DB_BNDWDTH_THRSHLD_REG 0x91 70 #define THREE_DB_BNDWDTH_THRSHLD_REG 0x92 71 #define INBAND_POWER_THRSHLD_REG 0x93 72 #define REF_NOISE_LVL_MRGN_THRSHLD_REG 0x94 73 74 #define VIT_SRCH_CTRL_REG_1 0xa0 75 #define VIT_SRCH_CTRL_REG_2 0xa1 76 #define VIT_SRCH_CTRL_REG_3 0xa2 77 #define VIT_SRCH_STATUS_REG 0xa3 78 #define VITERBI_BER_COUNT_REG_L 0xab 79 #define REED_SOLOMON_CTRL_REG 0xb0 80 #define REED_SOLOMON_ERROR_COUNT_REG_L 0xb1 81 #define PRBS_CTRL_REG 0xb5 82 83 #define LNB_CTRL_REG_1 0xc0 84 #define LNB_CTRL_REG_2 0xc1 85 #define LNB_CTRL_REG_3 0xc2 86 #define LNB_CTRL_REG_4 0xc3 87 #define LNB_CTRL_STATUS_REG 0xc4 88 #define LNB_FIFO_REGS_0 0xc5 89 #define LNB_FIFO_REGS_1 0xc6 90 #define LNB_FIFO_REGS_2 0xc7 91 #define LNB_FIFO_REGS_3 0xc8 92 #define LNB_FIFO_REGS_4 0xc9 93 #define LNB_FIFO_REGS_5 0xca 94 #define LNB_SUPPLY_CTRL_REG_1 0xcb 95 #define LNB_SUPPLY_CTRL_REG_2 0xcc 96 #define LNB_SUPPLY_CTRL_REG_3 0xcd 97 #define LNB_SUPPLY_CTRL_REG_4 0xce 98 #define LNB_SUPPLY_STATUS_REG 0xcf 99 100 #define FAIL -1 101 #define PASS 0 102 103 #define ALLOWABLE_FS_COUNT 10 104 #define STATUS_BER 0 105 #define STATUS_UCBLOCKS 1 106 107 static int debug; 108 #define dprintk(args...) \ 109 do { \ 110 if (debug) \ 111 printk(KERN_DEBUG "si21xx: " args); \ 112 } while (0) 113 114 enum { 115 ACTIVE_HIGH, 116 ACTIVE_LOW 117 }; 118 enum { 119 BYTE_WIDE, 120 BIT_WIDE 121 }; 122 enum { 123 CLK_GAPPED_MODE, 124 CLK_CONTINUOUS_MODE 125 }; 126 enum { 127 RISING_EDGE, 128 FALLING_EDGE 129 }; 130 enum { 131 MSB_FIRST, 132 LSB_FIRST 133 }; 134 enum { 135 SERIAL, 136 PARALLEL 137 }; 138 139 struct si21xx_state { 140 struct i2c_adapter *i2c; 141 const struct si21xx_config *config; 142 struct dvb_frontend frontend; 143 u8 initialised:1; 144 int errmode; 145 int fs; /*Sampling rate of the ADC in MHz*/ 146 }; 147 148 /* register default initialization */ 149 static u8 serit_sp1511lhb_inittab[] = { 150 0x01, 0x28, /* set i2c_inc_disable */ 151 0x20, 0x03, 152 0x27, 0x20, 153 0xe0, 0x45, 154 0xe1, 0x08, 155 0xfe, 0x01, 156 0x01, 0x28, 157 0x89, 0x09, 158 0x04, 0x80, 159 0x05, 0x01, 160 0x06, 0x00, 161 0x20, 0x03, 162 0x24, 0x88, 163 0x29, 0x09, 164 0x2a, 0x0f, 165 0x2c, 0x10, 166 0x2d, 0x19, 167 0x2e, 0x08, 168 0x2f, 0x10, 169 0x30, 0x19, 170 0x34, 0x20, 171 0x35, 0x03, 172 0x45, 0x02, 173 0x46, 0x45, 174 0x47, 0xd0, 175 0x48, 0x00, 176 0x49, 0x40, 177 0x4a, 0x03, 178 0x4c, 0xfd, 179 0x4f, 0x2e, 180 0x50, 0x2e, 181 0x51, 0x10, 182 0x52, 0x10, 183 0x56, 0x92, 184 0x59, 0x00, 185 0x5a, 0x2d, 186 0x5b, 0x33, 187 0x5c, 0x1f, 188 0x5f, 0x76, 189 0x62, 0xc0, 190 0x63, 0xc0, 191 0x64, 0xf3, 192 0x65, 0xf3, 193 0x79, 0x40, 194 0x6a, 0x40, 195 0x6b, 0x0a, 196 0x6c, 0x80, 197 0x6d, 0x27, 198 0x71, 0x06, 199 0x75, 0x60, 200 0x78, 0x00, 201 0x79, 0xb5, 202 0x7c, 0x05, 203 0x7d, 0x1a, 204 0x87, 0x55, 205 0x88, 0x72, 206 0x8f, 0x08, 207 0x90, 0xe0, 208 0x94, 0x40, 209 0xa0, 0x3f, 210 0xa1, 0xc0, 211 0xa4, 0xcc, 212 0xa5, 0x66, 213 0xa6, 0x66, 214 0xa7, 0x7b, 215 0xa8, 0x7b, 216 0xa9, 0x7b, 217 0xaa, 0x9a, 218 0xed, 0x04, 219 0xad, 0x00, 220 0xae, 0x03, 221 0xcc, 0xab, 222 0x01, 0x08, 223 0xff, 0xff 224 }; 225 226 /* low level read/writes */ 227 static int si21_writeregs(struct si21xx_state *state, u8 reg1, 228 u8 *data, int len) 229 { 230 int ret; 231 u8 buf[60];/* = { reg1, data };*/ 232 struct i2c_msg msg = { 233 .addr = state->config->demod_address, 234 .flags = 0, 235 .buf = buf, 236 .len = len + 1 237 }; 238 239 if (len > sizeof(buf) - 1) 240 return -EINVAL; 241 242 msg.buf[0] = reg1; 243 memcpy(msg.buf + 1, data, len); 244 245 ret = i2c_transfer(state->i2c, &msg, 1); 246 247 if (ret != 1) 248 dprintk("%s: writereg error (reg1 == 0x%02x, data == 0x%02x, ret == %i)\n", 249 __func__, reg1, data[0], ret); 250 251 return (ret != 1) ? -EREMOTEIO : 0; 252 } 253 254 static int si21_writereg(struct si21xx_state *state, u8 reg, u8 data) 255 { 256 int ret; 257 u8 buf[] = { reg, data }; 258 struct i2c_msg msg = { 259 .addr = state->config->demod_address, 260 .flags = 0, 261 .buf = buf, 262 .len = 2 263 }; 264 265 ret = i2c_transfer(state->i2c, &msg, 1); 266 267 if (ret != 1) 268 dprintk("%s: writereg error (reg == 0x%02x, data == 0x%02x, ret == %i)\n", 269 __func__, reg, data, ret); 270 271 return (ret != 1) ? -EREMOTEIO : 0; 272 } 273 274 static int si21_write(struct dvb_frontend *fe, const u8 buf[], int len) 275 { 276 struct si21xx_state *state = fe->demodulator_priv; 277 278 if (len != 2) 279 return -EINVAL; 280 281 return si21_writereg(state, buf[0], buf[1]); 282 } 283 284 static u8 si21_readreg(struct si21xx_state *state, u8 reg) 285 { 286 int ret; 287 u8 b0[] = { reg }; 288 u8 b1[] = { 0 }; 289 struct i2c_msg msg[] = { 290 { 291 .addr = state->config->demod_address, 292 .flags = 0, 293 .buf = b0, 294 .len = 1 295 }, { 296 .addr = state->config->demod_address, 297 .flags = I2C_M_RD, 298 .buf = b1, 299 .len = 1 300 } 301 }; 302 303 ret = i2c_transfer(state->i2c, msg, 2); 304 305 if (ret != 2) 306 dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", 307 __func__, reg, ret); 308 309 return b1[0]; 310 } 311 312 static int si21_readregs(struct si21xx_state *state, u8 reg1, u8 *b, u8 len) 313 { 314 int ret; 315 struct i2c_msg msg[] = { 316 { 317 .addr = state->config->demod_address, 318 .flags = 0, 319 .buf = ®1, 320 .len = 1 321 }, { 322 .addr = state->config->demod_address, 323 .flags = I2C_M_RD, 324 .buf = b, 325 .len = len 326 } 327 }; 328 329 ret = i2c_transfer(state->i2c, msg, 2); 330 331 if (ret != 2) 332 dprintk("%s: readreg error (ret == %i)\n", __func__, ret); 333 334 return ret == 2 ? 0 : -1; 335 } 336 337 static int si21xx_wait_diseqc_idle(struct si21xx_state *state, int timeout) 338 { 339 unsigned long start = jiffies; 340 341 dprintk("%s\n", __func__); 342 343 while ((si21_readreg(state, LNB_CTRL_REG_1) & 0x8) == 8) { 344 if (jiffies - start > timeout) { 345 dprintk("%s: timeout!!\n", __func__); 346 return -ETIMEDOUT; 347 } 348 msleep(10); 349 } 350 351 return 0; 352 } 353 354 static int si21xx_set_symbolrate(struct dvb_frontend *fe, u32 srate) 355 { 356 struct si21xx_state *state = fe->demodulator_priv; 357 u32 sym_rate, data_rate; 358 int i; 359 u8 sym_rate_bytes[3]; 360 361 dprintk("%s : srate = %i\n", __func__ , srate); 362 363 if ((srate < 1000000) || (srate > 45000000)) 364 return -EINVAL; 365 366 data_rate = srate; 367 sym_rate = 0; 368 369 for (i = 0; i < 4; ++i) { 370 sym_rate /= 100; 371 sym_rate = sym_rate + ((data_rate % 100) * 0x800000) / 372 state->fs; 373 data_rate /= 100; 374 } 375 for (i = 0; i < 3; ++i) 376 sym_rate_bytes[i] = (u8)((sym_rate >> (i * 8)) & 0xff); 377 378 si21_writeregs(state, SYM_RATE_REG_L, sym_rate_bytes, 0x03); 379 380 return 0; 381 } 382 383 static int si21xx_send_diseqc_msg(struct dvb_frontend *fe, 384 struct dvb_diseqc_master_cmd *m) 385 { 386 struct si21xx_state *state = fe->demodulator_priv; 387 u8 lnb_status; 388 u8 LNB_CTRL_1; 389 int status; 390 391 dprintk("%s\n", __func__); 392 393 status = PASS; 394 LNB_CTRL_1 = 0; 395 396 status |= si21_readregs(state, LNB_CTRL_STATUS_REG, &lnb_status, 0x01); 397 status |= si21_readregs(state, LNB_CTRL_REG_1, &lnb_status, 0x01); 398 399 /*fill the FIFO*/ 400 status |= si21_writeregs(state, LNB_FIFO_REGS_0, m->msg, m->msg_len); 401 402 LNB_CTRL_1 = (lnb_status & 0x70); 403 LNB_CTRL_1 |= m->msg_len; 404 405 LNB_CTRL_1 |= 0x80; /* begin LNB signaling */ 406 407 status |= si21_writeregs(state, LNB_CTRL_REG_1, &LNB_CTRL_1, 0x01); 408 409 return status; 410 } 411 412 static int si21xx_send_diseqc_burst(struct dvb_frontend *fe, 413 enum fe_sec_mini_cmd burst) 414 { 415 struct si21xx_state *state = fe->demodulator_priv; 416 u8 val; 417 418 dprintk("%s\n", __func__); 419 420 if (si21xx_wait_diseqc_idle(state, 100) < 0) 421 return -ETIMEDOUT; 422 423 val = (0x80 | si21_readreg(state, 0xc1)); 424 if (si21_writereg(state, LNB_CTRL_REG_1, 425 burst == SEC_MINI_A ? (val & ~0x10) : (val | 0x10))) 426 return -EREMOTEIO; 427 428 if (si21xx_wait_diseqc_idle(state, 100) < 0) 429 return -ETIMEDOUT; 430 431 if (si21_writereg(state, LNB_CTRL_REG_1, val)) 432 return -EREMOTEIO; 433 434 return 0; 435 } 436 /* 30.06.2008 */ 437 static int si21xx_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone) 438 { 439 struct si21xx_state *state = fe->demodulator_priv; 440 u8 val; 441 442 dprintk("%s\n", __func__); 443 val = (0x80 | si21_readreg(state, LNB_CTRL_REG_1)); 444 445 switch (tone) { 446 case SEC_TONE_ON: 447 return si21_writereg(state, LNB_CTRL_REG_1, val | 0x20); 448 449 case SEC_TONE_OFF: 450 return si21_writereg(state, LNB_CTRL_REG_1, (val & ~0x20)); 451 452 default: 453 return -EINVAL; 454 } 455 } 456 457 static int si21xx_set_voltage(struct dvb_frontend *fe, enum fe_sec_voltage volt) 458 { 459 struct si21xx_state *state = fe->demodulator_priv; 460 461 u8 val; 462 dprintk("%s: %s\n", __func__, 463 volt == SEC_VOLTAGE_13 ? "SEC_VOLTAGE_13" : 464 volt == SEC_VOLTAGE_18 ? "SEC_VOLTAGE_18" : "??"); 465 466 467 val = (0x80 | si21_readreg(state, LNB_CTRL_REG_1)); 468 469 switch (volt) { 470 case SEC_VOLTAGE_18: 471 return si21_writereg(state, LNB_CTRL_REG_1, val | 0x40); 472 break; 473 case SEC_VOLTAGE_13: 474 return si21_writereg(state, LNB_CTRL_REG_1, (val & ~0x40)); 475 break; 476 default: 477 return -EINVAL; 478 } 479 } 480 481 static int si21xx_init(struct dvb_frontend *fe) 482 { 483 struct si21xx_state *state = fe->demodulator_priv; 484 int i; 485 int status = 0; 486 u8 reg1; 487 u8 val; 488 u8 reg2[2]; 489 490 dprintk("%s\n", __func__); 491 492 for (i = 0; ; i += 2) { 493 reg1 = serit_sp1511lhb_inittab[i]; 494 val = serit_sp1511lhb_inittab[i+1]; 495 if (reg1 == 0xff && val == 0xff) 496 break; 497 si21_writeregs(state, reg1, &val, 1); 498 } 499 500 /*DVB QPSK SYSTEM MODE REG*/ 501 reg1 = 0x08; 502 si21_writeregs(state, SYSTEM_MODE_REG, ®1, 0x01); 503 504 /*transport stream config*/ 505 /* 506 mode = PARALLEL; 507 sdata_form = LSB_FIRST; 508 clk_edge = FALLING_EDGE; 509 clk_mode = CLK_GAPPED_MODE; 510 strt_len = BYTE_WIDE; 511 sync_pol = ACTIVE_HIGH; 512 val_pol = ACTIVE_HIGH; 513 err_pol = ACTIVE_HIGH; 514 sclk_rate = 0x00; 515 parity = 0x00 ; 516 data_delay = 0x00; 517 clk_delay = 0x00; 518 pclk_smooth = 0x00; 519 */ 520 reg2[0] = 521 PARALLEL + (LSB_FIRST << 1) 522 + (FALLING_EDGE << 2) + (CLK_GAPPED_MODE << 3) 523 + (BYTE_WIDE << 4) + (ACTIVE_HIGH << 5) 524 + (ACTIVE_HIGH << 6) + (ACTIVE_HIGH << 7); 525 526 reg2[1] = 0; 527 /* sclk_rate + (parity << 2) 528 + (data_delay << 3) + (clk_delay << 4) 529 + (pclk_smooth << 5); 530 */ 531 status |= si21_writeregs(state, TS_CTRL_REG_1, reg2, 0x02); 532 if (status != 0) 533 dprintk(" %s : TS Set Error\n", __func__); 534 535 return 0; 536 537 } 538 539 static int si21_read_status(struct dvb_frontend *fe, enum fe_status *status) 540 { 541 struct si21xx_state *state = fe->demodulator_priv; 542 u8 regs_read[2]; 543 u8 reg_read; 544 u8 i; 545 u8 lock; 546 u8 signal = si21_readreg(state, ANALOG_AGC_POWER_LEVEL_REG); 547 548 si21_readregs(state, LOCK_STATUS_REG_1, regs_read, 0x02); 549 reg_read = 0; 550 551 for (i = 0; i < 7; ++i) 552 reg_read |= ((regs_read[0] >> i) & 0x01) << (6 - i); 553 554 lock = ((reg_read & 0x7f) | (regs_read[1] & 0x80)); 555 556 dprintk("%s : FE_READ_STATUS : VSTATUS: 0x%02x\n", __func__, lock); 557 *status = 0; 558 559 if (signal > 10) 560 *status |= FE_HAS_SIGNAL; 561 562 if (lock & 0x2) 563 *status |= FE_HAS_CARRIER; 564 565 if (lock & 0x20) 566 *status |= FE_HAS_VITERBI; 567 568 if (lock & 0x40) 569 *status |= FE_HAS_SYNC; 570 571 if ((lock & 0x7b) == 0x7b) 572 *status |= FE_HAS_LOCK; 573 574 return 0; 575 } 576 577 static int si21_read_signal_strength(struct dvb_frontend *fe, u16 *strength) 578 { 579 struct si21xx_state *state = fe->demodulator_priv; 580 581 /*status = si21_readreg(state, ANALOG_AGC_POWER_LEVEL_REG, 582 (u8*)agclevel, 0x01);*/ 583 584 u16 signal = (3 * si21_readreg(state, 0x27) * 585 si21_readreg(state, 0x28)); 586 587 dprintk("%s : AGCPWR: 0x%02x%02x, signal=0x%04x\n", __func__, 588 si21_readreg(state, 0x27), 589 si21_readreg(state, 0x28), (int) signal); 590 591 signal <<= 4; 592 *strength = signal; 593 594 return 0; 595 } 596 597 static int si21_read_ber(struct dvb_frontend *fe, u32 *ber) 598 { 599 struct si21xx_state *state = fe->demodulator_priv; 600 601 dprintk("%s\n", __func__); 602 603 if (state->errmode != STATUS_BER) 604 return 0; 605 606 *ber = (si21_readreg(state, 0x1d) << 8) | 607 si21_readreg(state, 0x1e); 608 609 return 0; 610 } 611 612 static int si21_read_snr(struct dvb_frontend *fe, u16 *snr) 613 { 614 struct si21xx_state *state = fe->demodulator_priv; 615 616 s32 xsnr = 0xffff - ((si21_readreg(state, 0x24) << 8) | 617 si21_readreg(state, 0x25)); 618 xsnr = 3 * (xsnr - 0xa100); 619 *snr = (xsnr > 0xffff) ? 0xffff : (xsnr < 0) ? 0 : xsnr; 620 621 dprintk("%s\n", __func__); 622 623 return 0; 624 } 625 626 static int si21_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) 627 { 628 struct si21xx_state *state = fe->demodulator_priv; 629 630 dprintk("%s\n", __func__); 631 632 if (state->errmode != STATUS_UCBLOCKS) 633 *ucblocks = 0; 634 else 635 *ucblocks = (si21_readreg(state, 0x1d) << 8) | 636 si21_readreg(state, 0x1e); 637 638 return 0; 639 } 640 641 /* initiates a channel acquisition sequence 642 using the specified symbol rate and code rate */ 643 static int si21xx_setacquire(struct dvb_frontend *fe, int symbrate, 644 enum fe_code_rate crate) 645 { 646 647 struct si21xx_state *state = fe->demodulator_priv; 648 u8 coderates[] = { 649 0x0, 0x01, 0x02, 0x04, 0x00, 650 0x8, 0x10, 0x20, 0x00, 0x3f 651 }; 652 653 u8 coderate_ptr; 654 int status; 655 u8 start_acq = 0x80; 656 u8 reg, regs[3]; 657 658 dprintk("%s\n", __func__); 659 660 status = PASS; 661 coderate_ptr = coderates[crate]; 662 663 si21xx_set_symbolrate(fe, symbrate); 664 665 /* write code rates to use in the Viterbi search */ 666 status |= si21_writeregs(state, 667 VIT_SRCH_CTRL_REG_1, 668 &coderate_ptr, 0x01); 669 670 /* clear acq_start bit */ 671 status |= si21_readregs(state, ACQ_CTRL_REG_2, ®, 0x01); 672 reg &= ~start_acq; 673 status |= si21_writeregs(state, ACQ_CTRL_REG_2, ®, 0x01); 674 675 /* use new Carrier Frequency Offset Estimator (QuickLock) */ 676 regs[0] = 0xCB; 677 regs[1] = 0x40; 678 regs[2] = 0xCB; 679 680 status |= si21_writeregs(state, 681 TWO_DB_BNDWDTH_THRSHLD_REG, 682 ®s[0], 0x03); 683 reg = 0x56; 684 status |= si21_writeregs(state, 685 LSA_CTRL_REG_1, ®, 1); 686 reg = 0x05; 687 status |= si21_writeregs(state, 688 BLIND_SCAN_CTRL_REG, ®, 1); 689 /* start automatic acq */ 690 status |= si21_writeregs(state, 691 ACQ_CTRL_REG_2, &start_acq, 0x01); 692 693 return status; 694 } 695 696 static int si21xx_set_frontend(struct dvb_frontend *fe) 697 { 698 struct si21xx_state *state = fe->demodulator_priv; 699 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 700 701 /* freq Channel carrier frequency in KHz (i.e. 1550000 KHz) 702 datarate Channel symbol rate in Sps (i.e. 22500000 Sps)*/ 703 704 /* in MHz */ 705 unsigned char coarse_tune_freq; 706 int fine_tune_freq; 707 unsigned char sample_rate = 0; 708 /* boolean */ 709 bool inband_interferer_ind; 710 711 /* INTERMEDIATE VALUES */ 712 int icoarse_tune_freq; /* MHz */ 713 int ifine_tune_freq; /* MHz */ 714 unsigned int band_high; 715 unsigned int band_low; 716 unsigned int x1; 717 unsigned int x2; 718 int i; 719 bool inband_interferer_div2[ALLOWABLE_FS_COUNT]; 720 bool inband_interferer_div4[ALLOWABLE_FS_COUNT]; 721 int status; 722 723 /* allowable sample rates for ADC in MHz */ 724 int afs[ALLOWABLE_FS_COUNT] = { 200, 192, 193, 194, 195, 725 196, 204, 205, 206, 207 726 }; 727 /* in MHz */ 728 int if_limit_high; 729 int if_limit_low; 730 int lnb_lo; 731 int lnb_uncertanity; 732 733 int rf_freq; 734 int data_rate; 735 unsigned char regs[4]; 736 737 dprintk("%s : FE_SET_FRONTEND\n", __func__); 738 739 if (c->delivery_system != SYS_DVBS) { 740 dprintk("%s: unsupported delivery system selected (%d)\n", 741 __func__, c->delivery_system); 742 return -EOPNOTSUPP; 743 } 744 745 for (i = 0; i < ALLOWABLE_FS_COUNT; ++i) 746 inband_interferer_div2[i] = inband_interferer_div4[i] = false; 747 748 if_limit_high = -700000; 749 if_limit_low = -100000; 750 /* in MHz */ 751 lnb_lo = 0; 752 lnb_uncertanity = 0; 753 754 rf_freq = 10 * c->frequency ; 755 data_rate = c->symbol_rate / 100; 756 757 status = PASS; 758 759 band_low = (rf_freq - lnb_lo) - ((lnb_uncertanity * 200) 760 + (data_rate * 135)) / 200; 761 762 band_high = (rf_freq - lnb_lo) + ((lnb_uncertanity * 200) 763 + (data_rate * 135)) / 200; 764 765 766 icoarse_tune_freq = 100000 * 767 (((rf_freq - lnb_lo) - 768 (if_limit_low + if_limit_high) / 2) 769 / 100000); 770 771 ifine_tune_freq = (rf_freq - lnb_lo) - icoarse_tune_freq ; 772 773 for (i = 0; i < ALLOWABLE_FS_COUNT; ++i) { 774 x1 = ((rf_freq - lnb_lo) / (afs[i] * 2500)) * 775 (afs[i] * 2500) + afs[i] * 2500; 776 777 x2 = ((rf_freq - lnb_lo) / (afs[i] * 2500)) * 778 (afs[i] * 2500); 779 780 if (((band_low < x1) && (x1 < band_high)) || 781 ((band_low < x2) && (x2 < band_high))) 782 inband_interferer_div4[i] = true; 783 784 } 785 786 for (i = 0; i < ALLOWABLE_FS_COUNT; ++i) { 787 x1 = ((rf_freq - lnb_lo) / (afs[i] * 5000)) * 788 (afs[i] * 5000) + afs[i] * 5000; 789 790 x2 = ((rf_freq - lnb_lo) / (afs[i] * 5000)) * 791 (afs[i] * 5000); 792 793 if (((band_low < x1) && (x1 < band_high)) || 794 ((band_low < x2) && (x2 < band_high))) 795 inband_interferer_div2[i] = true; 796 } 797 798 inband_interferer_ind = true; 799 for (i = 0; i < ALLOWABLE_FS_COUNT; ++i) { 800 if (inband_interferer_div2[i] || inband_interferer_div4[i]) { 801 inband_interferer_ind = false; 802 break; 803 } 804 } 805 806 if (inband_interferer_ind) { 807 for (i = 0; i < ALLOWABLE_FS_COUNT; ++i) { 808 if (!inband_interferer_div2[i]) { 809 sample_rate = (u8) afs[i]; 810 break; 811 } 812 } 813 } else { 814 for (i = 0; i < ALLOWABLE_FS_COUNT; ++i) { 815 if ((inband_interferer_div2[i] || 816 !inband_interferer_div4[i])) { 817 sample_rate = (u8) afs[i]; 818 break; 819 } 820 } 821 822 } 823 824 if (sample_rate > 207 || sample_rate < 192) 825 sample_rate = 200; 826 827 fine_tune_freq = ((0x4000 * (ifine_tune_freq / 10)) / 828 ((sample_rate) * 1000)); 829 830 coarse_tune_freq = (u8)(icoarse_tune_freq / 100000); 831 832 regs[0] = sample_rate; 833 regs[1] = coarse_tune_freq; 834 regs[2] = fine_tune_freq & 0xFF; 835 regs[3] = fine_tune_freq >> 8 & 0xFF; 836 837 status |= si21_writeregs(state, PLL_DIVISOR_REG, ®s[0], 0x04); 838 839 state->fs = sample_rate;/*ADC MHz*/ 840 si21xx_setacquire(fe, c->symbol_rate, c->fec_inner); 841 842 return 0; 843 } 844 845 static int si21xx_sleep(struct dvb_frontend *fe) 846 { 847 struct si21xx_state *state = fe->demodulator_priv; 848 u8 regdata; 849 850 dprintk("%s\n", __func__); 851 852 si21_readregs(state, SYSTEM_MODE_REG, ®data, 0x01); 853 regdata |= 1 << 6; 854 si21_writeregs(state, SYSTEM_MODE_REG, ®data, 0x01); 855 state->initialised = 0; 856 857 return 0; 858 } 859 860 static void si21xx_release(struct dvb_frontend *fe) 861 { 862 struct si21xx_state *state = fe->demodulator_priv; 863 864 dprintk("%s\n", __func__); 865 866 kfree(state); 867 } 868 869 static const struct dvb_frontend_ops si21xx_ops = { 870 .delsys = { SYS_DVBS }, 871 .info = { 872 .name = "SL SI21XX DVB-S", 873 .frequency_min = 950000, 874 .frequency_max = 2150000, 875 .frequency_stepsize = 125, /* kHz for QPSK frontends */ 876 .frequency_tolerance = 0, 877 .symbol_rate_min = 1000000, 878 .symbol_rate_max = 45000000, 879 .symbol_rate_tolerance = 500, /* ppm */ 880 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | 881 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | 882 FE_CAN_QPSK | 883 FE_CAN_FEC_AUTO 884 }, 885 886 .release = si21xx_release, 887 .init = si21xx_init, 888 .sleep = si21xx_sleep, 889 .write = si21_write, 890 .read_status = si21_read_status, 891 .read_ber = si21_read_ber, 892 .read_signal_strength = si21_read_signal_strength, 893 .read_snr = si21_read_snr, 894 .read_ucblocks = si21_read_ucblocks, 895 .diseqc_send_master_cmd = si21xx_send_diseqc_msg, 896 .diseqc_send_burst = si21xx_send_diseqc_burst, 897 .set_tone = si21xx_set_tone, 898 .set_voltage = si21xx_set_voltage, 899 900 .set_frontend = si21xx_set_frontend, 901 }; 902 903 struct dvb_frontend *si21xx_attach(const struct si21xx_config *config, 904 struct i2c_adapter *i2c) 905 { 906 struct si21xx_state *state = NULL; 907 int id; 908 909 dprintk("%s\n", __func__); 910 911 /* allocate memory for the internal state */ 912 state = kzalloc(sizeof(struct si21xx_state), GFP_KERNEL); 913 if (state == NULL) 914 goto error; 915 916 /* setup the state */ 917 state->config = config; 918 state->i2c = i2c; 919 state->initialised = 0; 920 state->errmode = STATUS_BER; 921 922 /* check if the demod is there */ 923 id = si21_readreg(state, SYSTEM_MODE_REG); 924 si21_writereg(state, SYSTEM_MODE_REG, id | 0x40); /* standby off */ 925 msleep(200); 926 id = si21_readreg(state, 0x00); 927 928 /* register 0x00 contains: 929 0x34 for SI2107 930 0x24 for SI2108 931 0x14 for SI2109 932 0x04 for SI2110 933 */ 934 if (id != 0x04 && id != 0x14) 935 goto error; 936 937 /* create dvb_frontend */ 938 memcpy(&state->frontend.ops, &si21xx_ops, 939 sizeof(struct dvb_frontend_ops)); 940 state->frontend.demodulator_priv = state; 941 return &state->frontend; 942 943 error: 944 kfree(state); 945 return NULL; 946 } 947 EXPORT_SYMBOL(si21xx_attach); 948 949 module_param(debug, int, 0644); 950 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); 951 952 MODULE_DESCRIPTION("SL SI21XX DVB Demodulator driver"); 953 MODULE_AUTHOR("Igor M. Liplianin"); 954 MODULE_LICENSE("GPL"); 955