xref: /openbmc/linux/drivers/media/dvb-frontends/s5h1420.c (revision bbde9fc1824aab58bc78c084163007dd6c03fe5b)
1 /*
2  * Driver for
3  *    Samsung S5H1420 and
4  *    PnpNetwork PN1010 QPSK Demodulator
5  *
6  * Copyright (C) 2005 Andrew de Quincey <adq_dvb@lidskialf.net>
7  * Copyright (C) 2005-8 Patrick Boettcher <pb@linuxtv.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/jiffies.h>
32 #include <asm/div64.h>
33 
34 #include <linux/i2c.h>
35 
36 
37 #include "dvb_frontend.h"
38 #include "s5h1420.h"
39 #include "s5h1420_priv.h"
40 
41 #define TONE_FREQ 22000
42 
43 struct s5h1420_state {
44 	struct i2c_adapter* i2c;
45 	const struct s5h1420_config* config;
46 
47 	struct dvb_frontend frontend;
48 	struct i2c_adapter tuner_i2c_adapter;
49 
50 	u8 CON_1_val;
51 
52 	u8 postlocked:1;
53 	u32 fclk;
54 	u32 tunedfreq;
55 	enum fe_code_rate fec_inner;
56 	u32 symbol_rate;
57 
58 	/* FIXME: ugly workaround for flexcop's incapable i2c-controller
59 	 * it does not support repeated-start, workaround: write addr-1
60 	 * and then read
61 	 */
62 	u8 shadow[256];
63 };
64 
65 static u32 s5h1420_getsymbolrate(struct s5h1420_state* state);
66 static int s5h1420_get_tune_settings(struct dvb_frontend* fe,
67 				     struct dvb_frontend_tune_settings* fesettings);
68 
69 
70 static int debug;
71 module_param(debug, int, 0644);
72 MODULE_PARM_DESC(debug, "enable debugging");
73 
74 #define dprintk(x...) do { \
75 	if (debug) \
76 		printk(KERN_DEBUG "S5H1420: " x); \
77 } while (0)
78 
79 static u8 s5h1420_readreg(struct s5h1420_state *state, u8 reg)
80 {
81 	int ret;
82 	u8 b[2];
83 	struct i2c_msg msg[] = {
84 		{ .addr = state->config->demod_address, .flags = 0, .buf = b, .len = 2 },
85 		{ .addr = state->config->demod_address, .flags = 0, .buf = &reg, .len = 1 },
86 		{ .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b, .len = 1 },
87 	};
88 
89 	b[0] = (reg - 1) & 0xff;
90 	b[1] = state->shadow[(reg - 1) & 0xff];
91 
92 	if (state->config->repeated_start_workaround) {
93 		ret = i2c_transfer(state->i2c, msg, 3);
94 		if (ret != 3)
95 			return ret;
96 	} else {
97 		ret = i2c_transfer(state->i2c, &msg[1], 1);
98 		if (ret != 1)
99 			return ret;
100 		ret = i2c_transfer(state->i2c, &msg[2], 1);
101 		if (ret != 1)
102 			return ret;
103 	}
104 
105 	/* dprintk("rd(%02x): %02x %02x\n", state->config->demod_address, reg, b[0]); */
106 
107 	return b[0];
108 }
109 
110 static int s5h1420_writereg (struct s5h1420_state* state, u8 reg, u8 data)
111 {
112 	u8 buf[] = { reg, data };
113 	struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
114 	int err;
115 
116 	/* dprintk("wr(%02x): %02x %02x\n", state->config->demod_address, reg, data); */
117 	err = i2c_transfer(state->i2c, &msg, 1);
118 	if (err != 1) {
119 		dprintk("%s: writereg error (err == %i, reg == 0x%02x, data == 0x%02x)\n", __func__, err, reg, data);
120 		return -EREMOTEIO;
121 	}
122 	state->shadow[reg] = data;
123 
124 	return 0;
125 }
126 
127 static int s5h1420_set_voltage(struct dvb_frontend *fe,
128 			       enum fe_sec_voltage voltage)
129 {
130 	struct s5h1420_state* state = fe->demodulator_priv;
131 
132 	dprintk("enter %s\n", __func__);
133 
134 	switch(voltage) {
135 	case SEC_VOLTAGE_13:
136 		s5h1420_writereg(state, 0x3c,
137 				 (s5h1420_readreg(state, 0x3c) & 0xfe) | 0x02);
138 		break;
139 
140 	case SEC_VOLTAGE_18:
141 		s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) | 0x03);
142 		break;
143 
144 	case SEC_VOLTAGE_OFF:
145 		s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) & 0xfd);
146 		break;
147 	}
148 
149 	dprintk("leave %s\n", __func__);
150 	return 0;
151 }
152 
153 static int s5h1420_set_tone(struct dvb_frontend *fe,
154 			    enum fe_sec_tone_mode tone)
155 {
156 	struct s5h1420_state* state = fe->demodulator_priv;
157 
158 	dprintk("enter %s\n", __func__);
159 	switch(tone) {
160 	case SEC_TONE_ON:
161 		s5h1420_writereg(state, 0x3b,
162 				 (s5h1420_readreg(state, 0x3b) & 0x74) | 0x08);
163 		break;
164 
165 	case SEC_TONE_OFF:
166 		s5h1420_writereg(state, 0x3b,
167 				 (s5h1420_readreg(state, 0x3b) & 0x74) | 0x01);
168 		break;
169 	}
170 	dprintk("leave %s\n", __func__);
171 
172 	return 0;
173 }
174 
175 static int s5h1420_send_master_cmd (struct dvb_frontend* fe,
176 				    struct dvb_diseqc_master_cmd* cmd)
177 {
178 	struct s5h1420_state* state = fe->demodulator_priv;
179 	u8 val;
180 	int i;
181 	unsigned long timeout;
182 	int result = 0;
183 
184 	dprintk("enter %s\n", __func__);
185 	if (cmd->msg_len > sizeof(cmd->msg))
186 		return -EINVAL;
187 
188 	/* setup for DISEQC */
189 	val = s5h1420_readreg(state, 0x3b);
190 	s5h1420_writereg(state, 0x3b, 0x02);
191 	msleep(15);
192 
193 	/* write the DISEQC command bytes */
194 	for(i=0; i< cmd->msg_len; i++) {
195 		s5h1420_writereg(state, 0x3d + i, cmd->msg[i]);
196 	}
197 
198 	/* kick off transmission */
199 	s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) |
200 				      ((cmd->msg_len-1) << 4) | 0x08);
201 
202 	/* wait for transmission to complete */
203 	timeout = jiffies + ((100*HZ) / 1000);
204 	while(time_before(jiffies, timeout)) {
205 		if (!(s5h1420_readreg(state, 0x3b) & 0x08))
206 			break;
207 
208 		msleep(5);
209 	}
210 	if (time_after(jiffies, timeout))
211 		result = -ETIMEDOUT;
212 
213 	/* restore original settings */
214 	s5h1420_writereg(state, 0x3b, val);
215 	msleep(15);
216 	dprintk("leave %s\n", __func__);
217 	return result;
218 }
219 
220 static int s5h1420_recv_slave_reply (struct dvb_frontend* fe,
221 				     struct dvb_diseqc_slave_reply* reply)
222 {
223 	struct s5h1420_state* state = fe->demodulator_priv;
224 	u8 val;
225 	int i;
226 	int length;
227 	unsigned long timeout;
228 	int result = 0;
229 
230 	/* setup for DISEQC receive */
231 	val = s5h1420_readreg(state, 0x3b);
232 	s5h1420_writereg(state, 0x3b, 0x82); /* FIXME: guess - do we need to set DIS_RDY(0x08) in receive mode? */
233 	msleep(15);
234 
235 	/* wait for reception to complete */
236 	timeout = jiffies + ((reply->timeout*HZ) / 1000);
237 	while(time_before(jiffies, timeout)) {
238 		if (!(s5h1420_readreg(state, 0x3b) & 0x80)) /* FIXME: do we test DIS_RDY(0x08) or RCV_EN(0x80)? */
239 			break;
240 
241 		msleep(5);
242 	}
243 	if (time_after(jiffies, timeout)) {
244 		result = -ETIMEDOUT;
245 		goto exit;
246 	}
247 
248 	/* check error flag - FIXME: not sure what this does - docs do not describe
249 	 * beyond "error flag for diseqc receive data :( */
250 	if (s5h1420_readreg(state, 0x49)) {
251 		result = -EIO;
252 		goto exit;
253 	}
254 
255 	/* check length */
256 	length = (s5h1420_readreg(state, 0x3b) & 0x70) >> 4;
257 	if (length > sizeof(reply->msg)) {
258 		result = -EOVERFLOW;
259 		goto exit;
260 	}
261 	reply->msg_len = length;
262 
263 	/* extract data */
264 	for(i=0; i< length; i++) {
265 		reply->msg[i] = s5h1420_readreg(state, 0x3d + i);
266 	}
267 
268 exit:
269 	/* restore original settings */
270 	s5h1420_writereg(state, 0x3b, val);
271 	msleep(15);
272 	return result;
273 }
274 
275 static int s5h1420_send_burst(struct dvb_frontend *fe,
276 			      enum fe_sec_mini_cmd minicmd)
277 {
278 	struct s5h1420_state* state = fe->demodulator_priv;
279 	u8 val;
280 	int result = 0;
281 	unsigned long timeout;
282 
283 	/* setup for tone burst */
284 	val = s5h1420_readreg(state, 0x3b);
285 	s5h1420_writereg(state, 0x3b, (s5h1420_readreg(state, 0x3b) & 0x70) | 0x01);
286 
287 	/* set value for B position if requested */
288 	if (minicmd == SEC_MINI_B) {
289 		s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x04);
290 	}
291 	msleep(15);
292 
293 	/* start transmission */
294 	s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x08);
295 
296 	/* wait for transmission to complete */
297 	timeout = jiffies + ((100*HZ) / 1000);
298 	while(time_before(jiffies, timeout)) {
299 		if (!(s5h1420_readreg(state, 0x3b) & 0x08))
300 			break;
301 
302 		msleep(5);
303 	}
304 	if (time_after(jiffies, timeout))
305 		result = -ETIMEDOUT;
306 
307 	/* restore original settings */
308 	s5h1420_writereg(state, 0x3b, val);
309 	msleep(15);
310 	return result;
311 }
312 
313 static enum fe_status s5h1420_get_status_bits(struct s5h1420_state *state)
314 {
315 	u8 val;
316 	enum fe_status status = 0;
317 
318 	val = s5h1420_readreg(state, 0x14);
319 	if (val & 0x02)
320 		status |=  FE_HAS_SIGNAL;
321 	if (val & 0x01)
322 		status |=  FE_HAS_CARRIER;
323 	val = s5h1420_readreg(state, 0x36);
324 	if (val & 0x01)
325 		status |=  FE_HAS_VITERBI;
326 	if (val & 0x20)
327 		status |=  FE_HAS_SYNC;
328 	if (status == (FE_HAS_SIGNAL|FE_HAS_CARRIER|FE_HAS_VITERBI|FE_HAS_SYNC))
329 		status |=  FE_HAS_LOCK;
330 
331 	return status;
332 }
333 
334 static int s5h1420_read_status(struct dvb_frontend *fe,
335 			       enum fe_status *status)
336 {
337 	struct s5h1420_state* state = fe->demodulator_priv;
338 	u8 val;
339 
340 	dprintk("enter %s\n", __func__);
341 
342 	if (status == NULL)
343 		return -EINVAL;
344 
345 	/* determine lock state */
346 	*status = s5h1420_get_status_bits(state);
347 
348 	/* fix for FEC 5/6 inversion issue - if it doesn't quite lock, invert
349 	the inversion, wait a bit and check again */
350 	if (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI)) {
351 		val = s5h1420_readreg(state, Vit10);
352 		if ((val & 0x07) == 0x03) {
353 			if (val & 0x08)
354 				s5h1420_writereg(state, Vit09, 0x13);
355 			else
356 				s5h1420_writereg(state, Vit09, 0x1b);
357 
358 			/* wait a bit then update lock status */
359 			mdelay(200);
360 			*status = s5h1420_get_status_bits(state);
361 		}
362 	}
363 
364 	/* perform post lock setup */
365 	if ((*status & FE_HAS_LOCK) && !state->postlocked) {
366 
367 		/* calculate the data rate */
368 		u32 tmp = s5h1420_getsymbolrate(state);
369 		switch (s5h1420_readreg(state, Vit10) & 0x07) {
370 		case 0: tmp = (tmp * 2 * 1) / 2; break;
371 		case 1: tmp = (tmp * 2 * 2) / 3; break;
372 		case 2: tmp = (tmp * 2 * 3) / 4; break;
373 		case 3: tmp = (tmp * 2 * 5) / 6; break;
374 		case 4: tmp = (tmp * 2 * 6) / 7; break;
375 		case 5: tmp = (tmp * 2 * 7) / 8; break;
376 		}
377 
378 		if (tmp == 0) {
379 			printk(KERN_ERR "s5h1420: avoided division by 0\n");
380 			tmp = 1;
381 		}
382 		tmp = state->fclk / tmp;
383 
384 
385 		/* set the MPEG_CLK_INTL for the calculated data rate */
386 		if (tmp < 2)
387 			val = 0x00;
388 		else if (tmp < 5)
389 			val = 0x01;
390 		else if (tmp < 9)
391 			val = 0x02;
392 		else if (tmp < 13)
393 			val = 0x03;
394 		else if (tmp < 17)
395 			val = 0x04;
396 		else if (tmp < 25)
397 			val = 0x05;
398 		else if (tmp < 33)
399 			val = 0x06;
400 		else
401 			val = 0x07;
402 		dprintk("for MPEG_CLK_INTL %d %x\n", tmp, val);
403 
404 		s5h1420_writereg(state, FEC01, 0x18);
405 		s5h1420_writereg(state, FEC01, 0x10);
406 		s5h1420_writereg(state, FEC01, val);
407 
408 		/* Enable "MPEG_Out" */
409 		val = s5h1420_readreg(state, Mpeg02);
410 		s5h1420_writereg(state, Mpeg02, val | (1 << 6));
411 
412 		/* kicker disable */
413 		val = s5h1420_readreg(state, QPSK01) & 0x7f;
414 		s5h1420_writereg(state, QPSK01, val);
415 
416 		/* DC freeze TODO it was never activated by default or it can stay activated */
417 
418 		if (s5h1420_getsymbolrate(state) >= 20000000) {
419 			s5h1420_writereg(state, Loop04, 0x8a);
420 			s5h1420_writereg(state, Loop05, 0x6a);
421 		} else {
422 			s5h1420_writereg(state, Loop04, 0x58);
423 			s5h1420_writereg(state, Loop05, 0x27);
424 		}
425 
426 		/* post-lock processing has been done! */
427 		state->postlocked = 1;
428 	}
429 
430 	dprintk("leave %s\n", __func__);
431 
432 	return 0;
433 }
434 
435 static int s5h1420_read_ber(struct dvb_frontend* fe, u32* ber)
436 {
437 	struct s5h1420_state* state = fe->demodulator_priv;
438 
439 	s5h1420_writereg(state, 0x46, 0x1d);
440 	mdelay(25);
441 
442 	*ber = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47);
443 
444 	return 0;
445 }
446 
447 static int s5h1420_read_signal_strength(struct dvb_frontend* fe, u16* strength)
448 {
449 	struct s5h1420_state* state = fe->demodulator_priv;
450 
451 	u8 val = s5h1420_readreg(state, 0x15);
452 
453 	*strength =  (u16) ((val << 8) | val);
454 
455 	return 0;
456 }
457 
458 static int s5h1420_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
459 {
460 	struct s5h1420_state* state = fe->demodulator_priv;
461 
462 	s5h1420_writereg(state, 0x46, 0x1f);
463 	mdelay(25);
464 
465 	*ucblocks = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47);
466 
467 	return 0;
468 }
469 
470 static void s5h1420_reset(struct s5h1420_state* state)
471 {
472 	dprintk("%s\n", __func__);
473 	s5h1420_writereg (state, 0x01, 0x08);
474 	s5h1420_writereg (state, 0x01, 0x00);
475 	udelay(10);
476 }
477 
478 static void s5h1420_setsymbolrate(struct s5h1420_state* state,
479 				  struct dtv_frontend_properties *p)
480 {
481 	u8 v;
482 	u64 val;
483 
484 	dprintk("enter %s\n", __func__);
485 
486 	val = ((u64) p->symbol_rate / 1000ULL) * (1ULL<<24);
487 	if (p->symbol_rate < 29000000)
488 		val *= 2;
489 	do_div(val, (state->fclk / 1000));
490 
491 	dprintk("symbol rate register: %06llx\n", (unsigned long long)val);
492 
493 	v = s5h1420_readreg(state, Loop01);
494 	s5h1420_writereg(state, Loop01, v & 0x7f);
495 	s5h1420_writereg(state, Tnco01, val >> 16);
496 	s5h1420_writereg(state, Tnco02, val >> 8);
497 	s5h1420_writereg(state, Tnco03, val & 0xff);
498 	s5h1420_writereg(state, Loop01,  v | 0x80);
499 	dprintk("leave %s\n", __func__);
500 }
501 
502 static u32 s5h1420_getsymbolrate(struct s5h1420_state* state)
503 {
504 	return state->symbol_rate;
505 }
506 
507 static void s5h1420_setfreqoffset(struct s5h1420_state* state, int freqoffset)
508 {
509 	int val;
510 	u8 v;
511 
512 	dprintk("enter %s\n", __func__);
513 
514 	/* remember freqoffset is in kHz, but the chip wants the offset in Hz, so
515 	 * divide fclk by 1000000 to get the correct value. */
516 	val = -(int) ((freqoffset * (1<<24)) / (state->fclk / 1000000));
517 
518 	dprintk("phase rotator/freqoffset: %d %06x\n", freqoffset, val);
519 
520 	v = s5h1420_readreg(state, Loop01);
521 	s5h1420_writereg(state, Loop01, v & 0xbf);
522 	s5h1420_writereg(state, Pnco01, val >> 16);
523 	s5h1420_writereg(state, Pnco02, val >> 8);
524 	s5h1420_writereg(state, Pnco03, val & 0xff);
525 	s5h1420_writereg(state, Loop01, v | 0x40);
526 	dprintk("leave %s\n", __func__);
527 }
528 
529 static int s5h1420_getfreqoffset(struct s5h1420_state* state)
530 {
531 	int val;
532 
533 	s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) | 0x08);
534 	val  = s5h1420_readreg(state, 0x0e) << 16;
535 	val |= s5h1420_readreg(state, 0x0f) << 8;
536 	val |= s5h1420_readreg(state, 0x10);
537 	s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) & 0xf7);
538 
539 	if (val & 0x800000)
540 		val |= 0xff000000;
541 
542 	/* remember freqoffset is in kHz, but the chip wants the offset in Hz, so
543 	 * divide fclk by 1000000 to get the correct value. */
544 	val = (((-val) * (state->fclk/1000000)) / (1<<24));
545 
546 	return val;
547 }
548 
549 static void s5h1420_setfec_inversion(struct s5h1420_state* state,
550 				     struct dtv_frontend_properties *p)
551 {
552 	u8 inversion = 0;
553 	u8 vit08, vit09;
554 
555 	dprintk("enter %s\n", __func__);
556 
557 	if (p->inversion == INVERSION_OFF)
558 		inversion = state->config->invert ? 0x08 : 0;
559 	else if (p->inversion == INVERSION_ON)
560 		inversion = state->config->invert ? 0 : 0x08;
561 
562 	if ((p->fec_inner == FEC_AUTO) || (p->inversion == INVERSION_AUTO)) {
563 		vit08 = 0x3f;
564 		vit09 = 0;
565 	} else {
566 		switch (p->fec_inner) {
567 		case FEC_1_2:
568 			vit08 = 0x01;
569 			vit09 = 0x10;
570 			break;
571 
572 		case FEC_2_3:
573 			vit08 = 0x02;
574 			vit09 = 0x11;
575 			break;
576 
577 		case FEC_3_4:
578 			vit08 = 0x04;
579 			vit09 = 0x12;
580 			break;
581 
582 		case FEC_5_6:
583 			vit08 = 0x08;
584 			vit09 = 0x13;
585 			break;
586 
587 		case FEC_6_7:
588 			vit08 = 0x10;
589 			vit09 = 0x14;
590 			break;
591 
592 		case FEC_7_8:
593 			vit08 = 0x20;
594 			vit09 = 0x15;
595 			break;
596 
597 		default:
598 			return;
599 		}
600 	}
601 	vit09 |= inversion;
602 	dprintk("fec: %02x %02x\n", vit08, vit09);
603 	s5h1420_writereg(state, Vit08, vit08);
604 	s5h1420_writereg(state, Vit09, vit09);
605 	dprintk("leave %s\n", __func__);
606 }
607 
608 static enum fe_code_rate s5h1420_getfec(struct s5h1420_state *state)
609 {
610 	switch(s5h1420_readreg(state, 0x32) & 0x07) {
611 	case 0:
612 		return FEC_1_2;
613 
614 	case 1:
615 		return FEC_2_3;
616 
617 	case 2:
618 		return FEC_3_4;
619 
620 	case 3:
621 		return FEC_5_6;
622 
623 	case 4:
624 		return FEC_6_7;
625 
626 	case 5:
627 		return FEC_7_8;
628 	}
629 
630 	return FEC_NONE;
631 }
632 
633 static enum fe_spectral_inversion
634 s5h1420_getinversion(struct s5h1420_state *state)
635 {
636 	if (s5h1420_readreg(state, 0x32) & 0x08)
637 		return INVERSION_ON;
638 
639 	return INVERSION_OFF;
640 }
641 
642 static int s5h1420_set_frontend(struct dvb_frontend *fe)
643 {
644 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
645 	struct s5h1420_state* state = fe->demodulator_priv;
646 	int frequency_delta;
647 	struct dvb_frontend_tune_settings fesettings;
648 
649 	dprintk("enter %s\n", __func__);
650 
651 	/* check if we should do a fast-tune */
652 	s5h1420_get_tune_settings(fe, &fesettings);
653 	frequency_delta = p->frequency - state->tunedfreq;
654 	if ((frequency_delta > -fesettings.max_drift) &&
655 			(frequency_delta < fesettings.max_drift) &&
656 			(frequency_delta != 0) &&
657 			(state->fec_inner == p->fec_inner) &&
658 			(state->symbol_rate == p->symbol_rate)) {
659 
660 		if (fe->ops.tuner_ops.set_params) {
661 			fe->ops.tuner_ops.set_params(fe);
662 			if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
663 		}
664 		if (fe->ops.tuner_ops.get_frequency) {
665 			u32 tmp;
666 			fe->ops.tuner_ops.get_frequency(fe, &tmp);
667 			if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
668 			s5h1420_setfreqoffset(state, p->frequency - tmp);
669 		} else {
670 			s5h1420_setfreqoffset(state, 0);
671 		}
672 		dprintk("simple tune\n");
673 		return 0;
674 	}
675 	dprintk("tuning demod\n");
676 
677 	/* first of all, software reset */
678 	s5h1420_reset(state);
679 
680 	/* set s5h1420 fclk PLL according to desired symbol rate */
681 	if (p->symbol_rate > 33000000)
682 		state->fclk = 80000000;
683 	else if (p->symbol_rate > 28500000)
684 		state->fclk = 59000000;
685 	else if (p->symbol_rate > 25000000)
686 		state->fclk = 86000000;
687 	else if (p->symbol_rate > 1900000)
688 		state->fclk = 88000000;
689 	else
690 		state->fclk = 44000000;
691 
692 	dprintk("pll01: %d, ToneFreq: %d\n", state->fclk/1000000 - 8, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32));
693 	s5h1420_writereg(state, PLL01, state->fclk/1000000 - 8);
694 	s5h1420_writereg(state, PLL02, 0x40);
695 	s5h1420_writereg(state, DiS01, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32));
696 
697 	/* TODO DC offset removal, config parameter ? */
698 	if (p->symbol_rate > 29000000)
699 		s5h1420_writereg(state, QPSK01, 0xae | 0x10);
700 	else
701 		s5h1420_writereg(state, QPSK01, 0xac | 0x10);
702 
703 	/* set misc registers */
704 	s5h1420_writereg(state, CON_1, 0x00);
705 	s5h1420_writereg(state, QPSK02, 0x00);
706 	s5h1420_writereg(state, Pre01, 0xb0);
707 
708 	s5h1420_writereg(state, Loop01, 0xF0);
709 	s5h1420_writereg(state, Loop02, 0x2a); /* e7 for s5h1420 */
710 	s5h1420_writereg(state, Loop03, 0x79); /* 78 for s5h1420 */
711 	if (p->symbol_rate > 20000000)
712 		s5h1420_writereg(state, Loop04, 0x79);
713 	else
714 		s5h1420_writereg(state, Loop04, 0x58);
715 	s5h1420_writereg(state, Loop05, 0x6b);
716 
717 	if (p->symbol_rate >= 8000000)
718 		s5h1420_writereg(state, Post01, (0 << 6) | 0x10);
719 	else if (p->symbol_rate >= 4000000)
720 		s5h1420_writereg(state, Post01, (1 << 6) | 0x10);
721 	else
722 		s5h1420_writereg(state, Post01, (3 << 6) | 0x10);
723 
724 	s5h1420_writereg(state, Monitor12, 0x00); /* unfreeze DC compensation */
725 
726 	s5h1420_writereg(state, Sync01, 0x33);
727 	s5h1420_writereg(state, Mpeg01, state->config->cdclk_polarity);
728 	s5h1420_writereg(state, Mpeg02, 0x3d); /* Parallel output more, disabled -> enabled later */
729 	s5h1420_writereg(state, Err01, 0x03); /* 0x1d for s5h1420 */
730 
731 	s5h1420_writereg(state, Vit06, 0x6e); /* 0x8e for s5h1420 */
732 	s5h1420_writereg(state, DiS03, 0x00);
733 	s5h1420_writereg(state, Rf01, 0x61); /* Tuner i2c address - for the gate controller */
734 
735 	/* set tuner PLL */
736 	if (fe->ops.tuner_ops.set_params) {
737 		fe->ops.tuner_ops.set_params(fe);
738 		if (fe->ops.i2c_gate_ctrl)
739 			fe->ops.i2c_gate_ctrl(fe, 0);
740 		s5h1420_setfreqoffset(state, 0);
741 	}
742 
743 	/* set the reset of the parameters */
744 	s5h1420_setsymbolrate(state, p);
745 	s5h1420_setfec_inversion(state, p);
746 
747 	/* start QPSK */
748 	s5h1420_writereg(state, QPSK01, s5h1420_readreg(state, QPSK01) | 1);
749 
750 	state->fec_inner = p->fec_inner;
751 	state->symbol_rate = p->symbol_rate;
752 	state->postlocked = 0;
753 	state->tunedfreq = p->frequency;
754 
755 	dprintk("leave %s\n", __func__);
756 	return 0;
757 }
758 
759 static int s5h1420_get_frontend(struct dvb_frontend* fe)
760 {
761 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
762 	struct s5h1420_state* state = fe->demodulator_priv;
763 
764 	p->frequency = state->tunedfreq + s5h1420_getfreqoffset(state);
765 	p->inversion = s5h1420_getinversion(state);
766 	p->symbol_rate = s5h1420_getsymbolrate(state);
767 	p->fec_inner = s5h1420_getfec(state);
768 
769 	return 0;
770 }
771 
772 static int s5h1420_get_tune_settings(struct dvb_frontend* fe,
773 				     struct dvb_frontend_tune_settings* fesettings)
774 {
775 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
776 	if (p->symbol_rate > 20000000) {
777 		fesettings->min_delay_ms = 50;
778 		fesettings->step_size = 2000;
779 		fesettings->max_drift = 8000;
780 	} else if (p->symbol_rate > 12000000) {
781 		fesettings->min_delay_ms = 100;
782 		fesettings->step_size = 1500;
783 		fesettings->max_drift = 9000;
784 	} else if (p->symbol_rate > 8000000) {
785 		fesettings->min_delay_ms = 100;
786 		fesettings->step_size = 1000;
787 		fesettings->max_drift = 8000;
788 	} else if (p->symbol_rate > 4000000) {
789 		fesettings->min_delay_ms = 100;
790 		fesettings->step_size = 500;
791 		fesettings->max_drift = 7000;
792 	} else if (p->symbol_rate > 2000000) {
793 		fesettings->min_delay_ms = 200;
794 		fesettings->step_size = (p->symbol_rate / 8000);
795 		fesettings->max_drift = 14 * fesettings->step_size;
796 	} else {
797 		fesettings->min_delay_ms = 200;
798 		fesettings->step_size = (p->symbol_rate / 8000);
799 		fesettings->max_drift = 18 * fesettings->step_size;
800 	}
801 
802 	return 0;
803 }
804 
805 static int s5h1420_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
806 {
807 	struct s5h1420_state* state = fe->demodulator_priv;
808 
809 	if (enable)
810 		return s5h1420_writereg(state, 0x02, state->CON_1_val | 1);
811 	else
812 		return s5h1420_writereg(state, 0x02, state->CON_1_val & 0xfe);
813 }
814 
815 static int s5h1420_init (struct dvb_frontend* fe)
816 {
817 	struct s5h1420_state* state = fe->demodulator_priv;
818 
819 	/* disable power down and do reset */
820 	state->CON_1_val = state->config->serial_mpeg << 4;
821 	s5h1420_writereg(state, 0x02, state->CON_1_val);
822 	msleep(10);
823 	s5h1420_reset(state);
824 
825 	return 0;
826 }
827 
828 static int s5h1420_sleep(struct dvb_frontend* fe)
829 {
830 	struct s5h1420_state* state = fe->demodulator_priv;
831 	state->CON_1_val = 0x12;
832 	return s5h1420_writereg(state, 0x02, state->CON_1_val);
833 }
834 
835 static void s5h1420_release(struct dvb_frontend* fe)
836 {
837 	struct s5h1420_state* state = fe->demodulator_priv;
838 	i2c_del_adapter(&state->tuner_i2c_adapter);
839 	kfree(state);
840 }
841 
842 static u32 s5h1420_tuner_i2c_func(struct i2c_adapter *adapter)
843 {
844 	return I2C_FUNC_I2C;
845 }
846 
847 static int s5h1420_tuner_i2c_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
848 {
849 	struct s5h1420_state *state = i2c_get_adapdata(i2c_adap);
850 	struct i2c_msg m[3];
851 	u8 tx_open[2] = { CON_1, state->CON_1_val | 1 }; /* repeater stops once there was a stop condition */
852 
853 	if (1 + num > ARRAY_SIZE(m)) {
854 		printk(KERN_WARNING
855 		       "%s: i2c xfer: num=%d is too big!\n",
856 		       KBUILD_MODNAME, num);
857 		return  -EOPNOTSUPP;
858 	}
859 
860 	memset(m, 0, sizeof(struct i2c_msg) * (1 + num));
861 
862 	m[0].addr = state->config->demod_address;
863 	m[0].buf  = tx_open;
864 	m[0].len  = 2;
865 
866 	memcpy(&m[1], msg, sizeof(struct i2c_msg) * num);
867 
868 	return i2c_transfer(state->i2c, m, 1 + num) == 1 + num ? num : -EIO;
869 }
870 
871 static struct i2c_algorithm s5h1420_tuner_i2c_algo = {
872 	.master_xfer   = s5h1420_tuner_i2c_tuner_xfer,
873 	.functionality = s5h1420_tuner_i2c_func,
874 };
875 
876 struct i2c_adapter *s5h1420_get_tuner_i2c_adapter(struct dvb_frontend *fe)
877 {
878 	struct s5h1420_state *state = fe->demodulator_priv;
879 	return &state->tuner_i2c_adapter;
880 }
881 EXPORT_SYMBOL(s5h1420_get_tuner_i2c_adapter);
882 
883 static struct dvb_frontend_ops s5h1420_ops;
884 
885 struct dvb_frontend *s5h1420_attach(const struct s5h1420_config *config,
886 				    struct i2c_adapter *i2c)
887 {
888 	/* allocate memory for the internal state */
889 	struct s5h1420_state *state = kzalloc(sizeof(struct s5h1420_state), GFP_KERNEL);
890 	u8 i;
891 
892 	if (state == NULL)
893 		goto error;
894 
895 	/* setup the state */
896 	state->config = config;
897 	state->i2c = i2c;
898 	state->postlocked = 0;
899 	state->fclk = 88000000;
900 	state->tunedfreq = 0;
901 	state->fec_inner = FEC_NONE;
902 	state->symbol_rate = 0;
903 
904 	/* check if the demod is there + identify it */
905 	i = s5h1420_readreg(state, ID01);
906 	if (i != 0x03)
907 		goto error;
908 
909 	memset(state->shadow, 0xff, sizeof(state->shadow));
910 
911 	for (i = 0; i < 0x50; i++)
912 		state->shadow[i] = s5h1420_readreg(state, i);
913 
914 	/* create dvb_frontend */
915 	memcpy(&state->frontend.ops, &s5h1420_ops, sizeof(struct dvb_frontend_ops));
916 	state->frontend.demodulator_priv = state;
917 
918 	/* create tuner i2c adapter */
919 	strlcpy(state->tuner_i2c_adapter.name, "S5H1420-PN1010 tuner I2C bus",
920 		sizeof(state->tuner_i2c_adapter.name));
921 	state->tuner_i2c_adapter.algo      = &s5h1420_tuner_i2c_algo;
922 	state->tuner_i2c_adapter.algo_data = NULL;
923 	i2c_set_adapdata(&state->tuner_i2c_adapter, state);
924 	if (i2c_add_adapter(&state->tuner_i2c_adapter) < 0) {
925 		printk(KERN_ERR "S5H1420/PN1010: tuner i2c bus could not be initialized\n");
926 		goto error;
927 	}
928 
929 	return &state->frontend;
930 
931 error:
932 	kfree(state);
933 	return NULL;
934 }
935 EXPORT_SYMBOL(s5h1420_attach);
936 
937 static struct dvb_frontend_ops s5h1420_ops = {
938 	.delsys = { SYS_DVBS },
939 	.info = {
940 		.name     = "Samsung S5H1420/PnpNetwork PN1010 DVB-S",
941 		.frequency_min    = 950000,
942 		.frequency_max    = 2150000,
943 		.frequency_stepsize = 125,     /* kHz for QPSK frontends */
944 		.frequency_tolerance  = 29500,
945 		.symbol_rate_min  = 1000000,
946 		.symbol_rate_max  = 45000000,
947 		/*  .symbol_rate_tolerance  = ???,*/
948 		.caps = FE_CAN_INVERSION_AUTO |
949 		FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
950 		FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
951 		FE_CAN_QPSK
952 	},
953 
954 	.release = s5h1420_release,
955 
956 	.init = s5h1420_init,
957 	.sleep = s5h1420_sleep,
958 	.i2c_gate_ctrl = s5h1420_i2c_gate_ctrl,
959 
960 	.set_frontend = s5h1420_set_frontend,
961 	.get_frontend = s5h1420_get_frontend,
962 	.get_tune_settings = s5h1420_get_tune_settings,
963 
964 	.read_status = s5h1420_read_status,
965 	.read_ber = s5h1420_read_ber,
966 	.read_signal_strength = s5h1420_read_signal_strength,
967 	.read_ucblocks = s5h1420_read_ucblocks,
968 
969 	.diseqc_send_master_cmd = s5h1420_send_master_cmd,
970 	.diseqc_recv_slave_reply = s5h1420_recv_slave_reply,
971 	.diseqc_send_burst = s5h1420_send_burst,
972 	.set_tone = s5h1420_set_tone,
973 	.set_voltage = s5h1420_set_voltage,
974 };
975 
976 MODULE_DESCRIPTION("Samsung S5H1420/PnpNetwork PN1010 DVB-S Demodulator driver");
977 MODULE_AUTHOR("Andrew de Quincey, Patrick Boettcher");
978 MODULE_LICENSE("GPL");
979