1 /* 2 * Driver for 3 * Samsung S5H1420 and 4 * PnpNetwork PN1010 QPSK Demodulator 5 * 6 * Copyright (C) 2005 Andrew de Quincey <adq_dvb@lidskialf.net> 7 * Copyright (C) 2005-8 Patrick Boettcher <pb@linuxtv.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/slab.h> 30 #include <linux/delay.h> 31 #include <linux/jiffies.h> 32 #include <asm/div64.h> 33 34 #include <linux/i2c.h> 35 36 37 #include "dvb_frontend.h" 38 #include "s5h1420.h" 39 #include "s5h1420_priv.h" 40 41 #define TONE_FREQ 22000 42 43 struct s5h1420_state { 44 struct i2c_adapter* i2c; 45 const struct s5h1420_config* config; 46 47 struct dvb_frontend frontend; 48 struct i2c_adapter tuner_i2c_adapter; 49 50 u8 CON_1_val; 51 52 u8 postlocked:1; 53 u32 fclk; 54 u32 tunedfreq; 55 fe_code_rate_t fec_inner; 56 u32 symbol_rate; 57 58 /* FIXME: ugly workaround for flexcop's incapable i2c-controller 59 * it does not support repeated-start, workaround: write addr-1 60 * and then read 61 */ 62 u8 shadow[256]; 63 }; 64 65 static u32 s5h1420_getsymbolrate(struct s5h1420_state* state); 66 static int s5h1420_get_tune_settings(struct dvb_frontend* fe, 67 struct dvb_frontend_tune_settings* fesettings); 68 69 70 static int debug; 71 module_param(debug, int, 0644); 72 MODULE_PARM_DESC(debug, "enable debugging"); 73 74 #define dprintk(x...) do { \ 75 if (debug) \ 76 printk(KERN_DEBUG "S5H1420: " x); \ 77 } while (0) 78 79 static u8 s5h1420_readreg(struct s5h1420_state *state, u8 reg) 80 { 81 int ret; 82 u8 b[2]; 83 struct i2c_msg msg[] = { 84 { .addr = state->config->demod_address, .flags = 0, .buf = b, .len = 2 }, 85 { .addr = state->config->demod_address, .flags = 0, .buf = ®, .len = 1 }, 86 { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b, .len = 1 }, 87 }; 88 89 b[0] = (reg - 1) & 0xff; 90 b[1] = state->shadow[(reg - 1) & 0xff]; 91 92 if (state->config->repeated_start_workaround) { 93 ret = i2c_transfer(state->i2c, msg, 3); 94 if (ret != 3) 95 return ret; 96 } else { 97 ret = i2c_transfer(state->i2c, &msg[1], 1); 98 if (ret != 1) 99 return ret; 100 ret = i2c_transfer(state->i2c, &msg[2], 1); 101 if (ret != 1) 102 return ret; 103 } 104 105 /* dprintk("rd(%02x): %02x %02x\n", state->config->demod_address, reg, b[0]); */ 106 107 return b[0]; 108 } 109 110 static int s5h1420_writereg (struct s5h1420_state* state, u8 reg, u8 data) 111 { 112 u8 buf[] = { reg, data }; 113 struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 }; 114 int err; 115 116 /* dprintk("wr(%02x): %02x %02x\n", state->config->demod_address, reg, data); */ 117 err = i2c_transfer(state->i2c, &msg, 1); 118 if (err != 1) { 119 dprintk("%s: writereg error (err == %i, reg == 0x%02x, data == 0x%02x)\n", __func__, err, reg, data); 120 return -EREMOTEIO; 121 } 122 state->shadow[reg] = data; 123 124 return 0; 125 } 126 127 static int s5h1420_set_voltage (struct dvb_frontend* fe, fe_sec_voltage_t voltage) 128 { 129 struct s5h1420_state* state = fe->demodulator_priv; 130 131 dprintk("enter %s\n", __func__); 132 133 switch(voltage) { 134 case SEC_VOLTAGE_13: 135 s5h1420_writereg(state, 0x3c, 136 (s5h1420_readreg(state, 0x3c) & 0xfe) | 0x02); 137 break; 138 139 case SEC_VOLTAGE_18: 140 s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) | 0x03); 141 break; 142 143 case SEC_VOLTAGE_OFF: 144 s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) & 0xfd); 145 break; 146 } 147 148 dprintk("leave %s\n", __func__); 149 return 0; 150 } 151 152 static int s5h1420_set_tone (struct dvb_frontend* fe, fe_sec_tone_mode_t tone) 153 { 154 struct s5h1420_state* state = fe->demodulator_priv; 155 156 dprintk("enter %s\n", __func__); 157 switch(tone) { 158 case SEC_TONE_ON: 159 s5h1420_writereg(state, 0x3b, 160 (s5h1420_readreg(state, 0x3b) & 0x74) | 0x08); 161 break; 162 163 case SEC_TONE_OFF: 164 s5h1420_writereg(state, 0x3b, 165 (s5h1420_readreg(state, 0x3b) & 0x74) | 0x01); 166 break; 167 } 168 dprintk("leave %s\n", __func__); 169 170 return 0; 171 } 172 173 static int s5h1420_send_master_cmd (struct dvb_frontend* fe, 174 struct dvb_diseqc_master_cmd* cmd) 175 { 176 struct s5h1420_state* state = fe->demodulator_priv; 177 u8 val; 178 int i; 179 unsigned long timeout; 180 int result = 0; 181 182 dprintk("enter %s\n", __func__); 183 if (cmd->msg_len > 8) 184 return -EINVAL; 185 186 /* setup for DISEQC */ 187 val = s5h1420_readreg(state, 0x3b); 188 s5h1420_writereg(state, 0x3b, 0x02); 189 msleep(15); 190 191 /* write the DISEQC command bytes */ 192 for(i=0; i< cmd->msg_len; i++) { 193 s5h1420_writereg(state, 0x3d + i, cmd->msg[i]); 194 } 195 196 /* kick off transmission */ 197 s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 198 ((cmd->msg_len-1) << 4) | 0x08); 199 200 /* wait for transmission to complete */ 201 timeout = jiffies + ((100*HZ) / 1000); 202 while(time_before(jiffies, timeout)) { 203 if (!(s5h1420_readreg(state, 0x3b) & 0x08)) 204 break; 205 206 msleep(5); 207 } 208 if (time_after(jiffies, timeout)) 209 result = -ETIMEDOUT; 210 211 /* restore original settings */ 212 s5h1420_writereg(state, 0x3b, val); 213 msleep(15); 214 dprintk("leave %s\n", __func__); 215 return result; 216 } 217 218 static int s5h1420_recv_slave_reply (struct dvb_frontend* fe, 219 struct dvb_diseqc_slave_reply* reply) 220 { 221 struct s5h1420_state* state = fe->demodulator_priv; 222 u8 val; 223 int i; 224 int length; 225 unsigned long timeout; 226 int result = 0; 227 228 /* setup for DISEQC receive */ 229 val = s5h1420_readreg(state, 0x3b); 230 s5h1420_writereg(state, 0x3b, 0x82); /* FIXME: guess - do we need to set DIS_RDY(0x08) in receive mode? */ 231 msleep(15); 232 233 /* wait for reception to complete */ 234 timeout = jiffies + ((reply->timeout*HZ) / 1000); 235 while(time_before(jiffies, timeout)) { 236 if (!(s5h1420_readreg(state, 0x3b) & 0x80)) /* FIXME: do we test DIS_RDY(0x08) or RCV_EN(0x80)? */ 237 break; 238 239 msleep(5); 240 } 241 if (time_after(jiffies, timeout)) { 242 result = -ETIMEDOUT; 243 goto exit; 244 } 245 246 /* check error flag - FIXME: not sure what this does - docs do not describe 247 * beyond "error flag for diseqc receive data :( */ 248 if (s5h1420_readreg(state, 0x49)) { 249 result = -EIO; 250 goto exit; 251 } 252 253 /* check length */ 254 length = (s5h1420_readreg(state, 0x3b) & 0x70) >> 4; 255 if (length > sizeof(reply->msg)) { 256 result = -EOVERFLOW; 257 goto exit; 258 } 259 reply->msg_len = length; 260 261 /* extract data */ 262 for(i=0; i< length; i++) { 263 reply->msg[i] = s5h1420_readreg(state, 0x3d + i); 264 } 265 266 exit: 267 /* restore original settings */ 268 s5h1420_writereg(state, 0x3b, val); 269 msleep(15); 270 return result; 271 } 272 273 static int s5h1420_send_burst (struct dvb_frontend* fe, fe_sec_mini_cmd_t minicmd) 274 { 275 struct s5h1420_state* state = fe->demodulator_priv; 276 u8 val; 277 int result = 0; 278 unsigned long timeout; 279 280 /* setup for tone burst */ 281 val = s5h1420_readreg(state, 0x3b); 282 s5h1420_writereg(state, 0x3b, (s5h1420_readreg(state, 0x3b) & 0x70) | 0x01); 283 284 /* set value for B position if requested */ 285 if (minicmd == SEC_MINI_B) { 286 s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x04); 287 } 288 msleep(15); 289 290 /* start transmission */ 291 s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x08); 292 293 /* wait for transmission to complete */ 294 timeout = jiffies + ((100*HZ) / 1000); 295 while(time_before(jiffies, timeout)) { 296 if (!(s5h1420_readreg(state, 0x3b) & 0x08)) 297 break; 298 299 msleep(5); 300 } 301 if (time_after(jiffies, timeout)) 302 result = -ETIMEDOUT; 303 304 /* restore original settings */ 305 s5h1420_writereg(state, 0x3b, val); 306 msleep(15); 307 return result; 308 } 309 310 static fe_status_t s5h1420_get_status_bits(struct s5h1420_state* state) 311 { 312 u8 val; 313 fe_status_t status = 0; 314 315 val = s5h1420_readreg(state, 0x14); 316 if (val & 0x02) 317 status |= FE_HAS_SIGNAL; 318 if (val & 0x01) 319 status |= FE_HAS_CARRIER; 320 val = s5h1420_readreg(state, 0x36); 321 if (val & 0x01) 322 status |= FE_HAS_VITERBI; 323 if (val & 0x20) 324 status |= FE_HAS_SYNC; 325 if (status == (FE_HAS_SIGNAL|FE_HAS_CARRIER|FE_HAS_VITERBI|FE_HAS_SYNC)) 326 status |= FE_HAS_LOCK; 327 328 return status; 329 } 330 331 static int s5h1420_read_status(struct dvb_frontend* fe, fe_status_t* status) 332 { 333 struct s5h1420_state* state = fe->demodulator_priv; 334 u8 val; 335 336 dprintk("enter %s\n", __func__); 337 338 if (status == NULL) 339 return -EINVAL; 340 341 /* determine lock state */ 342 *status = s5h1420_get_status_bits(state); 343 344 /* fix for FEC 5/6 inversion issue - if it doesn't quite lock, invert 345 the inversion, wait a bit and check again */ 346 if (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI)) { 347 val = s5h1420_readreg(state, Vit10); 348 if ((val & 0x07) == 0x03) { 349 if (val & 0x08) 350 s5h1420_writereg(state, Vit09, 0x13); 351 else 352 s5h1420_writereg(state, Vit09, 0x1b); 353 354 /* wait a bit then update lock status */ 355 mdelay(200); 356 *status = s5h1420_get_status_bits(state); 357 } 358 } 359 360 /* perform post lock setup */ 361 if ((*status & FE_HAS_LOCK) && !state->postlocked) { 362 363 /* calculate the data rate */ 364 u32 tmp = s5h1420_getsymbolrate(state); 365 switch (s5h1420_readreg(state, Vit10) & 0x07) { 366 case 0: tmp = (tmp * 2 * 1) / 2; break; 367 case 1: tmp = (tmp * 2 * 2) / 3; break; 368 case 2: tmp = (tmp * 2 * 3) / 4; break; 369 case 3: tmp = (tmp * 2 * 5) / 6; break; 370 case 4: tmp = (tmp * 2 * 6) / 7; break; 371 case 5: tmp = (tmp * 2 * 7) / 8; break; 372 } 373 374 if (tmp == 0) { 375 printk(KERN_ERR "s5h1420: avoided division by 0\n"); 376 tmp = 1; 377 } 378 tmp = state->fclk / tmp; 379 380 381 /* set the MPEG_CLK_INTL for the calculated data rate */ 382 if (tmp < 2) 383 val = 0x00; 384 else if (tmp < 5) 385 val = 0x01; 386 else if (tmp < 9) 387 val = 0x02; 388 else if (tmp < 13) 389 val = 0x03; 390 else if (tmp < 17) 391 val = 0x04; 392 else if (tmp < 25) 393 val = 0x05; 394 else if (tmp < 33) 395 val = 0x06; 396 else 397 val = 0x07; 398 dprintk("for MPEG_CLK_INTL %d %x\n", tmp, val); 399 400 s5h1420_writereg(state, FEC01, 0x18); 401 s5h1420_writereg(state, FEC01, 0x10); 402 s5h1420_writereg(state, FEC01, val); 403 404 /* Enable "MPEG_Out" */ 405 val = s5h1420_readreg(state, Mpeg02); 406 s5h1420_writereg(state, Mpeg02, val | (1 << 6)); 407 408 /* kicker disable */ 409 val = s5h1420_readreg(state, QPSK01) & 0x7f; 410 s5h1420_writereg(state, QPSK01, val); 411 412 /* DC freeze TODO it was never activated by default or it can stay activated */ 413 414 if (s5h1420_getsymbolrate(state) >= 20000000) { 415 s5h1420_writereg(state, Loop04, 0x8a); 416 s5h1420_writereg(state, Loop05, 0x6a); 417 } else { 418 s5h1420_writereg(state, Loop04, 0x58); 419 s5h1420_writereg(state, Loop05, 0x27); 420 } 421 422 /* post-lock processing has been done! */ 423 state->postlocked = 1; 424 } 425 426 dprintk("leave %s\n", __func__); 427 428 return 0; 429 } 430 431 static int s5h1420_read_ber(struct dvb_frontend* fe, u32* ber) 432 { 433 struct s5h1420_state* state = fe->demodulator_priv; 434 435 s5h1420_writereg(state, 0x46, 0x1d); 436 mdelay(25); 437 438 *ber = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47); 439 440 return 0; 441 } 442 443 static int s5h1420_read_signal_strength(struct dvb_frontend* fe, u16* strength) 444 { 445 struct s5h1420_state* state = fe->demodulator_priv; 446 447 u8 val = s5h1420_readreg(state, 0x15); 448 449 *strength = (u16) ((val << 8) | val); 450 451 return 0; 452 } 453 454 static int s5h1420_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks) 455 { 456 struct s5h1420_state* state = fe->demodulator_priv; 457 458 s5h1420_writereg(state, 0x46, 0x1f); 459 mdelay(25); 460 461 *ucblocks = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47); 462 463 return 0; 464 } 465 466 static void s5h1420_reset(struct s5h1420_state* state) 467 { 468 dprintk("%s\n", __func__); 469 s5h1420_writereg (state, 0x01, 0x08); 470 s5h1420_writereg (state, 0x01, 0x00); 471 udelay(10); 472 } 473 474 static void s5h1420_setsymbolrate(struct s5h1420_state* state, 475 struct dtv_frontend_properties *p) 476 { 477 u8 v; 478 u64 val; 479 480 dprintk("enter %s\n", __func__); 481 482 val = ((u64) p->symbol_rate / 1000ULL) * (1ULL<<24); 483 if (p->symbol_rate < 29000000) 484 val *= 2; 485 do_div(val, (state->fclk / 1000)); 486 487 dprintk("symbol rate register: %06llx\n", (unsigned long long)val); 488 489 v = s5h1420_readreg(state, Loop01); 490 s5h1420_writereg(state, Loop01, v & 0x7f); 491 s5h1420_writereg(state, Tnco01, val >> 16); 492 s5h1420_writereg(state, Tnco02, val >> 8); 493 s5h1420_writereg(state, Tnco03, val & 0xff); 494 s5h1420_writereg(state, Loop01, v | 0x80); 495 dprintk("leave %s\n", __func__); 496 } 497 498 static u32 s5h1420_getsymbolrate(struct s5h1420_state* state) 499 { 500 return state->symbol_rate; 501 } 502 503 static void s5h1420_setfreqoffset(struct s5h1420_state* state, int freqoffset) 504 { 505 int val; 506 u8 v; 507 508 dprintk("enter %s\n", __func__); 509 510 /* remember freqoffset is in kHz, but the chip wants the offset in Hz, so 511 * divide fclk by 1000000 to get the correct value. */ 512 val = -(int) ((freqoffset * (1<<24)) / (state->fclk / 1000000)); 513 514 dprintk("phase rotator/freqoffset: %d %06x\n", freqoffset, val); 515 516 v = s5h1420_readreg(state, Loop01); 517 s5h1420_writereg(state, Loop01, v & 0xbf); 518 s5h1420_writereg(state, Pnco01, val >> 16); 519 s5h1420_writereg(state, Pnco02, val >> 8); 520 s5h1420_writereg(state, Pnco03, val & 0xff); 521 s5h1420_writereg(state, Loop01, v | 0x40); 522 dprintk("leave %s\n", __func__); 523 } 524 525 static int s5h1420_getfreqoffset(struct s5h1420_state* state) 526 { 527 int val; 528 529 s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) | 0x08); 530 val = s5h1420_readreg(state, 0x0e) << 16; 531 val |= s5h1420_readreg(state, 0x0f) << 8; 532 val |= s5h1420_readreg(state, 0x10); 533 s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) & 0xf7); 534 535 if (val & 0x800000) 536 val |= 0xff000000; 537 538 /* remember freqoffset is in kHz, but the chip wants the offset in Hz, so 539 * divide fclk by 1000000 to get the correct value. */ 540 val = (((-val) * (state->fclk/1000000)) / (1<<24)); 541 542 return val; 543 } 544 545 static void s5h1420_setfec_inversion(struct s5h1420_state* state, 546 struct dtv_frontend_properties *p) 547 { 548 u8 inversion = 0; 549 u8 vit08, vit09; 550 551 dprintk("enter %s\n", __func__); 552 553 if (p->inversion == INVERSION_OFF) 554 inversion = state->config->invert ? 0x08 : 0; 555 else if (p->inversion == INVERSION_ON) 556 inversion = state->config->invert ? 0 : 0x08; 557 558 if ((p->fec_inner == FEC_AUTO) || (p->inversion == INVERSION_AUTO)) { 559 vit08 = 0x3f; 560 vit09 = 0; 561 } else { 562 switch (p->fec_inner) { 563 case FEC_1_2: 564 vit08 = 0x01; vit09 = 0x10; 565 break; 566 567 case FEC_2_3: 568 vit08 = 0x02; vit09 = 0x11; 569 break; 570 571 case FEC_3_4: 572 vit08 = 0x04; vit09 = 0x12; 573 break; 574 575 case FEC_5_6: 576 vit08 = 0x08; vit09 = 0x13; 577 break; 578 579 case FEC_6_7: 580 vit08 = 0x10; vit09 = 0x14; 581 break; 582 583 case FEC_7_8: 584 vit08 = 0x20; vit09 = 0x15; 585 break; 586 587 default: 588 return; 589 } 590 } 591 vit09 |= inversion; 592 dprintk("fec: %02x %02x\n", vit08, vit09); 593 s5h1420_writereg(state, Vit08, vit08); 594 s5h1420_writereg(state, Vit09, vit09); 595 dprintk("leave %s\n", __func__); 596 } 597 598 static fe_code_rate_t s5h1420_getfec(struct s5h1420_state* state) 599 { 600 switch(s5h1420_readreg(state, 0x32) & 0x07) { 601 case 0: 602 return FEC_1_2; 603 604 case 1: 605 return FEC_2_3; 606 607 case 2: 608 return FEC_3_4; 609 610 case 3: 611 return FEC_5_6; 612 613 case 4: 614 return FEC_6_7; 615 616 case 5: 617 return FEC_7_8; 618 } 619 620 return FEC_NONE; 621 } 622 623 static fe_spectral_inversion_t s5h1420_getinversion(struct s5h1420_state* state) 624 { 625 if (s5h1420_readreg(state, 0x32) & 0x08) 626 return INVERSION_ON; 627 628 return INVERSION_OFF; 629 } 630 631 static int s5h1420_set_frontend(struct dvb_frontend *fe) 632 { 633 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 634 struct s5h1420_state* state = fe->demodulator_priv; 635 int frequency_delta; 636 struct dvb_frontend_tune_settings fesettings; 637 638 dprintk("enter %s\n", __func__); 639 640 /* check if we should do a fast-tune */ 641 s5h1420_get_tune_settings(fe, &fesettings); 642 frequency_delta = p->frequency - state->tunedfreq; 643 if ((frequency_delta > -fesettings.max_drift) && 644 (frequency_delta < fesettings.max_drift) && 645 (frequency_delta != 0) && 646 (state->fec_inner == p->fec_inner) && 647 (state->symbol_rate == p->symbol_rate)) { 648 649 if (fe->ops.tuner_ops.set_params) { 650 fe->ops.tuner_ops.set_params(fe); 651 if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); 652 } 653 if (fe->ops.tuner_ops.get_frequency) { 654 u32 tmp; 655 fe->ops.tuner_ops.get_frequency(fe, &tmp); 656 if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); 657 s5h1420_setfreqoffset(state, p->frequency - tmp); 658 } else { 659 s5h1420_setfreqoffset(state, 0); 660 } 661 dprintk("simple tune\n"); 662 return 0; 663 } 664 dprintk("tuning demod\n"); 665 666 /* first of all, software reset */ 667 s5h1420_reset(state); 668 669 /* set s5h1420 fclk PLL according to desired symbol rate */ 670 if (p->symbol_rate > 33000000) 671 state->fclk = 80000000; 672 else if (p->symbol_rate > 28500000) 673 state->fclk = 59000000; 674 else if (p->symbol_rate > 25000000) 675 state->fclk = 86000000; 676 else if (p->symbol_rate > 1900000) 677 state->fclk = 88000000; 678 else 679 state->fclk = 44000000; 680 681 dprintk("pll01: %d, ToneFreq: %d\n", state->fclk/1000000 - 8, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32)); 682 s5h1420_writereg(state, PLL01, state->fclk/1000000 - 8); 683 s5h1420_writereg(state, PLL02, 0x40); 684 s5h1420_writereg(state, DiS01, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32)); 685 686 /* TODO DC offset removal, config parameter ? */ 687 if (p->symbol_rate > 29000000) 688 s5h1420_writereg(state, QPSK01, 0xae | 0x10); 689 else 690 s5h1420_writereg(state, QPSK01, 0xac | 0x10); 691 692 /* set misc registers */ 693 s5h1420_writereg(state, CON_1, 0x00); 694 s5h1420_writereg(state, QPSK02, 0x00); 695 s5h1420_writereg(state, Pre01, 0xb0); 696 697 s5h1420_writereg(state, Loop01, 0xF0); 698 s5h1420_writereg(state, Loop02, 0x2a); /* e7 for s5h1420 */ 699 s5h1420_writereg(state, Loop03, 0x79); /* 78 for s5h1420 */ 700 if (p->symbol_rate > 20000000) 701 s5h1420_writereg(state, Loop04, 0x79); 702 else 703 s5h1420_writereg(state, Loop04, 0x58); 704 s5h1420_writereg(state, Loop05, 0x6b); 705 706 if (p->symbol_rate >= 8000000) 707 s5h1420_writereg(state, Post01, (0 << 6) | 0x10); 708 else if (p->symbol_rate >= 4000000) 709 s5h1420_writereg(state, Post01, (1 << 6) | 0x10); 710 else 711 s5h1420_writereg(state, Post01, (3 << 6) | 0x10); 712 713 s5h1420_writereg(state, Monitor12, 0x00); /* unfreeze DC compensation */ 714 715 s5h1420_writereg(state, Sync01, 0x33); 716 s5h1420_writereg(state, Mpeg01, state->config->cdclk_polarity); 717 s5h1420_writereg(state, Mpeg02, 0x3d); /* Parallel output more, disabled -> enabled later */ 718 s5h1420_writereg(state, Err01, 0x03); /* 0x1d for s5h1420 */ 719 720 s5h1420_writereg(state, Vit06, 0x6e); /* 0x8e for s5h1420 */ 721 s5h1420_writereg(state, DiS03, 0x00); 722 s5h1420_writereg(state, Rf01, 0x61); /* Tuner i2c address - for the gate controller */ 723 724 /* set tuner PLL */ 725 if (fe->ops.tuner_ops.set_params) { 726 fe->ops.tuner_ops.set_params(fe); 727 if (fe->ops.i2c_gate_ctrl) 728 fe->ops.i2c_gate_ctrl(fe, 0); 729 s5h1420_setfreqoffset(state, 0); 730 } 731 732 /* set the reset of the parameters */ 733 s5h1420_setsymbolrate(state, p); 734 s5h1420_setfec_inversion(state, p); 735 736 /* start QPSK */ 737 s5h1420_writereg(state, QPSK01, s5h1420_readreg(state, QPSK01) | 1); 738 739 state->fec_inner = p->fec_inner; 740 state->symbol_rate = p->symbol_rate; 741 state->postlocked = 0; 742 state->tunedfreq = p->frequency; 743 744 dprintk("leave %s\n", __func__); 745 return 0; 746 } 747 748 static int s5h1420_get_frontend(struct dvb_frontend* fe) 749 { 750 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 751 struct s5h1420_state* state = fe->demodulator_priv; 752 753 p->frequency = state->tunedfreq + s5h1420_getfreqoffset(state); 754 p->inversion = s5h1420_getinversion(state); 755 p->symbol_rate = s5h1420_getsymbolrate(state); 756 p->fec_inner = s5h1420_getfec(state); 757 758 return 0; 759 } 760 761 static int s5h1420_get_tune_settings(struct dvb_frontend* fe, 762 struct dvb_frontend_tune_settings* fesettings) 763 { 764 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 765 if (p->symbol_rate > 20000000) { 766 fesettings->min_delay_ms = 50; 767 fesettings->step_size = 2000; 768 fesettings->max_drift = 8000; 769 } else if (p->symbol_rate > 12000000) { 770 fesettings->min_delay_ms = 100; 771 fesettings->step_size = 1500; 772 fesettings->max_drift = 9000; 773 } else if (p->symbol_rate > 8000000) { 774 fesettings->min_delay_ms = 100; 775 fesettings->step_size = 1000; 776 fesettings->max_drift = 8000; 777 } else if (p->symbol_rate > 4000000) { 778 fesettings->min_delay_ms = 100; 779 fesettings->step_size = 500; 780 fesettings->max_drift = 7000; 781 } else if (p->symbol_rate > 2000000) { 782 fesettings->min_delay_ms = 200; 783 fesettings->step_size = (p->symbol_rate / 8000); 784 fesettings->max_drift = 14 * fesettings->step_size; 785 } else { 786 fesettings->min_delay_ms = 200; 787 fesettings->step_size = (p->symbol_rate / 8000); 788 fesettings->max_drift = 18 * fesettings->step_size; 789 } 790 791 return 0; 792 } 793 794 static int s5h1420_i2c_gate_ctrl(struct dvb_frontend* fe, int enable) 795 { 796 struct s5h1420_state* state = fe->demodulator_priv; 797 798 if (enable) 799 return s5h1420_writereg(state, 0x02, state->CON_1_val | 1); 800 else 801 return s5h1420_writereg(state, 0x02, state->CON_1_val & 0xfe); 802 } 803 804 static int s5h1420_init (struct dvb_frontend* fe) 805 { 806 struct s5h1420_state* state = fe->demodulator_priv; 807 808 /* disable power down and do reset */ 809 state->CON_1_val = state->config->serial_mpeg << 4; 810 s5h1420_writereg(state, 0x02, state->CON_1_val); 811 msleep(10); 812 s5h1420_reset(state); 813 814 return 0; 815 } 816 817 static int s5h1420_sleep(struct dvb_frontend* fe) 818 { 819 struct s5h1420_state* state = fe->demodulator_priv; 820 state->CON_1_val = 0x12; 821 return s5h1420_writereg(state, 0x02, state->CON_1_val); 822 } 823 824 static void s5h1420_release(struct dvb_frontend* fe) 825 { 826 struct s5h1420_state* state = fe->demodulator_priv; 827 i2c_del_adapter(&state->tuner_i2c_adapter); 828 kfree(state); 829 } 830 831 static u32 s5h1420_tuner_i2c_func(struct i2c_adapter *adapter) 832 { 833 return I2C_FUNC_I2C; 834 } 835 836 static int s5h1420_tuner_i2c_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) 837 { 838 struct s5h1420_state *state = i2c_get_adapdata(i2c_adap); 839 struct i2c_msg m[3]; 840 u8 tx_open[2] = { CON_1, state->CON_1_val | 1 }; /* repeater stops once there was a stop condition */ 841 842 if (1 + num > ARRAY_SIZE(m)) { 843 printk(KERN_WARNING 844 "%s: i2c xfer: num=%d is too big!\n", 845 KBUILD_MODNAME, num); 846 return -EOPNOTSUPP; 847 } 848 849 memset(m, 0, sizeof(struct i2c_msg) * (1 + num)); 850 851 m[0].addr = state->config->demod_address; 852 m[0].buf = tx_open; 853 m[0].len = 2; 854 855 memcpy(&m[1], msg, sizeof(struct i2c_msg) * num); 856 857 return i2c_transfer(state->i2c, m, 1 + num) == 1 + num ? num : -EIO; 858 } 859 860 static struct i2c_algorithm s5h1420_tuner_i2c_algo = { 861 .master_xfer = s5h1420_tuner_i2c_tuner_xfer, 862 .functionality = s5h1420_tuner_i2c_func, 863 }; 864 865 struct i2c_adapter *s5h1420_get_tuner_i2c_adapter(struct dvb_frontend *fe) 866 { 867 struct s5h1420_state *state = fe->demodulator_priv; 868 return &state->tuner_i2c_adapter; 869 } 870 EXPORT_SYMBOL(s5h1420_get_tuner_i2c_adapter); 871 872 static struct dvb_frontend_ops s5h1420_ops; 873 874 struct dvb_frontend *s5h1420_attach(const struct s5h1420_config *config, 875 struct i2c_adapter *i2c) 876 { 877 /* allocate memory for the internal state */ 878 struct s5h1420_state *state = kzalloc(sizeof(struct s5h1420_state), GFP_KERNEL); 879 u8 i; 880 881 if (state == NULL) 882 goto error; 883 884 /* setup the state */ 885 state->config = config; 886 state->i2c = i2c; 887 state->postlocked = 0; 888 state->fclk = 88000000; 889 state->tunedfreq = 0; 890 state->fec_inner = FEC_NONE; 891 state->symbol_rate = 0; 892 893 /* check if the demod is there + identify it */ 894 i = s5h1420_readreg(state, ID01); 895 if (i != 0x03) 896 goto error; 897 898 memset(state->shadow, 0xff, sizeof(state->shadow)); 899 900 for (i = 0; i < 0x50; i++) 901 state->shadow[i] = s5h1420_readreg(state, i); 902 903 /* create dvb_frontend */ 904 memcpy(&state->frontend.ops, &s5h1420_ops, sizeof(struct dvb_frontend_ops)); 905 state->frontend.demodulator_priv = state; 906 907 /* create tuner i2c adapter */ 908 strlcpy(state->tuner_i2c_adapter.name, "S5H1420-PN1010 tuner I2C bus", 909 sizeof(state->tuner_i2c_adapter.name)); 910 state->tuner_i2c_adapter.algo = &s5h1420_tuner_i2c_algo; 911 state->tuner_i2c_adapter.algo_data = NULL; 912 i2c_set_adapdata(&state->tuner_i2c_adapter, state); 913 if (i2c_add_adapter(&state->tuner_i2c_adapter) < 0) { 914 printk(KERN_ERR "S5H1420/PN1010: tuner i2c bus could not be initialized\n"); 915 goto error; 916 } 917 918 return &state->frontend; 919 920 error: 921 kfree(state); 922 return NULL; 923 } 924 EXPORT_SYMBOL(s5h1420_attach); 925 926 static struct dvb_frontend_ops s5h1420_ops = { 927 .delsys = { SYS_DVBS }, 928 .info = { 929 .name = "Samsung S5H1420/PnpNetwork PN1010 DVB-S", 930 .frequency_min = 950000, 931 .frequency_max = 2150000, 932 .frequency_stepsize = 125, /* kHz for QPSK frontends */ 933 .frequency_tolerance = 29500, 934 .symbol_rate_min = 1000000, 935 .symbol_rate_max = 45000000, 936 /* .symbol_rate_tolerance = ???,*/ 937 .caps = FE_CAN_INVERSION_AUTO | 938 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | 939 FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | 940 FE_CAN_QPSK 941 }, 942 943 .release = s5h1420_release, 944 945 .init = s5h1420_init, 946 .sleep = s5h1420_sleep, 947 .i2c_gate_ctrl = s5h1420_i2c_gate_ctrl, 948 949 .set_frontend = s5h1420_set_frontend, 950 .get_frontend = s5h1420_get_frontend, 951 .get_tune_settings = s5h1420_get_tune_settings, 952 953 .read_status = s5h1420_read_status, 954 .read_ber = s5h1420_read_ber, 955 .read_signal_strength = s5h1420_read_signal_strength, 956 .read_ucblocks = s5h1420_read_ucblocks, 957 958 .diseqc_send_master_cmd = s5h1420_send_master_cmd, 959 .diseqc_recv_slave_reply = s5h1420_recv_slave_reply, 960 .diseqc_send_burst = s5h1420_send_burst, 961 .set_tone = s5h1420_set_tone, 962 .set_voltage = s5h1420_set_voltage, 963 }; 964 965 MODULE_DESCRIPTION("Samsung S5H1420/PnpNetwork PN1010 DVB-S Demodulator driver"); 966 MODULE_AUTHOR("Andrew de Quincey, Patrick Boettcher"); 967 MODULE_LICENSE("GPL"); 968