1 /* 2 * Driver for 3 * Samsung S5H1420 and 4 * PnpNetwork PN1010 QPSK Demodulator 5 * 6 * Copyright (C) 2005 Andrew de Quincey <adq_dvb@lidskialf.net> 7 * Copyright (C) 2005-8 Patrick Boettcher <pb@linuxtv.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * 18 * GNU General Public License for more details. 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/slab.h> 26 #include <linux/delay.h> 27 #include <linux/jiffies.h> 28 #include <asm/div64.h> 29 30 #include <linux/i2c.h> 31 32 33 #include "dvb_frontend.h" 34 #include "s5h1420.h" 35 #include "s5h1420_priv.h" 36 37 #define TONE_FREQ 22000 38 39 struct s5h1420_state { 40 struct i2c_adapter* i2c; 41 const struct s5h1420_config* config; 42 43 struct dvb_frontend frontend; 44 struct i2c_adapter tuner_i2c_adapter; 45 46 u8 CON_1_val; 47 48 u8 postlocked:1; 49 u32 fclk; 50 u32 tunedfreq; 51 enum fe_code_rate fec_inner; 52 u32 symbol_rate; 53 54 /* FIXME: ugly workaround for flexcop's incapable i2c-controller 55 * it does not support repeated-start, workaround: write addr-1 56 * and then read 57 */ 58 u8 shadow[256]; 59 }; 60 61 static u32 s5h1420_getsymbolrate(struct s5h1420_state* state); 62 static int s5h1420_get_tune_settings(struct dvb_frontend* fe, 63 struct dvb_frontend_tune_settings* fesettings); 64 65 66 static int debug; 67 module_param(debug, int, 0644); 68 MODULE_PARM_DESC(debug, "enable debugging"); 69 70 #define dprintk(x...) do { \ 71 if (debug) \ 72 printk(KERN_DEBUG "S5H1420: " x); \ 73 } while (0) 74 75 static u8 s5h1420_readreg(struct s5h1420_state *state, u8 reg) 76 { 77 int ret; 78 u8 b[2]; 79 struct i2c_msg msg[] = { 80 { .addr = state->config->demod_address, .flags = 0, .buf = b, .len = 2 }, 81 { .addr = state->config->demod_address, .flags = 0, .buf = ®, .len = 1 }, 82 { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b, .len = 1 }, 83 }; 84 85 b[0] = (reg - 1) & 0xff; 86 b[1] = state->shadow[(reg - 1) & 0xff]; 87 88 if (state->config->repeated_start_workaround) { 89 ret = i2c_transfer(state->i2c, msg, 3); 90 if (ret != 3) 91 return ret; 92 } else { 93 ret = i2c_transfer(state->i2c, &msg[1], 1); 94 if (ret != 1) 95 return ret; 96 ret = i2c_transfer(state->i2c, &msg[2], 1); 97 if (ret != 1) 98 return ret; 99 } 100 101 /* dprintk("rd(%02x): %02x %02x\n", state->config->demod_address, reg, b[0]); */ 102 103 return b[0]; 104 } 105 106 static int s5h1420_writereg (struct s5h1420_state* state, u8 reg, u8 data) 107 { 108 u8 buf[] = { reg, data }; 109 struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 }; 110 int err; 111 112 /* dprintk("wr(%02x): %02x %02x\n", state->config->demod_address, reg, data); */ 113 err = i2c_transfer(state->i2c, &msg, 1); 114 if (err != 1) { 115 dprintk("%s: writereg error (err == %i, reg == 0x%02x, data == 0x%02x)\n", __func__, err, reg, data); 116 return -EREMOTEIO; 117 } 118 state->shadow[reg] = data; 119 120 return 0; 121 } 122 123 static int s5h1420_set_voltage(struct dvb_frontend *fe, 124 enum fe_sec_voltage voltage) 125 { 126 struct s5h1420_state* state = fe->demodulator_priv; 127 128 dprintk("enter %s\n", __func__); 129 130 switch(voltage) { 131 case SEC_VOLTAGE_13: 132 s5h1420_writereg(state, 0x3c, 133 (s5h1420_readreg(state, 0x3c) & 0xfe) | 0x02); 134 break; 135 136 case SEC_VOLTAGE_18: 137 s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) | 0x03); 138 break; 139 140 case SEC_VOLTAGE_OFF: 141 s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) & 0xfd); 142 break; 143 } 144 145 dprintk("leave %s\n", __func__); 146 return 0; 147 } 148 149 static int s5h1420_set_tone(struct dvb_frontend *fe, 150 enum fe_sec_tone_mode tone) 151 { 152 struct s5h1420_state* state = fe->demodulator_priv; 153 154 dprintk("enter %s\n", __func__); 155 switch(tone) { 156 case SEC_TONE_ON: 157 s5h1420_writereg(state, 0x3b, 158 (s5h1420_readreg(state, 0x3b) & 0x74) | 0x08); 159 break; 160 161 case SEC_TONE_OFF: 162 s5h1420_writereg(state, 0x3b, 163 (s5h1420_readreg(state, 0x3b) & 0x74) | 0x01); 164 break; 165 } 166 dprintk("leave %s\n", __func__); 167 168 return 0; 169 } 170 171 static int s5h1420_send_master_cmd (struct dvb_frontend* fe, 172 struct dvb_diseqc_master_cmd* cmd) 173 { 174 struct s5h1420_state* state = fe->demodulator_priv; 175 u8 val; 176 int i; 177 unsigned long timeout; 178 int result = 0; 179 180 dprintk("enter %s\n", __func__); 181 if (cmd->msg_len > sizeof(cmd->msg)) 182 return -EINVAL; 183 184 /* setup for DISEQC */ 185 val = s5h1420_readreg(state, 0x3b); 186 s5h1420_writereg(state, 0x3b, 0x02); 187 msleep(15); 188 189 /* write the DISEQC command bytes */ 190 for(i=0; i< cmd->msg_len; i++) { 191 s5h1420_writereg(state, 0x3d + i, cmd->msg[i]); 192 } 193 194 /* kick off transmission */ 195 s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 196 ((cmd->msg_len-1) << 4) | 0x08); 197 198 /* wait for transmission to complete */ 199 timeout = jiffies + ((100*HZ) / 1000); 200 while(time_before(jiffies, timeout)) { 201 if (!(s5h1420_readreg(state, 0x3b) & 0x08)) 202 break; 203 204 msleep(5); 205 } 206 if (time_after(jiffies, timeout)) 207 result = -ETIMEDOUT; 208 209 /* restore original settings */ 210 s5h1420_writereg(state, 0x3b, val); 211 msleep(15); 212 dprintk("leave %s\n", __func__); 213 return result; 214 } 215 216 static int s5h1420_recv_slave_reply (struct dvb_frontend* fe, 217 struct dvb_diseqc_slave_reply* reply) 218 { 219 struct s5h1420_state* state = fe->demodulator_priv; 220 u8 val; 221 int i; 222 int length; 223 unsigned long timeout; 224 int result = 0; 225 226 /* setup for DISEQC receive */ 227 val = s5h1420_readreg(state, 0x3b); 228 s5h1420_writereg(state, 0x3b, 0x82); /* FIXME: guess - do we need to set DIS_RDY(0x08) in receive mode? */ 229 msleep(15); 230 231 /* wait for reception to complete */ 232 timeout = jiffies + ((reply->timeout*HZ) / 1000); 233 while(time_before(jiffies, timeout)) { 234 if (!(s5h1420_readreg(state, 0x3b) & 0x80)) /* FIXME: do we test DIS_RDY(0x08) or RCV_EN(0x80)? */ 235 break; 236 237 msleep(5); 238 } 239 if (time_after(jiffies, timeout)) { 240 result = -ETIMEDOUT; 241 goto exit; 242 } 243 244 /* check error flag - FIXME: not sure what this does - docs do not describe 245 * beyond "error flag for diseqc receive data :( */ 246 if (s5h1420_readreg(state, 0x49)) { 247 result = -EIO; 248 goto exit; 249 } 250 251 /* check length */ 252 length = (s5h1420_readreg(state, 0x3b) & 0x70) >> 4; 253 if (length > sizeof(reply->msg)) { 254 result = -EOVERFLOW; 255 goto exit; 256 } 257 reply->msg_len = length; 258 259 /* extract data */ 260 for(i=0; i< length; i++) { 261 reply->msg[i] = s5h1420_readreg(state, 0x3d + i); 262 } 263 264 exit: 265 /* restore original settings */ 266 s5h1420_writereg(state, 0x3b, val); 267 msleep(15); 268 return result; 269 } 270 271 static int s5h1420_send_burst(struct dvb_frontend *fe, 272 enum fe_sec_mini_cmd minicmd) 273 { 274 struct s5h1420_state* state = fe->demodulator_priv; 275 u8 val; 276 int result = 0; 277 unsigned long timeout; 278 279 /* setup for tone burst */ 280 val = s5h1420_readreg(state, 0x3b); 281 s5h1420_writereg(state, 0x3b, (s5h1420_readreg(state, 0x3b) & 0x70) | 0x01); 282 283 /* set value for B position if requested */ 284 if (minicmd == SEC_MINI_B) { 285 s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x04); 286 } 287 msleep(15); 288 289 /* start transmission */ 290 s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x08); 291 292 /* wait for transmission to complete */ 293 timeout = jiffies + ((100*HZ) / 1000); 294 while(time_before(jiffies, timeout)) { 295 if (!(s5h1420_readreg(state, 0x3b) & 0x08)) 296 break; 297 298 msleep(5); 299 } 300 if (time_after(jiffies, timeout)) 301 result = -ETIMEDOUT; 302 303 /* restore original settings */ 304 s5h1420_writereg(state, 0x3b, val); 305 msleep(15); 306 return result; 307 } 308 309 static enum fe_status s5h1420_get_status_bits(struct s5h1420_state *state) 310 { 311 u8 val; 312 enum fe_status status = 0; 313 314 val = s5h1420_readreg(state, 0x14); 315 if (val & 0x02) 316 status |= FE_HAS_SIGNAL; 317 if (val & 0x01) 318 status |= FE_HAS_CARRIER; 319 val = s5h1420_readreg(state, 0x36); 320 if (val & 0x01) 321 status |= FE_HAS_VITERBI; 322 if (val & 0x20) 323 status |= FE_HAS_SYNC; 324 if (status == (FE_HAS_SIGNAL|FE_HAS_CARRIER|FE_HAS_VITERBI|FE_HAS_SYNC)) 325 status |= FE_HAS_LOCK; 326 327 return status; 328 } 329 330 static int s5h1420_read_status(struct dvb_frontend *fe, 331 enum fe_status *status) 332 { 333 struct s5h1420_state* state = fe->demodulator_priv; 334 u8 val; 335 336 dprintk("enter %s\n", __func__); 337 338 if (status == NULL) 339 return -EINVAL; 340 341 /* determine lock state */ 342 *status = s5h1420_get_status_bits(state); 343 344 /* fix for FEC 5/6 inversion issue - if it doesn't quite lock, invert 345 the inversion, wait a bit and check again */ 346 if (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI)) { 347 val = s5h1420_readreg(state, Vit10); 348 if ((val & 0x07) == 0x03) { 349 if (val & 0x08) 350 s5h1420_writereg(state, Vit09, 0x13); 351 else 352 s5h1420_writereg(state, Vit09, 0x1b); 353 354 /* wait a bit then update lock status */ 355 mdelay(200); 356 *status = s5h1420_get_status_bits(state); 357 } 358 } 359 360 /* perform post lock setup */ 361 if ((*status & FE_HAS_LOCK) && !state->postlocked) { 362 363 /* calculate the data rate */ 364 u32 tmp = s5h1420_getsymbolrate(state); 365 switch (s5h1420_readreg(state, Vit10) & 0x07) { 366 case 0: tmp = (tmp * 2 * 1) / 2; break; 367 case 1: tmp = (tmp * 2 * 2) / 3; break; 368 case 2: tmp = (tmp * 2 * 3) / 4; break; 369 case 3: tmp = (tmp * 2 * 5) / 6; break; 370 case 4: tmp = (tmp * 2 * 6) / 7; break; 371 case 5: tmp = (tmp * 2 * 7) / 8; break; 372 } 373 374 if (tmp == 0) { 375 printk(KERN_ERR "s5h1420: avoided division by 0\n"); 376 tmp = 1; 377 } 378 tmp = state->fclk / tmp; 379 380 381 /* set the MPEG_CLK_INTL for the calculated data rate */ 382 if (tmp < 2) 383 val = 0x00; 384 else if (tmp < 5) 385 val = 0x01; 386 else if (tmp < 9) 387 val = 0x02; 388 else if (tmp < 13) 389 val = 0x03; 390 else if (tmp < 17) 391 val = 0x04; 392 else if (tmp < 25) 393 val = 0x05; 394 else if (tmp < 33) 395 val = 0x06; 396 else 397 val = 0x07; 398 dprintk("for MPEG_CLK_INTL %d %x\n", tmp, val); 399 400 s5h1420_writereg(state, FEC01, 0x18); 401 s5h1420_writereg(state, FEC01, 0x10); 402 s5h1420_writereg(state, FEC01, val); 403 404 /* Enable "MPEG_Out" */ 405 val = s5h1420_readreg(state, Mpeg02); 406 s5h1420_writereg(state, Mpeg02, val | (1 << 6)); 407 408 /* kicker disable */ 409 val = s5h1420_readreg(state, QPSK01) & 0x7f; 410 s5h1420_writereg(state, QPSK01, val); 411 412 /* DC freeze TODO it was never activated by default or it can stay activated */ 413 414 if (s5h1420_getsymbolrate(state) >= 20000000) { 415 s5h1420_writereg(state, Loop04, 0x8a); 416 s5h1420_writereg(state, Loop05, 0x6a); 417 } else { 418 s5h1420_writereg(state, Loop04, 0x58); 419 s5h1420_writereg(state, Loop05, 0x27); 420 } 421 422 /* post-lock processing has been done! */ 423 state->postlocked = 1; 424 } 425 426 dprintk("leave %s\n", __func__); 427 428 return 0; 429 } 430 431 static int s5h1420_read_ber(struct dvb_frontend* fe, u32* ber) 432 { 433 struct s5h1420_state* state = fe->demodulator_priv; 434 435 s5h1420_writereg(state, 0x46, 0x1d); 436 mdelay(25); 437 438 *ber = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47); 439 440 return 0; 441 } 442 443 static int s5h1420_read_signal_strength(struct dvb_frontend* fe, u16* strength) 444 { 445 struct s5h1420_state* state = fe->demodulator_priv; 446 447 u8 val = s5h1420_readreg(state, 0x15); 448 449 *strength = (u16) ((val << 8) | val); 450 451 return 0; 452 } 453 454 static int s5h1420_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks) 455 { 456 struct s5h1420_state* state = fe->demodulator_priv; 457 458 s5h1420_writereg(state, 0x46, 0x1f); 459 mdelay(25); 460 461 *ucblocks = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47); 462 463 return 0; 464 } 465 466 static void s5h1420_reset(struct s5h1420_state* state) 467 { 468 dprintk("%s\n", __func__); 469 s5h1420_writereg (state, 0x01, 0x08); 470 s5h1420_writereg (state, 0x01, 0x00); 471 udelay(10); 472 } 473 474 static void s5h1420_setsymbolrate(struct s5h1420_state* state, 475 struct dtv_frontend_properties *p) 476 { 477 u8 v; 478 u64 val; 479 480 dprintk("enter %s\n", __func__); 481 482 val = ((u64) p->symbol_rate / 1000ULL) * (1ULL<<24); 483 if (p->symbol_rate < 29000000) 484 val *= 2; 485 do_div(val, (state->fclk / 1000)); 486 487 dprintk("symbol rate register: %06llx\n", (unsigned long long)val); 488 489 v = s5h1420_readreg(state, Loop01); 490 s5h1420_writereg(state, Loop01, v & 0x7f); 491 s5h1420_writereg(state, Tnco01, val >> 16); 492 s5h1420_writereg(state, Tnco02, val >> 8); 493 s5h1420_writereg(state, Tnco03, val & 0xff); 494 s5h1420_writereg(state, Loop01, v | 0x80); 495 dprintk("leave %s\n", __func__); 496 } 497 498 static u32 s5h1420_getsymbolrate(struct s5h1420_state* state) 499 { 500 return state->symbol_rate; 501 } 502 503 static void s5h1420_setfreqoffset(struct s5h1420_state* state, int freqoffset) 504 { 505 int val; 506 u8 v; 507 508 dprintk("enter %s\n", __func__); 509 510 /* remember freqoffset is in kHz, but the chip wants the offset in Hz, so 511 * divide fclk by 1000000 to get the correct value. */ 512 val = -(int) ((freqoffset * (1<<24)) / (state->fclk / 1000000)); 513 514 dprintk("phase rotator/freqoffset: %d %06x\n", freqoffset, val); 515 516 v = s5h1420_readreg(state, Loop01); 517 s5h1420_writereg(state, Loop01, v & 0xbf); 518 s5h1420_writereg(state, Pnco01, val >> 16); 519 s5h1420_writereg(state, Pnco02, val >> 8); 520 s5h1420_writereg(state, Pnco03, val & 0xff); 521 s5h1420_writereg(state, Loop01, v | 0x40); 522 dprintk("leave %s\n", __func__); 523 } 524 525 static int s5h1420_getfreqoffset(struct s5h1420_state* state) 526 { 527 int val; 528 529 s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) | 0x08); 530 val = s5h1420_readreg(state, 0x0e) << 16; 531 val |= s5h1420_readreg(state, 0x0f) << 8; 532 val |= s5h1420_readreg(state, 0x10); 533 s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) & 0xf7); 534 535 if (val & 0x800000) 536 val |= 0xff000000; 537 538 /* remember freqoffset is in kHz, but the chip wants the offset in Hz, so 539 * divide fclk by 1000000 to get the correct value. */ 540 val = (((-val) * (state->fclk/1000000)) / (1<<24)); 541 542 return val; 543 } 544 545 static void s5h1420_setfec_inversion(struct s5h1420_state* state, 546 struct dtv_frontend_properties *p) 547 { 548 u8 inversion = 0; 549 u8 vit08, vit09; 550 551 dprintk("enter %s\n", __func__); 552 553 if (p->inversion == INVERSION_OFF) 554 inversion = state->config->invert ? 0x08 : 0; 555 else if (p->inversion == INVERSION_ON) 556 inversion = state->config->invert ? 0 : 0x08; 557 558 if ((p->fec_inner == FEC_AUTO) || (p->inversion == INVERSION_AUTO)) { 559 vit08 = 0x3f; 560 vit09 = 0; 561 } else { 562 switch (p->fec_inner) { 563 case FEC_1_2: 564 vit08 = 0x01; 565 vit09 = 0x10; 566 break; 567 568 case FEC_2_3: 569 vit08 = 0x02; 570 vit09 = 0x11; 571 break; 572 573 case FEC_3_4: 574 vit08 = 0x04; 575 vit09 = 0x12; 576 break; 577 578 case FEC_5_6: 579 vit08 = 0x08; 580 vit09 = 0x13; 581 break; 582 583 case FEC_6_7: 584 vit08 = 0x10; 585 vit09 = 0x14; 586 break; 587 588 case FEC_7_8: 589 vit08 = 0x20; 590 vit09 = 0x15; 591 break; 592 593 default: 594 return; 595 } 596 } 597 vit09 |= inversion; 598 dprintk("fec: %02x %02x\n", vit08, vit09); 599 s5h1420_writereg(state, Vit08, vit08); 600 s5h1420_writereg(state, Vit09, vit09); 601 dprintk("leave %s\n", __func__); 602 } 603 604 static enum fe_code_rate s5h1420_getfec(struct s5h1420_state *state) 605 { 606 switch(s5h1420_readreg(state, 0x32) & 0x07) { 607 case 0: 608 return FEC_1_2; 609 610 case 1: 611 return FEC_2_3; 612 613 case 2: 614 return FEC_3_4; 615 616 case 3: 617 return FEC_5_6; 618 619 case 4: 620 return FEC_6_7; 621 622 case 5: 623 return FEC_7_8; 624 } 625 626 return FEC_NONE; 627 } 628 629 static enum fe_spectral_inversion 630 s5h1420_getinversion(struct s5h1420_state *state) 631 { 632 if (s5h1420_readreg(state, 0x32) & 0x08) 633 return INVERSION_ON; 634 635 return INVERSION_OFF; 636 } 637 638 static int s5h1420_set_frontend(struct dvb_frontend *fe) 639 { 640 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 641 struct s5h1420_state* state = fe->demodulator_priv; 642 int frequency_delta; 643 struct dvb_frontend_tune_settings fesettings; 644 645 dprintk("enter %s\n", __func__); 646 647 /* check if we should do a fast-tune */ 648 s5h1420_get_tune_settings(fe, &fesettings); 649 frequency_delta = p->frequency - state->tunedfreq; 650 if ((frequency_delta > -fesettings.max_drift) && 651 (frequency_delta < fesettings.max_drift) && 652 (frequency_delta != 0) && 653 (state->fec_inner == p->fec_inner) && 654 (state->symbol_rate == p->symbol_rate)) { 655 656 if (fe->ops.tuner_ops.set_params) { 657 fe->ops.tuner_ops.set_params(fe); 658 if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); 659 } 660 if (fe->ops.tuner_ops.get_frequency) { 661 u32 tmp; 662 fe->ops.tuner_ops.get_frequency(fe, &tmp); 663 if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); 664 s5h1420_setfreqoffset(state, p->frequency - tmp); 665 } else { 666 s5h1420_setfreqoffset(state, 0); 667 } 668 dprintk("simple tune\n"); 669 return 0; 670 } 671 dprintk("tuning demod\n"); 672 673 /* first of all, software reset */ 674 s5h1420_reset(state); 675 676 /* set s5h1420 fclk PLL according to desired symbol rate */ 677 if (p->symbol_rate > 33000000) 678 state->fclk = 80000000; 679 else if (p->symbol_rate > 28500000) 680 state->fclk = 59000000; 681 else if (p->symbol_rate > 25000000) 682 state->fclk = 86000000; 683 else if (p->symbol_rate > 1900000) 684 state->fclk = 88000000; 685 else 686 state->fclk = 44000000; 687 688 dprintk("pll01: %d, ToneFreq: %d\n", state->fclk/1000000 - 8, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32)); 689 s5h1420_writereg(state, PLL01, state->fclk/1000000 - 8); 690 s5h1420_writereg(state, PLL02, 0x40); 691 s5h1420_writereg(state, DiS01, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32)); 692 693 /* TODO DC offset removal, config parameter ? */ 694 if (p->symbol_rate > 29000000) 695 s5h1420_writereg(state, QPSK01, 0xae | 0x10); 696 else 697 s5h1420_writereg(state, QPSK01, 0xac | 0x10); 698 699 /* set misc registers */ 700 s5h1420_writereg(state, CON_1, 0x00); 701 s5h1420_writereg(state, QPSK02, 0x00); 702 s5h1420_writereg(state, Pre01, 0xb0); 703 704 s5h1420_writereg(state, Loop01, 0xF0); 705 s5h1420_writereg(state, Loop02, 0x2a); /* e7 for s5h1420 */ 706 s5h1420_writereg(state, Loop03, 0x79); /* 78 for s5h1420 */ 707 if (p->symbol_rate > 20000000) 708 s5h1420_writereg(state, Loop04, 0x79); 709 else 710 s5h1420_writereg(state, Loop04, 0x58); 711 s5h1420_writereg(state, Loop05, 0x6b); 712 713 if (p->symbol_rate >= 8000000) 714 s5h1420_writereg(state, Post01, (0 << 6) | 0x10); 715 else if (p->symbol_rate >= 4000000) 716 s5h1420_writereg(state, Post01, (1 << 6) | 0x10); 717 else 718 s5h1420_writereg(state, Post01, (3 << 6) | 0x10); 719 720 s5h1420_writereg(state, Monitor12, 0x00); /* unfreeze DC compensation */ 721 722 s5h1420_writereg(state, Sync01, 0x33); 723 s5h1420_writereg(state, Mpeg01, state->config->cdclk_polarity); 724 s5h1420_writereg(state, Mpeg02, 0x3d); /* Parallel output more, disabled -> enabled later */ 725 s5h1420_writereg(state, Err01, 0x03); /* 0x1d for s5h1420 */ 726 727 s5h1420_writereg(state, Vit06, 0x6e); /* 0x8e for s5h1420 */ 728 s5h1420_writereg(state, DiS03, 0x00); 729 s5h1420_writereg(state, Rf01, 0x61); /* Tuner i2c address - for the gate controller */ 730 731 /* set tuner PLL */ 732 if (fe->ops.tuner_ops.set_params) { 733 fe->ops.tuner_ops.set_params(fe); 734 if (fe->ops.i2c_gate_ctrl) 735 fe->ops.i2c_gate_ctrl(fe, 0); 736 s5h1420_setfreqoffset(state, 0); 737 } 738 739 /* set the reset of the parameters */ 740 s5h1420_setsymbolrate(state, p); 741 s5h1420_setfec_inversion(state, p); 742 743 /* start QPSK */ 744 s5h1420_writereg(state, QPSK01, s5h1420_readreg(state, QPSK01) | 1); 745 746 state->fec_inner = p->fec_inner; 747 state->symbol_rate = p->symbol_rate; 748 state->postlocked = 0; 749 state->tunedfreq = p->frequency; 750 751 dprintk("leave %s\n", __func__); 752 return 0; 753 } 754 755 static int s5h1420_get_frontend(struct dvb_frontend* fe, 756 struct dtv_frontend_properties *p) 757 { 758 struct s5h1420_state* state = fe->demodulator_priv; 759 760 p->frequency = state->tunedfreq + s5h1420_getfreqoffset(state); 761 p->inversion = s5h1420_getinversion(state); 762 p->symbol_rate = s5h1420_getsymbolrate(state); 763 p->fec_inner = s5h1420_getfec(state); 764 765 return 0; 766 } 767 768 static int s5h1420_get_tune_settings(struct dvb_frontend* fe, 769 struct dvb_frontend_tune_settings* fesettings) 770 { 771 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 772 if (p->symbol_rate > 20000000) { 773 fesettings->min_delay_ms = 50; 774 fesettings->step_size = 2000; 775 fesettings->max_drift = 8000; 776 } else if (p->symbol_rate > 12000000) { 777 fesettings->min_delay_ms = 100; 778 fesettings->step_size = 1500; 779 fesettings->max_drift = 9000; 780 } else if (p->symbol_rate > 8000000) { 781 fesettings->min_delay_ms = 100; 782 fesettings->step_size = 1000; 783 fesettings->max_drift = 8000; 784 } else if (p->symbol_rate > 4000000) { 785 fesettings->min_delay_ms = 100; 786 fesettings->step_size = 500; 787 fesettings->max_drift = 7000; 788 } else if (p->symbol_rate > 2000000) { 789 fesettings->min_delay_ms = 200; 790 fesettings->step_size = (p->symbol_rate / 8000); 791 fesettings->max_drift = 14 * fesettings->step_size; 792 } else { 793 fesettings->min_delay_ms = 200; 794 fesettings->step_size = (p->symbol_rate / 8000); 795 fesettings->max_drift = 18 * fesettings->step_size; 796 } 797 798 return 0; 799 } 800 801 static int s5h1420_i2c_gate_ctrl(struct dvb_frontend* fe, int enable) 802 { 803 struct s5h1420_state* state = fe->demodulator_priv; 804 805 if (enable) 806 return s5h1420_writereg(state, 0x02, state->CON_1_val | 1); 807 else 808 return s5h1420_writereg(state, 0x02, state->CON_1_val & 0xfe); 809 } 810 811 static int s5h1420_init (struct dvb_frontend* fe) 812 { 813 struct s5h1420_state* state = fe->demodulator_priv; 814 815 /* disable power down and do reset */ 816 state->CON_1_val = state->config->serial_mpeg << 4; 817 s5h1420_writereg(state, 0x02, state->CON_1_val); 818 msleep(10); 819 s5h1420_reset(state); 820 821 return 0; 822 } 823 824 static int s5h1420_sleep(struct dvb_frontend* fe) 825 { 826 struct s5h1420_state* state = fe->demodulator_priv; 827 state->CON_1_val = 0x12; 828 return s5h1420_writereg(state, 0x02, state->CON_1_val); 829 } 830 831 static void s5h1420_release(struct dvb_frontend* fe) 832 { 833 struct s5h1420_state* state = fe->demodulator_priv; 834 i2c_del_adapter(&state->tuner_i2c_adapter); 835 kfree(state); 836 } 837 838 static u32 s5h1420_tuner_i2c_func(struct i2c_adapter *adapter) 839 { 840 return I2C_FUNC_I2C; 841 } 842 843 static int s5h1420_tuner_i2c_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) 844 { 845 struct s5h1420_state *state = i2c_get_adapdata(i2c_adap); 846 struct i2c_msg m[3]; 847 u8 tx_open[2] = { CON_1, state->CON_1_val | 1 }; /* repeater stops once there was a stop condition */ 848 849 if (1 + num > ARRAY_SIZE(m)) { 850 printk(KERN_WARNING 851 "%s: i2c xfer: num=%d is too big!\n", 852 KBUILD_MODNAME, num); 853 return -EOPNOTSUPP; 854 } 855 856 memset(m, 0, sizeof(struct i2c_msg) * (1 + num)); 857 858 m[0].addr = state->config->demod_address; 859 m[0].buf = tx_open; 860 m[0].len = 2; 861 862 memcpy(&m[1], msg, sizeof(struct i2c_msg) * num); 863 864 return i2c_transfer(state->i2c, m, 1 + num) == 1 + num ? num : -EIO; 865 } 866 867 static const struct i2c_algorithm s5h1420_tuner_i2c_algo = { 868 .master_xfer = s5h1420_tuner_i2c_tuner_xfer, 869 .functionality = s5h1420_tuner_i2c_func, 870 }; 871 872 struct i2c_adapter *s5h1420_get_tuner_i2c_adapter(struct dvb_frontend *fe) 873 { 874 struct s5h1420_state *state = fe->demodulator_priv; 875 return &state->tuner_i2c_adapter; 876 } 877 EXPORT_SYMBOL(s5h1420_get_tuner_i2c_adapter); 878 879 static const struct dvb_frontend_ops s5h1420_ops; 880 881 struct dvb_frontend *s5h1420_attach(const struct s5h1420_config *config, 882 struct i2c_adapter *i2c) 883 { 884 /* allocate memory for the internal state */ 885 struct s5h1420_state *state = kzalloc(sizeof(struct s5h1420_state), GFP_KERNEL); 886 u8 i; 887 888 if (state == NULL) 889 goto error; 890 891 /* setup the state */ 892 state->config = config; 893 state->i2c = i2c; 894 state->postlocked = 0; 895 state->fclk = 88000000; 896 state->tunedfreq = 0; 897 state->fec_inner = FEC_NONE; 898 state->symbol_rate = 0; 899 900 /* check if the demod is there + identify it */ 901 i = s5h1420_readreg(state, ID01); 902 if (i != 0x03) 903 goto error; 904 905 memset(state->shadow, 0xff, sizeof(state->shadow)); 906 907 for (i = 0; i < 0x50; i++) 908 state->shadow[i] = s5h1420_readreg(state, i); 909 910 /* create dvb_frontend */ 911 memcpy(&state->frontend.ops, &s5h1420_ops, sizeof(struct dvb_frontend_ops)); 912 state->frontend.demodulator_priv = state; 913 914 /* create tuner i2c adapter */ 915 strlcpy(state->tuner_i2c_adapter.name, "S5H1420-PN1010 tuner I2C bus", 916 sizeof(state->tuner_i2c_adapter.name)); 917 state->tuner_i2c_adapter.algo = &s5h1420_tuner_i2c_algo; 918 state->tuner_i2c_adapter.algo_data = NULL; 919 i2c_set_adapdata(&state->tuner_i2c_adapter, state); 920 if (i2c_add_adapter(&state->tuner_i2c_adapter) < 0) { 921 printk(KERN_ERR "S5H1420/PN1010: tuner i2c bus could not be initialized\n"); 922 goto error; 923 } 924 925 return &state->frontend; 926 927 error: 928 kfree(state); 929 return NULL; 930 } 931 EXPORT_SYMBOL(s5h1420_attach); 932 933 static const struct dvb_frontend_ops s5h1420_ops = { 934 .delsys = { SYS_DVBS }, 935 .info = { 936 .name = "Samsung S5H1420/PnpNetwork PN1010 DVB-S", 937 .frequency_min = 950000, 938 .frequency_max = 2150000, 939 .frequency_stepsize = 125, /* kHz for QPSK frontends */ 940 .frequency_tolerance = 29500, 941 .symbol_rate_min = 1000000, 942 .symbol_rate_max = 45000000, 943 /* .symbol_rate_tolerance = ???,*/ 944 .caps = FE_CAN_INVERSION_AUTO | 945 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | 946 FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | 947 FE_CAN_QPSK 948 }, 949 950 .release = s5h1420_release, 951 952 .init = s5h1420_init, 953 .sleep = s5h1420_sleep, 954 .i2c_gate_ctrl = s5h1420_i2c_gate_ctrl, 955 956 .set_frontend = s5h1420_set_frontend, 957 .get_frontend = s5h1420_get_frontend, 958 .get_tune_settings = s5h1420_get_tune_settings, 959 960 .read_status = s5h1420_read_status, 961 .read_ber = s5h1420_read_ber, 962 .read_signal_strength = s5h1420_read_signal_strength, 963 .read_ucblocks = s5h1420_read_ucblocks, 964 965 .diseqc_send_master_cmd = s5h1420_send_master_cmd, 966 .diseqc_recv_slave_reply = s5h1420_recv_slave_reply, 967 .diseqc_send_burst = s5h1420_send_burst, 968 .set_tone = s5h1420_set_tone, 969 .set_voltage = s5h1420_set_voltage, 970 }; 971 972 MODULE_DESCRIPTION("Samsung S5H1420/PnpNetwork PN1010 DVB-S Demodulator driver"); 973 MODULE_AUTHOR("Andrew de Quincey, Patrick Boettcher"); 974 MODULE_LICENSE("GPL"); 975