1 /*
2     Samsung S5H1411 VSB/QAM demodulator driver
3 
4     Copyright (C) 2008 Steven Toth <stoth@linuxtv.org>
5 
6     This program is free software; you can redistribute it and/or modify
7     it under the terms of the GNU General Public License as published by
8     the Free Software Foundation; either version 2 of the License, or
9     (at your option) any later version.
10 
11     This program is distributed in the hope that it will be useful,
12     but WITHOUT ANY WARRANTY; without even the implied warranty of
13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14     GNU General Public License for more details.
15 
16     You should have received a copy of the GNU General Public License
17     along with this program; if not, write to the Free Software
18     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 
20 */
21 
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include "dvb_frontend.h"
29 #include "s5h1411.h"
30 
31 struct s5h1411_state {
32 
33 	struct i2c_adapter *i2c;
34 
35 	/* configuration settings */
36 	const struct s5h1411_config *config;
37 
38 	struct dvb_frontend frontend;
39 
40 	enum fe_modulation current_modulation;
41 	unsigned int first_tune:1;
42 
43 	u32 current_frequency;
44 	int if_freq;
45 
46 	u8 inversion;
47 };
48 
49 static int debug;
50 
51 #define dprintk(arg...) do {	\
52 	if (debug)		\
53 		printk(arg);	\
54 	} while (0)
55 
56 /* Register values to initialise the demod, defaults to VSB */
57 static struct init_tab {
58 	u8	addr;
59 	u8	reg;
60 	u16	data;
61 } init_tab[] = {
62 	{ S5H1411_I2C_TOP_ADDR, 0x00, 0x0071, },
63 	{ S5H1411_I2C_TOP_ADDR, 0x08, 0x0047, },
64 	{ S5H1411_I2C_TOP_ADDR, 0x1c, 0x0400, },
65 	{ S5H1411_I2C_TOP_ADDR, 0x1e, 0x0370, },
66 	{ S5H1411_I2C_TOP_ADDR, 0x1f, 0x342c, },
67 	{ S5H1411_I2C_TOP_ADDR, 0x24, 0x0231, },
68 	{ S5H1411_I2C_TOP_ADDR, 0x25, 0x1011, },
69 	{ S5H1411_I2C_TOP_ADDR, 0x26, 0x0f07, },
70 	{ S5H1411_I2C_TOP_ADDR, 0x27, 0x0f04, },
71 	{ S5H1411_I2C_TOP_ADDR, 0x28, 0x070f, },
72 	{ S5H1411_I2C_TOP_ADDR, 0x29, 0x2820, },
73 	{ S5H1411_I2C_TOP_ADDR, 0x2a, 0x102e, },
74 	{ S5H1411_I2C_TOP_ADDR, 0x2b, 0x0220, },
75 	{ S5H1411_I2C_TOP_ADDR, 0x2e, 0x0d0e, },
76 	{ S5H1411_I2C_TOP_ADDR, 0x2f, 0x1013, },
77 	{ S5H1411_I2C_TOP_ADDR, 0x31, 0x171b, },
78 	{ S5H1411_I2C_TOP_ADDR, 0x32, 0x0e0f, },
79 	{ S5H1411_I2C_TOP_ADDR, 0x33, 0x0f10, },
80 	{ S5H1411_I2C_TOP_ADDR, 0x34, 0x170e, },
81 	{ S5H1411_I2C_TOP_ADDR, 0x35, 0x4b10, },
82 	{ S5H1411_I2C_TOP_ADDR, 0x36, 0x0f17, },
83 	{ S5H1411_I2C_TOP_ADDR, 0x3c, 0x1577, },
84 	{ S5H1411_I2C_TOP_ADDR, 0x3d, 0x081a, },
85 	{ S5H1411_I2C_TOP_ADDR, 0x3e, 0x77ee, },
86 	{ S5H1411_I2C_TOP_ADDR, 0x40, 0x1e09, },
87 	{ S5H1411_I2C_TOP_ADDR, 0x41, 0x0f0c, },
88 	{ S5H1411_I2C_TOP_ADDR, 0x42, 0x1f10, },
89 	{ S5H1411_I2C_TOP_ADDR, 0x4d, 0x0509, },
90 	{ S5H1411_I2C_TOP_ADDR, 0x4e, 0x0a00, },
91 	{ S5H1411_I2C_TOP_ADDR, 0x50, 0x0000, },
92 	{ S5H1411_I2C_TOP_ADDR, 0x5b, 0x0000, },
93 	{ S5H1411_I2C_TOP_ADDR, 0x5c, 0x0008, },
94 	{ S5H1411_I2C_TOP_ADDR, 0x57, 0x1101, },
95 	{ S5H1411_I2C_TOP_ADDR, 0x65, 0x007c, },
96 	{ S5H1411_I2C_TOP_ADDR, 0x68, 0x0512, },
97 	{ S5H1411_I2C_TOP_ADDR, 0x69, 0x0258, },
98 	{ S5H1411_I2C_TOP_ADDR, 0x70, 0x0004, },
99 	{ S5H1411_I2C_TOP_ADDR, 0x71, 0x0007, },
100 	{ S5H1411_I2C_TOP_ADDR, 0x76, 0x00a9, },
101 	{ S5H1411_I2C_TOP_ADDR, 0x78, 0x3141, },
102 	{ S5H1411_I2C_TOP_ADDR, 0x7a, 0x3141, },
103 	{ S5H1411_I2C_TOP_ADDR, 0xb3, 0x8003, },
104 	{ S5H1411_I2C_TOP_ADDR, 0xb5, 0xa6bb, },
105 	{ S5H1411_I2C_TOP_ADDR, 0xb6, 0x0609, },
106 	{ S5H1411_I2C_TOP_ADDR, 0xb7, 0x2f06, },
107 	{ S5H1411_I2C_TOP_ADDR, 0xb8, 0x003f, },
108 	{ S5H1411_I2C_TOP_ADDR, 0xb9, 0x2700, },
109 	{ S5H1411_I2C_TOP_ADDR, 0xba, 0xfac8, },
110 	{ S5H1411_I2C_TOP_ADDR, 0xbe, 0x1003, },
111 	{ S5H1411_I2C_TOP_ADDR, 0xbf, 0x103f, },
112 	{ S5H1411_I2C_TOP_ADDR, 0xce, 0x2000, },
113 	{ S5H1411_I2C_TOP_ADDR, 0xcf, 0x0800, },
114 	{ S5H1411_I2C_TOP_ADDR, 0xd0, 0x0800, },
115 	{ S5H1411_I2C_TOP_ADDR, 0xd1, 0x0400, },
116 	{ S5H1411_I2C_TOP_ADDR, 0xd2, 0x0800, },
117 	{ S5H1411_I2C_TOP_ADDR, 0xd3, 0x2000, },
118 	{ S5H1411_I2C_TOP_ADDR, 0xd4, 0x3000, },
119 	{ S5H1411_I2C_TOP_ADDR, 0xdb, 0x4a9b, },
120 	{ S5H1411_I2C_TOP_ADDR, 0xdc, 0x1000, },
121 	{ S5H1411_I2C_TOP_ADDR, 0xde, 0x0001, },
122 	{ S5H1411_I2C_TOP_ADDR, 0xdf, 0x0000, },
123 	{ S5H1411_I2C_TOP_ADDR, 0xe3, 0x0301, },
124 	{ S5H1411_I2C_QAM_ADDR, 0xf3, 0x0000, },
125 	{ S5H1411_I2C_QAM_ADDR, 0xf3, 0x0001, },
126 	{ S5H1411_I2C_QAM_ADDR, 0x08, 0x0600, },
127 	{ S5H1411_I2C_QAM_ADDR, 0x18, 0x4201, },
128 	{ S5H1411_I2C_QAM_ADDR, 0x1e, 0x6476, },
129 	{ S5H1411_I2C_QAM_ADDR, 0x21, 0x0830, },
130 	{ S5H1411_I2C_QAM_ADDR, 0x0c, 0x5679, },
131 	{ S5H1411_I2C_QAM_ADDR, 0x0d, 0x579b, },
132 	{ S5H1411_I2C_QAM_ADDR, 0x24, 0x0102, },
133 	{ S5H1411_I2C_QAM_ADDR, 0x31, 0x7488, },
134 	{ S5H1411_I2C_QAM_ADDR, 0x32, 0x0a08, },
135 	{ S5H1411_I2C_QAM_ADDR, 0x3d, 0x8689, },
136 	{ S5H1411_I2C_QAM_ADDR, 0x49, 0x0048, },
137 	{ S5H1411_I2C_QAM_ADDR, 0x57, 0x2012, },
138 	{ S5H1411_I2C_QAM_ADDR, 0x5d, 0x7676, },
139 	{ S5H1411_I2C_QAM_ADDR, 0x04, 0x0400, },
140 	{ S5H1411_I2C_QAM_ADDR, 0x58, 0x00c0, },
141 	{ S5H1411_I2C_QAM_ADDR, 0x5b, 0x0100, },
142 };
143 
144 /* VSB SNR lookup table */
145 static struct vsb_snr_tab {
146 	u16	val;
147 	u16	data;
148 } vsb_snr_tab[] = {
149 	{  0x39f, 300, },
150 	{  0x39b, 295, },
151 	{  0x397, 290, },
152 	{  0x394, 285, },
153 	{  0x38f, 280, },
154 	{  0x38b, 275, },
155 	{  0x387, 270, },
156 	{  0x382, 265, },
157 	{  0x37d, 260, },
158 	{  0x377, 255, },
159 	{  0x370, 250, },
160 	{  0x36a, 245, },
161 	{  0x364, 240, },
162 	{  0x35b, 235, },
163 	{  0x353, 230, },
164 	{  0x349, 225, },
165 	{  0x340, 320, },
166 	{  0x337, 215, },
167 	{  0x327, 210, },
168 	{  0x31b, 205, },
169 	{  0x310, 200, },
170 	{  0x302, 195, },
171 	{  0x2f3, 190, },
172 	{  0x2e4, 185, },
173 	{  0x2d7, 180, },
174 	{  0x2cd, 175, },
175 	{  0x2bb, 170, },
176 	{  0x2a9, 165, },
177 	{  0x29e, 160, },
178 	{  0x284, 155, },
179 	{  0x27a, 150, },
180 	{  0x260, 145, },
181 	{  0x23a, 140, },
182 	{  0x224, 135, },
183 	{  0x213, 130, },
184 	{  0x204, 125, },
185 	{  0x1fe, 120, },
186 	{      0,   0, },
187 };
188 
189 /* QAM64 SNR lookup table */
190 static struct qam64_snr_tab {
191 	u16	val;
192 	u16	data;
193 } qam64_snr_tab[] = {
194 	{  0x0001,   0, },
195 	{  0x0af0, 300, },
196 	{  0x0d80, 290, },
197 	{  0x10a0, 280, },
198 	{  0x14b5, 270, },
199 	{  0x1590, 268, },
200 	{  0x1680, 266, },
201 	{  0x17b0, 264, },
202 	{  0x18c0, 262, },
203 	{  0x19b0, 260, },
204 	{  0x1ad0, 258, },
205 	{  0x1d00, 256, },
206 	{  0x1da0, 254, },
207 	{  0x1ef0, 252, },
208 	{  0x2050, 250, },
209 	{  0x20f0, 249, },
210 	{  0x21d0, 248, },
211 	{  0x22b0, 247, },
212 	{  0x23a0, 246, },
213 	{  0x2470, 245, },
214 	{  0x24f0, 244, },
215 	{  0x25a0, 243, },
216 	{  0x26c0, 242, },
217 	{  0x27b0, 241, },
218 	{  0x28d0, 240, },
219 	{  0x29b0, 239, },
220 	{  0x2ad0, 238, },
221 	{  0x2ba0, 237, },
222 	{  0x2c80, 236, },
223 	{  0x2d20, 235, },
224 	{  0x2e00, 234, },
225 	{  0x2f10, 233, },
226 	{  0x3050, 232, },
227 	{  0x3190, 231, },
228 	{  0x3300, 230, },
229 	{  0x3340, 229, },
230 	{  0x3200, 228, },
231 	{  0x3550, 227, },
232 	{  0x3610, 226, },
233 	{  0x3600, 225, },
234 	{  0x3700, 224, },
235 	{  0x3800, 223, },
236 	{  0x3920, 222, },
237 	{  0x3a20, 221, },
238 	{  0x3b30, 220, },
239 	{  0x3d00, 219, },
240 	{  0x3e00, 218, },
241 	{  0x4000, 217, },
242 	{  0x4100, 216, },
243 	{  0x4300, 215, },
244 	{  0x4400, 214, },
245 	{  0x4600, 213, },
246 	{  0x4700, 212, },
247 	{  0x4800, 211, },
248 	{  0x4a00, 210, },
249 	{  0x4b00, 209, },
250 	{  0x4d00, 208, },
251 	{  0x4f00, 207, },
252 	{  0x5050, 206, },
253 	{  0x5200, 205, },
254 	{  0x53c0, 204, },
255 	{  0x5450, 203, },
256 	{  0x5650, 202, },
257 	{  0x5820, 201, },
258 	{  0x6000, 200, },
259 	{  0xffff,   0, },
260 };
261 
262 /* QAM256 SNR lookup table */
263 static struct qam256_snr_tab {
264 	u16	val;
265 	u16	data;
266 } qam256_snr_tab[] = {
267 	{  0x0001,   0, },
268 	{  0x0970, 400, },
269 	{  0x0a90, 390, },
270 	{  0x0b90, 380, },
271 	{  0x0d90, 370, },
272 	{  0x0ff0, 360, },
273 	{  0x1240, 350, },
274 	{  0x1345, 348, },
275 	{  0x13c0, 346, },
276 	{  0x14c0, 344, },
277 	{  0x1500, 342, },
278 	{  0x1610, 340, },
279 	{  0x1700, 338, },
280 	{  0x1800, 336, },
281 	{  0x18b0, 334, },
282 	{  0x1900, 332, },
283 	{  0x1ab0, 330, },
284 	{  0x1bc0, 328, },
285 	{  0x1cb0, 326, },
286 	{  0x1db0, 324, },
287 	{  0x1eb0, 322, },
288 	{  0x2030, 320, },
289 	{  0x2200, 318, },
290 	{  0x2280, 316, },
291 	{  0x2410, 314, },
292 	{  0x25b0, 312, },
293 	{  0x27a0, 310, },
294 	{  0x2840, 308, },
295 	{  0x29d0, 306, },
296 	{  0x2b10, 304, },
297 	{  0x2d30, 302, },
298 	{  0x2f20, 300, },
299 	{  0x30c0, 298, },
300 	{  0x3260, 297, },
301 	{  0x32c0, 296, },
302 	{  0x3300, 295, },
303 	{  0x33b0, 294, },
304 	{  0x34b0, 293, },
305 	{  0x35a0, 292, },
306 	{  0x3650, 291, },
307 	{  0x3800, 290, },
308 	{  0x3900, 289, },
309 	{  0x3a50, 288, },
310 	{  0x3b30, 287, },
311 	{  0x3cb0, 286, },
312 	{  0x3e20, 285, },
313 	{  0x3fa0, 284, },
314 	{  0x40a0, 283, },
315 	{  0x41c0, 282, },
316 	{  0x42f0, 281, },
317 	{  0x44a0, 280, },
318 	{  0x4600, 279, },
319 	{  0x47b0, 278, },
320 	{  0x4900, 277, },
321 	{  0x4a00, 276, },
322 	{  0x4ba0, 275, },
323 	{  0x4d00, 274, },
324 	{  0x4f00, 273, },
325 	{  0x5000, 272, },
326 	{  0x51f0, 272, },
327 	{  0x53a0, 270, },
328 	{  0x5520, 269, },
329 	{  0x5700, 268, },
330 	{  0x5800, 267, },
331 	{  0x5a00, 266, },
332 	{  0x5c00, 265, },
333 	{  0x5d00, 264, },
334 	{  0x5f00, 263, },
335 	{  0x6000, 262, },
336 	{  0x6200, 261, },
337 	{  0x6400, 260, },
338 	{  0xffff,   0, },
339 };
340 
341 /* 8 bit registers, 16 bit values */
342 static int s5h1411_writereg(struct s5h1411_state *state,
343 	u8 addr, u8 reg, u16 data)
344 {
345 	int ret;
346 	u8 buf[] = { reg, data >> 8,  data & 0xff };
347 
348 	struct i2c_msg msg = { .addr = addr, .flags = 0, .buf = buf, .len = 3 };
349 
350 	ret = i2c_transfer(state->i2c, &msg, 1);
351 
352 	if (ret != 1)
353 		printk(KERN_ERR "%s: writereg error 0x%02x 0x%02x 0x%04x, "
354 		       "ret == %i)\n", __func__, addr, reg, data, ret);
355 
356 	return (ret != 1) ? -1 : 0;
357 }
358 
359 static u16 s5h1411_readreg(struct s5h1411_state *state, u8 addr, u8 reg)
360 {
361 	int ret;
362 	u8 b0[] = { reg };
363 	u8 b1[] = { 0, 0 };
364 
365 	struct i2c_msg msg[] = {
366 		{ .addr = addr, .flags = 0, .buf = b0, .len = 1 },
367 		{ .addr = addr, .flags = I2C_M_RD, .buf = b1, .len = 2 } };
368 
369 	ret = i2c_transfer(state->i2c, msg, 2);
370 
371 	if (ret != 2)
372 		printk(KERN_ERR "%s: readreg error (ret == %i)\n",
373 			__func__, ret);
374 	return (b1[0] << 8) | b1[1];
375 }
376 
377 static int s5h1411_softreset(struct dvb_frontend *fe)
378 {
379 	struct s5h1411_state *state = fe->demodulator_priv;
380 
381 	dprintk("%s()\n", __func__);
382 
383 	s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf7, 0);
384 	s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf7, 1);
385 	return 0;
386 }
387 
388 static int s5h1411_set_if_freq(struct dvb_frontend *fe, int KHz)
389 {
390 	struct s5h1411_state *state = fe->demodulator_priv;
391 
392 	dprintk("%s(%d KHz)\n", __func__, KHz);
393 
394 	switch (KHz) {
395 	case 3250:
396 		s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x10d5);
397 		s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0x5342);
398 		s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x10d9);
399 		break;
400 	case 3500:
401 		s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x1225);
402 		s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0x1e96);
403 		s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x1225);
404 		break;
405 	case 4000:
406 		s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x14bc);
407 		s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0xb53e);
408 		s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x14bd);
409 		break;
410 	default:
411 		dprintk("%s(%d KHz) Invalid, defaulting to 5380\n",
412 			__func__, KHz);
413 		/* no break, need to continue */
414 	case 5380:
415 	case 44000:
416 		s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x1be4);
417 		s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0x3655);
418 		s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x1be4);
419 		break;
420 	}
421 
422 	state->if_freq = KHz;
423 
424 	return 0;
425 }
426 
427 static int s5h1411_set_mpeg_timing(struct dvb_frontend *fe, int mode)
428 {
429 	struct s5h1411_state *state = fe->demodulator_priv;
430 	u16 val;
431 
432 	dprintk("%s(%d)\n", __func__, mode);
433 
434 	val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xbe) & 0xcfff;
435 	switch (mode) {
436 	case S5H1411_MPEGTIMING_CONTINOUS_INVERTING_CLOCK:
437 		val |= 0x0000;
438 		break;
439 	case S5H1411_MPEGTIMING_CONTINOUS_NONINVERTING_CLOCK:
440 		dprintk("%s(%d) Mode1 or Defaulting\n", __func__, mode);
441 		val |= 0x1000;
442 		break;
443 	case S5H1411_MPEGTIMING_NONCONTINOUS_INVERTING_CLOCK:
444 		val |= 0x2000;
445 		break;
446 	case S5H1411_MPEGTIMING_NONCONTINOUS_NONINVERTING_CLOCK:
447 		val |= 0x3000;
448 		break;
449 	default:
450 		return -EINVAL;
451 	}
452 
453 	/* Configure MPEG Signal Timing charactistics */
454 	return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xbe, val);
455 }
456 
457 static int s5h1411_set_spectralinversion(struct dvb_frontend *fe, int inversion)
458 {
459 	struct s5h1411_state *state = fe->demodulator_priv;
460 	u16 val;
461 
462 	dprintk("%s(%d)\n", __func__, inversion);
463 	val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0x24) & ~0x1000;
464 
465 	if (inversion == 1)
466 		val |= 0x1000; /* Inverted */
467 
468 	state->inversion = inversion;
469 	return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x24, val);
470 }
471 
472 static int s5h1411_set_serialmode(struct dvb_frontend *fe, int serial)
473 {
474 	struct s5h1411_state *state = fe->demodulator_priv;
475 	u16 val;
476 
477 	dprintk("%s(%d)\n", __func__, serial);
478 	val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xbd) & ~0x100;
479 
480 	if (serial == 1)
481 		val |= 0x100;
482 
483 	return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xbd, val);
484 }
485 
486 static int s5h1411_enable_modulation(struct dvb_frontend *fe,
487 				     enum fe_modulation m)
488 {
489 	struct s5h1411_state *state = fe->demodulator_priv;
490 
491 	dprintk("%s(0x%08x)\n", __func__, m);
492 
493 	if ((state->first_tune == 0) && (m == state->current_modulation)) {
494 		dprintk("%s() Already at desired modulation.  Skipping...\n",
495 			__func__);
496 		return 0;
497 	}
498 
499 	switch (m) {
500 	case VSB_8:
501 		dprintk("%s() VSB_8\n", __func__);
502 		s5h1411_set_if_freq(fe, state->config->vsb_if);
503 		s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x00, 0x71);
504 		s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf6, 0x00);
505 		s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xcd, 0xf1);
506 		break;
507 	case QAM_64:
508 	case QAM_256:
509 	case QAM_AUTO:
510 		dprintk("%s() QAM_AUTO (64/256)\n", __func__);
511 		s5h1411_set_if_freq(fe, state->config->qam_if);
512 		s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x00, 0x0171);
513 		s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf6, 0x0001);
514 		s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x16, 0x1101);
515 		s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xcd, 0x00f0);
516 		break;
517 	default:
518 		dprintk("%s() Invalid modulation\n", __func__);
519 		return -EINVAL;
520 	}
521 
522 	state->current_modulation = m;
523 	state->first_tune = 0;
524 	s5h1411_softreset(fe);
525 
526 	return 0;
527 }
528 
529 static int s5h1411_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
530 {
531 	struct s5h1411_state *state = fe->demodulator_priv;
532 
533 	dprintk("%s(%d)\n", __func__, enable);
534 
535 	if (enable)
536 		return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf5, 1);
537 	else
538 		return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf5, 0);
539 }
540 
541 static int s5h1411_set_gpio(struct dvb_frontend *fe, int enable)
542 {
543 	struct s5h1411_state *state = fe->demodulator_priv;
544 	u16 val;
545 
546 	dprintk("%s(%d)\n", __func__, enable);
547 
548 	val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xe0) & ~0x02;
549 
550 	if (enable)
551 		return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xe0,
552 				val | 0x02);
553 	else
554 		return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xe0, val);
555 }
556 
557 static int s5h1411_set_powerstate(struct dvb_frontend *fe, int enable)
558 {
559 	struct s5h1411_state *state = fe->demodulator_priv;
560 
561 	dprintk("%s(%d)\n", __func__, enable);
562 
563 	if (enable)
564 		s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf4, 1);
565 	else {
566 		s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf4, 0);
567 		s5h1411_softreset(fe);
568 	}
569 
570 	return 0;
571 }
572 
573 static int s5h1411_sleep(struct dvb_frontend *fe)
574 {
575 	return s5h1411_set_powerstate(fe, 1);
576 }
577 
578 static int s5h1411_register_reset(struct dvb_frontend *fe)
579 {
580 	struct s5h1411_state *state = fe->demodulator_priv;
581 
582 	dprintk("%s()\n", __func__);
583 
584 	return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf3, 0);
585 }
586 
587 /* Talk to the demod, set the FEC, GUARD, QAM settings etc */
588 static int s5h1411_set_frontend(struct dvb_frontend *fe)
589 {
590 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
591 	struct s5h1411_state *state = fe->demodulator_priv;
592 
593 	dprintk("%s(frequency=%d)\n", __func__, p->frequency);
594 
595 	s5h1411_softreset(fe);
596 
597 	state->current_frequency = p->frequency;
598 
599 	s5h1411_enable_modulation(fe, p->modulation);
600 
601 	if (fe->ops.tuner_ops.set_params) {
602 		if (fe->ops.i2c_gate_ctrl)
603 			fe->ops.i2c_gate_ctrl(fe, 1);
604 
605 		fe->ops.tuner_ops.set_params(fe);
606 
607 		if (fe->ops.i2c_gate_ctrl)
608 			fe->ops.i2c_gate_ctrl(fe, 0);
609 	}
610 
611 	/* Issue a reset to the demod so it knows to resync against the
612 	   newly tuned frequency */
613 	s5h1411_softreset(fe);
614 
615 	return 0;
616 }
617 
618 /* Reset the demod hardware and reset all of the configuration registers
619    to a default state. */
620 static int s5h1411_init(struct dvb_frontend *fe)
621 {
622 	struct s5h1411_state *state = fe->demodulator_priv;
623 	int i;
624 
625 	dprintk("%s()\n", __func__);
626 
627 	s5h1411_set_powerstate(fe, 0);
628 	s5h1411_register_reset(fe);
629 
630 	for (i = 0; i < ARRAY_SIZE(init_tab); i++)
631 		s5h1411_writereg(state, init_tab[i].addr,
632 			init_tab[i].reg,
633 			init_tab[i].data);
634 
635 	/* The datasheet says that after initialisation, VSB is default */
636 	state->current_modulation = VSB_8;
637 
638 	/* Although the datasheet says it's in VSB, empirical evidence
639 	   shows problems getting lock on the first tuning request.  Make
640 	   sure we call enable_modulation the first time around */
641 	state->first_tune = 1;
642 
643 	if (state->config->output_mode == S5H1411_SERIAL_OUTPUT)
644 		/* Serial */
645 		s5h1411_set_serialmode(fe, 1);
646 	else
647 		/* Parallel */
648 		s5h1411_set_serialmode(fe, 0);
649 
650 	s5h1411_set_spectralinversion(fe, state->config->inversion);
651 	s5h1411_set_if_freq(fe, state->config->vsb_if);
652 	s5h1411_set_gpio(fe, state->config->gpio);
653 	s5h1411_set_mpeg_timing(fe, state->config->mpeg_timing);
654 	s5h1411_softreset(fe);
655 
656 	/* Note: Leaving the I2C gate closed. */
657 	s5h1411_i2c_gate_ctrl(fe, 0);
658 
659 	return 0;
660 }
661 
662 static int s5h1411_read_status(struct dvb_frontend *fe, enum fe_status *status)
663 {
664 	struct s5h1411_state *state = fe->demodulator_priv;
665 	u16 reg;
666 	u32 tuner_status = 0;
667 
668 	*status = 0;
669 
670 	/* Register F2 bit 15 = Master Lock, removed */
671 
672 	switch (state->current_modulation) {
673 	case QAM_64:
674 	case QAM_256:
675 		reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf0);
676 		if (reg & 0x10) /* QAM FEC Lock */
677 			*status |= FE_HAS_SYNC | FE_HAS_LOCK;
678 		if (reg & 0x100) /* QAM EQ Lock */
679 			*status |= FE_HAS_VITERBI | FE_HAS_CARRIER | FE_HAS_SIGNAL;
680 
681 		break;
682 	case VSB_8:
683 		reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf2);
684 		if (reg & 0x1000) /* FEC Lock */
685 			*status |= FE_HAS_SYNC | FE_HAS_LOCK;
686 		if (reg & 0x2000) /* EQ Lock */
687 			*status |= FE_HAS_VITERBI | FE_HAS_CARRIER | FE_HAS_SIGNAL;
688 
689 		reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0x53);
690 		if (reg & 0x1) /* AFC Lock */
691 			*status |= FE_HAS_SIGNAL;
692 
693 		break;
694 	default:
695 		return -EINVAL;
696 	}
697 
698 	switch (state->config->status_mode) {
699 	case S5H1411_DEMODLOCKING:
700 		if (*status & FE_HAS_VITERBI)
701 			*status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
702 		break;
703 	case S5H1411_TUNERLOCKING:
704 		/* Get the tuner status */
705 		if (fe->ops.tuner_ops.get_status) {
706 			if (fe->ops.i2c_gate_ctrl)
707 				fe->ops.i2c_gate_ctrl(fe, 1);
708 
709 			fe->ops.tuner_ops.get_status(fe, &tuner_status);
710 
711 			if (fe->ops.i2c_gate_ctrl)
712 				fe->ops.i2c_gate_ctrl(fe, 0);
713 		}
714 		if (tuner_status)
715 			*status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
716 		break;
717 	}
718 
719 	dprintk("%s() status 0x%08x\n", __func__, *status);
720 
721 	return 0;
722 }
723 
724 static int s5h1411_qam256_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v)
725 {
726 	int i, ret = -EINVAL;
727 	dprintk("%s()\n", __func__);
728 
729 	for (i = 0; i < ARRAY_SIZE(qam256_snr_tab); i++) {
730 		if (v < qam256_snr_tab[i].val) {
731 			*snr = qam256_snr_tab[i].data;
732 			ret = 0;
733 			break;
734 		}
735 	}
736 	return ret;
737 }
738 
739 static int s5h1411_qam64_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v)
740 {
741 	int i, ret = -EINVAL;
742 	dprintk("%s()\n", __func__);
743 
744 	for (i = 0; i < ARRAY_SIZE(qam64_snr_tab); i++) {
745 		if (v < qam64_snr_tab[i].val) {
746 			*snr = qam64_snr_tab[i].data;
747 			ret = 0;
748 			break;
749 		}
750 	}
751 	return ret;
752 }
753 
754 static int s5h1411_vsb_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v)
755 {
756 	int i, ret = -EINVAL;
757 	dprintk("%s()\n", __func__);
758 
759 	for (i = 0; i < ARRAY_SIZE(vsb_snr_tab); i++) {
760 		if (v > vsb_snr_tab[i].val) {
761 			*snr = vsb_snr_tab[i].data;
762 			ret = 0;
763 			break;
764 		}
765 	}
766 	dprintk("%s() snr=%d\n", __func__, *snr);
767 	return ret;
768 }
769 
770 static int s5h1411_read_snr(struct dvb_frontend *fe, u16 *snr)
771 {
772 	struct s5h1411_state *state = fe->demodulator_priv;
773 	u16 reg;
774 	dprintk("%s()\n", __func__);
775 
776 	switch (state->current_modulation) {
777 	case QAM_64:
778 		reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf1);
779 		return s5h1411_qam64_lookup_snr(fe, snr, reg);
780 	case QAM_256:
781 		reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf1);
782 		return s5h1411_qam256_lookup_snr(fe, snr, reg);
783 	case VSB_8:
784 		reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR,
785 			0xf2) & 0x3ff;
786 		return s5h1411_vsb_lookup_snr(fe, snr, reg);
787 	default:
788 		break;
789 	}
790 
791 	return -EINVAL;
792 }
793 
794 static int s5h1411_read_signal_strength(struct dvb_frontend *fe,
795 	u16 *signal_strength)
796 {
797 	/* borrowed from lgdt330x.c
798 	 *
799 	 * Calculate strength from SNR up to 35dB
800 	 * Even though the SNR can go higher than 35dB,
801 	 * there is some comfort factor in having a range of
802 	 * strong signals that can show at 100%
803 	 */
804 	u16 snr;
805 	u32 tmp;
806 	int ret = s5h1411_read_snr(fe, &snr);
807 
808 	*signal_strength = 0;
809 
810 	if (0 == ret) {
811 		/* The following calculation method was chosen
812 		 * purely for the sake of code re-use from the
813 		 * other demod drivers that use this method */
814 
815 		/* Convert from SNR in dB * 10 to 8.24 fixed-point */
816 		tmp = (snr * ((1 << 24) / 10));
817 
818 		/* Convert from 8.24 fixed-point to
819 		 * scale the range 0 - 35*2^24 into 0 - 65535*/
820 		if (tmp >= 8960 * 0x10000)
821 			*signal_strength = 0xffff;
822 		else
823 			*signal_strength = tmp / 8960;
824 	}
825 
826 	return ret;
827 }
828 
829 static int s5h1411_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
830 {
831 	struct s5h1411_state *state = fe->demodulator_priv;
832 
833 	*ucblocks = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xc9);
834 
835 	return 0;
836 }
837 
838 static int s5h1411_read_ber(struct dvb_frontend *fe, u32 *ber)
839 {
840 	return s5h1411_read_ucblocks(fe, ber);
841 }
842 
843 static int s5h1411_get_frontend(struct dvb_frontend *fe,
844 				struct dtv_frontend_properties *p)
845 {
846 	struct s5h1411_state *state = fe->demodulator_priv;
847 
848 	p->frequency = state->current_frequency;
849 	p->modulation = state->current_modulation;
850 
851 	return 0;
852 }
853 
854 static int s5h1411_get_tune_settings(struct dvb_frontend *fe,
855 				     struct dvb_frontend_tune_settings *tune)
856 {
857 	tune->min_delay_ms = 1000;
858 	return 0;
859 }
860 
861 static void s5h1411_release(struct dvb_frontend *fe)
862 {
863 	struct s5h1411_state *state = fe->demodulator_priv;
864 	kfree(state);
865 }
866 
867 static struct dvb_frontend_ops s5h1411_ops;
868 
869 struct dvb_frontend *s5h1411_attach(const struct s5h1411_config *config,
870 				    struct i2c_adapter *i2c)
871 {
872 	struct s5h1411_state *state = NULL;
873 	u16 reg;
874 
875 	/* allocate memory for the internal state */
876 	state = kzalloc(sizeof(struct s5h1411_state), GFP_KERNEL);
877 	if (state == NULL)
878 		goto error;
879 
880 	/* setup the state */
881 	state->config = config;
882 	state->i2c = i2c;
883 	state->current_modulation = VSB_8;
884 	state->inversion = state->config->inversion;
885 
886 	/* check if the demod exists */
887 	reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0x05);
888 	if (reg != 0x0066)
889 		goto error;
890 
891 	/* create dvb_frontend */
892 	memcpy(&state->frontend.ops, &s5h1411_ops,
893 	       sizeof(struct dvb_frontend_ops));
894 
895 	state->frontend.demodulator_priv = state;
896 
897 	if (s5h1411_init(&state->frontend) != 0) {
898 		printk(KERN_ERR "%s: Failed to initialize correctly\n",
899 			__func__);
900 		goto error;
901 	}
902 
903 	/* Note: Leaving the I2C gate open here. */
904 	s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf5, 1);
905 
906 	/* Put the device into low-power mode until first use */
907 	s5h1411_set_powerstate(&state->frontend, 1);
908 
909 	return &state->frontend;
910 
911 error:
912 	kfree(state);
913 	return NULL;
914 }
915 EXPORT_SYMBOL(s5h1411_attach);
916 
917 static struct dvb_frontend_ops s5h1411_ops = {
918 	.delsys = { SYS_ATSC, SYS_DVBC_ANNEX_B },
919 	.info = {
920 		.name			= "Samsung S5H1411 QAM/8VSB Frontend",
921 		.frequency_min		= 54000000,
922 		.frequency_max		= 858000000,
923 		.frequency_stepsize	= 62500,
924 		.caps = FE_CAN_QAM_64 | FE_CAN_QAM_256 | FE_CAN_8VSB
925 	},
926 
927 	.init                 = s5h1411_init,
928 	.sleep                = s5h1411_sleep,
929 	.i2c_gate_ctrl        = s5h1411_i2c_gate_ctrl,
930 	.set_frontend         = s5h1411_set_frontend,
931 	.get_frontend         = s5h1411_get_frontend,
932 	.get_tune_settings    = s5h1411_get_tune_settings,
933 	.read_status          = s5h1411_read_status,
934 	.read_ber             = s5h1411_read_ber,
935 	.read_signal_strength = s5h1411_read_signal_strength,
936 	.read_snr             = s5h1411_read_snr,
937 	.read_ucblocks        = s5h1411_read_ucblocks,
938 	.release              = s5h1411_release,
939 };
940 
941 module_param(debug, int, 0644);
942 MODULE_PARM_DESC(debug, "Enable verbose debug messages");
943 
944 MODULE_DESCRIPTION("Samsung S5H1411 QAM-B/ATSC Demodulator driver");
945 MODULE_AUTHOR("Steven Toth");
946 MODULE_LICENSE("GPL");
947