1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 Samsung S5H1411 VSB/QAM demodulator driver 4 5 Copyright (C) 2008 Steven Toth <stoth@linuxtv.org> 6 7 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/string.h> 14 #include <linux/slab.h> 15 #include <linux/delay.h> 16 #include <media/dvb_frontend.h> 17 #include "s5h1411.h" 18 19 struct s5h1411_state { 20 21 struct i2c_adapter *i2c; 22 23 /* configuration settings */ 24 const struct s5h1411_config *config; 25 26 struct dvb_frontend frontend; 27 28 enum fe_modulation current_modulation; 29 unsigned int first_tune:1; 30 31 u32 current_frequency; 32 int if_freq; 33 34 u8 inversion; 35 }; 36 37 static int debug; 38 39 #define dprintk(arg...) do { \ 40 if (debug) \ 41 printk(arg); \ 42 } while (0) 43 44 /* Register values to initialise the demod, defaults to VSB */ 45 static struct init_tab { 46 u8 addr; 47 u8 reg; 48 u16 data; 49 } init_tab[] = { 50 { S5H1411_I2C_TOP_ADDR, 0x00, 0x0071, }, 51 { S5H1411_I2C_TOP_ADDR, 0x08, 0x0047, }, 52 { S5H1411_I2C_TOP_ADDR, 0x1c, 0x0400, }, 53 { S5H1411_I2C_TOP_ADDR, 0x1e, 0x0370, }, 54 { S5H1411_I2C_TOP_ADDR, 0x1f, 0x342c, }, 55 { S5H1411_I2C_TOP_ADDR, 0x24, 0x0231, }, 56 { S5H1411_I2C_TOP_ADDR, 0x25, 0x1011, }, 57 { S5H1411_I2C_TOP_ADDR, 0x26, 0x0f07, }, 58 { S5H1411_I2C_TOP_ADDR, 0x27, 0x0f04, }, 59 { S5H1411_I2C_TOP_ADDR, 0x28, 0x070f, }, 60 { S5H1411_I2C_TOP_ADDR, 0x29, 0x2820, }, 61 { S5H1411_I2C_TOP_ADDR, 0x2a, 0x102e, }, 62 { S5H1411_I2C_TOP_ADDR, 0x2b, 0x0220, }, 63 { S5H1411_I2C_TOP_ADDR, 0x2e, 0x0d0e, }, 64 { S5H1411_I2C_TOP_ADDR, 0x2f, 0x1013, }, 65 { S5H1411_I2C_TOP_ADDR, 0x31, 0x171b, }, 66 { S5H1411_I2C_TOP_ADDR, 0x32, 0x0e0f, }, 67 { S5H1411_I2C_TOP_ADDR, 0x33, 0x0f10, }, 68 { S5H1411_I2C_TOP_ADDR, 0x34, 0x170e, }, 69 { S5H1411_I2C_TOP_ADDR, 0x35, 0x4b10, }, 70 { S5H1411_I2C_TOP_ADDR, 0x36, 0x0f17, }, 71 { S5H1411_I2C_TOP_ADDR, 0x3c, 0x1577, }, 72 { S5H1411_I2C_TOP_ADDR, 0x3d, 0x081a, }, 73 { S5H1411_I2C_TOP_ADDR, 0x3e, 0x77ee, }, 74 { S5H1411_I2C_TOP_ADDR, 0x40, 0x1e09, }, 75 { S5H1411_I2C_TOP_ADDR, 0x41, 0x0f0c, }, 76 { S5H1411_I2C_TOP_ADDR, 0x42, 0x1f10, }, 77 { S5H1411_I2C_TOP_ADDR, 0x4d, 0x0509, }, 78 { S5H1411_I2C_TOP_ADDR, 0x4e, 0x0a00, }, 79 { S5H1411_I2C_TOP_ADDR, 0x50, 0x0000, }, 80 { S5H1411_I2C_TOP_ADDR, 0x5b, 0x0000, }, 81 { S5H1411_I2C_TOP_ADDR, 0x5c, 0x0008, }, 82 { S5H1411_I2C_TOP_ADDR, 0x57, 0x1101, }, 83 { S5H1411_I2C_TOP_ADDR, 0x65, 0x007c, }, 84 { S5H1411_I2C_TOP_ADDR, 0x68, 0x0512, }, 85 { S5H1411_I2C_TOP_ADDR, 0x69, 0x0258, }, 86 { S5H1411_I2C_TOP_ADDR, 0x70, 0x0004, }, 87 { S5H1411_I2C_TOP_ADDR, 0x71, 0x0007, }, 88 { S5H1411_I2C_TOP_ADDR, 0x76, 0x00a9, }, 89 { S5H1411_I2C_TOP_ADDR, 0x78, 0x3141, }, 90 { S5H1411_I2C_TOP_ADDR, 0x7a, 0x3141, }, 91 { S5H1411_I2C_TOP_ADDR, 0xb3, 0x8003, }, 92 { S5H1411_I2C_TOP_ADDR, 0xb5, 0xa6bb, }, 93 { S5H1411_I2C_TOP_ADDR, 0xb6, 0x0609, }, 94 { S5H1411_I2C_TOP_ADDR, 0xb7, 0x2f06, }, 95 { S5H1411_I2C_TOP_ADDR, 0xb8, 0x003f, }, 96 { S5H1411_I2C_TOP_ADDR, 0xb9, 0x2700, }, 97 { S5H1411_I2C_TOP_ADDR, 0xba, 0xfac8, }, 98 { S5H1411_I2C_TOP_ADDR, 0xbe, 0x1003, }, 99 { S5H1411_I2C_TOP_ADDR, 0xbf, 0x103f, }, 100 { S5H1411_I2C_TOP_ADDR, 0xce, 0x2000, }, 101 { S5H1411_I2C_TOP_ADDR, 0xcf, 0x0800, }, 102 { S5H1411_I2C_TOP_ADDR, 0xd0, 0x0800, }, 103 { S5H1411_I2C_TOP_ADDR, 0xd1, 0x0400, }, 104 { S5H1411_I2C_TOP_ADDR, 0xd2, 0x0800, }, 105 { S5H1411_I2C_TOP_ADDR, 0xd3, 0x2000, }, 106 { S5H1411_I2C_TOP_ADDR, 0xd4, 0x3000, }, 107 { S5H1411_I2C_TOP_ADDR, 0xdb, 0x4a9b, }, 108 { S5H1411_I2C_TOP_ADDR, 0xdc, 0x1000, }, 109 { S5H1411_I2C_TOP_ADDR, 0xde, 0x0001, }, 110 { S5H1411_I2C_TOP_ADDR, 0xdf, 0x0000, }, 111 { S5H1411_I2C_TOP_ADDR, 0xe3, 0x0301, }, 112 { S5H1411_I2C_QAM_ADDR, 0xf3, 0x0000, }, 113 { S5H1411_I2C_QAM_ADDR, 0xf3, 0x0001, }, 114 { S5H1411_I2C_QAM_ADDR, 0x08, 0x0600, }, 115 { S5H1411_I2C_QAM_ADDR, 0x18, 0x4201, }, 116 { S5H1411_I2C_QAM_ADDR, 0x1e, 0x6476, }, 117 { S5H1411_I2C_QAM_ADDR, 0x21, 0x0830, }, 118 { S5H1411_I2C_QAM_ADDR, 0x0c, 0x5679, }, 119 { S5H1411_I2C_QAM_ADDR, 0x0d, 0x579b, }, 120 { S5H1411_I2C_QAM_ADDR, 0x24, 0x0102, }, 121 { S5H1411_I2C_QAM_ADDR, 0x31, 0x7488, }, 122 { S5H1411_I2C_QAM_ADDR, 0x32, 0x0a08, }, 123 { S5H1411_I2C_QAM_ADDR, 0x3d, 0x8689, }, 124 { S5H1411_I2C_QAM_ADDR, 0x49, 0x0048, }, 125 { S5H1411_I2C_QAM_ADDR, 0x57, 0x2012, }, 126 { S5H1411_I2C_QAM_ADDR, 0x5d, 0x7676, }, 127 { S5H1411_I2C_QAM_ADDR, 0x04, 0x0400, }, 128 { S5H1411_I2C_QAM_ADDR, 0x58, 0x00c0, }, 129 { S5H1411_I2C_QAM_ADDR, 0x5b, 0x0100, }, 130 }; 131 132 /* VSB SNR lookup table */ 133 static struct vsb_snr_tab { 134 u16 val; 135 u16 data; 136 } vsb_snr_tab[] = { 137 { 0x39f, 300, }, 138 { 0x39b, 295, }, 139 { 0x397, 290, }, 140 { 0x394, 285, }, 141 { 0x38f, 280, }, 142 { 0x38b, 275, }, 143 { 0x387, 270, }, 144 { 0x382, 265, }, 145 { 0x37d, 260, }, 146 { 0x377, 255, }, 147 { 0x370, 250, }, 148 { 0x36a, 245, }, 149 { 0x364, 240, }, 150 { 0x35b, 235, }, 151 { 0x353, 230, }, 152 { 0x349, 225, }, 153 { 0x340, 220, }, 154 { 0x337, 215, }, 155 { 0x327, 210, }, 156 { 0x31b, 205, }, 157 { 0x310, 200, }, 158 { 0x302, 195, }, 159 { 0x2f3, 190, }, 160 { 0x2e4, 185, }, 161 { 0x2d7, 180, }, 162 { 0x2cd, 175, }, 163 { 0x2bb, 170, }, 164 { 0x2a9, 165, }, 165 { 0x29e, 160, }, 166 { 0x284, 155, }, 167 { 0x27a, 150, }, 168 { 0x260, 145, }, 169 { 0x23a, 140, }, 170 { 0x224, 135, }, 171 { 0x213, 130, }, 172 { 0x204, 125, }, 173 { 0x1fe, 120, }, 174 { 0, 0, }, 175 }; 176 177 /* QAM64 SNR lookup table */ 178 static struct qam64_snr_tab { 179 u16 val; 180 u16 data; 181 } qam64_snr_tab[] = { 182 { 0x0001, 0, }, 183 { 0x0af0, 300, }, 184 { 0x0d80, 290, }, 185 { 0x10a0, 280, }, 186 { 0x14b5, 270, }, 187 { 0x1590, 268, }, 188 { 0x1680, 266, }, 189 { 0x17b0, 264, }, 190 { 0x18c0, 262, }, 191 { 0x19b0, 260, }, 192 { 0x1ad0, 258, }, 193 { 0x1d00, 256, }, 194 { 0x1da0, 254, }, 195 { 0x1ef0, 252, }, 196 { 0x2050, 250, }, 197 { 0x20f0, 249, }, 198 { 0x21d0, 248, }, 199 { 0x22b0, 247, }, 200 { 0x23a0, 246, }, 201 { 0x2470, 245, }, 202 { 0x24f0, 244, }, 203 { 0x25a0, 243, }, 204 { 0x26c0, 242, }, 205 { 0x27b0, 241, }, 206 { 0x28d0, 240, }, 207 { 0x29b0, 239, }, 208 { 0x2ad0, 238, }, 209 { 0x2ba0, 237, }, 210 { 0x2c80, 236, }, 211 { 0x2d20, 235, }, 212 { 0x2e00, 234, }, 213 { 0x2f10, 233, }, 214 { 0x3050, 232, }, 215 { 0x3190, 231, }, 216 { 0x3300, 230, }, 217 { 0x3340, 229, }, 218 { 0x3200, 228, }, 219 { 0x3550, 227, }, 220 { 0x3610, 226, }, 221 { 0x3600, 225, }, 222 { 0x3700, 224, }, 223 { 0x3800, 223, }, 224 { 0x3920, 222, }, 225 { 0x3a20, 221, }, 226 { 0x3b30, 220, }, 227 { 0x3d00, 219, }, 228 { 0x3e00, 218, }, 229 { 0x4000, 217, }, 230 { 0x4100, 216, }, 231 { 0x4300, 215, }, 232 { 0x4400, 214, }, 233 { 0x4600, 213, }, 234 { 0x4700, 212, }, 235 { 0x4800, 211, }, 236 { 0x4a00, 210, }, 237 { 0x4b00, 209, }, 238 { 0x4d00, 208, }, 239 { 0x4f00, 207, }, 240 { 0x5050, 206, }, 241 { 0x5200, 205, }, 242 { 0x53c0, 204, }, 243 { 0x5450, 203, }, 244 { 0x5650, 202, }, 245 { 0x5820, 201, }, 246 { 0x6000, 200, }, 247 { 0xffff, 0, }, 248 }; 249 250 /* QAM256 SNR lookup table */ 251 static struct qam256_snr_tab { 252 u16 val; 253 u16 data; 254 } qam256_snr_tab[] = { 255 { 0x0001, 0, }, 256 { 0x0970, 400, }, 257 { 0x0a90, 390, }, 258 { 0x0b90, 380, }, 259 { 0x0d90, 370, }, 260 { 0x0ff0, 360, }, 261 { 0x1240, 350, }, 262 { 0x1345, 348, }, 263 { 0x13c0, 346, }, 264 { 0x14c0, 344, }, 265 { 0x1500, 342, }, 266 { 0x1610, 340, }, 267 { 0x1700, 338, }, 268 { 0x1800, 336, }, 269 { 0x18b0, 334, }, 270 { 0x1900, 332, }, 271 { 0x1ab0, 330, }, 272 { 0x1bc0, 328, }, 273 { 0x1cb0, 326, }, 274 { 0x1db0, 324, }, 275 { 0x1eb0, 322, }, 276 { 0x2030, 320, }, 277 { 0x2200, 318, }, 278 { 0x2280, 316, }, 279 { 0x2410, 314, }, 280 { 0x25b0, 312, }, 281 { 0x27a0, 310, }, 282 { 0x2840, 308, }, 283 { 0x29d0, 306, }, 284 { 0x2b10, 304, }, 285 { 0x2d30, 302, }, 286 { 0x2f20, 300, }, 287 { 0x30c0, 298, }, 288 { 0x3260, 297, }, 289 { 0x32c0, 296, }, 290 { 0x3300, 295, }, 291 { 0x33b0, 294, }, 292 { 0x34b0, 293, }, 293 { 0x35a0, 292, }, 294 { 0x3650, 291, }, 295 { 0x3800, 290, }, 296 { 0x3900, 289, }, 297 { 0x3a50, 288, }, 298 { 0x3b30, 287, }, 299 { 0x3cb0, 286, }, 300 { 0x3e20, 285, }, 301 { 0x3fa0, 284, }, 302 { 0x40a0, 283, }, 303 { 0x41c0, 282, }, 304 { 0x42f0, 281, }, 305 { 0x44a0, 280, }, 306 { 0x4600, 279, }, 307 { 0x47b0, 278, }, 308 { 0x4900, 277, }, 309 { 0x4a00, 276, }, 310 { 0x4ba0, 275, }, 311 { 0x4d00, 274, }, 312 { 0x4f00, 273, }, 313 { 0x5000, 272, }, 314 { 0x51f0, 272, }, 315 { 0x53a0, 270, }, 316 { 0x5520, 269, }, 317 { 0x5700, 268, }, 318 { 0x5800, 267, }, 319 { 0x5a00, 266, }, 320 { 0x5c00, 265, }, 321 { 0x5d00, 264, }, 322 { 0x5f00, 263, }, 323 { 0x6000, 262, }, 324 { 0x6200, 261, }, 325 { 0x6400, 260, }, 326 { 0xffff, 0, }, 327 }; 328 329 /* 8 bit registers, 16 bit values */ 330 static int s5h1411_writereg(struct s5h1411_state *state, 331 u8 addr, u8 reg, u16 data) 332 { 333 int ret; 334 u8 buf[] = { reg, data >> 8, data & 0xff }; 335 336 struct i2c_msg msg = { .addr = addr, .flags = 0, .buf = buf, .len = 3 }; 337 338 ret = i2c_transfer(state->i2c, &msg, 1); 339 340 if (ret != 1) 341 printk(KERN_ERR "%s: writereg error 0x%02x 0x%02x 0x%04x, ret == %i)\n", 342 __func__, addr, reg, data, ret); 343 344 return (ret != 1) ? -1 : 0; 345 } 346 347 static u16 s5h1411_readreg(struct s5h1411_state *state, u8 addr, u8 reg) 348 { 349 int ret; 350 u8 b0[] = { reg }; 351 u8 b1[] = { 0, 0 }; 352 353 struct i2c_msg msg[] = { 354 { .addr = addr, .flags = 0, .buf = b0, .len = 1 }, 355 { .addr = addr, .flags = I2C_M_RD, .buf = b1, .len = 2 } }; 356 357 ret = i2c_transfer(state->i2c, msg, 2); 358 359 if (ret != 2) 360 printk(KERN_ERR "%s: readreg error (ret == %i)\n", 361 __func__, ret); 362 return (b1[0] << 8) | b1[1]; 363 } 364 365 static int s5h1411_softreset(struct dvb_frontend *fe) 366 { 367 struct s5h1411_state *state = fe->demodulator_priv; 368 369 dprintk("%s()\n", __func__); 370 371 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf7, 0); 372 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf7, 1); 373 return 0; 374 } 375 376 static int s5h1411_set_if_freq(struct dvb_frontend *fe, int KHz) 377 { 378 struct s5h1411_state *state = fe->demodulator_priv; 379 380 dprintk("%s(%d KHz)\n", __func__, KHz); 381 382 switch (KHz) { 383 case 3250: 384 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x10d5); 385 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0x5342); 386 s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x10d9); 387 break; 388 case 3500: 389 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x1225); 390 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0x1e96); 391 s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x1225); 392 break; 393 case 4000: 394 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x14bc); 395 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0xb53e); 396 s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x14bd); 397 break; 398 default: 399 dprintk("%s(%d KHz) Invalid, defaulting to 5380\n", 400 __func__, KHz); 401 fallthrough; 402 case 5380: 403 case 44000: 404 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x1be4); 405 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0x3655); 406 s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x1be4); 407 break; 408 } 409 410 state->if_freq = KHz; 411 412 return 0; 413 } 414 415 static int s5h1411_set_mpeg_timing(struct dvb_frontend *fe, int mode) 416 { 417 struct s5h1411_state *state = fe->demodulator_priv; 418 u16 val; 419 420 dprintk("%s(%d)\n", __func__, mode); 421 422 val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xbe) & 0xcfff; 423 switch (mode) { 424 case S5H1411_MPEGTIMING_CONTINUOUS_INVERTING_CLOCK: 425 val |= 0x0000; 426 break; 427 case S5H1411_MPEGTIMING_CONTINUOUS_NONINVERTING_CLOCK: 428 dprintk("%s(%d) Mode1 or Defaulting\n", __func__, mode); 429 val |= 0x1000; 430 break; 431 case S5H1411_MPEGTIMING_NONCONTINUOUS_INVERTING_CLOCK: 432 val |= 0x2000; 433 break; 434 case S5H1411_MPEGTIMING_NONCONTINUOUS_NONINVERTING_CLOCK: 435 val |= 0x3000; 436 break; 437 default: 438 return -EINVAL; 439 } 440 441 /* Configure MPEG Signal Timing charactistics */ 442 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xbe, val); 443 } 444 445 static int s5h1411_set_spectralinversion(struct dvb_frontend *fe, int inversion) 446 { 447 struct s5h1411_state *state = fe->demodulator_priv; 448 u16 val; 449 450 dprintk("%s(%d)\n", __func__, inversion); 451 val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0x24) & ~0x1000; 452 453 if (inversion == 1) 454 val |= 0x1000; /* Inverted */ 455 456 state->inversion = inversion; 457 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x24, val); 458 } 459 460 static int s5h1411_set_serialmode(struct dvb_frontend *fe, int serial) 461 { 462 struct s5h1411_state *state = fe->demodulator_priv; 463 u16 val; 464 465 dprintk("%s(%d)\n", __func__, serial); 466 val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xbd) & ~0x100; 467 468 if (serial == 1) 469 val |= 0x100; 470 471 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xbd, val); 472 } 473 474 static int s5h1411_enable_modulation(struct dvb_frontend *fe, 475 enum fe_modulation m) 476 { 477 struct s5h1411_state *state = fe->demodulator_priv; 478 479 dprintk("%s(0x%08x)\n", __func__, m); 480 481 if ((state->first_tune == 0) && (m == state->current_modulation)) { 482 dprintk("%s() Already at desired modulation. Skipping...\n", 483 __func__); 484 return 0; 485 } 486 487 switch (m) { 488 case VSB_8: 489 dprintk("%s() VSB_8\n", __func__); 490 s5h1411_set_if_freq(fe, state->config->vsb_if); 491 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x00, 0x71); 492 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf6, 0x00); 493 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xcd, 0xf1); 494 break; 495 case QAM_64: 496 case QAM_256: 497 case QAM_AUTO: 498 dprintk("%s() QAM_AUTO (64/256)\n", __func__); 499 s5h1411_set_if_freq(fe, state->config->qam_if); 500 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x00, 0x0171); 501 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf6, 0x0001); 502 s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x16, 0x1101); 503 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xcd, 0x00f0); 504 break; 505 default: 506 dprintk("%s() Invalid modulation\n", __func__); 507 return -EINVAL; 508 } 509 510 state->current_modulation = m; 511 state->first_tune = 0; 512 s5h1411_softreset(fe); 513 514 return 0; 515 } 516 517 static int s5h1411_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) 518 { 519 struct s5h1411_state *state = fe->demodulator_priv; 520 521 dprintk("%s(%d)\n", __func__, enable); 522 523 if (enable) 524 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf5, 1); 525 else 526 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf5, 0); 527 } 528 529 static int s5h1411_set_gpio(struct dvb_frontend *fe, int enable) 530 { 531 struct s5h1411_state *state = fe->demodulator_priv; 532 u16 val; 533 534 dprintk("%s(%d)\n", __func__, enable); 535 536 val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xe0) & ~0x02; 537 538 if (enable) 539 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xe0, 540 val | 0x02); 541 else 542 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xe0, val); 543 } 544 545 static int s5h1411_set_powerstate(struct dvb_frontend *fe, int enable) 546 { 547 struct s5h1411_state *state = fe->demodulator_priv; 548 549 dprintk("%s(%d)\n", __func__, enable); 550 551 if (enable) 552 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf4, 1); 553 else { 554 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf4, 0); 555 s5h1411_softreset(fe); 556 } 557 558 return 0; 559 } 560 561 static int s5h1411_sleep(struct dvb_frontend *fe) 562 { 563 return s5h1411_set_powerstate(fe, 1); 564 } 565 566 static int s5h1411_register_reset(struct dvb_frontend *fe) 567 { 568 struct s5h1411_state *state = fe->demodulator_priv; 569 570 dprintk("%s()\n", __func__); 571 572 return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf3, 0); 573 } 574 575 /* Talk to the demod, set the FEC, GUARD, QAM settings etc */ 576 static int s5h1411_set_frontend(struct dvb_frontend *fe) 577 { 578 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 579 struct s5h1411_state *state = fe->demodulator_priv; 580 581 dprintk("%s(frequency=%d)\n", __func__, p->frequency); 582 583 s5h1411_softreset(fe); 584 585 state->current_frequency = p->frequency; 586 587 s5h1411_enable_modulation(fe, p->modulation); 588 589 if (fe->ops.tuner_ops.set_params) { 590 if (fe->ops.i2c_gate_ctrl) 591 fe->ops.i2c_gate_ctrl(fe, 1); 592 593 fe->ops.tuner_ops.set_params(fe); 594 595 if (fe->ops.i2c_gate_ctrl) 596 fe->ops.i2c_gate_ctrl(fe, 0); 597 } 598 599 /* Issue a reset to the demod so it knows to resync against the 600 newly tuned frequency */ 601 s5h1411_softreset(fe); 602 603 return 0; 604 } 605 606 /* Reset the demod hardware and reset all of the configuration registers 607 to a default state. */ 608 static int s5h1411_init(struct dvb_frontend *fe) 609 { 610 struct s5h1411_state *state = fe->demodulator_priv; 611 int i; 612 613 dprintk("%s()\n", __func__); 614 615 s5h1411_set_powerstate(fe, 0); 616 s5h1411_register_reset(fe); 617 618 for (i = 0; i < ARRAY_SIZE(init_tab); i++) 619 s5h1411_writereg(state, init_tab[i].addr, 620 init_tab[i].reg, 621 init_tab[i].data); 622 623 /* The datasheet says that after initialisation, VSB is default */ 624 state->current_modulation = VSB_8; 625 626 /* Although the datasheet says it's in VSB, empirical evidence 627 shows problems getting lock on the first tuning request. Make 628 sure we call enable_modulation the first time around */ 629 state->first_tune = 1; 630 631 if (state->config->output_mode == S5H1411_SERIAL_OUTPUT) 632 /* Serial */ 633 s5h1411_set_serialmode(fe, 1); 634 else 635 /* Parallel */ 636 s5h1411_set_serialmode(fe, 0); 637 638 s5h1411_set_spectralinversion(fe, state->config->inversion); 639 s5h1411_set_if_freq(fe, state->config->vsb_if); 640 s5h1411_set_gpio(fe, state->config->gpio); 641 s5h1411_set_mpeg_timing(fe, state->config->mpeg_timing); 642 s5h1411_softreset(fe); 643 644 /* Note: Leaving the I2C gate closed. */ 645 s5h1411_i2c_gate_ctrl(fe, 0); 646 647 return 0; 648 } 649 650 static int s5h1411_read_status(struct dvb_frontend *fe, enum fe_status *status) 651 { 652 struct s5h1411_state *state = fe->demodulator_priv; 653 u16 reg; 654 u32 tuner_status = 0; 655 656 *status = 0; 657 658 /* Register F2 bit 15 = Master Lock, removed */ 659 660 switch (state->current_modulation) { 661 case QAM_64: 662 case QAM_256: 663 reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf0); 664 if (reg & 0x10) /* QAM FEC Lock */ 665 *status |= FE_HAS_SYNC | FE_HAS_LOCK; 666 if (reg & 0x100) /* QAM EQ Lock */ 667 *status |= FE_HAS_VITERBI | FE_HAS_CARRIER | FE_HAS_SIGNAL; 668 669 break; 670 case VSB_8: 671 reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf2); 672 if (reg & 0x1000) /* FEC Lock */ 673 *status |= FE_HAS_SYNC | FE_HAS_LOCK; 674 if (reg & 0x2000) /* EQ Lock */ 675 *status |= FE_HAS_VITERBI | FE_HAS_CARRIER | FE_HAS_SIGNAL; 676 677 reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0x53); 678 if (reg & 0x1) /* AFC Lock */ 679 *status |= FE_HAS_SIGNAL; 680 681 break; 682 default: 683 return -EINVAL; 684 } 685 686 switch (state->config->status_mode) { 687 case S5H1411_DEMODLOCKING: 688 if (*status & FE_HAS_VITERBI) 689 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL; 690 break; 691 case S5H1411_TUNERLOCKING: 692 /* Get the tuner status */ 693 if (fe->ops.tuner_ops.get_status) { 694 if (fe->ops.i2c_gate_ctrl) 695 fe->ops.i2c_gate_ctrl(fe, 1); 696 697 fe->ops.tuner_ops.get_status(fe, &tuner_status); 698 699 if (fe->ops.i2c_gate_ctrl) 700 fe->ops.i2c_gate_ctrl(fe, 0); 701 } 702 if (tuner_status) 703 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL; 704 break; 705 } 706 707 dprintk("%s() status 0x%08x\n", __func__, *status); 708 709 return 0; 710 } 711 712 static int s5h1411_qam256_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v) 713 { 714 int i, ret = -EINVAL; 715 dprintk("%s()\n", __func__); 716 717 for (i = 0; i < ARRAY_SIZE(qam256_snr_tab); i++) { 718 if (v < qam256_snr_tab[i].val) { 719 *snr = qam256_snr_tab[i].data; 720 ret = 0; 721 break; 722 } 723 } 724 return ret; 725 } 726 727 static int s5h1411_qam64_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v) 728 { 729 int i, ret = -EINVAL; 730 dprintk("%s()\n", __func__); 731 732 for (i = 0; i < ARRAY_SIZE(qam64_snr_tab); i++) { 733 if (v < qam64_snr_tab[i].val) { 734 *snr = qam64_snr_tab[i].data; 735 ret = 0; 736 break; 737 } 738 } 739 return ret; 740 } 741 742 static int s5h1411_vsb_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v) 743 { 744 int i, ret = -EINVAL; 745 dprintk("%s()\n", __func__); 746 747 for (i = 0; i < ARRAY_SIZE(vsb_snr_tab); i++) { 748 if (v > vsb_snr_tab[i].val) { 749 *snr = vsb_snr_tab[i].data; 750 ret = 0; 751 break; 752 } 753 } 754 dprintk("%s() snr=%d\n", __func__, *snr); 755 return ret; 756 } 757 758 static int s5h1411_read_snr(struct dvb_frontend *fe, u16 *snr) 759 { 760 struct s5h1411_state *state = fe->demodulator_priv; 761 u16 reg; 762 dprintk("%s()\n", __func__); 763 764 switch (state->current_modulation) { 765 case QAM_64: 766 reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf1); 767 return s5h1411_qam64_lookup_snr(fe, snr, reg); 768 case QAM_256: 769 reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf1); 770 return s5h1411_qam256_lookup_snr(fe, snr, reg); 771 case VSB_8: 772 reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 773 0xf2) & 0x3ff; 774 return s5h1411_vsb_lookup_snr(fe, snr, reg); 775 default: 776 break; 777 } 778 779 return -EINVAL; 780 } 781 782 static int s5h1411_read_signal_strength(struct dvb_frontend *fe, 783 u16 *signal_strength) 784 { 785 /* borrowed from lgdt330x.c 786 * 787 * Calculate strength from SNR up to 35dB 788 * Even though the SNR can go higher than 35dB, 789 * there is some comfort factor in having a range of 790 * strong signals that can show at 100% 791 */ 792 u16 snr; 793 u32 tmp; 794 int ret = s5h1411_read_snr(fe, &snr); 795 796 *signal_strength = 0; 797 798 if (0 == ret) { 799 /* The following calculation method was chosen 800 * purely for the sake of code re-use from the 801 * other demod drivers that use this method */ 802 803 /* Convert from SNR in dB * 10 to 8.24 fixed-point */ 804 tmp = (snr * ((1 << 24) / 10)); 805 806 /* Convert from 8.24 fixed-point to 807 * scale the range 0 - 35*2^24 into 0 - 65535*/ 808 if (tmp >= 8960 * 0x10000) 809 *signal_strength = 0xffff; 810 else 811 *signal_strength = tmp / 8960; 812 } 813 814 return ret; 815 } 816 817 static int s5h1411_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) 818 { 819 struct s5h1411_state *state = fe->demodulator_priv; 820 821 *ucblocks = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xc9); 822 823 return 0; 824 } 825 826 static int s5h1411_read_ber(struct dvb_frontend *fe, u32 *ber) 827 { 828 return s5h1411_read_ucblocks(fe, ber); 829 } 830 831 static int s5h1411_get_frontend(struct dvb_frontend *fe, 832 struct dtv_frontend_properties *p) 833 { 834 struct s5h1411_state *state = fe->demodulator_priv; 835 836 p->frequency = state->current_frequency; 837 p->modulation = state->current_modulation; 838 839 return 0; 840 } 841 842 static int s5h1411_get_tune_settings(struct dvb_frontend *fe, 843 struct dvb_frontend_tune_settings *tune) 844 { 845 tune->min_delay_ms = 1000; 846 return 0; 847 } 848 849 static void s5h1411_release(struct dvb_frontend *fe) 850 { 851 struct s5h1411_state *state = fe->demodulator_priv; 852 kfree(state); 853 } 854 855 static const struct dvb_frontend_ops s5h1411_ops; 856 857 struct dvb_frontend *s5h1411_attach(const struct s5h1411_config *config, 858 struct i2c_adapter *i2c) 859 { 860 struct s5h1411_state *state = NULL; 861 u16 reg; 862 863 /* allocate memory for the internal state */ 864 state = kzalloc(sizeof(struct s5h1411_state), GFP_KERNEL); 865 if (state == NULL) 866 goto error; 867 868 /* setup the state */ 869 state->config = config; 870 state->i2c = i2c; 871 state->current_modulation = VSB_8; 872 state->inversion = state->config->inversion; 873 874 /* check if the demod exists */ 875 reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0x05); 876 if (reg != 0x0066) 877 goto error; 878 879 /* create dvb_frontend */ 880 memcpy(&state->frontend.ops, &s5h1411_ops, 881 sizeof(struct dvb_frontend_ops)); 882 883 state->frontend.demodulator_priv = state; 884 885 if (s5h1411_init(&state->frontend) != 0) { 886 printk(KERN_ERR "%s: Failed to initialize correctly\n", 887 __func__); 888 goto error; 889 } 890 891 /* Note: Leaving the I2C gate open here. */ 892 s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf5, 1); 893 894 /* Put the device into low-power mode until first use */ 895 s5h1411_set_powerstate(&state->frontend, 1); 896 897 return &state->frontend; 898 899 error: 900 kfree(state); 901 return NULL; 902 } 903 EXPORT_SYMBOL_GPL(s5h1411_attach); 904 905 static const struct dvb_frontend_ops s5h1411_ops = { 906 .delsys = { SYS_ATSC, SYS_DVBC_ANNEX_B }, 907 .info = { 908 .name = "Samsung S5H1411 QAM/8VSB Frontend", 909 .frequency_min_hz = 54 * MHz, 910 .frequency_max_hz = 858 * MHz, 911 .frequency_stepsize_hz = 62500, 912 .caps = FE_CAN_QAM_64 | FE_CAN_QAM_256 | FE_CAN_8VSB 913 }, 914 915 .init = s5h1411_init, 916 .sleep = s5h1411_sleep, 917 .i2c_gate_ctrl = s5h1411_i2c_gate_ctrl, 918 .set_frontend = s5h1411_set_frontend, 919 .get_frontend = s5h1411_get_frontend, 920 .get_tune_settings = s5h1411_get_tune_settings, 921 .read_status = s5h1411_read_status, 922 .read_ber = s5h1411_read_ber, 923 .read_signal_strength = s5h1411_read_signal_strength, 924 .read_snr = s5h1411_read_snr, 925 .read_ucblocks = s5h1411_read_ucblocks, 926 .release = s5h1411_release, 927 }; 928 929 module_param(debug, int, 0644); 930 MODULE_PARM_DESC(debug, "Enable verbose debug messages"); 931 932 MODULE_DESCRIPTION("Samsung S5H1411 QAM-B/ATSC Demodulator driver"); 933 MODULE_AUTHOR("Steven Toth"); 934 MODULE_LICENSE("GPL"); 935