1 /*
2 	NxtWave Communications - NXT6000 demodulator driver
3 
4     Copyright (C) 2002-2003 Florian Schirmer <jolt@tuxbox.org>
5     Copyright (C) 2003 Paul Andreassen <paul@andreassen.com.au>
6 
7     This program is free software; you can redistribute it and/or modify
8     it under the terms of the GNU General Public License as published by
9     the Free Software Foundation; either version 2 of the License, or
10     (at your option) any later version.
11 
12     This program is distributed in the hope that it will be useful,
13     but WITHOUT ANY WARRANTY; without even the implied warranty of
14     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15     GNU General Public License for more details.
16 
17     You should have received a copy of the GNU General Public License
18     along with this program; if not, write to the Free Software
19     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21 
22 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/slab.h>
27 
28 #include "dvb_frontend.h"
29 #include "nxt6000_priv.h"
30 #include "nxt6000.h"
31 
32 
33 
34 struct nxt6000_state {
35 	struct i2c_adapter* i2c;
36 	/* configuration settings */
37 	const struct nxt6000_config* config;
38 	struct dvb_frontend frontend;
39 };
40 
41 static int debug;
42 #define dprintk if (debug) printk
43 
44 static int nxt6000_writereg(struct nxt6000_state* state, u8 reg, u8 data)
45 {
46 	u8 buf[] = { reg, data };
47 	struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 };
48 	int ret;
49 
50 	if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1)
51 		dprintk("nxt6000: nxt6000_write error (reg: 0x%02X, data: 0x%02X, ret: %d)\n", reg, data, ret);
52 
53 	return (ret != 1) ? -EIO : 0;
54 }
55 
56 static u8 nxt6000_readreg(struct nxt6000_state* state, u8 reg)
57 {
58 	int ret;
59 	u8 b0[] = { reg };
60 	u8 b1[] = { 0 };
61 	struct i2c_msg msgs[] = {
62 		{.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1},
63 		{.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1}
64 	};
65 
66 	ret = i2c_transfer(state->i2c, msgs, 2);
67 
68 	if (ret != 2)
69 		dprintk("nxt6000: nxt6000_read error (reg: 0x%02X, ret: %d)\n", reg, ret);
70 
71 	return b1[0];
72 }
73 
74 static void nxt6000_reset(struct nxt6000_state* state)
75 {
76 	u8 val;
77 
78 	val = nxt6000_readreg(state, OFDM_COR_CTL);
79 
80 	nxt6000_writereg(state, OFDM_COR_CTL, val & ~COREACT);
81 	nxt6000_writereg(state, OFDM_COR_CTL, val | COREACT);
82 }
83 
84 static int nxt6000_set_bandwidth(struct nxt6000_state *state, u32 bandwidth)
85 {
86 	u16 nominal_rate;
87 	int result;
88 
89 	switch (bandwidth) {
90 	case 6000000:
91 		nominal_rate = 0x55B7;
92 		break;
93 
94 	case 7000000:
95 		nominal_rate = 0x6400;
96 		break;
97 
98 	case 8000000:
99 		nominal_rate = 0x7249;
100 		break;
101 
102 	default:
103 		return -EINVAL;
104 	}
105 
106 	if ((result = nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, nominal_rate & 0xFF)) < 0)
107 		return result;
108 
109 	return nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, (nominal_rate >> 8) & 0xFF);
110 }
111 
112 static int nxt6000_set_guard_interval(struct nxt6000_state* state, fe_guard_interval_t guard_interval)
113 {
114 	switch (guard_interval) {
115 
116 	case GUARD_INTERVAL_1_32:
117 		return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x00 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
118 
119 	case GUARD_INTERVAL_1_16:
120 		return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x01 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
121 
122 	case GUARD_INTERVAL_AUTO:
123 	case GUARD_INTERVAL_1_8:
124 		return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x02 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
125 
126 	case GUARD_INTERVAL_1_4:
127 		return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x03 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
128 
129 	default:
130 		return -EINVAL;
131 	}
132 }
133 
134 static int nxt6000_set_inversion(struct nxt6000_state* state, fe_spectral_inversion_t inversion)
135 {
136 	switch (inversion) {
137 
138 	case INVERSION_OFF:
139 		return nxt6000_writereg(state, OFDM_ITB_CTL, 0x00);
140 
141 	case INVERSION_ON:
142 		return nxt6000_writereg(state, OFDM_ITB_CTL, ITBINV);
143 
144 	default:
145 		return -EINVAL;
146 
147 	}
148 }
149 
150 static int nxt6000_set_transmission_mode(struct nxt6000_state* state, fe_transmit_mode_t transmission_mode)
151 {
152 	int result;
153 
154 	switch (transmission_mode) {
155 
156 	case TRANSMISSION_MODE_2K:
157 		if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x00 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
158 			return result;
159 
160 		return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x00 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
161 
162 	case TRANSMISSION_MODE_8K:
163 	case TRANSMISSION_MODE_AUTO:
164 		if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x02 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
165 			return result;
166 
167 		return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x01 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
168 
169 	default:
170 		return -EINVAL;
171 
172 	}
173 }
174 
175 static void nxt6000_setup(struct dvb_frontend* fe)
176 {
177 	struct nxt6000_state* state = fe->demodulator_priv;
178 
179 	nxt6000_writereg(state, RS_COR_SYNC_PARAM, SYNC_PARAM);
180 	nxt6000_writereg(state, BER_CTRL, /*(1 << 2) | */ (0x01 << 1) | 0x01);
181 	nxt6000_writereg(state, VIT_BERTIME_2, 0x00);  // BER Timer = 0x000200 * 256 = 131072 bits
182 	nxt6000_writereg(state, VIT_BERTIME_1, 0x02);  //
183 	nxt6000_writereg(state, VIT_BERTIME_0, 0x00);  //
184 	nxt6000_writereg(state, VIT_COR_INTEN, 0x98); // Enable BER interrupts
185 	nxt6000_writereg(state, VIT_COR_CTL, 0x82);   // Enable BER measurement
186 	nxt6000_writereg(state, VIT_COR_CTL, VIT_COR_RESYNC | 0x02 );
187 	nxt6000_writereg(state, OFDM_COR_CTL, (0x01 << 5) | (nxt6000_readreg(state, OFDM_COR_CTL) & 0x0F));
188 	nxt6000_writereg(state, OFDM_COR_MODEGUARD, FORCEMODE8K | 0x02);
189 	nxt6000_writereg(state, OFDM_AGC_CTL, AGCLAST | INITIAL_AGC_BW);
190 	nxt6000_writereg(state, OFDM_ITB_FREQ_1, 0x06);
191 	nxt6000_writereg(state, OFDM_ITB_FREQ_2, 0x31);
192 	nxt6000_writereg(state, OFDM_CAS_CTL, (0x01 << 7) | (0x02 << 3) | 0x04);
193 	nxt6000_writereg(state, CAS_FREQ, 0xBB);	/* CHECKME */
194 	nxt6000_writereg(state, OFDM_SYR_CTL, 1 << 2);
195 	nxt6000_writereg(state, OFDM_PPM_CTL_1, PPM256);
196 	nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, 0x49);
197 	nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, 0x72);
198 	nxt6000_writereg(state, ANALOG_CONTROL_0, 1 << 5);
199 	nxt6000_writereg(state, EN_DMD_RACQ, (1 << 7) | (3 << 4) | 2);
200 	nxt6000_writereg(state, DIAG_CONFIG, TB_SET);
201 
202 	if (state->config->clock_inversion)
203 		nxt6000_writereg(state, SUB_DIAG_MODE_SEL, CLKINVERSION);
204 	else
205 		nxt6000_writereg(state, SUB_DIAG_MODE_SEL, 0);
206 
207 	nxt6000_writereg(state, TS_FORMAT, 0);
208 }
209 
210 static void nxt6000_dump_status(struct nxt6000_state *state)
211 {
212 	u8 val;
213 
214 /*
215 	printk("RS_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, RS_COR_STAT));
216 	printk("VIT_SYNC_STATUS: 0x%02X\n", nxt6000_readreg(fe, VIT_SYNC_STATUS));
217 	printk("OFDM_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_COR_STAT));
218 	printk("OFDM_SYR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_SYR_STAT));
219 	printk("OFDM_TPS_RCVD_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_1));
220 	printk("OFDM_TPS_RCVD_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_2));
221 	printk("OFDM_TPS_RCVD_3: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_3));
222 	printk("OFDM_TPS_RCVD_4: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_4));
223 	printk("OFDM_TPS_RESERVED_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_1));
224 	printk("OFDM_TPS_RESERVED_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_2));
225 */
226 	printk("NXT6000 status:");
227 
228 	val = nxt6000_readreg(state, RS_COR_STAT);
229 
230 	printk(" DATA DESCR LOCK: %d,", val & 0x01);
231 	printk(" DATA SYNC LOCK: %d,", (val >> 1) & 0x01);
232 
233 	val = nxt6000_readreg(state, VIT_SYNC_STATUS);
234 
235 	printk(" VITERBI LOCK: %d,", (val >> 7) & 0x01);
236 
237 	switch ((val >> 4) & 0x07) {
238 
239 	case 0x00:
240 		printk(" VITERBI CODERATE: 1/2,");
241 		break;
242 
243 	case 0x01:
244 		printk(" VITERBI CODERATE: 2/3,");
245 		break;
246 
247 	case 0x02:
248 		printk(" VITERBI CODERATE: 3/4,");
249 		break;
250 
251 	case 0x03:
252 		printk(" VITERBI CODERATE: 5/6,");
253 		break;
254 
255 	case 0x04:
256 		printk(" VITERBI CODERATE: 7/8,");
257 		break;
258 
259 	default:
260 		printk(" VITERBI CODERATE: Reserved,");
261 
262 	}
263 
264 	val = nxt6000_readreg(state, OFDM_COR_STAT);
265 
266 	printk(" CHCTrack: %d,", (val >> 7) & 0x01);
267 	printk(" TPSLock: %d,", (val >> 6) & 0x01);
268 	printk(" SYRLock: %d,", (val >> 5) & 0x01);
269 	printk(" AGCLock: %d,", (val >> 4) & 0x01);
270 
271 	switch (val & 0x0F) {
272 
273 	case 0x00:
274 		printk(" CoreState: IDLE,");
275 		break;
276 
277 	case 0x02:
278 		printk(" CoreState: WAIT_AGC,");
279 		break;
280 
281 	case 0x03:
282 		printk(" CoreState: WAIT_SYR,");
283 		break;
284 
285 	case 0x04:
286 		printk(" CoreState: WAIT_PPM,");
287 		break;
288 
289 	case 0x01:
290 		printk(" CoreState: WAIT_TRL,");
291 		break;
292 
293 	case 0x05:
294 		printk(" CoreState: WAIT_TPS,");
295 		break;
296 
297 	case 0x06:
298 		printk(" CoreState: MONITOR_TPS,");
299 		break;
300 
301 	default:
302 		printk(" CoreState: Reserved,");
303 
304 	}
305 
306 	val = nxt6000_readreg(state, OFDM_SYR_STAT);
307 
308 	printk(" SYRLock: %d,", (val >> 4) & 0x01);
309 	printk(" SYRMode: %s,", (val >> 2) & 0x01 ? "8K" : "2K");
310 
311 	switch ((val >> 4) & 0x03) {
312 
313 	case 0x00:
314 		printk(" SYRGuard: 1/32,");
315 		break;
316 
317 	case 0x01:
318 		printk(" SYRGuard: 1/16,");
319 		break;
320 
321 	case 0x02:
322 		printk(" SYRGuard: 1/8,");
323 		break;
324 
325 	case 0x03:
326 		printk(" SYRGuard: 1/4,");
327 		break;
328 	}
329 
330 	val = nxt6000_readreg(state, OFDM_TPS_RCVD_3);
331 
332 	switch ((val >> 4) & 0x07) {
333 
334 	case 0x00:
335 		printk(" TPSLP: 1/2,");
336 		break;
337 
338 	case 0x01:
339 		printk(" TPSLP: 2/3,");
340 		break;
341 
342 	case 0x02:
343 		printk(" TPSLP: 3/4,");
344 		break;
345 
346 	case 0x03:
347 		printk(" TPSLP: 5/6,");
348 		break;
349 
350 	case 0x04:
351 		printk(" TPSLP: 7/8,");
352 		break;
353 
354 	default:
355 		printk(" TPSLP: Reserved,");
356 
357 	}
358 
359 	switch (val & 0x07) {
360 
361 	case 0x00:
362 		printk(" TPSHP: 1/2,");
363 		break;
364 
365 	case 0x01:
366 		printk(" TPSHP: 2/3,");
367 		break;
368 
369 	case 0x02:
370 		printk(" TPSHP: 3/4,");
371 		break;
372 
373 	case 0x03:
374 		printk(" TPSHP: 5/6,");
375 		break;
376 
377 	case 0x04:
378 		printk(" TPSHP: 7/8,");
379 		break;
380 
381 	default:
382 		printk(" TPSHP: Reserved,");
383 
384 	}
385 
386 	val = nxt6000_readreg(state, OFDM_TPS_RCVD_4);
387 
388 	printk(" TPSMode: %s,", val & 0x01 ? "8K" : "2K");
389 
390 	switch ((val >> 4) & 0x03) {
391 
392 	case 0x00:
393 		printk(" TPSGuard: 1/32,");
394 		break;
395 
396 	case 0x01:
397 		printk(" TPSGuard: 1/16,");
398 		break;
399 
400 	case 0x02:
401 		printk(" TPSGuard: 1/8,");
402 		break;
403 
404 	case 0x03:
405 		printk(" TPSGuard: 1/4,");
406 		break;
407 
408 	}
409 
410 	/* Strange magic required to gain access to RF_AGC_STATUS */
411 	nxt6000_readreg(state, RF_AGC_VAL_1);
412 	val = nxt6000_readreg(state, RF_AGC_STATUS);
413 	val = nxt6000_readreg(state, RF_AGC_STATUS);
414 
415 	printk(" RF AGC LOCK: %d,", (val >> 4) & 0x01);
416 	printk("\n");
417 }
418 
419 static int nxt6000_read_status(struct dvb_frontend* fe, fe_status_t* status)
420 {
421 	u8 core_status;
422 	struct nxt6000_state* state = fe->demodulator_priv;
423 
424 	*status = 0;
425 
426 	core_status = nxt6000_readreg(state, OFDM_COR_STAT);
427 
428 	if (core_status & AGCLOCKED)
429 		*status |= FE_HAS_SIGNAL;
430 
431 	if (nxt6000_readreg(state, OFDM_SYR_STAT) & GI14_SYR_LOCK)
432 		*status |= FE_HAS_CARRIER;
433 
434 	if (nxt6000_readreg(state, VIT_SYNC_STATUS) & VITINSYNC)
435 		*status |= FE_HAS_VITERBI;
436 
437 	if (nxt6000_readreg(state, RS_COR_STAT) & RSCORESTATUS)
438 		*status |= FE_HAS_SYNC;
439 
440 	if ((core_status & TPSLOCKED) && (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)))
441 		*status |= FE_HAS_LOCK;
442 
443 	if (debug)
444 		nxt6000_dump_status(state);
445 
446 	return 0;
447 }
448 
449 static int nxt6000_init(struct dvb_frontend* fe)
450 {
451 	struct nxt6000_state* state = fe->demodulator_priv;
452 
453 	nxt6000_reset(state);
454 	nxt6000_setup(fe);
455 
456 	return 0;
457 }
458 
459 static int nxt6000_set_frontend(struct dvb_frontend *fe)
460 {
461 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
462 	struct nxt6000_state* state = fe->demodulator_priv;
463 	int result;
464 
465 	if (fe->ops.tuner_ops.set_params) {
466 		fe->ops.tuner_ops.set_params(fe);
467 		if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
468 	}
469 
470 	result = nxt6000_set_bandwidth(state, p->bandwidth_hz);
471 	if (result < 0)
472 		return result;
473 
474 	result = nxt6000_set_guard_interval(state, p->guard_interval);
475 	if (result < 0)
476 		return result;
477 
478 	result = nxt6000_set_transmission_mode(state, p->transmission_mode);
479 	if (result < 0)
480 		return result;
481 
482 	result = nxt6000_set_inversion(state, p->inversion);
483 	if (result < 0)
484 		return result;
485 
486 	msleep(500);
487 	return 0;
488 }
489 
490 static void nxt6000_release(struct dvb_frontend* fe)
491 {
492 	struct nxt6000_state* state = fe->demodulator_priv;
493 	kfree(state);
494 }
495 
496 static int nxt6000_read_snr(struct dvb_frontend* fe, u16* snr)
497 {
498 	struct nxt6000_state* state = fe->demodulator_priv;
499 
500 	*snr = nxt6000_readreg( state, OFDM_CHC_SNR) / 8;
501 
502 	return 0;
503 }
504 
505 static int nxt6000_read_ber(struct dvb_frontend* fe, u32* ber)
506 {
507 	struct nxt6000_state* state = fe->demodulator_priv;
508 
509 	nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18 );
510 
511 	*ber = (nxt6000_readreg( state, VIT_BER_1 ) << 8 ) |
512 		nxt6000_readreg( state, VIT_BER_0 );
513 
514 	nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18); // Clear BER Done interrupts
515 
516 	return 0;
517 }
518 
519 static int nxt6000_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
520 {
521 	struct nxt6000_state* state = fe->demodulator_priv;
522 
523 	*signal_strength = (short) (511 -
524 		(nxt6000_readreg(state, AGC_GAIN_1) +
525 		((nxt6000_readreg(state, AGC_GAIN_2) & 0x03) << 8)));
526 
527 	return 0;
528 }
529 
530 static int nxt6000_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
531 {
532 	tune->min_delay_ms = 500;
533 	return 0;
534 }
535 
536 static int nxt6000_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
537 {
538 	struct nxt6000_state* state = fe->demodulator_priv;
539 
540 	if (enable) {
541 		return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x01);
542 	} else {
543 		return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x00);
544 	}
545 }
546 
547 static struct dvb_frontend_ops nxt6000_ops;
548 
549 struct dvb_frontend* nxt6000_attach(const struct nxt6000_config* config,
550 				    struct i2c_adapter* i2c)
551 {
552 	struct nxt6000_state* state = NULL;
553 
554 	/* allocate memory for the internal state */
555 	state = kzalloc(sizeof(struct nxt6000_state), GFP_KERNEL);
556 	if (state == NULL) goto error;
557 
558 	/* setup the state */
559 	state->config = config;
560 	state->i2c = i2c;
561 
562 	/* check if the demod is there */
563 	if (nxt6000_readreg(state, OFDM_MSC_REV) != NXT6000ASICDEVICE) goto error;
564 
565 	/* create dvb_frontend */
566 	memcpy(&state->frontend.ops, &nxt6000_ops, sizeof(struct dvb_frontend_ops));
567 	state->frontend.demodulator_priv = state;
568 	return &state->frontend;
569 
570 error:
571 	kfree(state);
572 	return NULL;
573 }
574 
575 static struct dvb_frontend_ops nxt6000_ops = {
576 	.delsys = { SYS_DVBT },
577 	.info = {
578 		.name = "NxtWave NXT6000 DVB-T",
579 		.frequency_min = 0,
580 		.frequency_max = 863250000,
581 		.frequency_stepsize = 62500,
582 		/*.frequency_tolerance = *//* FIXME: 12% of SR */
583 		.symbol_rate_min = 0,	/* FIXME */
584 		.symbol_rate_max = 9360000,	/* FIXME */
585 		.symbol_rate_tolerance = 4000,
586 		.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
587 			FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
588 			FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO |
589 			FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
590 			FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
591 			FE_CAN_HIERARCHY_AUTO,
592 	},
593 
594 	.release = nxt6000_release,
595 
596 	.init = nxt6000_init,
597 	.i2c_gate_ctrl = nxt6000_i2c_gate_ctrl,
598 
599 	.get_tune_settings = nxt6000_fe_get_tune_settings,
600 
601 	.set_frontend = nxt6000_set_frontend,
602 
603 	.read_status = nxt6000_read_status,
604 	.read_ber = nxt6000_read_ber,
605 	.read_signal_strength = nxt6000_read_signal_strength,
606 	.read_snr = nxt6000_read_snr,
607 };
608 
609 module_param(debug, int, 0644);
610 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
611 
612 MODULE_DESCRIPTION("NxtWave NXT6000 DVB-T demodulator driver");
613 MODULE_AUTHOR("Florian Schirmer");
614 MODULE_LICENSE("GPL");
615 
616 EXPORT_SYMBOL(nxt6000_attach);
617