1 /*
2 	NxtWave Communications - NXT6000 demodulator driver
3 
4     Copyright (C) 2002-2003 Florian Schirmer <jolt@tuxbox.org>
5     Copyright (C) 2003 Paul Andreassen <paul@andreassen.com.au>
6 
7     This program is free software; you can redistribute it and/or modify
8     it under the terms of the GNU General Public License as published by
9     the Free Software Foundation; either version 2 of the License, or
10     (at your option) any later version.
11 
12     This program is distributed in the hope that it will be useful,
13     but WITHOUT ANY WARRANTY; without even the implied warranty of
14     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15     GNU General Public License for more details.
16 
17     You should have received a copy of the GNU General Public License
18     along with this program; if not, write to the Free Software
19     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21 
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23 
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 
30 #include "dvb_frontend.h"
31 #include "nxt6000_priv.h"
32 #include "nxt6000.h"
33 
34 
35 
36 struct nxt6000_state {
37 	struct i2c_adapter* i2c;
38 	/* configuration settings */
39 	const struct nxt6000_config* config;
40 	struct dvb_frontend frontend;
41 };
42 
43 static int debug;
44 #define dprintk(fmt, arg...) do {					\
45 	if (debug)							\
46 		printk(KERN_DEBUG pr_fmt("%s: " fmt),			\
47 		       __func__, ##arg);				\
48 } while (0)
49 
50 static int nxt6000_writereg(struct nxt6000_state* state, u8 reg, u8 data)
51 {
52 	u8 buf[] = { reg, data };
53 	struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 };
54 	int ret;
55 
56 	if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1)
57 		dprintk("nxt6000: nxt6000_write error (reg: 0x%02X, data: 0x%02X, ret: %d)\n", reg, data, ret);
58 
59 	return (ret != 1) ? -EIO : 0;
60 }
61 
62 static u8 nxt6000_readreg(struct nxt6000_state* state, u8 reg)
63 {
64 	int ret;
65 	u8 b0[] = { reg };
66 	u8 b1[] = { 0 };
67 	struct i2c_msg msgs[] = {
68 		{.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1},
69 		{.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1}
70 	};
71 
72 	ret = i2c_transfer(state->i2c, msgs, 2);
73 
74 	if (ret != 2)
75 		dprintk("nxt6000: nxt6000_read error (reg: 0x%02X, ret: %d)\n", reg, ret);
76 
77 	return b1[0];
78 }
79 
80 static void nxt6000_reset(struct nxt6000_state* state)
81 {
82 	u8 val;
83 
84 	val = nxt6000_readreg(state, OFDM_COR_CTL);
85 
86 	nxt6000_writereg(state, OFDM_COR_CTL, val & ~COREACT);
87 	nxt6000_writereg(state, OFDM_COR_CTL, val | COREACT);
88 }
89 
90 static int nxt6000_set_bandwidth(struct nxt6000_state *state, u32 bandwidth)
91 {
92 	u16 nominal_rate;
93 	int result;
94 
95 	switch (bandwidth) {
96 	case 6000000:
97 		nominal_rate = 0x55B7;
98 		break;
99 
100 	case 7000000:
101 		nominal_rate = 0x6400;
102 		break;
103 
104 	case 8000000:
105 		nominal_rate = 0x7249;
106 		break;
107 
108 	default:
109 		return -EINVAL;
110 	}
111 
112 	if ((result = nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, nominal_rate & 0xFF)) < 0)
113 		return result;
114 
115 	return nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, (nominal_rate >> 8) & 0xFF);
116 }
117 
118 static int nxt6000_set_guard_interval(struct nxt6000_state *state,
119 				      enum fe_guard_interval guard_interval)
120 {
121 	switch (guard_interval) {
122 
123 	case GUARD_INTERVAL_1_32:
124 		return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x00 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
125 
126 	case GUARD_INTERVAL_1_16:
127 		return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x01 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
128 
129 	case GUARD_INTERVAL_AUTO:
130 	case GUARD_INTERVAL_1_8:
131 		return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x02 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
132 
133 	case GUARD_INTERVAL_1_4:
134 		return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x03 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
135 
136 	default:
137 		return -EINVAL;
138 	}
139 }
140 
141 static int nxt6000_set_inversion(struct nxt6000_state *state,
142 				 enum fe_spectral_inversion inversion)
143 {
144 	switch (inversion) {
145 
146 	case INVERSION_OFF:
147 		return nxt6000_writereg(state, OFDM_ITB_CTL, 0x00);
148 
149 	case INVERSION_ON:
150 		return nxt6000_writereg(state, OFDM_ITB_CTL, ITBINV);
151 
152 	default:
153 		return -EINVAL;
154 
155 	}
156 }
157 
158 static int
159 nxt6000_set_transmission_mode(struct nxt6000_state *state,
160 			      enum fe_transmit_mode transmission_mode)
161 {
162 	int result;
163 
164 	switch (transmission_mode) {
165 
166 	case TRANSMISSION_MODE_2K:
167 		if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x00 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
168 			return result;
169 
170 		return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x00 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
171 
172 	case TRANSMISSION_MODE_8K:
173 	case TRANSMISSION_MODE_AUTO:
174 		if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x02 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
175 			return result;
176 
177 		return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x01 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
178 
179 	default:
180 		return -EINVAL;
181 
182 	}
183 }
184 
185 static void nxt6000_setup(struct dvb_frontend* fe)
186 {
187 	struct nxt6000_state* state = fe->demodulator_priv;
188 
189 	nxt6000_writereg(state, RS_COR_SYNC_PARAM, SYNC_PARAM);
190 	nxt6000_writereg(state, BER_CTRL, /*(1 << 2) | */ (0x01 << 1) | 0x01);
191 	nxt6000_writereg(state, VIT_BERTIME_2, 0x00);  // BER Timer = 0x000200 * 256 = 131072 bits
192 	nxt6000_writereg(state, VIT_BERTIME_1, 0x02);  //
193 	nxt6000_writereg(state, VIT_BERTIME_0, 0x00);  //
194 	nxt6000_writereg(state, VIT_COR_INTEN, 0x98); // Enable BER interrupts
195 	nxt6000_writereg(state, VIT_COR_CTL, 0x82);   // Enable BER measurement
196 	nxt6000_writereg(state, VIT_COR_CTL, VIT_COR_RESYNC | 0x02 );
197 	nxt6000_writereg(state, OFDM_COR_CTL, (0x01 << 5) | (nxt6000_readreg(state, OFDM_COR_CTL) & 0x0F));
198 	nxt6000_writereg(state, OFDM_COR_MODEGUARD, FORCEMODE8K | 0x02);
199 	nxt6000_writereg(state, OFDM_AGC_CTL, AGCLAST | INITIAL_AGC_BW);
200 	nxt6000_writereg(state, OFDM_ITB_FREQ_1, 0x06);
201 	nxt6000_writereg(state, OFDM_ITB_FREQ_2, 0x31);
202 	nxt6000_writereg(state, OFDM_CAS_CTL, (0x01 << 7) | (0x02 << 3) | 0x04);
203 	nxt6000_writereg(state, CAS_FREQ, 0xBB);	/* CHECKME */
204 	nxt6000_writereg(state, OFDM_SYR_CTL, 1 << 2);
205 	nxt6000_writereg(state, OFDM_PPM_CTL_1, PPM256);
206 	nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, 0x49);
207 	nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, 0x72);
208 	nxt6000_writereg(state, ANALOG_CONTROL_0, 1 << 5);
209 	nxt6000_writereg(state, EN_DMD_RACQ, (1 << 7) | (3 << 4) | 2);
210 	nxt6000_writereg(state, DIAG_CONFIG, TB_SET);
211 
212 	if (state->config->clock_inversion)
213 		nxt6000_writereg(state, SUB_DIAG_MODE_SEL, CLKINVERSION);
214 	else
215 		nxt6000_writereg(state, SUB_DIAG_MODE_SEL, 0);
216 
217 	nxt6000_writereg(state, TS_FORMAT, 0);
218 }
219 
220 static void nxt6000_dump_status(struct nxt6000_state *state)
221 {
222 	u8 val;
223 
224 #if 0
225 	pr_info("RS_COR_STAT: 0x%02X\n",
226 		nxt6000_readreg(fe, RS_COR_STAT));
227 	pr_info("VIT_SYNC_STATUS: 0x%02X\n",
228 		nxt6000_readreg(fe, VIT_SYNC_STATUS));
229 	pr_info("OFDM_COR_STAT: 0x%02X\n",
230 		nxt6000_readreg(fe, OFDM_COR_STAT));
231 	pr_info("OFDM_SYR_STAT: 0x%02X\n",
232 		nxt6000_readreg(fe, OFDM_SYR_STAT));
233 	pr_info("OFDM_TPS_RCVD_1: 0x%02X\n",
234 		nxt6000_readreg(fe, OFDM_TPS_RCVD_1));
235 	pr_info("OFDM_TPS_RCVD_2: 0x%02X\n",
236 		nxt6000_readreg(fe, OFDM_TPS_RCVD_2));
237 	pr_info("OFDM_TPS_RCVD_3: 0x%02X\n",
238 		nxt6000_readreg(fe, OFDM_TPS_RCVD_3));
239 	pr_info("OFDM_TPS_RCVD_4: 0x%02X\n",
240 		nxt6000_readreg(fe, OFDM_TPS_RCVD_4));
241 	pr_info("OFDM_TPS_RESERVED_1: 0x%02X\n",
242 		nxt6000_readreg(fe, OFDM_TPS_RESERVED_1));
243 	pr_info("OFDM_TPS_RESERVED_2: 0x%02X\n",
244 		nxt6000_readreg(fe, OFDM_TPS_RESERVED_2));
245 #endif
246 	pr_info("NXT6000 status:");
247 
248 	val = nxt6000_readreg(state, RS_COR_STAT);
249 
250 	pr_cont(" DATA DESCR LOCK: %d,", val & 0x01);
251 	pr_cont(" DATA SYNC LOCK: %d,", (val >> 1) & 0x01);
252 
253 	val = nxt6000_readreg(state, VIT_SYNC_STATUS);
254 
255 	pr_cont(" VITERBI LOCK: %d,", (val >> 7) & 0x01);
256 
257 	switch ((val >> 4) & 0x07) {
258 
259 	case 0x00:
260 		pr_cont(" VITERBI CODERATE: 1/2,");
261 		break;
262 
263 	case 0x01:
264 		pr_cont(" VITERBI CODERATE: 2/3,");
265 		break;
266 
267 	case 0x02:
268 		pr_cont(" VITERBI CODERATE: 3/4,");
269 		break;
270 
271 	case 0x03:
272 		pr_cont(" VITERBI CODERATE: 5/6,");
273 		break;
274 
275 	case 0x04:
276 		pr_cont(" VITERBI CODERATE: 7/8,");
277 		break;
278 
279 	default:
280 		pr_cont(" VITERBI CODERATE: Reserved,");
281 
282 	}
283 
284 	val = nxt6000_readreg(state, OFDM_COR_STAT);
285 
286 	pr_cont(" CHCTrack: %d,", (val >> 7) & 0x01);
287 	pr_cont(" TPSLock: %d,", (val >> 6) & 0x01);
288 	pr_cont(" SYRLock: %d,", (val >> 5) & 0x01);
289 	pr_cont(" AGCLock: %d,", (val >> 4) & 0x01);
290 
291 	switch (val & 0x0F) {
292 
293 	case 0x00:
294 		pr_cont(" CoreState: IDLE,");
295 		break;
296 
297 	case 0x02:
298 		pr_cont(" CoreState: WAIT_AGC,");
299 		break;
300 
301 	case 0x03:
302 		pr_cont(" CoreState: WAIT_SYR,");
303 		break;
304 
305 	case 0x04:
306 		pr_cont(" CoreState: WAIT_PPM,");
307 		break;
308 
309 	case 0x01:
310 		pr_cont(" CoreState: WAIT_TRL,");
311 		break;
312 
313 	case 0x05:
314 		pr_cont(" CoreState: WAIT_TPS,");
315 		break;
316 
317 	case 0x06:
318 		pr_cont(" CoreState: MONITOR_TPS,");
319 		break;
320 
321 	default:
322 		pr_cont(" CoreState: Reserved,");
323 
324 	}
325 
326 	val = nxt6000_readreg(state, OFDM_SYR_STAT);
327 
328 	pr_cont(" SYRLock: %d,", (val >> 4) & 0x01);
329 	pr_cont(" SYRMode: %s,", (val >> 2) & 0x01 ? "8K" : "2K");
330 
331 	switch ((val >> 4) & 0x03) {
332 
333 	case 0x00:
334 		pr_cont(" SYRGuard: 1/32,");
335 		break;
336 
337 	case 0x01:
338 		pr_cont(" SYRGuard: 1/16,");
339 		break;
340 
341 	case 0x02:
342 		pr_cont(" SYRGuard: 1/8,");
343 		break;
344 
345 	case 0x03:
346 		pr_cont(" SYRGuard: 1/4,");
347 		break;
348 	}
349 
350 	val = nxt6000_readreg(state, OFDM_TPS_RCVD_3);
351 
352 	switch ((val >> 4) & 0x07) {
353 
354 	case 0x00:
355 		pr_cont(" TPSLP: 1/2,");
356 		break;
357 
358 	case 0x01:
359 		pr_cont(" TPSLP: 2/3,");
360 		break;
361 
362 	case 0x02:
363 		pr_cont(" TPSLP: 3/4,");
364 		break;
365 
366 	case 0x03:
367 		pr_cont(" TPSLP: 5/6,");
368 		break;
369 
370 	case 0x04:
371 		pr_cont(" TPSLP: 7/8,");
372 		break;
373 
374 	default:
375 		pr_cont(" TPSLP: Reserved,");
376 
377 	}
378 
379 	switch (val & 0x07) {
380 
381 	case 0x00:
382 		pr_cont(" TPSHP: 1/2,");
383 		break;
384 
385 	case 0x01:
386 		pr_cont(" TPSHP: 2/3,");
387 		break;
388 
389 	case 0x02:
390 		pr_cont(" TPSHP: 3/4,");
391 		break;
392 
393 	case 0x03:
394 		pr_cont(" TPSHP: 5/6,");
395 		break;
396 
397 	case 0x04:
398 		pr_cont(" TPSHP: 7/8,");
399 		break;
400 
401 	default:
402 		pr_cont(" TPSHP: Reserved,");
403 
404 	}
405 
406 	val = nxt6000_readreg(state, OFDM_TPS_RCVD_4);
407 
408 	pr_cont(" TPSMode: %s,", val & 0x01 ? "8K" : "2K");
409 
410 	switch ((val >> 4) & 0x03) {
411 
412 	case 0x00:
413 		pr_cont(" TPSGuard: 1/32,");
414 		break;
415 
416 	case 0x01:
417 		pr_cont(" TPSGuard: 1/16,");
418 		break;
419 
420 	case 0x02:
421 		pr_cont(" TPSGuard: 1/8,");
422 		break;
423 
424 	case 0x03:
425 		pr_cont(" TPSGuard: 1/4,");
426 		break;
427 
428 	}
429 
430 	/* Strange magic required to gain access to RF_AGC_STATUS */
431 	nxt6000_readreg(state, RF_AGC_VAL_1);
432 	val = nxt6000_readreg(state, RF_AGC_STATUS);
433 	val = nxt6000_readreg(state, RF_AGC_STATUS);
434 
435 	pr_cont(" RF AGC LOCK: %d,", (val >> 4) & 0x01);
436 	pr_cont("\n");
437 }
438 
439 static int nxt6000_read_status(struct dvb_frontend *fe, enum fe_status *status)
440 {
441 	u8 core_status;
442 	struct nxt6000_state* state = fe->demodulator_priv;
443 
444 	*status = 0;
445 
446 	core_status = nxt6000_readreg(state, OFDM_COR_STAT);
447 
448 	if (core_status & AGCLOCKED)
449 		*status |= FE_HAS_SIGNAL;
450 
451 	if (nxt6000_readreg(state, OFDM_SYR_STAT) & GI14_SYR_LOCK)
452 		*status |= FE_HAS_CARRIER;
453 
454 	if (nxt6000_readreg(state, VIT_SYNC_STATUS) & VITINSYNC)
455 		*status |= FE_HAS_VITERBI;
456 
457 	if (nxt6000_readreg(state, RS_COR_STAT) & RSCORESTATUS)
458 		*status |= FE_HAS_SYNC;
459 
460 	if ((core_status & TPSLOCKED) && (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)))
461 		*status |= FE_HAS_LOCK;
462 
463 	if (debug)
464 		nxt6000_dump_status(state);
465 
466 	return 0;
467 }
468 
469 static int nxt6000_init(struct dvb_frontend* fe)
470 {
471 	struct nxt6000_state* state = fe->demodulator_priv;
472 
473 	nxt6000_reset(state);
474 	nxt6000_setup(fe);
475 
476 	return 0;
477 }
478 
479 static int nxt6000_set_frontend(struct dvb_frontend *fe)
480 {
481 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
482 	struct nxt6000_state* state = fe->demodulator_priv;
483 	int result;
484 
485 	if (fe->ops.tuner_ops.set_params) {
486 		fe->ops.tuner_ops.set_params(fe);
487 		if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
488 	}
489 
490 	result = nxt6000_set_bandwidth(state, p->bandwidth_hz);
491 	if (result < 0)
492 		return result;
493 
494 	result = nxt6000_set_guard_interval(state, p->guard_interval);
495 	if (result < 0)
496 		return result;
497 
498 	result = nxt6000_set_transmission_mode(state, p->transmission_mode);
499 	if (result < 0)
500 		return result;
501 
502 	result = nxt6000_set_inversion(state, p->inversion);
503 	if (result < 0)
504 		return result;
505 
506 	msleep(500);
507 	return 0;
508 }
509 
510 static void nxt6000_release(struct dvb_frontend* fe)
511 {
512 	struct nxt6000_state* state = fe->demodulator_priv;
513 	kfree(state);
514 }
515 
516 static int nxt6000_read_snr(struct dvb_frontend* fe, u16* snr)
517 {
518 	struct nxt6000_state* state = fe->demodulator_priv;
519 
520 	*snr = nxt6000_readreg( state, OFDM_CHC_SNR) / 8;
521 
522 	return 0;
523 }
524 
525 static int nxt6000_read_ber(struct dvb_frontend* fe, u32* ber)
526 {
527 	struct nxt6000_state* state = fe->demodulator_priv;
528 
529 	nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18 );
530 
531 	*ber = (nxt6000_readreg( state, VIT_BER_1 ) << 8 ) |
532 		nxt6000_readreg( state, VIT_BER_0 );
533 
534 	nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18); // Clear BER Done interrupts
535 
536 	return 0;
537 }
538 
539 static int nxt6000_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
540 {
541 	struct nxt6000_state* state = fe->demodulator_priv;
542 
543 	*signal_strength = (short) (511 -
544 		(nxt6000_readreg(state, AGC_GAIN_1) +
545 		((nxt6000_readreg(state, AGC_GAIN_2) & 0x03) << 8)));
546 
547 	return 0;
548 }
549 
550 static int nxt6000_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
551 {
552 	tune->min_delay_ms = 500;
553 	return 0;
554 }
555 
556 static int nxt6000_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
557 {
558 	struct nxt6000_state* state = fe->demodulator_priv;
559 
560 	if (enable) {
561 		return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x01);
562 	} else {
563 		return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x00);
564 	}
565 }
566 
567 static struct dvb_frontend_ops nxt6000_ops;
568 
569 struct dvb_frontend* nxt6000_attach(const struct nxt6000_config* config,
570 				    struct i2c_adapter* i2c)
571 {
572 	struct nxt6000_state* state = NULL;
573 
574 	/* allocate memory for the internal state */
575 	state = kzalloc(sizeof(struct nxt6000_state), GFP_KERNEL);
576 	if (state == NULL) goto error;
577 
578 	/* setup the state */
579 	state->config = config;
580 	state->i2c = i2c;
581 
582 	/* check if the demod is there */
583 	if (nxt6000_readreg(state, OFDM_MSC_REV) != NXT6000ASICDEVICE) goto error;
584 
585 	/* create dvb_frontend */
586 	memcpy(&state->frontend.ops, &nxt6000_ops, sizeof(struct dvb_frontend_ops));
587 	state->frontend.demodulator_priv = state;
588 	return &state->frontend;
589 
590 error:
591 	kfree(state);
592 	return NULL;
593 }
594 
595 static struct dvb_frontend_ops nxt6000_ops = {
596 	.delsys = { SYS_DVBT },
597 	.info = {
598 		.name = "NxtWave NXT6000 DVB-T",
599 		.frequency_min = 0,
600 		.frequency_max = 863250000,
601 		.frequency_stepsize = 62500,
602 		/*.frequency_tolerance = *//* FIXME: 12% of SR */
603 		.symbol_rate_min = 0,	/* FIXME */
604 		.symbol_rate_max = 9360000,	/* FIXME */
605 		.symbol_rate_tolerance = 4000,
606 		.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
607 			FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
608 			FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO |
609 			FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
610 			FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
611 			FE_CAN_HIERARCHY_AUTO,
612 	},
613 
614 	.release = nxt6000_release,
615 
616 	.init = nxt6000_init,
617 	.i2c_gate_ctrl = nxt6000_i2c_gate_ctrl,
618 
619 	.get_tune_settings = nxt6000_fe_get_tune_settings,
620 
621 	.set_frontend = nxt6000_set_frontend,
622 
623 	.read_status = nxt6000_read_status,
624 	.read_ber = nxt6000_read_ber,
625 	.read_signal_strength = nxt6000_read_signal_strength,
626 	.read_snr = nxt6000_read_snr,
627 };
628 
629 module_param(debug, int, 0644);
630 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
631 
632 MODULE_DESCRIPTION("NxtWave NXT6000 DVB-T demodulator driver");
633 MODULE_AUTHOR("Florian Schirmer");
634 MODULE_LICENSE("GPL");
635 
636 EXPORT_SYMBOL(nxt6000_attach);
637