1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for the MaxLinear MxL5xx family of tuners/demods
4  *
5  * Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de>
6  *                         Marcus Metzler <mocm@metzlerbros.de>
7  *                         developed for Digital Devices GmbH
8  *
9  * based on code:
10  * Copyright (c) 2011-2013 MaxLinear, Inc. All rights reserved
11  * which was released under GPL V2
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License
15  * version 2, as published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/init.h>
27 #include <linux/delay.h>
28 #include <linux/firmware.h>
29 #include <linux/i2c.h>
30 #include <linux/version.h>
31 #include <linux/mutex.h>
32 #include <linux/vmalloc.h>
33 #include <asm/div64.h>
34 #include <asm/unaligned.h>
35 
36 #include <media/dvb_frontend.h>
37 #include "mxl5xx.h"
38 #include "mxl5xx_regs.h"
39 #include "mxl5xx_defs.h"
40 
41 #define BYTE0(v) ((v >>  0) & 0xff)
42 #define BYTE1(v) ((v >>  8) & 0xff)
43 #define BYTE2(v) ((v >> 16) & 0xff)
44 #define BYTE3(v) ((v >> 24) & 0xff)
45 
46 static LIST_HEAD(mxllist);
47 
48 struct mxl_base {
49 	struct list_head     mxllist;
50 	struct list_head     mxls;
51 
52 	u8                   adr;
53 	struct i2c_adapter  *i2c;
54 
55 	u32                  count;
56 	u32                  type;
57 	u32                  sku_type;
58 	u32                  chipversion;
59 	u32                  clock;
60 	u32                  fwversion;
61 
62 	u8                  *ts_map;
63 	u8                   can_clkout;
64 	u8                   chan_bond;
65 	u8                   demod_num;
66 	u8                   tuner_num;
67 
68 	unsigned long        next_tune;
69 
70 	struct mutex         i2c_lock;
71 	struct mutex         status_lock;
72 	struct mutex         tune_lock;
73 
74 	u8                   buf[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
75 
76 	u32                  cmd_size;
77 	u8                   cmd_data[MAX_CMD_DATA];
78 };
79 
80 struct mxl {
81 	struct list_head     mxl;
82 
83 	struct mxl_base     *base;
84 	struct dvb_frontend  fe;
85 	struct device       *i2cdev;
86 	u32                  demod;
87 	u32                  tuner;
88 	u32                  tuner_in_use;
89 	u8                   xbar[3];
90 
91 	unsigned long        tune_time;
92 };
93 
94 static void convert_endian(u8 flag, u32 size, u8 *d)
95 {
96 	u32 i;
97 
98 	if (!flag)
99 		return;
100 	for (i = 0; i < (size & ~3); i += 4) {
101 		d[i + 0] ^= d[i + 3];
102 		d[i + 3] ^= d[i + 0];
103 		d[i + 0] ^= d[i + 3];
104 
105 		d[i + 1] ^= d[i + 2];
106 		d[i + 2] ^= d[i + 1];
107 		d[i + 1] ^= d[i + 2];
108 	}
109 
110 	switch (size & 3) {
111 	case 0:
112 	case 1:
113 		/* do nothing */
114 		break;
115 	case 2:
116 		d[i + 0] ^= d[i + 1];
117 		d[i + 1] ^= d[i + 0];
118 		d[i + 0] ^= d[i + 1];
119 		break;
120 
121 	case 3:
122 		d[i + 0] ^= d[i + 2];
123 		d[i + 2] ^= d[i + 0];
124 		d[i + 0] ^= d[i + 2];
125 		break;
126 	}
127 
128 }
129 
130 static int i2c_write(struct i2c_adapter *adap, u8 adr,
131 			    u8 *data, u32 len)
132 {
133 	struct i2c_msg msg = {.addr = adr, .flags = 0,
134 			      .buf = data, .len = len};
135 
136 	return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1;
137 }
138 
139 static int i2c_read(struct i2c_adapter *adap, u8 adr,
140 			   u8 *data, u32 len)
141 {
142 	struct i2c_msg msg = {.addr = adr, .flags = I2C_M_RD,
143 			      .buf = data, .len = len};
144 
145 	return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1;
146 }
147 
148 static int i2cread(struct mxl *state, u8 *data, int len)
149 {
150 	return i2c_read(state->base->i2c, state->base->adr, data, len);
151 }
152 
153 static int i2cwrite(struct mxl *state, u8 *data, int len)
154 {
155 	return i2c_write(state->base->i2c, state->base->adr, data, len);
156 }
157 
158 static int read_register_unlocked(struct mxl *state, u32 reg, u32 *val)
159 {
160 	int stat;
161 	u8 data[MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE] = {
162 		MXL_HYDRA_PLID_REG_READ, 0x04,
163 		GET_BYTE(reg, 0), GET_BYTE(reg, 1),
164 		GET_BYTE(reg, 2), GET_BYTE(reg, 3),
165 	};
166 
167 	stat = i2cwrite(state, data,
168 			MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE);
169 	if (stat)
170 		dev_err(state->i2cdev, "i2c read error 1\n");
171 	if (!stat)
172 		stat = i2cread(state, (u8 *) val,
173 			       MXL_HYDRA_REG_SIZE_IN_BYTES);
174 	le32_to_cpus(val);
175 	if (stat)
176 		dev_err(state->i2cdev, "i2c read error 2\n");
177 	return stat;
178 }
179 
180 #define DMA_I2C_INTERRUPT_ADDR 0x8000011C
181 #define DMA_INTR_PROT_WR_CMP 0x08
182 
183 static int send_command(struct mxl *state, u32 size, u8 *buf)
184 {
185 	int stat;
186 	u32 val, count = 10;
187 
188 	mutex_lock(&state->base->i2c_lock);
189 	if (state->base->fwversion > 0x02010109)  {
190 		read_register_unlocked(state, DMA_I2C_INTERRUPT_ADDR, &val);
191 		if (DMA_INTR_PROT_WR_CMP & val)
192 			dev_info(state->i2cdev, "%s busy\n", __func__);
193 		while ((DMA_INTR_PROT_WR_CMP & val) && --count) {
194 			mutex_unlock(&state->base->i2c_lock);
195 			usleep_range(1000, 2000);
196 			mutex_lock(&state->base->i2c_lock);
197 			read_register_unlocked(state, DMA_I2C_INTERRUPT_ADDR,
198 					       &val);
199 		}
200 		if (!count) {
201 			dev_info(state->i2cdev, "%s busy\n", __func__);
202 			mutex_unlock(&state->base->i2c_lock);
203 			return -EBUSY;
204 		}
205 	}
206 	stat = i2cwrite(state, buf, size);
207 	mutex_unlock(&state->base->i2c_lock);
208 	return stat;
209 }
210 
211 static int write_register(struct mxl *state, u32 reg, u32 val)
212 {
213 	int stat;
214 	u8 data[MXL_HYDRA_REG_WRITE_LEN] = {
215 		MXL_HYDRA_PLID_REG_WRITE, 0x08,
216 		BYTE0(reg), BYTE1(reg), BYTE2(reg), BYTE3(reg),
217 		BYTE0(val), BYTE1(val), BYTE2(val), BYTE3(val),
218 	};
219 	mutex_lock(&state->base->i2c_lock);
220 	stat = i2cwrite(state, data, sizeof(data));
221 	mutex_unlock(&state->base->i2c_lock);
222 	if (stat)
223 		dev_err(state->i2cdev, "i2c write error\n");
224 	return stat;
225 }
226 
227 static int write_firmware_block(struct mxl *state,
228 				u32 reg, u32 size, u8 *reg_data_ptr)
229 {
230 	int stat;
231 	u8 *buf = state->base->buf;
232 
233 	mutex_lock(&state->base->i2c_lock);
234 	buf[0] = MXL_HYDRA_PLID_REG_WRITE;
235 	buf[1] = size + 4;
236 	buf[2] = GET_BYTE(reg, 0);
237 	buf[3] = GET_BYTE(reg, 1);
238 	buf[4] = GET_BYTE(reg, 2);
239 	buf[5] = GET_BYTE(reg, 3);
240 	memcpy(&buf[6], reg_data_ptr, size);
241 	stat = i2cwrite(state, buf,
242 			MXL_HYDRA_I2C_HDR_SIZE +
243 			MXL_HYDRA_REG_SIZE_IN_BYTES + size);
244 	mutex_unlock(&state->base->i2c_lock);
245 	if (stat)
246 		dev_err(state->i2cdev, "fw block write failed\n");
247 	return stat;
248 }
249 
250 static int read_register(struct mxl *state, u32 reg, u32 *val)
251 {
252 	int stat;
253 	u8 data[MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE] = {
254 		MXL_HYDRA_PLID_REG_READ, 0x04,
255 		GET_BYTE(reg, 0), GET_BYTE(reg, 1),
256 		GET_BYTE(reg, 2), GET_BYTE(reg, 3),
257 	};
258 
259 	mutex_lock(&state->base->i2c_lock);
260 	stat = i2cwrite(state, data,
261 			MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE);
262 	if (stat)
263 		dev_err(state->i2cdev, "i2c read error 1\n");
264 	if (!stat)
265 		stat = i2cread(state, (u8 *) val,
266 			       MXL_HYDRA_REG_SIZE_IN_BYTES);
267 	mutex_unlock(&state->base->i2c_lock);
268 	le32_to_cpus(val);
269 	if (stat)
270 		dev_err(state->i2cdev, "i2c read error 2\n");
271 	return stat;
272 }
273 
274 static int read_register_block(struct mxl *state, u32 reg, u32 size, u8 *data)
275 {
276 	int stat;
277 	u8 *buf = state->base->buf;
278 
279 	mutex_lock(&state->base->i2c_lock);
280 
281 	buf[0] = MXL_HYDRA_PLID_REG_READ;
282 	buf[1] = size + 4;
283 	buf[2] = GET_BYTE(reg, 0);
284 	buf[3] = GET_BYTE(reg, 1);
285 	buf[4] = GET_BYTE(reg, 2);
286 	buf[5] = GET_BYTE(reg, 3);
287 	stat = i2cwrite(state, buf,
288 			MXL_HYDRA_I2C_HDR_SIZE + MXL_HYDRA_REG_SIZE_IN_BYTES);
289 	if (!stat) {
290 		stat = i2cread(state, data, size);
291 		convert_endian(MXL_ENABLE_BIG_ENDIAN, size, data);
292 	}
293 	mutex_unlock(&state->base->i2c_lock);
294 	return stat;
295 }
296 
297 static int read_by_mnemonic(struct mxl *state,
298 			    u32 reg, u8 lsbloc, u8 numofbits, u32 *val)
299 {
300 	u32 data = 0, mask = 0;
301 	int stat;
302 
303 	stat = read_register(state, reg, &data);
304 	if (stat)
305 		return stat;
306 	mask = MXL_GET_REG_MASK_32(lsbloc, numofbits);
307 	data &= mask;
308 	data >>= lsbloc;
309 	*val = data;
310 	return 0;
311 }
312 
313 
314 static int update_by_mnemonic(struct mxl *state,
315 			      u32 reg, u8 lsbloc, u8 numofbits, u32 val)
316 {
317 	u32 data, mask;
318 	int stat;
319 
320 	stat = read_register(state, reg, &data);
321 	if (stat)
322 		return stat;
323 	mask = MXL_GET_REG_MASK_32(lsbloc, numofbits);
324 	data = (data & ~mask) | ((val << lsbloc) & mask);
325 	stat = write_register(state, reg, data);
326 	return stat;
327 }
328 
329 static int firmware_is_alive(struct mxl *state)
330 {
331 	u32 hb0, hb1;
332 
333 	if (read_register(state, HYDRA_HEAR_BEAT, &hb0))
334 		return 0;
335 	msleep(20);
336 	if (read_register(state, HYDRA_HEAR_BEAT, &hb1))
337 		return 0;
338 	if (hb1 == hb0)
339 		return 0;
340 	return 1;
341 }
342 
343 static int init(struct dvb_frontend *fe)
344 {
345 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
346 
347 	/* init fe stats */
348 	p->strength.len = 1;
349 	p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
350 	p->cnr.len = 1;
351 	p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
352 	p->pre_bit_error.len = 1;
353 	p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
354 	p->pre_bit_count.len = 1;
355 	p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
356 	p->post_bit_error.len = 1;
357 	p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
358 	p->post_bit_count.len = 1;
359 	p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
360 
361 	return 0;
362 }
363 
364 static void release(struct dvb_frontend *fe)
365 {
366 	struct mxl *state = fe->demodulator_priv;
367 
368 	list_del(&state->mxl);
369 	/* Release one frontend, two more shall take its place! */
370 	state->base->count--;
371 	if (state->base->count == 0) {
372 		list_del(&state->base->mxllist);
373 		kfree(state->base);
374 	}
375 	kfree(state);
376 }
377 
378 static enum dvbfe_algo get_algo(struct dvb_frontend *fe)
379 {
380 	return DVBFE_ALGO_HW;
381 }
382 
383 static u32 gold2root(u32 gold)
384 {
385 	u32 x, g, tmp = gold;
386 
387 	if (tmp >= 0x3ffff)
388 		tmp = 0;
389 	for (g = 0, x = 1; g < tmp; g++)
390 		x = (((x ^ (x >> 7)) & 1) << 17) | (x >> 1);
391 	return x;
392 }
393 
394 static int cfg_scrambler(struct mxl *state, u32 gold)
395 {
396 	u32 root;
397 	u8 buf[26] = {
398 		MXL_HYDRA_PLID_CMD_WRITE, 24,
399 		0, MXL_HYDRA_DEMOD_SCRAMBLE_CODE_CMD, 0, 0,
400 		state->demod, 0, 0, 0,
401 		0, 0, 0, 0, 0, 0, 0, 0,
402 		0, 0, 0, 0, 1, 0, 0, 0,
403 	};
404 
405 	root = gold2root(gold);
406 
407 	buf[25] = (root >> 24) & 0xff;
408 	buf[24] = (root >> 16) & 0xff;
409 	buf[23] = (root >> 8) & 0xff;
410 	buf[22] = root & 0xff;
411 
412 	return send_command(state, sizeof(buf), buf);
413 }
414 
415 static int cfg_demod_abort_tune(struct mxl *state)
416 {
417 	struct MXL_HYDRA_DEMOD_ABORT_TUNE_T abort_tune_cmd;
418 	u8 cmd_size = sizeof(abort_tune_cmd);
419 	u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
420 
421 	abort_tune_cmd.demod_id = state->demod;
422 	BUILD_HYDRA_CMD(MXL_HYDRA_ABORT_TUNE_CMD, MXL_CMD_WRITE,
423 			cmd_size, &abort_tune_cmd, cmd_buff);
424 	return send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
425 			    &cmd_buff[0]);
426 }
427 
428 static int send_master_cmd(struct dvb_frontend *fe,
429 			   struct dvb_diseqc_master_cmd *cmd)
430 {
431 	/*struct mxl *state = fe->demodulator_priv;*/
432 
433 	return 0; /*CfgDemodAbortTune(state);*/
434 }
435 
436 static int set_parameters(struct dvb_frontend *fe)
437 {
438 	struct mxl *state = fe->demodulator_priv;
439 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
440 	struct MXL_HYDRA_DEMOD_PARAM_T demod_chan_cfg;
441 	u8 cmd_size = sizeof(demod_chan_cfg);
442 	u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
443 	u32 srange = 10;
444 	int stat;
445 
446 	if (p->frequency < 950000 || p->frequency > 2150000)
447 		return -EINVAL;
448 	if (p->symbol_rate < 1000000 || p->symbol_rate > 45000000)
449 		return -EINVAL;
450 
451 	/* CfgDemodAbortTune(state); */
452 
453 	switch (p->delivery_system) {
454 	case SYS_DSS:
455 		demod_chan_cfg.standard = MXL_HYDRA_DSS;
456 		demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_AUTO;
457 		break;
458 	case SYS_DVBS:
459 		srange = p->symbol_rate / 1000000;
460 		if (srange > 10)
461 			srange = 10;
462 		demod_chan_cfg.standard = MXL_HYDRA_DVBS;
463 		demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_0_35;
464 		demod_chan_cfg.modulation_scheme = MXL_HYDRA_MOD_QPSK;
465 		demod_chan_cfg.pilots = MXL_HYDRA_PILOTS_OFF;
466 		break;
467 	case SYS_DVBS2:
468 		demod_chan_cfg.standard = MXL_HYDRA_DVBS2;
469 		demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_AUTO;
470 		demod_chan_cfg.modulation_scheme = MXL_HYDRA_MOD_AUTO;
471 		demod_chan_cfg.pilots = MXL_HYDRA_PILOTS_AUTO;
472 		cfg_scrambler(state, p->scrambling_sequence_index);
473 		break;
474 	default:
475 		return -EINVAL;
476 	}
477 	demod_chan_cfg.tuner_index = state->tuner;
478 	demod_chan_cfg.demod_index = state->demod;
479 	demod_chan_cfg.frequency_in_hz = p->frequency * 1000;
480 	demod_chan_cfg.symbol_rate_in_hz = p->symbol_rate;
481 	demod_chan_cfg.max_carrier_offset_in_mhz = srange;
482 	demod_chan_cfg.spectrum_inversion = MXL_HYDRA_SPECTRUM_AUTO;
483 	demod_chan_cfg.fec_code_rate = MXL_HYDRA_FEC_AUTO;
484 
485 	mutex_lock(&state->base->tune_lock);
486 	if (time_after(jiffies + msecs_to_jiffies(200),
487 		       state->base->next_tune))
488 		while (time_before(jiffies, state->base->next_tune))
489 			usleep_range(10000, 11000);
490 	state->base->next_tune = jiffies + msecs_to_jiffies(100);
491 	state->tuner_in_use = state->tuner;
492 	BUILD_HYDRA_CMD(MXL_HYDRA_DEMOD_SET_PARAM_CMD, MXL_CMD_WRITE,
493 			cmd_size, &demod_chan_cfg, cmd_buff);
494 	stat = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
495 			    &cmd_buff[0]);
496 	mutex_unlock(&state->base->tune_lock);
497 	return stat;
498 }
499 
500 static int enable_tuner(struct mxl *state, u32 tuner, u32 enable);
501 
502 static int sleep(struct dvb_frontend *fe)
503 {
504 	struct mxl *state = fe->demodulator_priv;
505 	struct mxl *p;
506 
507 	cfg_demod_abort_tune(state);
508 	if (state->tuner_in_use != 0xffffffff) {
509 		mutex_lock(&state->base->tune_lock);
510 		state->tuner_in_use = 0xffffffff;
511 		list_for_each_entry(p, &state->base->mxls, mxl) {
512 			if (p->tuner_in_use == state->tuner)
513 				break;
514 		}
515 		if (&p->mxl == &state->base->mxls)
516 			enable_tuner(state, state->tuner, 0);
517 		mutex_unlock(&state->base->tune_lock);
518 	}
519 	return 0;
520 }
521 
522 static int read_snr(struct dvb_frontend *fe)
523 {
524 	struct mxl *state = fe->demodulator_priv;
525 	int stat;
526 	u32 reg_data = 0;
527 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
528 
529 	mutex_lock(&state->base->status_lock);
530 	HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
531 	stat = read_register(state, (HYDRA_DMD_SNR_ADDR_OFFSET +
532 				     HYDRA_DMD_STATUS_OFFSET(state->demod)),
533 			     &reg_data);
534 	HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
535 	mutex_unlock(&state->base->status_lock);
536 
537 	p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
538 	p->cnr.stat[0].svalue = (s16)reg_data * 10;
539 
540 	return stat;
541 }
542 
543 static int read_ber(struct dvb_frontend *fe)
544 {
545 	struct mxl *state = fe->demodulator_priv;
546 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
547 	u32 reg[8];
548 
549 	mutex_lock(&state->base->status_lock);
550 	HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
551 	read_register_block(state,
552 		(HYDRA_DMD_DVBS_1ST_CORR_RS_ERRORS_ADDR_OFFSET +
553 		 HYDRA_DMD_STATUS_OFFSET(state->demod)),
554 		(4 * sizeof(u32)),
555 		(u8 *) &reg[0]);
556 	HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
557 
558 	switch (p->delivery_system) {
559 	case SYS_DSS:
560 	case SYS_DVBS:
561 		p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
562 		p->pre_bit_error.stat[0].uvalue = reg[2];
563 		p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
564 		p->pre_bit_count.stat[0].uvalue = reg[3];
565 		break;
566 	default:
567 		break;
568 	}
569 
570 	read_register_block(state,
571 		(HYDRA_DMD_DVBS2_CRC_ERRORS_ADDR_OFFSET +
572 		 HYDRA_DMD_STATUS_OFFSET(state->demod)),
573 		(7 * sizeof(u32)),
574 		(u8 *) &reg[0]);
575 
576 	switch (p->delivery_system) {
577 	case SYS_DSS:
578 	case SYS_DVBS:
579 		p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
580 		p->post_bit_error.stat[0].uvalue = reg[5];
581 		p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
582 		p->post_bit_count.stat[0].uvalue = reg[6];
583 		break;
584 	case SYS_DVBS2:
585 		p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
586 		p->post_bit_error.stat[0].uvalue = reg[1];
587 		p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
588 		p->post_bit_count.stat[0].uvalue = reg[2];
589 		break;
590 	default:
591 		break;
592 	}
593 
594 	mutex_unlock(&state->base->status_lock);
595 
596 	return 0;
597 }
598 
599 static int read_signal_strength(struct dvb_frontend *fe)
600 {
601 	struct mxl *state = fe->demodulator_priv;
602 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
603 	int stat;
604 	u32 reg_data = 0;
605 
606 	mutex_lock(&state->base->status_lock);
607 	HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
608 	stat = read_register(state, (HYDRA_DMD_STATUS_INPUT_POWER_ADDR +
609 				     HYDRA_DMD_STATUS_OFFSET(state->demod)),
610 			     &reg_data);
611 	HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
612 	mutex_unlock(&state->base->status_lock);
613 
614 	p->strength.stat[0].scale = FE_SCALE_DECIBEL;
615 	p->strength.stat[0].svalue = (s16) reg_data * 10; /* fix scale */
616 
617 	return stat;
618 }
619 
620 static int read_status(struct dvb_frontend *fe, enum fe_status *status)
621 {
622 	struct mxl *state = fe->demodulator_priv;
623 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
624 	u32 reg_data = 0;
625 
626 	mutex_lock(&state->base->status_lock);
627 	HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
628 	read_register(state, (HYDRA_DMD_LOCK_STATUS_ADDR_OFFSET +
629 			     HYDRA_DMD_STATUS_OFFSET(state->demod)),
630 			     &reg_data);
631 	HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
632 	mutex_unlock(&state->base->status_lock);
633 
634 	*status = (reg_data == 1) ? 0x1f : 0;
635 
636 	/* signal statistics */
637 
638 	/* signal strength is always available */
639 	read_signal_strength(fe);
640 
641 	if (*status & FE_HAS_CARRIER)
642 		read_snr(fe);
643 	else
644 		p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
645 
646 	if (*status & FE_HAS_SYNC)
647 		read_ber(fe);
648 	else {
649 		p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
650 		p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
651 		p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
652 		p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
653 	}
654 
655 	return 0;
656 }
657 
658 static int tune(struct dvb_frontend *fe, bool re_tune,
659 		unsigned int mode_flags,
660 		unsigned int *delay, enum fe_status *status)
661 {
662 	struct mxl *state = fe->demodulator_priv;
663 	int r = 0;
664 
665 	*delay = HZ / 2;
666 	if (re_tune) {
667 		r = set_parameters(fe);
668 		if (r)
669 			return r;
670 		state->tune_time = jiffies;
671 	}
672 
673 	return read_status(fe, status);
674 }
675 
676 static enum fe_code_rate conv_fec(enum MXL_HYDRA_FEC_E fec)
677 {
678 	enum fe_code_rate fec2fec[11] = {
679 		FEC_NONE, FEC_1_2, FEC_3_5, FEC_2_3,
680 		FEC_3_4, FEC_4_5, FEC_5_6, FEC_6_7,
681 		FEC_7_8, FEC_8_9, FEC_9_10
682 	};
683 
684 	if (fec > MXL_HYDRA_FEC_9_10)
685 		return FEC_NONE;
686 	return fec2fec[fec];
687 }
688 
689 static int get_frontend(struct dvb_frontend *fe,
690 			struct dtv_frontend_properties *p)
691 {
692 	struct mxl *state = fe->demodulator_priv;
693 	u32 reg_data[MXL_DEMOD_CHAN_PARAMS_BUFF_SIZE];
694 	u32 freq;
695 
696 	mutex_lock(&state->base->status_lock);
697 	HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
698 	read_register_block(state,
699 		(HYDRA_DMD_STANDARD_ADDR_OFFSET +
700 		HYDRA_DMD_STATUS_OFFSET(state->demod)),
701 		(MXL_DEMOD_CHAN_PARAMS_BUFF_SIZE * 4), /* 25 * 4 bytes */
702 		(u8 *) &reg_data[0]);
703 	/* read demod channel parameters */
704 	read_register_block(state,
705 		(HYDRA_DMD_STATUS_CENTER_FREQ_IN_KHZ_ADDR +
706 		HYDRA_DMD_STATUS_OFFSET(state->demod)),
707 		(4), /* 4 bytes */
708 		(u8 *) &freq);
709 	HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
710 	mutex_unlock(&state->base->status_lock);
711 
712 	dev_dbg(state->i2cdev, "freq=%u delsys=%u srate=%u\n",
713 		freq * 1000, reg_data[DMD_STANDARD_ADDR],
714 		reg_data[DMD_SYMBOL_RATE_ADDR]);
715 	p->symbol_rate = reg_data[DMD_SYMBOL_RATE_ADDR];
716 	p->frequency = freq;
717 	/*
718 	 * p->delivery_system =
719 	 *	(MXL_HYDRA_BCAST_STD_E) regData[DMD_STANDARD_ADDR];
720 	 * p->inversion =
721 	 *	(MXL_HYDRA_SPECTRUM_E) regData[DMD_SPECTRUM_INVERSION_ADDR];
722 	 * freqSearchRangeKHz =
723 	 *	(regData[DMD_FREQ_SEARCH_RANGE_IN_KHZ_ADDR]);
724 	 */
725 
726 	p->fec_inner = conv_fec(reg_data[DMD_FEC_CODE_RATE_ADDR]);
727 	switch (p->delivery_system) {
728 	case SYS_DSS:
729 		break;
730 	case SYS_DVBS2:
731 		switch ((enum MXL_HYDRA_PILOTS_E)
732 			reg_data[DMD_DVBS2_PILOT_ON_OFF_ADDR]) {
733 		case MXL_HYDRA_PILOTS_OFF:
734 			p->pilot = PILOT_OFF;
735 			break;
736 		case MXL_HYDRA_PILOTS_ON:
737 			p->pilot = PILOT_ON;
738 			break;
739 		default:
740 			break;
741 		}
742 		/* Fall through */
743 	case SYS_DVBS:
744 		switch ((enum MXL_HYDRA_MODULATION_E)
745 			reg_data[DMD_MODULATION_SCHEME_ADDR]) {
746 		case MXL_HYDRA_MOD_QPSK:
747 			p->modulation = QPSK;
748 			break;
749 		case MXL_HYDRA_MOD_8PSK:
750 			p->modulation = PSK_8;
751 			break;
752 		default:
753 			break;
754 		}
755 		switch ((enum MXL_HYDRA_ROLLOFF_E)
756 			reg_data[DMD_SPECTRUM_ROLL_OFF_ADDR]) {
757 		case MXL_HYDRA_ROLLOFF_0_20:
758 			p->rolloff = ROLLOFF_20;
759 			break;
760 		case MXL_HYDRA_ROLLOFF_0_35:
761 			p->rolloff = ROLLOFF_35;
762 			break;
763 		case MXL_HYDRA_ROLLOFF_0_25:
764 			p->rolloff = ROLLOFF_25;
765 			break;
766 		default:
767 			break;
768 		}
769 		break;
770 	default:
771 		return -EINVAL;
772 	}
773 	return 0;
774 }
775 
776 static int set_input(struct dvb_frontend *fe, int input)
777 {
778 	struct mxl *state = fe->demodulator_priv;
779 
780 	state->tuner = input;
781 	return 0;
782 }
783 
784 static const struct dvb_frontend_ops mxl_ops = {
785 	.delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
786 	.info = {
787 		.name			= "MaxLinear MxL5xx DVB-S/S2 tuner-demodulator",
788 		.frequency_min_hz	=  300 * MHz,
789 		.frequency_max_hz	= 2350 * MHz,
790 		.symbol_rate_min	= 1000000,
791 		.symbol_rate_max	= 45000000,
792 		.caps			= FE_CAN_INVERSION_AUTO |
793 					  FE_CAN_FEC_AUTO       |
794 					  FE_CAN_QPSK           |
795 					  FE_CAN_2G_MODULATION
796 	},
797 	.init				= init,
798 	.release                        = release,
799 	.get_frontend_algo              = get_algo,
800 	.tune                           = tune,
801 	.read_status			= read_status,
802 	.sleep				= sleep,
803 	.get_frontend                   = get_frontend,
804 	.diseqc_send_master_cmd		= send_master_cmd,
805 };
806 
807 static struct mxl_base *match_base(struct i2c_adapter  *i2c, u8 adr)
808 {
809 	struct mxl_base *p;
810 
811 	list_for_each_entry(p, &mxllist, mxllist)
812 		if (p->i2c == i2c && p->adr == adr)
813 			return p;
814 	return NULL;
815 }
816 
817 static void cfg_dev_xtal(struct mxl *state, u32 freq, u32 cap, u32 enable)
818 {
819 	if (state->base->can_clkout || !enable)
820 		update_by_mnemonic(state, 0x90200054, 23, 1, enable);
821 
822 	if (freq == 24000000)
823 		write_register(state, HYDRA_CRYSTAL_SETTING, 0);
824 	else
825 		write_register(state, HYDRA_CRYSTAL_SETTING, 1);
826 
827 	write_register(state, HYDRA_CRYSTAL_CAP, cap);
828 }
829 
830 static u32 get_big_endian(u8 num_of_bits, const u8 buf[])
831 {
832 	u32 ret_value = 0;
833 
834 	switch (num_of_bits) {
835 	case 24:
836 		ret_value = (((u32) buf[0]) << 16) |
837 			(((u32) buf[1]) << 8) | buf[2];
838 		break;
839 	case 32:
840 		ret_value = (((u32) buf[0]) << 24) |
841 			(((u32) buf[1]) << 16) |
842 			(((u32) buf[2]) << 8) | buf[3];
843 		break;
844 	default:
845 		break;
846 	}
847 
848 	return ret_value;
849 }
850 
851 static int write_fw_segment(struct mxl *state,
852 			    u32 mem_addr, u32 total_size, u8 *data_ptr)
853 {
854 	int status;
855 	u32 data_count = 0;
856 	u32 size = 0;
857 	u32 orig_size = 0;
858 	u8 *w_buf_ptr = NULL;
859 	u32 block_size = ((MXL_HYDRA_OEM_MAX_BLOCK_WRITE_LENGTH -
860 			 (MXL_HYDRA_I2C_HDR_SIZE +
861 			  MXL_HYDRA_REG_SIZE_IN_BYTES)) / 4) * 4;
862 	u8 w_msg_buffer[MXL_HYDRA_OEM_MAX_BLOCK_WRITE_LENGTH -
863 		      (MXL_HYDRA_I2C_HDR_SIZE + MXL_HYDRA_REG_SIZE_IN_BYTES)];
864 
865 	do {
866 		size = orig_size = (((u32)(data_count + block_size)) > total_size) ?
867 			(total_size - data_count) : block_size;
868 
869 		if (orig_size & 3)
870 			size = (orig_size + 4) & ~3;
871 		w_buf_ptr = &w_msg_buffer[0];
872 		memset((void *) w_buf_ptr, 0, size);
873 		memcpy((void *) w_buf_ptr, (void *) data_ptr, orig_size);
874 		convert_endian(1, size, w_buf_ptr);
875 		status  = write_firmware_block(state, mem_addr, size, w_buf_ptr);
876 		if (status)
877 			return status;
878 		data_count += size;
879 		mem_addr   += size;
880 		data_ptr   += size;
881 	} while (data_count < total_size);
882 
883 	return status;
884 }
885 
886 static int do_firmware_download(struct mxl *state, u8 *mbin_buffer_ptr,
887 				u32 mbin_buffer_size)
888 
889 {
890 	int status;
891 	u32 index = 0;
892 	u32 seg_length = 0;
893 	u32 seg_address = 0;
894 	struct MBIN_FILE_T *mbin_ptr  = (struct MBIN_FILE_T *)mbin_buffer_ptr;
895 	struct MBIN_SEGMENT_T *segment_ptr;
896 	enum MXL_BOOL_E xcpu_fw_flag = MXL_FALSE;
897 
898 	if (mbin_ptr->header.id != MBIN_FILE_HEADER_ID) {
899 		dev_err(state->i2cdev, "%s: Invalid file header ID (%c)\n",
900 		       __func__, mbin_ptr->header.id);
901 		return -EINVAL;
902 	}
903 	status = write_register(state, FW_DL_SIGN_ADDR, 0);
904 	if (status)
905 		return status;
906 	segment_ptr = (struct MBIN_SEGMENT_T *) (&mbin_ptr->data[0]);
907 	for (index = 0; index < mbin_ptr->header.num_segments; index++) {
908 		if (segment_ptr->header.id != MBIN_SEGMENT_HEADER_ID) {
909 			dev_err(state->i2cdev, "%s: Invalid segment header ID (%c)\n",
910 			       __func__, segment_ptr->header.id);
911 			return -EINVAL;
912 		}
913 		seg_length  = get_big_endian(24,
914 					    &(segment_ptr->header.len24[0]));
915 		seg_address = get_big_endian(32,
916 					    &(segment_ptr->header.address[0]));
917 
918 		if (state->base->type == MXL_HYDRA_DEVICE_568) {
919 			if ((((seg_address & 0x90760000) == 0x90760000) ||
920 			     ((seg_address & 0x90740000) == 0x90740000)) &&
921 			    (xcpu_fw_flag == MXL_FALSE)) {
922 				update_by_mnemonic(state, 0x8003003C, 0, 1, 1);
923 				msleep(200);
924 				write_register(state, 0x90720000, 0);
925 				usleep_range(10000, 11000);
926 				xcpu_fw_flag = MXL_TRUE;
927 			}
928 			status = write_fw_segment(state, seg_address,
929 						  seg_length,
930 						  (u8 *) segment_ptr->data);
931 		} else {
932 			if (((seg_address & 0x90760000) != 0x90760000) &&
933 			    ((seg_address & 0x90740000) != 0x90740000))
934 				status = write_fw_segment(state, seg_address,
935 					seg_length, (u8 *) segment_ptr->data);
936 		}
937 		if (status)
938 			return status;
939 		segment_ptr = (struct MBIN_SEGMENT_T *)
940 			&(segment_ptr->data[((seg_length + 3) / 4) * 4]);
941 	}
942 	return status;
943 }
944 
945 static int check_fw(struct mxl *state, u8 *mbin, u32 mbin_len)
946 {
947 	struct MBIN_FILE_HEADER_T *fh = (struct MBIN_FILE_HEADER_T *) mbin;
948 	u32 flen = (fh->image_size24[0] << 16) |
949 		(fh->image_size24[1] <<  8) | fh->image_size24[2];
950 	u8 *fw, cs = 0;
951 	u32 i;
952 
953 	if (fh->id != 'M' || fh->fmt_version != '1' || flen > 0x3FFF0) {
954 		dev_info(state->i2cdev, "Invalid FW Header\n");
955 		return -1;
956 	}
957 	fw = mbin + sizeof(struct MBIN_FILE_HEADER_T);
958 	for (i = 0; i < flen; i += 1)
959 		cs += fw[i];
960 	if (cs != fh->image_checksum) {
961 		dev_info(state->i2cdev, "Invalid FW Checksum\n");
962 		return -1;
963 	}
964 	return 0;
965 }
966 
967 static int firmware_download(struct mxl *state, u8 *mbin, u32 mbin_len)
968 {
969 	int status;
970 	u32 reg_data = 0;
971 	struct MXL_HYDRA_SKU_COMMAND_T dev_sku_cfg;
972 	u8 cmd_size = sizeof(struct MXL_HYDRA_SKU_COMMAND_T);
973 	u8 cmd_buff[sizeof(struct MXL_HYDRA_SKU_COMMAND_T) + 6];
974 
975 	if (check_fw(state, mbin, mbin_len))
976 		return -1;
977 
978 	/* put CPU into reset */
979 	status = update_by_mnemonic(state, 0x8003003C, 0, 1, 0);
980 	if (status)
981 		return status;
982 	usleep_range(1000, 2000);
983 
984 	/* Reset TX FIFO's, BBAND, XBAR */
985 	status = write_register(state, HYDRA_RESET_TRANSPORT_FIFO_REG,
986 				HYDRA_RESET_TRANSPORT_FIFO_DATA);
987 	if (status)
988 		return status;
989 	status = write_register(state, HYDRA_RESET_BBAND_REG,
990 				HYDRA_RESET_BBAND_DATA);
991 	if (status)
992 		return status;
993 	status = write_register(state, HYDRA_RESET_XBAR_REG,
994 				HYDRA_RESET_XBAR_DATA);
995 	if (status)
996 		return status;
997 
998 	/* Disable clock to Baseband, Wideband, SerDes,
999 	 * Alias ext & Transport modules
1000 	 */
1001 	status = write_register(state, HYDRA_MODULES_CLK_2_REG,
1002 				HYDRA_DISABLE_CLK_2);
1003 	if (status)
1004 		return status;
1005 	/* Clear Software & Host interrupt status - (Clear on read) */
1006 	status = read_register(state, HYDRA_PRCM_ROOT_CLK_REG, &reg_data);
1007 	if (status)
1008 		return status;
1009 	status = do_firmware_download(state, mbin, mbin_len);
1010 	if (status)
1011 		return status;
1012 
1013 	if (state->base->type == MXL_HYDRA_DEVICE_568) {
1014 		usleep_range(10000, 11000);
1015 
1016 		/* bring XCPU out of reset */
1017 		status = write_register(state, 0x90720000, 1);
1018 		if (status)
1019 			return status;
1020 		msleep(500);
1021 
1022 		/* Enable XCPU UART message processing in MCPU */
1023 		status = write_register(state, 0x9076B510, 1);
1024 		if (status)
1025 			return status;
1026 	} else {
1027 		/* Bring CPU out of reset */
1028 		status = update_by_mnemonic(state, 0x8003003C, 0, 1, 1);
1029 		if (status)
1030 			return status;
1031 		/* Wait until FW boots */
1032 		msleep(150);
1033 	}
1034 
1035 	/* Initialize XPT XBAR */
1036 	status = write_register(state, XPT_DMD0_BASEADDR, 0x76543210);
1037 	if (status)
1038 		return status;
1039 
1040 	if (!firmware_is_alive(state))
1041 		return -1;
1042 
1043 	dev_info(state->i2cdev, "Hydra FW alive. Hail!\n");
1044 
1045 	/* sometimes register values are wrong shortly
1046 	 * after first heart beats
1047 	 */
1048 	msleep(50);
1049 
1050 	dev_sku_cfg.sku_type = state->base->sku_type;
1051 	BUILD_HYDRA_CMD(MXL_HYDRA_DEV_CFG_SKU_CMD, MXL_CMD_WRITE,
1052 			cmd_size, &dev_sku_cfg, cmd_buff);
1053 	status = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
1054 			      &cmd_buff[0]);
1055 
1056 	return status;
1057 }
1058 
1059 static int cfg_ts_pad_mux(struct mxl *state, enum MXL_BOOL_E enable_serial_ts)
1060 {
1061 	int status = 0;
1062 	u32 pad_mux_value = 0;
1063 
1064 	if (enable_serial_ts == MXL_TRUE) {
1065 		pad_mux_value = 0;
1066 		if ((state->base->type == MXL_HYDRA_DEVICE_541) ||
1067 		    (state->base->type == MXL_HYDRA_DEVICE_541S))
1068 			pad_mux_value = 2;
1069 	} else {
1070 		if ((state->base->type == MXL_HYDRA_DEVICE_581) ||
1071 		    (state->base->type == MXL_HYDRA_DEVICE_581S))
1072 			pad_mux_value = 2;
1073 		else
1074 			pad_mux_value = 3;
1075 	}
1076 
1077 	switch (state->base->type) {
1078 	case MXL_HYDRA_DEVICE_561:
1079 	case MXL_HYDRA_DEVICE_581:
1080 	case MXL_HYDRA_DEVICE_541:
1081 	case MXL_HYDRA_DEVICE_541S:
1082 	case MXL_HYDRA_DEVICE_561S:
1083 	case MXL_HYDRA_DEVICE_581S:
1084 		status |= update_by_mnemonic(state, 0x90000170, 24, 3,
1085 					     pad_mux_value);
1086 		status |= update_by_mnemonic(state, 0x90000170, 28, 3,
1087 					     pad_mux_value);
1088 		status |= update_by_mnemonic(state, 0x90000174, 0, 3,
1089 					     pad_mux_value);
1090 		status |= update_by_mnemonic(state, 0x90000174, 4, 3,
1091 					     pad_mux_value);
1092 		status |= update_by_mnemonic(state, 0x90000174, 8, 3,
1093 					     pad_mux_value);
1094 		status |= update_by_mnemonic(state, 0x90000174, 12, 3,
1095 					     pad_mux_value);
1096 		status |= update_by_mnemonic(state, 0x90000174, 16, 3,
1097 					     pad_mux_value);
1098 		status |= update_by_mnemonic(state, 0x90000174, 20, 3,
1099 					     pad_mux_value);
1100 		status |= update_by_mnemonic(state, 0x90000174, 24, 3,
1101 					     pad_mux_value);
1102 		status |= update_by_mnemonic(state, 0x90000174, 28, 3,
1103 					     pad_mux_value);
1104 		status |= update_by_mnemonic(state, 0x90000178, 0, 3,
1105 					     pad_mux_value);
1106 		status |= update_by_mnemonic(state, 0x90000178, 4, 3,
1107 					     pad_mux_value);
1108 		status |= update_by_mnemonic(state, 0x90000178, 8, 3,
1109 					     pad_mux_value);
1110 		break;
1111 
1112 	case MXL_HYDRA_DEVICE_544:
1113 	case MXL_HYDRA_DEVICE_542:
1114 		status |= update_by_mnemonic(state, 0x9000016C, 4, 3, 1);
1115 		status |= update_by_mnemonic(state, 0x9000016C, 8, 3, 0);
1116 		status |= update_by_mnemonic(state, 0x9000016C, 12, 3, 0);
1117 		status |= update_by_mnemonic(state, 0x9000016C, 16, 3, 0);
1118 		status |= update_by_mnemonic(state, 0x90000170, 0, 3, 0);
1119 		status |= update_by_mnemonic(state, 0x90000178, 12, 3, 1);
1120 		status |= update_by_mnemonic(state, 0x90000178, 16, 3, 1);
1121 		status |= update_by_mnemonic(state, 0x90000178, 20, 3, 1);
1122 		status |= update_by_mnemonic(state, 0x90000178, 24, 3, 1);
1123 		status |= update_by_mnemonic(state, 0x9000017C, 0, 3, 1);
1124 		status |= update_by_mnemonic(state, 0x9000017C, 4, 3, 1);
1125 		if (enable_serial_ts == MXL_ENABLE) {
1126 			status |= update_by_mnemonic(state,
1127 				0x90000170, 4, 3, 0);
1128 			status |= update_by_mnemonic(state,
1129 				0x90000170, 8, 3, 0);
1130 			status |= update_by_mnemonic(state,
1131 				0x90000170, 12, 3, 0);
1132 			status |= update_by_mnemonic(state,
1133 				0x90000170, 16, 3, 0);
1134 			status |= update_by_mnemonic(state,
1135 				0x90000170, 20, 3, 1);
1136 			status |= update_by_mnemonic(state,
1137 				0x90000170, 24, 3, 1);
1138 			status |= update_by_mnemonic(state,
1139 				0x90000170, 28, 3, 2);
1140 			status |= update_by_mnemonic(state,
1141 				0x90000174, 0, 3, 2);
1142 			status |= update_by_mnemonic(state,
1143 				0x90000174, 4, 3, 2);
1144 			status |= update_by_mnemonic(state,
1145 				0x90000174, 8, 3, 2);
1146 			status |= update_by_mnemonic(state,
1147 				0x90000174, 12, 3, 2);
1148 			status |= update_by_mnemonic(state,
1149 				0x90000174, 16, 3, 2);
1150 			status |= update_by_mnemonic(state,
1151 				0x90000174, 20, 3, 2);
1152 			status |= update_by_mnemonic(state,
1153 				0x90000174, 24, 3, 2);
1154 			status |= update_by_mnemonic(state,
1155 				0x90000174, 28, 3, 2);
1156 			status |= update_by_mnemonic(state,
1157 				0x90000178, 0, 3, 2);
1158 			status |= update_by_mnemonic(state,
1159 				0x90000178, 4, 3, 2);
1160 			status |= update_by_mnemonic(state,
1161 				0x90000178, 8, 3, 2);
1162 		} else {
1163 			status |= update_by_mnemonic(state,
1164 				0x90000170, 4, 3, 3);
1165 			status |= update_by_mnemonic(state,
1166 				0x90000170, 8, 3, 3);
1167 			status |= update_by_mnemonic(state,
1168 				0x90000170, 12, 3, 3);
1169 			status |= update_by_mnemonic(state,
1170 				0x90000170, 16, 3, 3);
1171 			status |= update_by_mnemonic(state,
1172 				0x90000170, 20, 3, 3);
1173 			status |= update_by_mnemonic(state,
1174 				0x90000170, 24, 3, 3);
1175 			status |= update_by_mnemonic(state,
1176 				0x90000170, 28, 3, 3);
1177 			status |= update_by_mnemonic(state,
1178 				0x90000174, 0, 3, 3);
1179 			status |= update_by_mnemonic(state,
1180 				0x90000174, 4, 3, 3);
1181 			status |= update_by_mnemonic(state,
1182 				0x90000174, 8, 3, 3);
1183 			status |= update_by_mnemonic(state,
1184 				0x90000174, 12, 3, 3);
1185 			status |= update_by_mnemonic(state,
1186 				0x90000174, 16, 3, 3);
1187 			status |= update_by_mnemonic(state,
1188 				0x90000174, 20, 3, 1);
1189 			status |= update_by_mnemonic(state,
1190 				0x90000174, 24, 3, 1);
1191 			status |= update_by_mnemonic(state,
1192 				0x90000174, 28, 3, 1);
1193 			status |= update_by_mnemonic(state,
1194 				0x90000178, 0, 3, 1);
1195 			status |= update_by_mnemonic(state,
1196 				0x90000178, 4, 3, 1);
1197 			status |= update_by_mnemonic(state,
1198 				0x90000178, 8, 3, 1);
1199 		}
1200 		break;
1201 
1202 	case MXL_HYDRA_DEVICE_568:
1203 		if (enable_serial_ts == MXL_FALSE) {
1204 			status |= update_by_mnemonic(state,
1205 				0x9000016C, 8, 3, 5);
1206 			status |= update_by_mnemonic(state,
1207 				0x9000016C, 12, 3, 5);
1208 			status |= update_by_mnemonic(state,
1209 				0x9000016C, 16, 3, 5);
1210 			status |= update_by_mnemonic(state,
1211 				0x9000016C, 20, 3, 5);
1212 			status |= update_by_mnemonic(state,
1213 				0x9000016C, 24, 3, 5);
1214 			status |= update_by_mnemonic(state,
1215 				0x9000016C, 28, 3, 5);
1216 			status |= update_by_mnemonic(state,
1217 				0x90000170, 0, 3, 5);
1218 			status |= update_by_mnemonic(state,
1219 				0x90000170, 4, 3, 5);
1220 			status |= update_by_mnemonic(state,
1221 				0x90000170, 8, 3, 5);
1222 			status |= update_by_mnemonic(state,
1223 				0x90000170, 12, 3, 5);
1224 			status |= update_by_mnemonic(state,
1225 				0x90000170, 16, 3, 5);
1226 			status |= update_by_mnemonic(state,
1227 				0x90000170, 20, 3, 5);
1228 
1229 			status |= update_by_mnemonic(state,
1230 				0x90000170, 24, 3, pad_mux_value);
1231 			status |= update_by_mnemonic(state,
1232 				0x90000174, 0, 3, pad_mux_value);
1233 			status |= update_by_mnemonic(state,
1234 				0x90000174, 4, 3, pad_mux_value);
1235 			status |= update_by_mnemonic(state,
1236 				0x90000174, 8, 3, pad_mux_value);
1237 			status |= update_by_mnemonic(state,
1238 				0x90000174, 12, 3, pad_mux_value);
1239 			status |= update_by_mnemonic(state,
1240 				0x90000174, 16, 3, pad_mux_value);
1241 			status |= update_by_mnemonic(state,
1242 				0x90000174, 20, 3, pad_mux_value);
1243 			status |= update_by_mnemonic(state,
1244 				0x90000174, 24, 3, pad_mux_value);
1245 			status |= update_by_mnemonic(state,
1246 				0x90000174, 28, 3, pad_mux_value);
1247 			status |= update_by_mnemonic(state,
1248 				0x90000178, 0, 3, pad_mux_value);
1249 			status |= update_by_mnemonic(state,
1250 				0x90000178, 4, 3, pad_mux_value);
1251 
1252 			status |= update_by_mnemonic(state,
1253 				0x90000178, 8, 3, 5);
1254 			status |= update_by_mnemonic(state,
1255 				0x90000178, 12, 3, 5);
1256 			status |= update_by_mnemonic(state,
1257 				0x90000178, 16, 3, 5);
1258 			status |= update_by_mnemonic(state,
1259 				0x90000178, 20, 3, 5);
1260 			status |= update_by_mnemonic(state,
1261 				0x90000178, 24, 3, 5);
1262 			status |= update_by_mnemonic(state,
1263 				0x90000178, 28, 3, 5);
1264 			status |= update_by_mnemonic(state,
1265 				0x9000017C, 0, 3, 5);
1266 			status |= update_by_mnemonic(state,
1267 				0x9000017C, 4, 3, 5);
1268 		} else {
1269 			status |= update_by_mnemonic(state,
1270 				0x90000170, 4, 3, pad_mux_value);
1271 			status |= update_by_mnemonic(state,
1272 				0x90000170, 8, 3, pad_mux_value);
1273 			status |= update_by_mnemonic(state,
1274 				0x90000170, 12, 3, pad_mux_value);
1275 			status |= update_by_mnemonic(state,
1276 				0x90000170, 16, 3, pad_mux_value);
1277 			status |= update_by_mnemonic(state,
1278 				0x90000170, 20, 3, pad_mux_value);
1279 			status |= update_by_mnemonic(state,
1280 				0x90000170, 24, 3, pad_mux_value);
1281 			status |= update_by_mnemonic(state,
1282 				0x90000170, 28, 3, pad_mux_value);
1283 			status |= update_by_mnemonic(state,
1284 				0x90000174, 0, 3, pad_mux_value);
1285 			status |= update_by_mnemonic(state,
1286 				0x90000174, 4, 3, pad_mux_value);
1287 			status |= update_by_mnemonic(state,
1288 				0x90000174, 8, 3, pad_mux_value);
1289 			status |= update_by_mnemonic(state,
1290 				0x90000174, 12, 3, pad_mux_value);
1291 		}
1292 		break;
1293 
1294 
1295 	case MXL_HYDRA_DEVICE_584:
1296 	default:
1297 		status |= update_by_mnemonic(state,
1298 			0x90000170, 4, 3, pad_mux_value);
1299 		status |= update_by_mnemonic(state,
1300 			0x90000170, 8, 3, pad_mux_value);
1301 		status |= update_by_mnemonic(state,
1302 			0x90000170, 12, 3, pad_mux_value);
1303 		status |= update_by_mnemonic(state,
1304 			0x90000170, 16, 3, pad_mux_value);
1305 		status |= update_by_mnemonic(state,
1306 			0x90000170, 20, 3, pad_mux_value);
1307 		status |= update_by_mnemonic(state,
1308 			0x90000170, 24, 3, pad_mux_value);
1309 		status |= update_by_mnemonic(state,
1310 			0x90000170, 28, 3, pad_mux_value);
1311 		status |= update_by_mnemonic(state,
1312 			0x90000174, 0, 3, pad_mux_value);
1313 		status |= update_by_mnemonic(state,
1314 			0x90000174, 4, 3, pad_mux_value);
1315 		status |= update_by_mnemonic(state,
1316 			0x90000174, 8, 3, pad_mux_value);
1317 		status |= update_by_mnemonic(state,
1318 			0x90000174, 12, 3, pad_mux_value);
1319 		break;
1320 	}
1321 	return status;
1322 }
1323 
1324 static int set_drive_strength(struct mxl *state,
1325 		enum MXL_HYDRA_TS_DRIVE_STRENGTH_E ts_drive_strength)
1326 {
1327 	int stat = 0;
1328 	u32 val;
1329 
1330 	read_register(state, 0x90000194, &val);
1331 	dev_info(state->i2cdev, "DIGIO = %08x\n", val);
1332 	dev_info(state->i2cdev, "set drive_strength = %u\n", ts_drive_strength);
1333 
1334 
1335 	stat |= update_by_mnemonic(state, 0x90000194, 0, 3, ts_drive_strength);
1336 	stat |= update_by_mnemonic(state, 0x90000194, 20, 3, ts_drive_strength);
1337 	stat |= update_by_mnemonic(state, 0x90000194, 24, 3, ts_drive_strength);
1338 	stat |= update_by_mnemonic(state, 0x90000198, 12, 3, ts_drive_strength);
1339 	stat |= update_by_mnemonic(state, 0x90000198, 16, 3, ts_drive_strength);
1340 	stat |= update_by_mnemonic(state, 0x90000198, 20, 3, ts_drive_strength);
1341 	stat |= update_by_mnemonic(state, 0x90000198, 24, 3, ts_drive_strength);
1342 	stat |= update_by_mnemonic(state, 0x9000019C, 0, 3, ts_drive_strength);
1343 	stat |= update_by_mnemonic(state, 0x9000019C, 4, 3, ts_drive_strength);
1344 	stat |= update_by_mnemonic(state, 0x9000019C, 8, 3, ts_drive_strength);
1345 	stat |= update_by_mnemonic(state, 0x9000019C, 24, 3, ts_drive_strength);
1346 	stat |= update_by_mnemonic(state, 0x9000019C, 28, 3, ts_drive_strength);
1347 	stat |= update_by_mnemonic(state, 0x900001A0, 0, 3, ts_drive_strength);
1348 	stat |= update_by_mnemonic(state, 0x900001A0, 4, 3, ts_drive_strength);
1349 	stat |= update_by_mnemonic(state, 0x900001A0, 20, 3, ts_drive_strength);
1350 	stat |= update_by_mnemonic(state, 0x900001A0, 24, 3, ts_drive_strength);
1351 	stat |= update_by_mnemonic(state, 0x900001A0, 28, 3, ts_drive_strength);
1352 
1353 	return stat;
1354 }
1355 
1356 static int enable_tuner(struct mxl *state, u32 tuner, u32 enable)
1357 {
1358 	int stat = 0;
1359 	struct MXL_HYDRA_TUNER_CMD ctrl_tuner_cmd;
1360 	u8 cmd_size = sizeof(ctrl_tuner_cmd);
1361 	u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
1362 	u32 val, count = 10;
1363 
1364 	ctrl_tuner_cmd.tuner_id = tuner;
1365 	ctrl_tuner_cmd.enable = enable;
1366 	BUILD_HYDRA_CMD(MXL_HYDRA_TUNER_ACTIVATE_CMD, MXL_CMD_WRITE,
1367 			cmd_size, &ctrl_tuner_cmd, cmd_buff);
1368 	stat = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
1369 			    &cmd_buff[0]);
1370 	if (stat)
1371 		return stat;
1372 	read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val);
1373 	while (--count && ((val >> tuner) & 1) != enable) {
1374 		msleep(20);
1375 		read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val);
1376 	}
1377 	if (!count)
1378 		return -1;
1379 	read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val);
1380 	dev_dbg(state->i2cdev, "tuner %u ready = %u\n",
1381 		tuner, (val >> tuner) & 1);
1382 
1383 	return 0;
1384 }
1385 
1386 
1387 static int config_ts(struct mxl *state, enum MXL_HYDRA_DEMOD_ID_E demod_id,
1388 		     struct MXL_HYDRA_MPEGOUT_PARAM_T *mpeg_out_param_ptr)
1389 {
1390 	int status = 0;
1391 	u32 nco_count_min = 0;
1392 	u32 clk_type = 0;
1393 
1394 	struct MXL_REG_FIELD_T xpt_sync_polarity[MXL_HYDRA_DEMOD_MAX] = {
1395 		{0x90700010, 8, 1}, {0x90700010, 9, 1},
1396 		{0x90700010, 10, 1}, {0x90700010, 11, 1},
1397 		{0x90700010, 12, 1}, {0x90700010, 13, 1},
1398 		{0x90700010, 14, 1}, {0x90700010, 15, 1} };
1399 	struct MXL_REG_FIELD_T xpt_clock_polarity[MXL_HYDRA_DEMOD_MAX] = {
1400 		{0x90700010, 16, 1}, {0x90700010, 17, 1},
1401 		{0x90700010, 18, 1}, {0x90700010, 19, 1},
1402 		{0x90700010, 20, 1}, {0x90700010, 21, 1},
1403 		{0x90700010, 22, 1}, {0x90700010, 23, 1} };
1404 	struct MXL_REG_FIELD_T xpt_valid_polarity[MXL_HYDRA_DEMOD_MAX] = {
1405 		{0x90700014, 0, 1}, {0x90700014, 1, 1},
1406 		{0x90700014, 2, 1}, {0x90700014, 3, 1},
1407 		{0x90700014, 4, 1}, {0x90700014, 5, 1},
1408 		{0x90700014, 6, 1}, {0x90700014, 7, 1} };
1409 	struct MXL_REG_FIELD_T xpt_ts_clock_phase[MXL_HYDRA_DEMOD_MAX] = {
1410 		{0x90700018, 0, 3}, {0x90700018, 4, 3},
1411 		{0x90700018, 8, 3}, {0x90700018, 12, 3},
1412 		{0x90700018, 16, 3}, {0x90700018, 20, 3},
1413 		{0x90700018, 24, 3}, {0x90700018, 28, 3} };
1414 	struct MXL_REG_FIELD_T xpt_lsb_first[MXL_HYDRA_DEMOD_MAX] = {
1415 		{0x9070000C, 16, 1}, {0x9070000C, 17, 1},
1416 		{0x9070000C, 18, 1}, {0x9070000C, 19, 1},
1417 		{0x9070000C, 20, 1}, {0x9070000C, 21, 1},
1418 		{0x9070000C, 22, 1}, {0x9070000C, 23, 1} };
1419 	struct MXL_REG_FIELD_T xpt_sync_byte[MXL_HYDRA_DEMOD_MAX] = {
1420 		{0x90700010, 0, 1}, {0x90700010, 1, 1},
1421 		{0x90700010, 2, 1}, {0x90700010, 3, 1},
1422 		{0x90700010, 4, 1}, {0x90700010, 5, 1},
1423 		{0x90700010, 6, 1}, {0x90700010, 7, 1} };
1424 	struct MXL_REG_FIELD_T xpt_enable_output[MXL_HYDRA_DEMOD_MAX] = {
1425 		{0x9070000C, 0, 1}, {0x9070000C, 1, 1},
1426 		{0x9070000C, 2, 1}, {0x9070000C, 3, 1},
1427 		{0x9070000C, 4, 1}, {0x9070000C, 5, 1},
1428 		{0x9070000C, 6, 1}, {0x9070000C, 7, 1} };
1429 	struct MXL_REG_FIELD_T xpt_err_replace_sync[MXL_HYDRA_DEMOD_MAX] = {
1430 		{0x9070000C, 24, 1}, {0x9070000C, 25, 1},
1431 		{0x9070000C, 26, 1}, {0x9070000C, 27, 1},
1432 		{0x9070000C, 28, 1}, {0x9070000C, 29, 1},
1433 		{0x9070000C, 30, 1}, {0x9070000C, 31, 1} };
1434 	struct MXL_REG_FIELD_T xpt_err_replace_valid[MXL_HYDRA_DEMOD_MAX] = {
1435 		{0x90700014, 8, 1}, {0x90700014, 9, 1},
1436 		{0x90700014, 10, 1}, {0x90700014, 11, 1},
1437 		{0x90700014, 12, 1}, {0x90700014, 13, 1},
1438 		{0x90700014, 14, 1}, {0x90700014, 15, 1} };
1439 	struct MXL_REG_FIELD_T xpt_continuous_clock[MXL_HYDRA_DEMOD_MAX] = {
1440 		{0x907001D4, 0, 1}, {0x907001D4, 1, 1},
1441 		{0x907001D4, 2, 1}, {0x907001D4, 3, 1},
1442 		{0x907001D4, 4, 1}, {0x907001D4, 5, 1},
1443 		{0x907001D4, 6, 1}, {0x907001D4, 7, 1} };
1444 	struct MXL_REG_FIELD_T xpt_nco_clock_rate[MXL_HYDRA_DEMOD_MAX] = {
1445 		{0x90700044, 16, 80}, {0x90700044, 16, 81},
1446 		{0x90700044, 16, 82}, {0x90700044, 16, 83},
1447 		{0x90700044, 16, 84}, {0x90700044, 16, 85},
1448 		{0x90700044, 16, 86}, {0x90700044, 16, 87} };
1449 
1450 	demod_id = state->base->ts_map[demod_id];
1451 
1452 	if (mpeg_out_param_ptr->enable == MXL_ENABLE) {
1453 		if (mpeg_out_param_ptr->mpeg_mode ==
1454 		    MXL_HYDRA_MPEG_MODE_PARALLEL) {
1455 		} else {
1456 			cfg_ts_pad_mux(state, MXL_TRUE);
1457 			update_by_mnemonic(state,
1458 				0x90700010, 27, 1, MXL_FALSE);
1459 		}
1460 	}
1461 
1462 	nco_count_min =
1463 		(u32)(MXL_HYDRA_NCO_CLK / mpeg_out_param_ptr->max_mpeg_clk_rate);
1464 
1465 	if (state->base->chipversion >= 2) {
1466 		status |= update_by_mnemonic(state,
1467 			xpt_nco_clock_rate[demod_id].reg_addr, /* Reg Addr */
1468 			xpt_nco_clock_rate[demod_id].lsb_pos, /* LSB pos */
1469 			xpt_nco_clock_rate[demod_id].num_of_bits, /* Num of bits */
1470 			nco_count_min); /* Data */
1471 	} else
1472 		update_by_mnemonic(state, 0x90700044, 16, 8, nco_count_min);
1473 
1474 	if (mpeg_out_param_ptr->mpeg_clk_type == MXL_HYDRA_MPEG_CLK_CONTINUOUS)
1475 		clk_type = 1;
1476 
1477 	if (mpeg_out_param_ptr->mpeg_mode < MXL_HYDRA_MPEG_MODE_PARALLEL) {
1478 		status |= update_by_mnemonic(state,
1479 			xpt_continuous_clock[demod_id].reg_addr,
1480 			xpt_continuous_clock[demod_id].lsb_pos,
1481 			xpt_continuous_clock[demod_id].num_of_bits,
1482 			clk_type);
1483 	} else
1484 		update_by_mnemonic(state, 0x907001D4, 8, 1, clk_type);
1485 
1486 	status |= update_by_mnemonic(state,
1487 		xpt_sync_polarity[demod_id].reg_addr,
1488 		xpt_sync_polarity[demod_id].lsb_pos,
1489 		xpt_sync_polarity[demod_id].num_of_bits,
1490 		mpeg_out_param_ptr->mpeg_sync_pol);
1491 
1492 	status |= update_by_mnemonic(state,
1493 		xpt_valid_polarity[demod_id].reg_addr,
1494 		xpt_valid_polarity[demod_id].lsb_pos,
1495 		xpt_valid_polarity[demod_id].num_of_bits,
1496 		mpeg_out_param_ptr->mpeg_valid_pol);
1497 
1498 	status |= update_by_mnemonic(state,
1499 		xpt_clock_polarity[demod_id].reg_addr,
1500 		xpt_clock_polarity[demod_id].lsb_pos,
1501 		xpt_clock_polarity[demod_id].num_of_bits,
1502 		mpeg_out_param_ptr->mpeg_clk_pol);
1503 
1504 	status |= update_by_mnemonic(state,
1505 		xpt_sync_byte[demod_id].reg_addr,
1506 		xpt_sync_byte[demod_id].lsb_pos,
1507 		xpt_sync_byte[demod_id].num_of_bits,
1508 		mpeg_out_param_ptr->mpeg_sync_pulse_width);
1509 
1510 	status |= update_by_mnemonic(state,
1511 		xpt_ts_clock_phase[demod_id].reg_addr,
1512 		xpt_ts_clock_phase[demod_id].lsb_pos,
1513 		xpt_ts_clock_phase[demod_id].num_of_bits,
1514 		mpeg_out_param_ptr->mpeg_clk_phase);
1515 
1516 	status |= update_by_mnemonic(state,
1517 		xpt_lsb_first[demod_id].reg_addr,
1518 		xpt_lsb_first[demod_id].lsb_pos,
1519 		xpt_lsb_first[demod_id].num_of_bits,
1520 		mpeg_out_param_ptr->lsb_or_msb_first);
1521 
1522 	switch (mpeg_out_param_ptr->mpeg_error_indication) {
1523 	case MXL_HYDRA_MPEG_ERR_REPLACE_SYNC:
1524 		status |= update_by_mnemonic(state,
1525 			xpt_err_replace_sync[demod_id].reg_addr,
1526 			xpt_err_replace_sync[demod_id].lsb_pos,
1527 			xpt_err_replace_sync[demod_id].num_of_bits,
1528 			MXL_TRUE);
1529 		status |= update_by_mnemonic(state,
1530 			xpt_err_replace_valid[demod_id].reg_addr,
1531 			xpt_err_replace_valid[demod_id].lsb_pos,
1532 			xpt_err_replace_valid[demod_id].num_of_bits,
1533 			MXL_FALSE);
1534 		break;
1535 
1536 	case MXL_HYDRA_MPEG_ERR_REPLACE_VALID:
1537 		status |= update_by_mnemonic(state,
1538 			xpt_err_replace_sync[demod_id].reg_addr,
1539 			xpt_err_replace_sync[demod_id].lsb_pos,
1540 			xpt_err_replace_sync[demod_id].num_of_bits,
1541 			MXL_FALSE);
1542 
1543 		status |= update_by_mnemonic(state,
1544 			xpt_err_replace_valid[demod_id].reg_addr,
1545 			xpt_err_replace_valid[demod_id].lsb_pos,
1546 			xpt_err_replace_valid[demod_id].num_of_bits,
1547 			MXL_TRUE);
1548 		break;
1549 
1550 	case MXL_HYDRA_MPEG_ERR_INDICATION_DISABLED:
1551 	default:
1552 		status |= update_by_mnemonic(state,
1553 			xpt_err_replace_sync[demod_id].reg_addr,
1554 			xpt_err_replace_sync[demod_id].lsb_pos,
1555 			xpt_err_replace_sync[demod_id].num_of_bits,
1556 			MXL_FALSE);
1557 
1558 		status |= update_by_mnemonic(state,
1559 			xpt_err_replace_valid[demod_id].reg_addr,
1560 			xpt_err_replace_valid[demod_id].lsb_pos,
1561 			xpt_err_replace_valid[demod_id].num_of_bits,
1562 			MXL_FALSE);
1563 
1564 		break;
1565 
1566 	}
1567 
1568 	if (mpeg_out_param_ptr->mpeg_mode != MXL_HYDRA_MPEG_MODE_PARALLEL) {
1569 		status |= update_by_mnemonic(state,
1570 			xpt_enable_output[demod_id].reg_addr,
1571 			xpt_enable_output[demod_id].lsb_pos,
1572 			xpt_enable_output[demod_id].num_of_bits,
1573 			mpeg_out_param_ptr->enable);
1574 	}
1575 	return status;
1576 }
1577 
1578 static int config_mux(struct mxl *state)
1579 {
1580 	update_by_mnemonic(state, 0x9070000C, 0, 1, 0);
1581 	update_by_mnemonic(state, 0x9070000C, 1, 1, 0);
1582 	update_by_mnemonic(state, 0x9070000C, 2, 1, 0);
1583 	update_by_mnemonic(state, 0x9070000C, 3, 1, 0);
1584 	update_by_mnemonic(state, 0x9070000C, 4, 1, 0);
1585 	update_by_mnemonic(state, 0x9070000C, 5, 1, 0);
1586 	update_by_mnemonic(state, 0x9070000C, 6, 1, 0);
1587 	update_by_mnemonic(state, 0x9070000C, 7, 1, 0);
1588 	update_by_mnemonic(state, 0x90700008, 0, 2, 1);
1589 	update_by_mnemonic(state, 0x90700008, 2, 2, 1);
1590 	return 0;
1591 }
1592 
1593 static int load_fw(struct mxl *state, struct mxl5xx_cfg *cfg)
1594 {
1595 	int stat = 0;
1596 	u8 *buf;
1597 
1598 	if (cfg->fw)
1599 		return firmware_download(state, cfg->fw, cfg->fw_len);
1600 
1601 	if (!cfg->fw_read)
1602 		return -1;
1603 
1604 	buf = vmalloc(0x40000);
1605 	if (!buf)
1606 		return -ENOMEM;
1607 
1608 	cfg->fw_read(cfg->fw_priv, buf, 0x40000);
1609 	stat = firmware_download(state, buf, 0x40000);
1610 	vfree(buf);
1611 
1612 	return stat;
1613 }
1614 
1615 static int validate_sku(struct mxl *state)
1616 {
1617 	u32 pad_mux_bond = 0, prcm_chip_id = 0, prcm_so_cid = 0;
1618 	int status;
1619 	u32 type = state->base->type;
1620 
1621 	status = read_by_mnemonic(state, 0x90000190, 0, 3, &pad_mux_bond);
1622 	status |= read_by_mnemonic(state, 0x80030000, 0, 12, &prcm_chip_id);
1623 	status |= read_by_mnemonic(state, 0x80030004, 24, 8, &prcm_so_cid);
1624 	if (status)
1625 		return -1;
1626 
1627 	dev_info(state->i2cdev, "padMuxBond=%08x, prcmChipId=%08x, prcmSoCId=%08x\n",
1628 		pad_mux_bond, prcm_chip_id, prcm_so_cid);
1629 
1630 	if (prcm_chip_id != 0x560) {
1631 		switch (pad_mux_bond) {
1632 		case MXL_HYDRA_SKU_ID_581:
1633 			if (type == MXL_HYDRA_DEVICE_581)
1634 				return 0;
1635 			if (type == MXL_HYDRA_DEVICE_581S) {
1636 				state->base->type = MXL_HYDRA_DEVICE_581;
1637 				return 0;
1638 			}
1639 			break;
1640 		case MXL_HYDRA_SKU_ID_584:
1641 			if (type == MXL_HYDRA_DEVICE_584)
1642 				return 0;
1643 			break;
1644 		case MXL_HYDRA_SKU_ID_544:
1645 			if (type == MXL_HYDRA_DEVICE_544)
1646 				return 0;
1647 			if (type == MXL_HYDRA_DEVICE_542)
1648 				return 0;
1649 			break;
1650 		case MXL_HYDRA_SKU_ID_582:
1651 			if (type == MXL_HYDRA_DEVICE_582)
1652 				return 0;
1653 			break;
1654 		default:
1655 			return -1;
1656 		}
1657 	} else {
1658 
1659 	}
1660 	return -1;
1661 }
1662 
1663 static int get_fwinfo(struct mxl *state)
1664 {
1665 	int status;
1666 	u32 val = 0;
1667 
1668 	status = read_by_mnemonic(state, 0x90000190, 0, 3, &val);
1669 	if (status)
1670 		return status;
1671 	dev_info(state->i2cdev, "chipID=%08x\n", val);
1672 
1673 	status = read_by_mnemonic(state, 0x80030004, 8, 8, &val);
1674 	if (status)
1675 		return status;
1676 	dev_info(state->i2cdev, "chipVer=%08x\n", val);
1677 
1678 	status = read_register(state, HYDRA_FIRMWARE_VERSION, &val);
1679 	if (status)
1680 		return status;
1681 	dev_info(state->i2cdev, "FWVer=%08x\n", val);
1682 
1683 	state->base->fwversion = val;
1684 	return status;
1685 }
1686 
1687 
1688 static u8 ts_map1_to_1[MXL_HYDRA_DEMOD_MAX] = {
1689 	MXL_HYDRA_DEMOD_ID_0,
1690 	MXL_HYDRA_DEMOD_ID_1,
1691 	MXL_HYDRA_DEMOD_ID_2,
1692 	MXL_HYDRA_DEMOD_ID_3,
1693 	MXL_HYDRA_DEMOD_ID_4,
1694 	MXL_HYDRA_DEMOD_ID_5,
1695 	MXL_HYDRA_DEMOD_ID_6,
1696 	MXL_HYDRA_DEMOD_ID_7,
1697 };
1698 
1699 static u8 ts_map54x[MXL_HYDRA_DEMOD_MAX] = {
1700 	MXL_HYDRA_DEMOD_ID_2,
1701 	MXL_HYDRA_DEMOD_ID_3,
1702 	MXL_HYDRA_DEMOD_ID_4,
1703 	MXL_HYDRA_DEMOD_ID_5,
1704 	MXL_HYDRA_DEMOD_MAX,
1705 	MXL_HYDRA_DEMOD_MAX,
1706 	MXL_HYDRA_DEMOD_MAX,
1707 	MXL_HYDRA_DEMOD_MAX,
1708 };
1709 
1710 static int probe(struct mxl *state, struct mxl5xx_cfg *cfg)
1711 {
1712 	u32 chipver;
1713 	int fw, status, j;
1714 	struct MXL_HYDRA_MPEGOUT_PARAM_T mpeg_interface_cfg;
1715 
1716 	state->base->ts_map = ts_map1_to_1;
1717 
1718 	switch (state->base->type) {
1719 	case MXL_HYDRA_DEVICE_581:
1720 	case MXL_HYDRA_DEVICE_581S:
1721 		state->base->can_clkout = 1;
1722 		state->base->demod_num = 8;
1723 		state->base->tuner_num = 1;
1724 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_581;
1725 		break;
1726 	case MXL_HYDRA_DEVICE_582:
1727 		state->base->can_clkout = 1;
1728 		state->base->demod_num = 8;
1729 		state->base->tuner_num = 3;
1730 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_582;
1731 		break;
1732 	case MXL_HYDRA_DEVICE_585:
1733 		state->base->can_clkout = 0;
1734 		state->base->demod_num = 8;
1735 		state->base->tuner_num = 4;
1736 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_585;
1737 		break;
1738 	case MXL_HYDRA_DEVICE_544:
1739 		state->base->can_clkout = 0;
1740 		state->base->demod_num = 4;
1741 		state->base->tuner_num = 4;
1742 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_544;
1743 		state->base->ts_map = ts_map54x;
1744 		break;
1745 	case MXL_HYDRA_DEVICE_541:
1746 	case MXL_HYDRA_DEVICE_541S:
1747 		state->base->can_clkout = 0;
1748 		state->base->demod_num = 4;
1749 		state->base->tuner_num = 1;
1750 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_541;
1751 		state->base->ts_map = ts_map54x;
1752 		break;
1753 	case MXL_HYDRA_DEVICE_561:
1754 	case MXL_HYDRA_DEVICE_561S:
1755 		state->base->can_clkout = 0;
1756 		state->base->demod_num = 6;
1757 		state->base->tuner_num = 1;
1758 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_561;
1759 		break;
1760 	case MXL_HYDRA_DEVICE_568:
1761 		state->base->can_clkout = 0;
1762 		state->base->demod_num = 8;
1763 		state->base->tuner_num = 1;
1764 		state->base->chan_bond = 1;
1765 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_568;
1766 		break;
1767 	case MXL_HYDRA_DEVICE_542:
1768 		state->base->can_clkout = 1;
1769 		state->base->demod_num = 4;
1770 		state->base->tuner_num = 3;
1771 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_542;
1772 		state->base->ts_map = ts_map54x;
1773 		break;
1774 	case MXL_HYDRA_DEVICE_TEST:
1775 	case MXL_HYDRA_DEVICE_584:
1776 	default:
1777 		state->base->can_clkout = 0;
1778 		state->base->demod_num = 8;
1779 		state->base->tuner_num = 4;
1780 		state->base->sku_type = MXL_HYDRA_SKU_TYPE_584;
1781 		break;
1782 	}
1783 
1784 	status = validate_sku(state);
1785 	if (status)
1786 		return status;
1787 
1788 	update_by_mnemonic(state, 0x80030014, 9, 1, 1);
1789 	update_by_mnemonic(state, 0x8003003C, 12, 1, 1);
1790 	status = read_by_mnemonic(state, 0x80030000, 12, 4, &chipver);
1791 	if (status)
1792 		state->base->chipversion = 0;
1793 	else
1794 		state->base->chipversion = (chipver == 2) ? 2 : 1;
1795 	dev_info(state->i2cdev, "Hydra chip version %u\n",
1796 		state->base->chipversion);
1797 
1798 	cfg_dev_xtal(state, cfg->clk, cfg->cap, 0);
1799 
1800 	fw = firmware_is_alive(state);
1801 	if (!fw) {
1802 		status = load_fw(state, cfg);
1803 		if (status)
1804 			return status;
1805 	}
1806 	get_fwinfo(state);
1807 
1808 	config_mux(state);
1809 	mpeg_interface_cfg.enable = MXL_ENABLE;
1810 	mpeg_interface_cfg.lsb_or_msb_first = MXL_HYDRA_MPEG_SERIAL_MSB_1ST;
1811 	/*  supports only (0-104&139)MHz */
1812 	if (cfg->ts_clk)
1813 		mpeg_interface_cfg.max_mpeg_clk_rate = cfg->ts_clk;
1814 	else
1815 		mpeg_interface_cfg.max_mpeg_clk_rate = 69; /* 139; */
1816 	mpeg_interface_cfg.mpeg_clk_phase = MXL_HYDRA_MPEG_CLK_PHASE_SHIFT_0_DEG;
1817 	mpeg_interface_cfg.mpeg_clk_pol = MXL_HYDRA_MPEG_CLK_IN_PHASE;
1818 	/* MXL_HYDRA_MPEG_CLK_GAPPED; */
1819 	mpeg_interface_cfg.mpeg_clk_type = MXL_HYDRA_MPEG_CLK_CONTINUOUS;
1820 	mpeg_interface_cfg.mpeg_error_indication =
1821 		MXL_HYDRA_MPEG_ERR_INDICATION_DISABLED;
1822 	mpeg_interface_cfg.mpeg_mode = MXL_HYDRA_MPEG_MODE_SERIAL_3_WIRE;
1823 	mpeg_interface_cfg.mpeg_sync_pol  = MXL_HYDRA_MPEG_ACTIVE_HIGH;
1824 	mpeg_interface_cfg.mpeg_sync_pulse_width  = MXL_HYDRA_MPEG_SYNC_WIDTH_BIT;
1825 	mpeg_interface_cfg.mpeg_valid_pol  = MXL_HYDRA_MPEG_ACTIVE_HIGH;
1826 
1827 	for (j = 0; j < state->base->demod_num; j++) {
1828 		status = config_ts(state, (enum MXL_HYDRA_DEMOD_ID_E) j,
1829 				   &mpeg_interface_cfg);
1830 		if (status)
1831 			return status;
1832 	}
1833 	set_drive_strength(state, 1);
1834 	return 0;
1835 }
1836 
1837 struct dvb_frontend *mxl5xx_attach(struct i2c_adapter *i2c,
1838 	struct mxl5xx_cfg *cfg, u32 demod, u32 tuner,
1839 	int (**fn_set_input)(struct dvb_frontend *, int))
1840 {
1841 	struct mxl *state;
1842 	struct mxl_base *base;
1843 
1844 	state = kzalloc(sizeof(struct mxl), GFP_KERNEL);
1845 	if (!state)
1846 		return NULL;
1847 
1848 	state->demod = demod;
1849 	state->tuner = tuner;
1850 	state->tuner_in_use = 0xffffffff;
1851 	state->i2cdev = &i2c->dev;
1852 
1853 	base = match_base(i2c, cfg->adr);
1854 	if (base) {
1855 		base->count++;
1856 		if (base->count > base->demod_num)
1857 			goto fail;
1858 		state->base = base;
1859 	} else {
1860 		base = kzalloc(sizeof(struct mxl_base), GFP_KERNEL);
1861 		if (!base)
1862 			goto fail;
1863 		base->i2c = i2c;
1864 		base->adr = cfg->adr;
1865 		base->type = cfg->type;
1866 		base->count = 1;
1867 		mutex_init(&base->i2c_lock);
1868 		mutex_init(&base->status_lock);
1869 		mutex_init(&base->tune_lock);
1870 		INIT_LIST_HEAD(&base->mxls);
1871 
1872 		state->base = base;
1873 		if (probe(state, cfg) < 0) {
1874 			kfree(base);
1875 			goto fail;
1876 		}
1877 		list_add(&base->mxllist, &mxllist);
1878 	}
1879 	state->fe.ops               = mxl_ops;
1880 	state->xbar[0]              = 4;
1881 	state->xbar[1]              = demod;
1882 	state->xbar[2]              = 8;
1883 	state->fe.demodulator_priv  = state;
1884 	*fn_set_input               = set_input;
1885 
1886 	list_add(&state->mxl, &base->mxls);
1887 	return &state->fe;
1888 
1889 fail:
1890 	kfree(state);
1891 	return NULL;
1892 }
1893 EXPORT_SYMBOL_GPL(mxl5xx_attach);
1894 
1895 MODULE_DESCRIPTION("MaxLinear MxL5xx DVB-S/S2 tuner-demodulator driver");
1896 MODULE_AUTHOR("Ralph and Marcus Metzler, Metzler Brothers Systementwicklung GbR");
1897 MODULE_LICENSE("GPL v2");
1898