1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Driver for the MaxLinear MxL5xx family of tuners/demods
4 *
5 * Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de>
6 * Marcus Metzler <mocm@metzlerbros.de>
7 * developed for Digital Devices GmbH
8 *
9 * based on code:
10 * Copyright (c) 2011-2013 MaxLinear, Inc. All rights reserved
11 * which was released under GPL V2
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/init.h>
18 #include <linux/delay.h>
19 #include <linux/firmware.h>
20 #include <linux/i2c.h>
21 #include <linux/mutex.h>
22 #include <linux/vmalloc.h>
23 #include <asm/div64.h>
24 #include <asm/unaligned.h>
25
26 #include <media/dvb_frontend.h>
27 #include "mxl5xx.h"
28 #include "mxl5xx_regs.h"
29 #include "mxl5xx_defs.h"
30
31 #define BYTE0(v) ((v >> 0) & 0xff)
32 #define BYTE1(v) ((v >> 8) & 0xff)
33 #define BYTE2(v) ((v >> 16) & 0xff)
34 #define BYTE3(v) ((v >> 24) & 0xff)
35
36 static LIST_HEAD(mxllist);
37
38 struct mxl_base {
39 struct list_head mxllist;
40 struct list_head mxls;
41
42 u8 adr;
43 struct i2c_adapter *i2c;
44
45 u32 count;
46 u32 type;
47 u32 sku_type;
48 u32 chipversion;
49 u32 clock;
50 u32 fwversion;
51
52 u8 *ts_map;
53 u8 can_clkout;
54 u8 chan_bond;
55 u8 demod_num;
56 u8 tuner_num;
57
58 unsigned long next_tune;
59
60 struct mutex i2c_lock;
61 struct mutex status_lock;
62 struct mutex tune_lock;
63
64 u8 buf[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
65
66 u32 cmd_size;
67 u8 cmd_data[MAX_CMD_DATA];
68 };
69
70 struct mxl {
71 struct list_head mxl;
72
73 struct mxl_base *base;
74 struct dvb_frontend fe;
75 struct device *i2cdev;
76 u32 demod;
77 u32 tuner;
78 u32 tuner_in_use;
79 u8 xbar[3];
80
81 unsigned long tune_time;
82 };
83
convert_endian(u8 flag,u32 size,u8 * d)84 static void convert_endian(u8 flag, u32 size, u8 *d)
85 {
86 u32 i;
87
88 if (!flag)
89 return;
90 for (i = 0; i < (size & ~3); i += 4) {
91 d[i + 0] ^= d[i + 3];
92 d[i + 3] ^= d[i + 0];
93 d[i + 0] ^= d[i + 3];
94
95 d[i + 1] ^= d[i + 2];
96 d[i + 2] ^= d[i + 1];
97 d[i + 1] ^= d[i + 2];
98 }
99
100 switch (size & 3) {
101 case 0:
102 case 1:
103 /* do nothing */
104 break;
105 case 2:
106 d[i + 0] ^= d[i + 1];
107 d[i + 1] ^= d[i + 0];
108 d[i + 0] ^= d[i + 1];
109 break;
110
111 case 3:
112 d[i + 0] ^= d[i + 2];
113 d[i + 2] ^= d[i + 0];
114 d[i + 0] ^= d[i + 2];
115 break;
116 }
117
118 }
119
i2c_write(struct i2c_adapter * adap,u8 adr,u8 * data,u32 len)120 static int i2c_write(struct i2c_adapter *adap, u8 adr,
121 u8 *data, u32 len)
122 {
123 struct i2c_msg msg = {.addr = adr, .flags = 0,
124 .buf = data, .len = len};
125
126 return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1;
127 }
128
i2c_read(struct i2c_adapter * adap,u8 adr,u8 * data,u32 len)129 static int i2c_read(struct i2c_adapter *adap, u8 adr,
130 u8 *data, u32 len)
131 {
132 struct i2c_msg msg = {.addr = adr, .flags = I2C_M_RD,
133 .buf = data, .len = len};
134
135 return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1;
136 }
137
i2cread(struct mxl * state,u8 * data,int len)138 static int i2cread(struct mxl *state, u8 *data, int len)
139 {
140 return i2c_read(state->base->i2c, state->base->adr, data, len);
141 }
142
i2cwrite(struct mxl * state,u8 * data,int len)143 static int i2cwrite(struct mxl *state, u8 *data, int len)
144 {
145 return i2c_write(state->base->i2c, state->base->adr, data, len);
146 }
147
read_register_unlocked(struct mxl * state,u32 reg,u32 * val)148 static int read_register_unlocked(struct mxl *state, u32 reg, u32 *val)
149 {
150 int stat;
151 u8 data[MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE] = {
152 MXL_HYDRA_PLID_REG_READ, 0x04,
153 GET_BYTE(reg, 0), GET_BYTE(reg, 1),
154 GET_BYTE(reg, 2), GET_BYTE(reg, 3),
155 };
156
157 stat = i2cwrite(state, data,
158 MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE);
159 if (stat)
160 dev_err(state->i2cdev, "i2c read error 1\n");
161 if (!stat)
162 stat = i2cread(state, (u8 *) val,
163 MXL_HYDRA_REG_SIZE_IN_BYTES);
164 le32_to_cpus(val);
165 if (stat)
166 dev_err(state->i2cdev, "i2c read error 2\n");
167 return stat;
168 }
169
170 #define DMA_I2C_INTERRUPT_ADDR 0x8000011C
171 #define DMA_INTR_PROT_WR_CMP 0x08
172
send_command(struct mxl * state,u32 size,u8 * buf)173 static int send_command(struct mxl *state, u32 size, u8 *buf)
174 {
175 int stat;
176 u32 val, count = 10;
177
178 mutex_lock(&state->base->i2c_lock);
179 if (state->base->fwversion > 0x02010109) {
180 read_register_unlocked(state, DMA_I2C_INTERRUPT_ADDR, &val);
181 if (DMA_INTR_PROT_WR_CMP & val)
182 dev_info(state->i2cdev, "%s busy\n", __func__);
183 while ((DMA_INTR_PROT_WR_CMP & val) && --count) {
184 mutex_unlock(&state->base->i2c_lock);
185 usleep_range(1000, 2000);
186 mutex_lock(&state->base->i2c_lock);
187 read_register_unlocked(state, DMA_I2C_INTERRUPT_ADDR,
188 &val);
189 }
190 if (!count) {
191 dev_info(state->i2cdev, "%s busy\n", __func__);
192 mutex_unlock(&state->base->i2c_lock);
193 return -EBUSY;
194 }
195 }
196 stat = i2cwrite(state, buf, size);
197 mutex_unlock(&state->base->i2c_lock);
198 return stat;
199 }
200
write_register(struct mxl * state,u32 reg,u32 val)201 static int write_register(struct mxl *state, u32 reg, u32 val)
202 {
203 int stat;
204 u8 data[MXL_HYDRA_REG_WRITE_LEN] = {
205 MXL_HYDRA_PLID_REG_WRITE, 0x08,
206 BYTE0(reg), BYTE1(reg), BYTE2(reg), BYTE3(reg),
207 BYTE0(val), BYTE1(val), BYTE2(val), BYTE3(val),
208 };
209 mutex_lock(&state->base->i2c_lock);
210 stat = i2cwrite(state, data, sizeof(data));
211 mutex_unlock(&state->base->i2c_lock);
212 if (stat)
213 dev_err(state->i2cdev, "i2c write error\n");
214 return stat;
215 }
216
write_firmware_block(struct mxl * state,u32 reg,u32 size,u8 * reg_data_ptr)217 static int write_firmware_block(struct mxl *state,
218 u32 reg, u32 size, u8 *reg_data_ptr)
219 {
220 int stat;
221 u8 *buf = state->base->buf;
222
223 mutex_lock(&state->base->i2c_lock);
224 buf[0] = MXL_HYDRA_PLID_REG_WRITE;
225 buf[1] = size + 4;
226 buf[2] = GET_BYTE(reg, 0);
227 buf[3] = GET_BYTE(reg, 1);
228 buf[4] = GET_BYTE(reg, 2);
229 buf[5] = GET_BYTE(reg, 3);
230 memcpy(&buf[6], reg_data_ptr, size);
231 stat = i2cwrite(state, buf,
232 MXL_HYDRA_I2C_HDR_SIZE +
233 MXL_HYDRA_REG_SIZE_IN_BYTES + size);
234 mutex_unlock(&state->base->i2c_lock);
235 if (stat)
236 dev_err(state->i2cdev, "fw block write failed\n");
237 return stat;
238 }
239
read_register(struct mxl * state,u32 reg,u32 * val)240 static int read_register(struct mxl *state, u32 reg, u32 *val)
241 {
242 int stat;
243 u8 data[MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE] = {
244 MXL_HYDRA_PLID_REG_READ, 0x04,
245 GET_BYTE(reg, 0), GET_BYTE(reg, 1),
246 GET_BYTE(reg, 2), GET_BYTE(reg, 3),
247 };
248
249 mutex_lock(&state->base->i2c_lock);
250 stat = i2cwrite(state, data,
251 MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE);
252 if (stat)
253 dev_err(state->i2cdev, "i2c read error 1\n");
254 if (!stat)
255 stat = i2cread(state, (u8 *) val,
256 MXL_HYDRA_REG_SIZE_IN_BYTES);
257 mutex_unlock(&state->base->i2c_lock);
258 le32_to_cpus(val);
259 if (stat)
260 dev_err(state->i2cdev, "i2c read error 2\n");
261 return stat;
262 }
263
read_register_block(struct mxl * state,u32 reg,u32 size,u8 * data)264 static int read_register_block(struct mxl *state, u32 reg, u32 size, u8 *data)
265 {
266 int stat;
267 u8 *buf = state->base->buf;
268
269 mutex_lock(&state->base->i2c_lock);
270
271 buf[0] = MXL_HYDRA_PLID_REG_READ;
272 buf[1] = size + 4;
273 buf[2] = GET_BYTE(reg, 0);
274 buf[3] = GET_BYTE(reg, 1);
275 buf[4] = GET_BYTE(reg, 2);
276 buf[5] = GET_BYTE(reg, 3);
277 stat = i2cwrite(state, buf,
278 MXL_HYDRA_I2C_HDR_SIZE + MXL_HYDRA_REG_SIZE_IN_BYTES);
279 if (!stat) {
280 stat = i2cread(state, data, size);
281 convert_endian(MXL_ENABLE_BIG_ENDIAN, size, data);
282 }
283 mutex_unlock(&state->base->i2c_lock);
284 return stat;
285 }
286
read_by_mnemonic(struct mxl * state,u32 reg,u8 lsbloc,u8 numofbits,u32 * val)287 static int read_by_mnemonic(struct mxl *state,
288 u32 reg, u8 lsbloc, u8 numofbits, u32 *val)
289 {
290 u32 data = 0, mask = 0;
291 int stat;
292
293 stat = read_register(state, reg, &data);
294 if (stat)
295 return stat;
296 mask = MXL_GET_REG_MASK_32(lsbloc, numofbits);
297 data &= mask;
298 data >>= lsbloc;
299 *val = data;
300 return 0;
301 }
302
303
update_by_mnemonic(struct mxl * state,u32 reg,u8 lsbloc,u8 numofbits,u32 val)304 static int update_by_mnemonic(struct mxl *state,
305 u32 reg, u8 lsbloc, u8 numofbits, u32 val)
306 {
307 u32 data, mask;
308 int stat;
309
310 stat = read_register(state, reg, &data);
311 if (stat)
312 return stat;
313 mask = MXL_GET_REG_MASK_32(lsbloc, numofbits);
314 data = (data & ~mask) | ((val << lsbloc) & mask);
315 stat = write_register(state, reg, data);
316 return stat;
317 }
318
firmware_is_alive(struct mxl * state)319 static int firmware_is_alive(struct mxl *state)
320 {
321 u32 hb0, hb1;
322
323 if (read_register(state, HYDRA_HEAR_BEAT, &hb0))
324 return 0;
325 msleep(20);
326 if (read_register(state, HYDRA_HEAR_BEAT, &hb1))
327 return 0;
328 if (hb1 == hb0)
329 return 0;
330 return 1;
331 }
332
init(struct dvb_frontend * fe)333 static int init(struct dvb_frontend *fe)
334 {
335 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
336
337 /* init fe stats */
338 p->strength.len = 1;
339 p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
340 p->cnr.len = 1;
341 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
342 p->pre_bit_error.len = 1;
343 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
344 p->pre_bit_count.len = 1;
345 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
346 p->post_bit_error.len = 1;
347 p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
348 p->post_bit_count.len = 1;
349 p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
350
351 return 0;
352 }
353
release(struct dvb_frontend * fe)354 static void release(struct dvb_frontend *fe)
355 {
356 struct mxl *state = fe->demodulator_priv;
357
358 list_del(&state->mxl);
359 /* Release one frontend, two more shall take its place! */
360 state->base->count--;
361 if (state->base->count == 0) {
362 list_del(&state->base->mxllist);
363 kfree(state->base);
364 }
365 kfree(state);
366 }
367
get_algo(struct dvb_frontend * fe)368 static enum dvbfe_algo get_algo(struct dvb_frontend *fe)
369 {
370 return DVBFE_ALGO_HW;
371 }
372
gold2root(u32 gold)373 static u32 gold2root(u32 gold)
374 {
375 u32 x, g, tmp = gold;
376
377 if (tmp >= 0x3ffff)
378 tmp = 0;
379 for (g = 0, x = 1; g < tmp; g++)
380 x = (((x ^ (x >> 7)) & 1) << 17) | (x >> 1);
381 return x;
382 }
383
cfg_scrambler(struct mxl * state,u32 gold)384 static int cfg_scrambler(struct mxl *state, u32 gold)
385 {
386 u32 root;
387 u8 buf[26] = {
388 MXL_HYDRA_PLID_CMD_WRITE, 24,
389 0, MXL_HYDRA_DEMOD_SCRAMBLE_CODE_CMD, 0, 0,
390 state->demod, 0, 0, 0,
391 0, 0, 0, 0, 0, 0, 0, 0,
392 0, 0, 0, 0, 1, 0, 0, 0,
393 };
394
395 root = gold2root(gold);
396
397 buf[25] = (root >> 24) & 0xff;
398 buf[24] = (root >> 16) & 0xff;
399 buf[23] = (root >> 8) & 0xff;
400 buf[22] = root & 0xff;
401
402 return send_command(state, sizeof(buf), buf);
403 }
404
cfg_demod_abort_tune(struct mxl * state)405 static int cfg_demod_abort_tune(struct mxl *state)
406 {
407 struct MXL_HYDRA_DEMOD_ABORT_TUNE_T abort_tune_cmd;
408 u8 cmd_size = sizeof(abort_tune_cmd);
409 u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
410
411 abort_tune_cmd.demod_id = state->demod;
412 BUILD_HYDRA_CMD(MXL_HYDRA_ABORT_TUNE_CMD, MXL_CMD_WRITE,
413 cmd_size, &abort_tune_cmd, cmd_buff);
414 return send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
415 &cmd_buff[0]);
416 }
417
send_master_cmd(struct dvb_frontend * fe,struct dvb_diseqc_master_cmd * cmd)418 static int send_master_cmd(struct dvb_frontend *fe,
419 struct dvb_diseqc_master_cmd *cmd)
420 {
421 /*struct mxl *state = fe->demodulator_priv;*/
422
423 return 0; /*CfgDemodAbortTune(state);*/
424 }
425
set_parameters(struct dvb_frontend * fe)426 static int set_parameters(struct dvb_frontend *fe)
427 {
428 struct mxl *state = fe->demodulator_priv;
429 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
430 struct MXL_HYDRA_DEMOD_PARAM_T demod_chan_cfg;
431 u8 cmd_size = sizeof(demod_chan_cfg);
432 u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
433 u32 srange = 10;
434 int stat;
435
436 if (p->frequency < 950000 || p->frequency > 2150000)
437 return -EINVAL;
438 if (p->symbol_rate < 1000000 || p->symbol_rate > 45000000)
439 return -EINVAL;
440
441 /* CfgDemodAbortTune(state); */
442
443 switch (p->delivery_system) {
444 case SYS_DSS:
445 demod_chan_cfg.standard = MXL_HYDRA_DSS;
446 demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_AUTO;
447 break;
448 case SYS_DVBS:
449 srange = p->symbol_rate / 1000000;
450 if (srange > 10)
451 srange = 10;
452 demod_chan_cfg.standard = MXL_HYDRA_DVBS;
453 demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_0_35;
454 demod_chan_cfg.modulation_scheme = MXL_HYDRA_MOD_QPSK;
455 demod_chan_cfg.pilots = MXL_HYDRA_PILOTS_OFF;
456 break;
457 case SYS_DVBS2:
458 demod_chan_cfg.standard = MXL_HYDRA_DVBS2;
459 demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_AUTO;
460 demod_chan_cfg.modulation_scheme = MXL_HYDRA_MOD_AUTO;
461 demod_chan_cfg.pilots = MXL_HYDRA_PILOTS_AUTO;
462 cfg_scrambler(state, p->scrambling_sequence_index);
463 break;
464 default:
465 return -EINVAL;
466 }
467 demod_chan_cfg.tuner_index = state->tuner;
468 demod_chan_cfg.demod_index = state->demod;
469 demod_chan_cfg.frequency_in_hz = p->frequency * 1000;
470 demod_chan_cfg.symbol_rate_in_hz = p->symbol_rate;
471 demod_chan_cfg.max_carrier_offset_in_mhz = srange;
472 demod_chan_cfg.spectrum_inversion = MXL_HYDRA_SPECTRUM_AUTO;
473 demod_chan_cfg.fec_code_rate = MXL_HYDRA_FEC_AUTO;
474
475 mutex_lock(&state->base->tune_lock);
476 if (time_after(jiffies + msecs_to_jiffies(200),
477 state->base->next_tune))
478 while (time_before(jiffies, state->base->next_tune))
479 usleep_range(10000, 11000);
480 state->base->next_tune = jiffies + msecs_to_jiffies(100);
481 state->tuner_in_use = state->tuner;
482 BUILD_HYDRA_CMD(MXL_HYDRA_DEMOD_SET_PARAM_CMD, MXL_CMD_WRITE,
483 cmd_size, &demod_chan_cfg, cmd_buff);
484 stat = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
485 &cmd_buff[0]);
486 mutex_unlock(&state->base->tune_lock);
487 return stat;
488 }
489
490 static int enable_tuner(struct mxl *state, u32 tuner, u32 enable);
491
sleep(struct dvb_frontend * fe)492 static int sleep(struct dvb_frontend *fe)
493 {
494 struct mxl *state = fe->demodulator_priv;
495 struct mxl *p;
496
497 cfg_demod_abort_tune(state);
498 if (state->tuner_in_use != 0xffffffff) {
499 mutex_lock(&state->base->tune_lock);
500 state->tuner_in_use = 0xffffffff;
501 list_for_each_entry(p, &state->base->mxls, mxl) {
502 if (p->tuner_in_use == state->tuner)
503 break;
504 }
505 if (&p->mxl == &state->base->mxls)
506 enable_tuner(state, state->tuner, 0);
507 mutex_unlock(&state->base->tune_lock);
508 }
509 return 0;
510 }
511
read_snr(struct dvb_frontend * fe)512 static int read_snr(struct dvb_frontend *fe)
513 {
514 struct mxl *state = fe->demodulator_priv;
515 int stat;
516 u32 reg_data = 0;
517 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
518
519 mutex_lock(&state->base->status_lock);
520 HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
521 stat = read_register(state, (HYDRA_DMD_SNR_ADDR_OFFSET +
522 HYDRA_DMD_STATUS_OFFSET(state->demod)),
523 ®_data);
524 HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
525 mutex_unlock(&state->base->status_lock);
526
527 p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
528 p->cnr.stat[0].svalue = (s16)reg_data * 10;
529
530 return stat;
531 }
532
read_ber(struct dvb_frontend * fe)533 static int read_ber(struct dvb_frontend *fe)
534 {
535 struct mxl *state = fe->demodulator_priv;
536 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
537 u32 reg[8];
538
539 mutex_lock(&state->base->status_lock);
540 HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
541 read_register_block(state,
542 (HYDRA_DMD_DVBS_1ST_CORR_RS_ERRORS_ADDR_OFFSET +
543 HYDRA_DMD_STATUS_OFFSET(state->demod)),
544 (4 * sizeof(u32)),
545 (u8 *) ®[0]);
546 HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
547
548 switch (p->delivery_system) {
549 case SYS_DSS:
550 case SYS_DVBS:
551 p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
552 p->pre_bit_error.stat[0].uvalue = reg[2];
553 p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
554 p->pre_bit_count.stat[0].uvalue = reg[3];
555 break;
556 default:
557 break;
558 }
559
560 read_register_block(state,
561 (HYDRA_DMD_DVBS2_CRC_ERRORS_ADDR_OFFSET +
562 HYDRA_DMD_STATUS_OFFSET(state->demod)),
563 (7 * sizeof(u32)),
564 (u8 *) ®[0]);
565
566 switch (p->delivery_system) {
567 case SYS_DSS:
568 case SYS_DVBS:
569 p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
570 p->post_bit_error.stat[0].uvalue = reg[5];
571 p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
572 p->post_bit_count.stat[0].uvalue = reg[6];
573 break;
574 case SYS_DVBS2:
575 p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
576 p->post_bit_error.stat[0].uvalue = reg[1];
577 p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
578 p->post_bit_count.stat[0].uvalue = reg[2];
579 break;
580 default:
581 break;
582 }
583
584 mutex_unlock(&state->base->status_lock);
585
586 return 0;
587 }
588
read_signal_strength(struct dvb_frontend * fe)589 static int read_signal_strength(struct dvb_frontend *fe)
590 {
591 struct mxl *state = fe->demodulator_priv;
592 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
593 int stat;
594 u32 reg_data = 0;
595
596 mutex_lock(&state->base->status_lock);
597 HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
598 stat = read_register(state, (HYDRA_DMD_STATUS_INPUT_POWER_ADDR +
599 HYDRA_DMD_STATUS_OFFSET(state->demod)),
600 ®_data);
601 HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
602 mutex_unlock(&state->base->status_lock);
603
604 p->strength.stat[0].scale = FE_SCALE_DECIBEL;
605 p->strength.stat[0].svalue = (s16) reg_data * 10; /* fix scale */
606
607 return stat;
608 }
609
read_status(struct dvb_frontend * fe,enum fe_status * status)610 static int read_status(struct dvb_frontend *fe, enum fe_status *status)
611 {
612 struct mxl *state = fe->demodulator_priv;
613 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
614 u32 reg_data = 0;
615
616 mutex_lock(&state->base->status_lock);
617 HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
618 read_register(state, (HYDRA_DMD_LOCK_STATUS_ADDR_OFFSET +
619 HYDRA_DMD_STATUS_OFFSET(state->demod)),
620 ®_data);
621 HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
622 mutex_unlock(&state->base->status_lock);
623
624 *status = (reg_data == 1) ? 0x1f : 0;
625
626 /* signal statistics */
627
628 /* signal strength is always available */
629 read_signal_strength(fe);
630
631 if (*status & FE_HAS_CARRIER)
632 read_snr(fe);
633 else
634 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
635
636 if (*status & FE_HAS_SYNC)
637 read_ber(fe);
638 else {
639 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
640 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
641 p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
642 p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
643 }
644
645 return 0;
646 }
647
tune(struct dvb_frontend * fe,bool re_tune,unsigned int mode_flags,unsigned int * delay,enum fe_status * status)648 static int tune(struct dvb_frontend *fe, bool re_tune,
649 unsigned int mode_flags,
650 unsigned int *delay, enum fe_status *status)
651 {
652 struct mxl *state = fe->demodulator_priv;
653 int r = 0;
654
655 *delay = HZ / 2;
656 if (re_tune) {
657 r = set_parameters(fe);
658 if (r)
659 return r;
660 state->tune_time = jiffies;
661 }
662
663 return read_status(fe, status);
664 }
665
conv_fec(enum MXL_HYDRA_FEC_E fec)666 static enum fe_code_rate conv_fec(enum MXL_HYDRA_FEC_E fec)
667 {
668 enum fe_code_rate fec2fec[11] = {
669 FEC_NONE, FEC_1_2, FEC_3_5, FEC_2_3,
670 FEC_3_4, FEC_4_5, FEC_5_6, FEC_6_7,
671 FEC_7_8, FEC_8_9, FEC_9_10
672 };
673
674 if (fec > MXL_HYDRA_FEC_9_10)
675 return FEC_NONE;
676 return fec2fec[fec];
677 }
678
get_frontend(struct dvb_frontend * fe,struct dtv_frontend_properties * p)679 static int get_frontend(struct dvb_frontend *fe,
680 struct dtv_frontend_properties *p)
681 {
682 struct mxl *state = fe->demodulator_priv;
683 u32 reg_data[MXL_DEMOD_CHAN_PARAMS_BUFF_SIZE];
684 u32 freq;
685
686 mutex_lock(&state->base->status_lock);
687 HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
688 read_register_block(state,
689 (HYDRA_DMD_STANDARD_ADDR_OFFSET +
690 HYDRA_DMD_STATUS_OFFSET(state->demod)),
691 (MXL_DEMOD_CHAN_PARAMS_BUFF_SIZE * 4), /* 25 * 4 bytes */
692 (u8 *) ®_data[0]);
693 /* read demod channel parameters */
694 read_register_block(state,
695 (HYDRA_DMD_STATUS_CENTER_FREQ_IN_KHZ_ADDR +
696 HYDRA_DMD_STATUS_OFFSET(state->demod)),
697 (4), /* 4 bytes */
698 (u8 *) &freq);
699 HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
700 mutex_unlock(&state->base->status_lock);
701
702 dev_dbg(state->i2cdev, "freq=%u delsys=%u srate=%u\n",
703 freq * 1000, reg_data[DMD_STANDARD_ADDR],
704 reg_data[DMD_SYMBOL_RATE_ADDR]);
705 p->symbol_rate = reg_data[DMD_SYMBOL_RATE_ADDR];
706 p->frequency = freq;
707 /*
708 * p->delivery_system =
709 * (MXL_HYDRA_BCAST_STD_E) regData[DMD_STANDARD_ADDR];
710 * p->inversion =
711 * (MXL_HYDRA_SPECTRUM_E) regData[DMD_SPECTRUM_INVERSION_ADDR];
712 * freqSearchRangeKHz =
713 * (regData[DMD_FREQ_SEARCH_RANGE_IN_KHZ_ADDR]);
714 */
715
716 p->fec_inner = conv_fec(reg_data[DMD_FEC_CODE_RATE_ADDR]);
717 switch (p->delivery_system) {
718 case SYS_DSS:
719 break;
720 case SYS_DVBS2:
721 switch ((enum MXL_HYDRA_PILOTS_E)
722 reg_data[DMD_DVBS2_PILOT_ON_OFF_ADDR]) {
723 case MXL_HYDRA_PILOTS_OFF:
724 p->pilot = PILOT_OFF;
725 break;
726 case MXL_HYDRA_PILOTS_ON:
727 p->pilot = PILOT_ON;
728 break;
729 default:
730 break;
731 }
732 fallthrough;
733 case SYS_DVBS:
734 switch ((enum MXL_HYDRA_MODULATION_E)
735 reg_data[DMD_MODULATION_SCHEME_ADDR]) {
736 case MXL_HYDRA_MOD_QPSK:
737 p->modulation = QPSK;
738 break;
739 case MXL_HYDRA_MOD_8PSK:
740 p->modulation = PSK_8;
741 break;
742 default:
743 break;
744 }
745 switch ((enum MXL_HYDRA_ROLLOFF_E)
746 reg_data[DMD_SPECTRUM_ROLL_OFF_ADDR]) {
747 case MXL_HYDRA_ROLLOFF_0_20:
748 p->rolloff = ROLLOFF_20;
749 break;
750 case MXL_HYDRA_ROLLOFF_0_35:
751 p->rolloff = ROLLOFF_35;
752 break;
753 case MXL_HYDRA_ROLLOFF_0_25:
754 p->rolloff = ROLLOFF_25;
755 break;
756 default:
757 break;
758 }
759 break;
760 default:
761 return -EINVAL;
762 }
763 return 0;
764 }
765
set_input(struct dvb_frontend * fe,int input)766 static int set_input(struct dvb_frontend *fe, int input)
767 {
768 struct mxl *state = fe->demodulator_priv;
769
770 state->tuner = input;
771 return 0;
772 }
773
774 static const struct dvb_frontend_ops mxl_ops = {
775 .delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
776 .info = {
777 .name = "MaxLinear MxL5xx DVB-S/S2 tuner-demodulator",
778 .frequency_min_hz = 300 * MHz,
779 .frequency_max_hz = 2350 * MHz,
780 .symbol_rate_min = 1000000,
781 .symbol_rate_max = 45000000,
782 .caps = FE_CAN_INVERSION_AUTO |
783 FE_CAN_FEC_AUTO |
784 FE_CAN_QPSK |
785 FE_CAN_2G_MODULATION
786 },
787 .init = init,
788 .release = release,
789 .get_frontend_algo = get_algo,
790 .tune = tune,
791 .read_status = read_status,
792 .sleep = sleep,
793 .get_frontend = get_frontend,
794 .diseqc_send_master_cmd = send_master_cmd,
795 };
796
match_base(struct i2c_adapter * i2c,u8 adr)797 static struct mxl_base *match_base(struct i2c_adapter *i2c, u8 adr)
798 {
799 struct mxl_base *p;
800
801 list_for_each_entry(p, &mxllist, mxllist)
802 if (p->i2c == i2c && p->adr == adr)
803 return p;
804 return NULL;
805 }
806
cfg_dev_xtal(struct mxl * state,u32 freq,u32 cap,u32 enable)807 static void cfg_dev_xtal(struct mxl *state, u32 freq, u32 cap, u32 enable)
808 {
809 if (state->base->can_clkout || !enable)
810 update_by_mnemonic(state, 0x90200054, 23, 1, enable);
811
812 if (freq == 24000000)
813 write_register(state, HYDRA_CRYSTAL_SETTING, 0);
814 else
815 write_register(state, HYDRA_CRYSTAL_SETTING, 1);
816
817 write_register(state, HYDRA_CRYSTAL_CAP, cap);
818 }
819
get_big_endian(u8 num_of_bits,const u8 buf[])820 static u32 get_big_endian(u8 num_of_bits, const u8 buf[])
821 {
822 u32 ret_value = 0;
823
824 switch (num_of_bits) {
825 case 24:
826 ret_value = (((u32) buf[0]) << 16) |
827 (((u32) buf[1]) << 8) | buf[2];
828 break;
829 case 32:
830 ret_value = (((u32) buf[0]) << 24) |
831 (((u32) buf[1]) << 16) |
832 (((u32) buf[2]) << 8) | buf[3];
833 break;
834 default:
835 break;
836 }
837
838 return ret_value;
839 }
840
write_fw_segment(struct mxl * state,u32 mem_addr,u32 total_size,u8 * data_ptr)841 static int write_fw_segment(struct mxl *state,
842 u32 mem_addr, u32 total_size, u8 *data_ptr)
843 {
844 int status;
845 u32 data_count = 0;
846 u32 size = 0;
847 u32 orig_size = 0;
848 u8 *w_buf_ptr = NULL;
849 u32 block_size = ((MXL_HYDRA_OEM_MAX_BLOCK_WRITE_LENGTH -
850 (MXL_HYDRA_I2C_HDR_SIZE +
851 MXL_HYDRA_REG_SIZE_IN_BYTES)) / 4) * 4;
852 u8 w_msg_buffer[MXL_HYDRA_OEM_MAX_BLOCK_WRITE_LENGTH -
853 (MXL_HYDRA_I2C_HDR_SIZE + MXL_HYDRA_REG_SIZE_IN_BYTES)];
854
855 do {
856 size = orig_size = (((u32)(data_count + block_size)) > total_size) ?
857 (total_size - data_count) : block_size;
858
859 if (orig_size & 3)
860 size = (orig_size + 4) & ~3;
861 w_buf_ptr = &w_msg_buffer[0];
862 memset((void *) w_buf_ptr, 0, size);
863 memcpy((void *) w_buf_ptr, (void *) data_ptr, orig_size);
864 convert_endian(1, size, w_buf_ptr);
865 status = write_firmware_block(state, mem_addr, size, w_buf_ptr);
866 if (status)
867 return status;
868 data_count += size;
869 mem_addr += size;
870 data_ptr += size;
871 } while (data_count < total_size);
872
873 return status;
874 }
875
do_firmware_download(struct mxl * state,u8 * mbin_buffer_ptr,u32 mbin_buffer_size)876 static int do_firmware_download(struct mxl *state, u8 *mbin_buffer_ptr,
877 u32 mbin_buffer_size)
878
879 {
880 int status;
881 u32 index = 0;
882 u32 seg_length = 0;
883 u32 seg_address = 0;
884 struct MBIN_FILE_T *mbin_ptr = (struct MBIN_FILE_T *)mbin_buffer_ptr;
885 struct MBIN_SEGMENT_T *segment_ptr;
886 enum MXL_BOOL_E xcpu_fw_flag = MXL_FALSE;
887
888 if (mbin_ptr->header.id != MBIN_FILE_HEADER_ID) {
889 dev_err(state->i2cdev, "%s: Invalid file header ID (%c)\n",
890 __func__, mbin_ptr->header.id);
891 return -EINVAL;
892 }
893 status = write_register(state, FW_DL_SIGN_ADDR, 0);
894 if (status)
895 return status;
896 segment_ptr = (struct MBIN_SEGMENT_T *) (&mbin_ptr->data[0]);
897 for (index = 0; index < mbin_ptr->header.num_segments; index++) {
898 if (segment_ptr->header.id != MBIN_SEGMENT_HEADER_ID) {
899 dev_err(state->i2cdev, "%s: Invalid segment header ID (%c)\n",
900 __func__, segment_ptr->header.id);
901 return -EINVAL;
902 }
903 seg_length = get_big_endian(24,
904 &(segment_ptr->header.len24[0]));
905 seg_address = get_big_endian(32,
906 &(segment_ptr->header.address[0]));
907
908 if (state->base->type == MXL_HYDRA_DEVICE_568) {
909 if ((((seg_address & 0x90760000) == 0x90760000) ||
910 ((seg_address & 0x90740000) == 0x90740000)) &&
911 (xcpu_fw_flag == MXL_FALSE)) {
912 update_by_mnemonic(state, 0x8003003C, 0, 1, 1);
913 msleep(200);
914 write_register(state, 0x90720000, 0);
915 usleep_range(10000, 11000);
916 xcpu_fw_flag = MXL_TRUE;
917 }
918 status = write_fw_segment(state, seg_address,
919 seg_length,
920 (u8 *) segment_ptr->data);
921 } else {
922 if (((seg_address & 0x90760000) != 0x90760000) &&
923 ((seg_address & 0x90740000) != 0x90740000))
924 status = write_fw_segment(state, seg_address,
925 seg_length, (u8 *) segment_ptr->data);
926 }
927 if (status)
928 return status;
929 segment_ptr = (struct MBIN_SEGMENT_T *)
930 &(segment_ptr->data[((seg_length + 3) / 4) * 4]);
931 }
932 return status;
933 }
934
check_fw(struct mxl * state,u8 * mbin,u32 mbin_len)935 static int check_fw(struct mxl *state, u8 *mbin, u32 mbin_len)
936 {
937 struct MBIN_FILE_HEADER_T *fh = (struct MBIN_FILE_HEADER_T *) mbin;
938 u32 flen = (fh->image_size24[0] << 16) |
939 (fh->image_size24[1] << 8) | fh->image_size24[2];
940 u8 *fw, cs = 0;
941 u32 i;
942
943 if (fh->id != 'M' || fh->fmt_version != '1' || flen > 0x3FFF0) {
944 dev_info(state->i2cdev, "Invalid FW Header\n");
945 return -1;
946 }
947 fw = mbin + sizeof(struct MBIN_FILE_HEADER_T);
948 for (i = 0; i < flen; i += 1)
949 cs += fw[i];
950 if (cs != fh->image_checksum) {
951 dev_info(state->i2cdev, "Invalid FW Checksum\n");
952 return -1;
953 }
954 return 0;
955 }
956
firmware_download(struct mxl * state,u8 * mbin,u32 mbin_len)957 static int firmware_download(struct mxl *state, u8 *mbin, u32 mbin_len)
958 {
959 int status;
960 u32 reg_data = 0;
961 struct MXL_HYDRA_SKU_COMMAND_T dev_sku_cfg;
962 u8 cmd_size = sizeof(struct MXL_HYDRA_SKU_COMMAND_T);
963 u8 cmd_buff[sizeof(struct MXL_HYDRA_SKU_COMMAND_T) + 6];
964
965 if (check_fw(state, mbin, mbin_len))
966 return -1;
967
968 /* put CPU into reset */
969 status = update_by_mnemonic(state, 0x8003003C, 0, 1, 0);
970 if (status)
971 return status;
972 usleep_range(1000, 2000);
973
974 /* Reset TX FIFO's, BBAND, XBAR */
975 status = write_register(state, HYDRA_RESET_TRANSPORT_FIFO_REG,
976 HYDRA_RESET_TRANSPORT_FIFO_DATA);
977 if (status)
978 return status;
979 status = write_register(state, HYDRA_RESET_BBAND_REG,
980 HYDRA_RESET_BBAND_DATA);
981 if (status)
982 return status;
983 status = write_register(state, HYDRA_RESET_XBAR_REG,
984 HYDRA_RESET_XBAR_DATA);
985 if (status)
986 return status;
987
988 /* Disable clock to Baseband, Wideband, SerDes,
989 * Alias ext & Transport modules
990 */
991 status = write_register(state, HYDRA_MODULES_CLK_2_REG,
992 HYDRA_DISABLE_CLK_2);
993 if (status)
994 return status;
995 /* Clear Software & Host interrupt status - (Clear on read) */
996 status = read_register(state, HYDRA_PRCM_ROOT_CLK_REG, ®_data);
997 if (status)
998 return status;
999 status = do_firmware_download(state, mbin, mbin_len);
1000 if (status)
1001 return status;
1002
1003 if (state->base->type == MXL_HYDRA_DEVICE_568) {
1004 usleep_range(10000, 11000);
1005
1006 /* bring XCPU out of reset */
1007 status = write_register(state, 0x90720000, 1);
1008 if (status)
1009 return status;
1010 msleep(500);
1011
1012 /* Enable XCPU UART message processing in MCPU */
1013 status = write_register(state, 0x9076B510, 1);
1014 if (status)
1015 return status;
1016 } else {
1017 /* Bring CPU out of reset */
1018 status = update_by_mnemonic(state, 0x8003003C, 0, 1, 1);
1019 if (status)
1020 return status;
1021 /* Wait until FW boots */
1022 msleep(150);
1023 }
1024
1025 /* Initialize XPT XBAR */
1026 status = write_register(state, XPT_DMD0_BASEADDR, 0x76543210);
1027 if (status)
1028 return status;
1029
1030 if (!firmware_is_alive(state))
1031 return -1;
1032
1033 dev_info(state->i2cdev, "Hydra FW alive. Hail!\n");
1034
1035 /* sometimes register values are wrong shortly
1036 * after first heart beats
1037 */
1038 msleep(50);
1039
1040 dev_sku_cfg.sku_type = state->base->sku_type;
1041 BUILD_HYDRA_CMD(MXL_HYDRA_DEV_CFG_SKU_CMD, MXL_CMD_WRITE,
1042 cmd_size, &dev_sku_cfg, cmd_buff);
1043 status = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
1044 &cmd_buff[0]);
1045
1046 return status;
1047 }
1048
cfg_ts_pad_mux(struct mxl * state,enum MXL_BOOL_E enable_serial_ts)1049 static int cfg_ts_pad_mux(struct mxl *state, enum MXL_BOOL_E enable_serial_ts)
1050 {
1051 int status = 0;
1052 u32 pad_mux_value = 0;
1053
1054 if (enable_serial_ts == MXL_TRUE) {
1055 pad_mux_value = 0;
1056 if ((state->base->type == MXL_HYDRA_DEVICE_541) ||
1057 (state->base->type == MXL_HYDRA_DEVICE_541S))
1058 pad_mux_value = 2;
1059 } else {
1060 if ((state->base->type == MXL_HYDRA_DEVICE_581) ||
1061 (state->base->type == MXL_HYDRA_DEVICE_581S))
1062 pad_mux_value = 2;
1063 else
1064 pad_mux_value = 3;
1065 }
1066
1067 switch (state->base->type) {
1068 case MXL_HYDRA_DEVICE_561:
1069 case MXL_HYDRA_DEVICE_581:
1070 case MXL_HYDRA_DEVICE_541:
1071 case MXL_HYDRA_DEVICE_541S:
1072 case MXL_HYDRA_DEVICE_561S:
1073 case MXL_HYDRA_DEVICE_581S:
1074 status |= update_by_mnemonic(state, 0x90000170, 24, 3,
1075 pad_mux_value);
1076 status |= update_by_mnemonic(state, 0x90000170, 28, 3,
1077 pad_mux_value);
1078 status |= update_by_mnemonic(state, 0x90000174, 0, 3,
1079 pad_mux_value);
1080 status |= update_by_mnemonic(state, 0x90000174, 4, 3,
1081 pad_mux_value);
1082 status |= update_by_mnemonic(state, 0x90000174, 8, 3,
1083 pad_mux_value);
1084 status |= update_by_mnemonic(state, 0x90000174, 12, 3,
1085 pad_mux_value);
1086 status |= update_by_mnemonic(state, 0x90000174, 16, 3,
1087 pad_mux_value);
1088 status |= update_by_mnemonic(state, 0x90000174, 20, 3,
1089 pad_mux_value);
1090 status |= update_by_mnemonic(state, 0x90000174, 24, 3,
1091 pad_mux_value);
1092 status |= update_by_mnemonic(state, 0x90000174, 28, 3,
1093 pad_mux_value);
1094 status |= update_by_mnemonic(state, 0x90000178, 0, 3,
1095 pad_mux_value);
1096 status |= update_by_mnemonic(state, 0x90000178, 4, 3,
1097 pad_mux_value);
1098 status |= update_by_mnemonic(state, 0x90000178, 8, 3,
1099 pad_mux_value);
1100 break;
1101
1102 case MXL_HYDRA_DEVICE_544:
1103 case MXL_HYDRA_DEVICE_542:
1104 status |= update_by_mnemonic(state, 0x9000016C, 4, 3, 1);
1105 status |= update_by_mnemonic(state, 0x9000016C, 8, 3, 0);
1106 status |= update_by_mnemonic(state, 0x9000016C, 12, 3, 0);
1107 status |= update_by_mnemonic(state, 0x9000016C, 16, 3, 0);
1108 status |= update_by_mnemonic(state, 0x90000170, 0, 3, 0);
1109 status |= update_by_mnemonic(state, 0x90000178, 12, 3, 1);
1110 status |= update_by_mnemonic(state, 0x90000178, 16, 3, 1);
1111 status |= update_by_mnemonic(state, 0x90000178, 20, 3, 1);
1112 status |= update_by_mnemonic(state, 0x90000178, 24, 3, 1);
1113 status |= update_by_mnemonic(state, 0x9000017C, 0, 3, 1);
1114 status |= update_by_mnemonic(state, 0x9000017C, 4, 3, 1);
1115 if (enable_serial_ts == MXL_ENABLE) {
1116 status |= update_by_mnemonic(state,
1117 0x90000170, 4, 3, 0);
1118 status |= update_by_mnemonic(state,
1119 0x90000170, 8, 3, 0);
1120 status |= update_by_mnemonic(state,
1121 0x90000170, 12, 3, 0);
1122 status |= update_by_mnemonic(state,
1123 0x90000170, 16, 3, 0);
1124 status |= update_by_mnemonic(state,
1125 0x90000170, 20, 3, 1);
1126 status |= update_by_mnemonic(state,
1127 0x90000170, 24, 3, 1);
1128 status |= update_by_mnemonic(state,
1129 0x90000170, 28, 3, 2);
1130 status |= update_by_mnemonic(state,
1131 0x90000174, 0, 3, 2);
1132 status |= update_by_mnemonic(state,
1133 0x90000174, 4, 3, 2);
1134 status |= update_by_mnemonic(state,
1135 0x90000174, 8, 3, 2);
1136 status |= update_by_mnemonic(state,
1137 0x90000174, 12, 3, 2);
1138 status |= update_by_mnemonic(state,
1139 0x90000174, 16, 3, 2);
1140 status |= update_by_mnemonic(state,
1141 0x90000174, 20, 3, 2);
1142 status |= update_by_mnemonic(state,
1143 0x90000174, 24, 3, 2);
1144 status |= update_by_mnemonic(state,
1145 0x90000174, 28, 3, 2);
1146 status |= update_by_mnemonic(state,
1147 0x90000178, 0, 3, 2);
1148 status |= update_by_mnemonic(state,
1149 0x90000178, 4, 3, 2);
1150 status |= update_by_mnemonic(state,
1151 0x90000178, 8, 3, 2);
1152 } else {
1153 status |= update_by_mnemonic(state,
1154 0x90000170, 4, 3, 3);
1155 status |= update_by_mnemonic(state,
1156 0x90000170, 8, 3, 3);
1157 status |= update_by_mnemonic(state,
1158 0x90000170, 12, 3, 3);
1159 status |= update_by_mnemonic(state,
1160 0x90000170, 16, 3, 3);
1161 status |= update_by_mnemonic(state,
1162 0x90000170, 20, 3, 3);
1163 status |= update_by_mnemonic(state,
1164 0x90000170, 24, 3, 3);
1165 status |= update_by_mnemonic(state,
1166 0x90000170, 28, 3, 3);
1167 status |= update_by_mnemonic(state,
1168 0x90000174, 0, 3, 3);
1169 status |= update_by_mnemonic(state,
1170 0x90000174, 4, 3, 3);
1171 status |= update_by_mnemonic(state,
1172 0x90000174, 8, 3, 3);
1173 status |= update_by_mnemonic(state,
1174 0x90000174, 12, 3, 3);
1175 status |= update_by_mnemonic(state,
1176 0x90000174, 16, 3, 3);
1177 status |= update_by_mnemonic(state,
1178 0x90000174, 20, 3, 1);
1179 status |= update_by_mnemonic(state,
1180 0x90000174, 24, 3, 1);
1181 status |= update_by_mnemonic(state,
1182 0x90000174, 28, 3, 1);
1183 status |= update_by_mnemonic(state,
1184 0x90000178, 0, 3, 1);
1185 status |= update_by_mnemonic(state,
1186 0x90000178, 4, 3, 1);
1187 status |= update_by_mnemonic(state,
1188 0x90000178, 8, 3, 1);
1189 }
1190 break;
1191
1192 case MXL_HYDRA_DEVICE_568:
1193 if (enable_serial_ts == MXL_FALSE) {
1194 status |= update_by_mnemonic(state,
1195 0x9000016C, 8, 3, 5);
1196 status |= update_by_mnemonic(state,
1197 0x9000016C, 12, 3, 5);
1198 status |= update_by_mnemonic(state,
1199 0x9000016C, 16, 3, 5);
1200 status |= update_by_mnemonic(state,
1201 0x9000016C, 20, 3, 5);
1202 status |= update_by_mnemonic(state,
1203 0x9000016C, 24, 3, 5);
1204 status |= update_by_mnemonic(state,
1205 0x9000016C, 28, 3, 5);
1206 status |= update_by_mnemonic(state,
1207 0x90000170, 0, 3, 5);
1208 status |= update_by_mnemonic(state,
1209 0x90000170, 4, 3, 5);
1210 status |= update_by_mnemonic(state,
1211 0x90000170, 8, 3, 5);
1212 status |= update_by_mnemonic(state,
1213 0x90000170, 12, 3, 5);
1214 status |= update_by_mnemonic(state,
1215 0x90000170, 16, 3, 5);
1216 status |= update_by_mnemonic(state,
1217 0x90000170, 20, 3, 5);
1218
1219 status |= update_by_mnemonic(state,
1220 0x90000170, 24, 3, pad_mux_value);
1221 status |= update_by_mnemonic(state,
1222 0x90000174, 0, 3, pad_mux_value);
1223 status |= update_by_mnemonic(state,
1224 0x90000174, 4, 3, pad_mux_value);
1225 status |= update_by_mnemonic(state,
1226 0x90000174, 8, 3, pad_mux_value);
1227 status |= update_by_mnemonic(state,
1228 0x90000174, 12, 3, pad_mux_value);
1229 status |= update_by_mnemonic(state,
1230 0x90000174, 16, 3, pad_mux_value);
1231 status |= update_by_mnemonic(state,
1232 0x90000174, 20, 3, pad_mux_value);
1233 status |= update_by_mnemonic(state,
1234 0x90000174, 24, 3, pad_mux_value);
1235 status |= update_by_mnemonic(state,
1236 0x90000174, 28, 3, pad_mux_value);
1237 status |= update_by_mnemonic(state,
1238 0x90000178, 0, 3, pad_mux_value);
1239 status |= update_by_mnemonic(state,
1240 0x90000178, 4, 3, pad_mux_value);
1241
1242 status |= update_by_mnemonic(state,
1243 0x90000178, 8, 3, 5);
1244 status |= update_by_mnemonic(state,
1245 0x90000178, 12, 3, 5);
1246 status |= update_by_mnemonic(state,
1247 0x90000178, 16, 3, 5);
1248 status |= update_by_mnemonic(state,
1249 0x90000178, 20, 3, 5);
1250 status |= update_by_mnemonic(state,
1251 0x90000178, 24, 3, 5);
1252 status |= update_by_mnemonic(state,
1253 0x90000178, 28, 3, 5);
1254 status |= update_by_mnemonic(state,
1255 0x9000017C, 0, 3, 5);
1256 status |= update_by_mnemonic(state,
1257 0x9000017C, 4, 3, 5);
1258 } else {
1259 status |= update_by_mnemonic(state,
1260 0x90000170, 4, 3, pad_mux_value);
1261 status |= update_by_mnemonic(state,
1262 0x90000170, 8, 3, pad_mux_value);
1263 status |= update_by_mnemonic(state,
1264 0x90000170, 12, 3, pad_mux_value);
1265 status |= update_by_mnemonic(state,
1266 0x90000170, 16, 3, pad_mux_value);
1267 status |= update_by_mnemonic(state,
1268 0x90000170, 20, 3, pad_mux_value);
1269 status |= update_by_mnemonic(state,
1270 0x90000170, 24, 3, pad_mux_value);
1271 status |= update_by_mnemonic(state,
1272 0x90000170, 28, 3, pad_mux_value);
1273 status |= update_by_mnemonic(state,
1274 0x90000174, 0, 3, pad_mux_value);
1275 status |= update_by_mnemonic(state,
1276 0x90000174, 4, 3, pad_mux_value);
1277 status |= update_by_mnemonic(state,
1278 0x90000174, 8, 3, pad_mux_value);
1279 status |= update_by_mnemonic(state,
1280 0x90000174, 12, 3, pad_mux_value);
1281 }
1282 break;
1283
1284
1285 case MXL_HYDRA_DEVICE_584:
1286 default:
1287 status |= update_by_mnemonic(state,
1288 0x90000170, 4, 3, pad_mux_value);
1289 status |= update_by_mnemonic(state,
1290 0x90000170, 8, 3, pad_mux_value);
1291 status |= update_by_mnemonic(state,
1292 0x90000170, 12, 3, pad_mux_value);
1293 status |= update_by_mnemonic(state,
1294 0x90000170, 16, 3, pad_mux_value);
1295 status |= update_by_mnemonic(state,
1296 0x90000170, 20, 3, pad_mux_value);
1297 status |= update_by_mnemonic(state,
1298 0x90000170, 24, 3, pad_mux_value);
1299 status |= update_by_mnemonic(state,
1300 0x90000170, 28, 3, pad_mux_value);
1301 status |= update_by_mnemonic(state,
1302 0x90000174, 0, 3, pad_mux_value);
1303 status |= update_by_mnemonic(state,
1304 0x90000174, 4, 3, pad_mux_value);
1305 status |= update_by_mnemonic(state,
1306 0x90000174, 8, 3, pad_mux_value);
1307 status |= update_by_mnemonic(state,
1308 0x90000174, 12, 3, pad_mux_value);
1309 break;
1310 }
1311 return status;
1312 }
1313
set_drive_strength(struct mxl * state,enum MXL_HYDRA_TS_DRIVE_STRENGTH_E ts_drive_strength)1314 static int set_drive_strength(struct mxl *state,
1315 enum MXL_HYDRA_TS_DRIVE_STRENGTH_E ts_drive_strength)
1316 {
1317 int stat = 0;
1318 u32 val;
1319
1320 read_register(state, 0x90000194, &val);
1321 dev_info(state->i2cdev, "DIGIO = %08x\n", val);
1322 dev_info(state->i2cdev, "set drive_strength = %u\n", ts_drive_strength);
1323
1324
1325 stat |= update_by_mnemonic(state, 0x90000194, 0, 3, ts_drive_strength);
1326 stat |= update_by_mnemonic(state, 0x90000194, 20, 3, ts_drive_strength);
1327 stat |= update_by_mnemonic(state, 0x90000194, 24, 3, ts_drive_strength);
1328 stat |= update_by_mnemonic(state, 0x90000198, 12, 3, ts_drive_strength);
1329 stat |= update_by_mnemonic(state, 0x90000198, 16, 3, ts_drive_strength);
1330 stat |= update_by_mnemonic(state, 0x90000198, 20, 3, ts_drive_strength);
1331 stat |= update_by_mnemonic(state, 0x90000198, 24, 3, ts_drive_strength);
1332 stat |= update_by_mnemonic(state, 0x9000019C, 0, 3, ts_drive_strength);
1333 stat |= update_by_mnemonic(state, 0x9000019C, 4, 3, ts_drive_strength);
1334 stat |= update_by_mnemonic(state, 0x9000019C, 8, 3, ts_drive_strength);
1335 stat |= update_by_mnemonic(state, 0x9000019C, 24, 3, ts_drive_strength);
1336 stat |= update_by_mnemonic(state, 0x9000019C, 28, 3, ts_drive_strength);
1337 stat |= update_by_mnemonic(state, 0x900001A0, 0, 3, ts_drive_strength);
1338 stat |= update_by_mnemonic(state, 0x900001A0, 4, 3, ts_drive_strength);
1339 stat |= update_by_mnemonic(state, 0x900001A0, 20, 3, ts_drive_strength);
1340 stat |= update_by_mnemonic(state, 0x900001A0, 24, 3, ts_drive_strength);
1341 stat |= update_by_mnemonic(state, 0x900001A0, 28, 3, ts_drive_strength);
1342
1343 return stat;
1344 }
1345
enable_tuner(struct mxl * state,u32 tuner,u32 enable)1346 static int enable_tuner(struct mxl *state, u32 tuner, u32 enable)
1347 {
1348 int stat = 0;
1349 struct MXL_HYDRA_TUNER_CMD ctrl_tuner_cmd;
1350 u8 cmd_size = sizeof(ctrl_tuner_cmd);
1351 u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
1352 u32 val, count = 10;
1353
1354 ctrl_tuner_cmd.tuner_id = tuner;
1355 ctrl_tuner_cmd.enable = enable;
1356 BUILD_HYDRA_CMD(MXL_HYDRA_TUNER_ACTIVATE_CMD, MXL_CMD_WRITE,
1357 cmd_size, &ctrl_tuner_cmd, cmd_buff);
1358 stat = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
1359 &cmd_buff[0]);
1360 if (stat)
1361 return stat;
1362 read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val);
1363 while (--count && ((val >> tuner) & 1) != enable) {
1364 msleep(20);
1365 read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val);
1366 }
1367 if (!count)
1368 return -1;
1369 read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val);
1370 dev_dbg(state->i2cdev, "tuner %u ready = %u\n",
1371 tuner, (val >> tuner) & 1);
1372
1373 return 0;
1374 }
1375
1376
config_ts(struct mxl * state,enum MXL_HYDRA_DEMOD_ID_E demod_id,struct MXL_HYDRA_MPEGOUT_PARAM_T * mpeg_out_param_ptr)1377 static int config_ts(struct mxl *state, enum MXL_HYDRA_DEMOD_ID_E demod_id,
1378 struct MXL_HYDRA_MPEGOUT_PARAM_T *mpeg_out_param_ptr)
1379 {
1380 int status = 0;
1381 u32 nco_count_min = 0;
1382 u32 clk_type = 0;
1383
1384 static const struct MXL_REG_FIELD_T xpt_sync_polarity[MXL_HYDRA_DEMOD_MAX] = {
1385 {0x90700010, 8, 1}, {0x90700010, 9, 1},
1386 {0x90700010, 10, 1}, {0x90700010, 11, 1},
1387 {0x90700010, 12, 1}, {0x90700010, 13, 1},
1388 {0x90700010, 14, 1}, {0x90700010, 15, 1} };
1389 static const struct MXL_REG_FIELD_T xpt_clock_polarity[MXL_HYDRA_DEMOD_MAX] = {
1390 {0x90700010, 16, 1}, {0x90700010, 17, 1},
1391 {0x90700010, 18, 1}, {0x90700010, 19, 1},
1392 {0x90700010, 20, 1}, {0x90700010, 21, 1},
1393 {0x90700010, 22, 1}, {0x90700010, 23, 1} };
1394 static const struct MXL_REG_FIELD_T xpt_valid_polarity[MXL_HYDRA_DEMOD_MAX] = {
1395 {0x90700014, 0, 1}, {0x90700014, 1, 1},
1396 {0x90700014, 2, 1}, {0x90700014, 3, 1},
1397 {0x90700014, 4, 1}, {0x90700014, 5, 1},
1398 {0x90700014, 6, 1}, {0x90700014, 7, 1} };
1399 static const struct MXL_REG_FIELD_T xpt_ts_clock_phase[MXL_HYDRA_DEMOD_MAX] = {
1400 {0x90700018, 0, 3}, {0x90700018, 4, 3},
1401 {0x90700018, 8, 3}, {0x90700018, 12, 3},
1402 {0x90700018, 16, 3}, {0x90700018, 20, 3},
1403 {0x90700018, 24, 3}, {0x90700018, 28, 3} };
1404 static const struct MXL_REG_FIELD_T xpt_lsb_first[MXL_HYDRA_DEMOD_MAX] = {
1405 {0x9070000C, 16, 1}, {0x9070000C, 17, 1},
1406 {0x9070000C, 18, 1}, {0x9070000C, 19, 1},
1407 {0x9070000C, 20, 1}, {0x9070000C, 21, 1},
1408 {0x9070000C, 22, 1}, {0x9070000C, 23, 1} };
1409 static const struct MXL_REG_FIELD_T xpt_sync_byte[MXL_HYDRA_DEMOD_MAX] = {
1410 {0x90700010, 0, 1}, {0x90700010, 1, 1},
1411 {0x90700010, 2, 1}, {0x90700010, 3, 1},
1412 {0x90700010, 4, 1}, {0x90700010, 5, 1},
1413 {0x90700010, 6, 1}, {0x90700010, 7, 1} };
1414 static const struct MXL_REG_FIELD_T xpt_enable_output[MXL_HYDRA_DEMOD_MAX] = {
1415 {0x9070000C, 0, 1}, {0x9070000C, 1, 1},
1416 {0x9070000C, 2, 1}, {0x9070000C, 3, 1},
1417 {0x9070000C, 4, 1}, {0x9070000C, 5, 1},
1418 {0x9070000C, 6, 1}, {0x9070000C, 7, 1} };
1419 static const struct MXL_REG_FIELD_T xpt_err_replace_sync[MXL_HYDRA_DEMOD_MAX] = {
1420 {0x9070000C, 24, 1}, {0x9070000C, 25, 1},
1421 {0x9070000C, 26, 1}, {0x9070000C, 27, 1},
1422 {0x9070000C, 28, 1}, {0x9070000C, 29, 1},
1423 {0x9070000C, 30, 1}, {0x9070000C, 31, 1} };
1424 static const struct MXL_REG_FIELD_T xpt_err_replace_valid[MXL_HYDRA_DEMOD_MAX] = {
1425 {0x90700014, 8, 1}, {0x90700014, 9, 1},
1426 {0x90700014, 10, 1}, {0x90700014, 11, 1},
1427 {0x90700014, 12, 1}, {0x90700014, 13, 1},
1428 {0x90700014, 14, 1}, {0x90700014, 15, 1} };
1429 static const struct MXL_REG_FIELD_T xpt_continuous_clock[MXL_HYDRA_DEMOD_MAX] = {
1430 {0x907001D4, 0, 1}, {0x907001D4, 1, 1},
1431 {0x907001D4, 2, 1}, {0x907001D4, 3, 1},
1432 {0x907001D4, 4, 1}, {0x907001D4, 5, 1},
1433 {0x907001D4, 6, 1}, {0x907001D4, 7, 1} };
1434 static const struct MXL_REG_FIELD_T xpt_nco_clock_rate[MXL_HYDRA_DEMOD_MAX] = {
1435 {0x90700044, 16, 80}, {0x90700044, 16, 81},
1436 {0x90700044, 16, 82}, {0x90700044, 16, 83},
1437 {0x90700044, 16, 84}, {0x90700044, 16, 85},
1438 {0x90700044, 16, 86}, {0x90700044, 16, 87} };
1439
1440 demod_id = state->base->ts_map[demod_id];
1441
1442 if (mpeg_out_param_ptr->enable == MXL_ENABLE) {
1443 if (mpeg_out_param_ptr->mpeg_mode ==
1444 MXL_HYDRA_MPEG_MODE_PARALLEL) {
1445 } else {
1446 cfg_ts_pad_mux(state, MXL_TRUE);
1447 update_by_mnemonic(state,
1448 0x90700010, 27, 1, MXL_FALSE);
1449 }
1450 }
1451
1452 nco_count_min =
1453 (u32)(MXL_HYDRA_NCO_CLK / mpeg_out_param_ptr->max_mpeg_clk_rate);
1454
1455 if (state->base->chipversion >= 2) {
1456 status |= update_by_mnemonic(state,
1457 xpt_nco_clock_rate[demod_id].reg_addr, /* Reg Addr */
1458 xpt_nco_clock_rate[demod_id].lsb_pos, /* LSB pos */
1459 xpt_nco_clock_rate[demod_id].num_of_bits, /* Num of bits */
1460 nco_count_min); /* Data */
1461 } else
1462 update_by_mnemonic(state, 0x90700044, 16, 8, nco_count_min);
1463
1464 if (mpeg_out_param_ptr->mpeg_clk_type == MXL_HYDRA_MPEG_CLK_CONTINUOUS)
1465 clk_type = 1;
1466
1467 if (mpeg_out_param_ptr->mpeg_mode < MXL_HYDRA_MPEG_MODE_PARALLEL) {
1468 status |= update_by_mnemonic(state,
1469 xpt_continuous_clock[demod_id].reg_addr,
1470 xpt_continuous_clock[demod_id].lsb_pos,
1471 xpt_continuous_clock[demod_id].num_of_bits,
1472 clk_type);
1473 } else
1474 update_by_mnemonic(state, 0x907001D4, 8, 1, clk_type);
1475
1476 status |= update_by_mnemonic(state,
1477 xpt_sync_polarity[demod_id].reg_addr,
1478 xpt_sync_polarity[demod_id].lsb_pos,
1479 xpt_sync_polarity[demod_id].num_of_bits,
1480 mpeg_out_param_ptr->mpeg_sync_pol);
1481
1482 status |= update_by_mnemonic(state,
1483 xpt_valid_polarity[demod_id].reg_addr,
1484 xpt_valid_polarity[demod_id].lsb_pos,
1485 xpt_valid_polarity[demod_id].num_of_bits,
1486 mpeg_out_param_ptr->mpeg_valid_pol);
1487
1488 status |= update_by_mnemonic(state,
1489 xpt_clock_polarity[demod_id].reg_addr,
1490 xpt_clock_polarity[demod_id].lsb_pos,
1491 xpt_clock_polarity[demod_id].num_of_bits,
1492 mpeg_out_param_ptr->mpeg_clk_pol);
1493
1494 status |= update_by_mnemonic(state,
1495 xpt_sync_byte[demod_id].reg_addr,
1496 xpt_sync_byte[demod_id].lsb_pos,
1497 xpt_sync_byte[demod_id].num_of_bits,
1498 mpeg_out_param_ptr->mpeg_sync_pulse_width);
1499
1500 status |= update_by_mnemonic(state,
1501 xpt_ts_clock_phase[demod_id].reg_addr,
1502 xpt_ts_clock_phase[demod_id].lsb_pos,
1503 xpt_ts_clock_phase[demod_id].num_of_bits,
1504 mpeg_out_param_ptr->mpeg_clk_phase);
1505
1506 status |= update_by_mnemonic(state,
1507 xpt_lsb_first[demod_id].reg_addr,
1508 xpt_lsb_first[demod_id].lsb_pos,
1509 xpt_lsb_first[demod_id].num_of_bits,
1510 mpeg_out_param_ptr->lsb_or_msb_first);
1511
1512 switch (mpeg_out_param_ptr->mpeg_error_indication) {
1513 case MXL_HYDRA_MPEG_ERR_REPLACE_SYNC:
1514 status |= update_by_mnemonic(state,
1515 xpt_err_replace_sync[demod_id].reg_addr,
1516 xpt_err_replace_sync[demod_id].lsb_pos,
1517 xpt_err_replace_sync[demod_id].num_of_bits,
1518 MXL_TRUE);
1519 status |= update_by_mnemonic(state,
1520 xpt_err_replace_valid[demod_id].reg_addr,
1521 xpt_err_replace_valid[demod_id].lsb_pos,
1522 xpt_err_replace_valid[demod_id].num_of_bits,
1523 MXL_FALSE);
1524 break;
1525
1526 case MXL_HYDRA_MPEG_ERR_REPLACE_VALID:
1527 status |= update_by_mnemonic(state,
1528 xpt_err_replace_sync[demod_id].reg_addr,
1529 xpt_err_replace_sync[demod_id].lsb_pos,
1530 xpt_err_replace_sync[demod_id].num_of_bits,
1531 MXL_FALSE);
1532
1533 status |= update_by_mnemonic(state,
1534 xpt_err_replace_valid[demod_id].reg_addr,
1535 xpt_err_replace_valid[demod_id].lsb_pos,
1536 xpt_err_replace_valid[demod_id].num_of_bits,
1537 MXL_TRUE);
1538 break;
1539
1540 case MXL_HYDRA_MPEG_ERR_INDICATION_DISABLED:
1541 default:
1542 status |= update_by_mnemonic(state,
1543 xpt_err_replace_sync[demod_id].reg_addr,
1544 xpt_err_replace_sync[demod_id].lsb_pos,
1545 xpt_err_replace_sync[demod_id].num_of_bits,
1546 MXL_FALSE);
1547
1548 status |= update_by_mnemonic(state,
1549 xpt_err_replace_valid[demod_id].reg_addr,
1550 xpt_err_replace_valid[demod_id].lsb_pos,
1551 xpt_err_replace_valid[demod_id].num_of_bits,
1552 MXL_FALSE);
1553
1554 break;
1555
1556 }
1557
1558 if (mpeg_out_param_ptr->mpeg_mode != MXL_HYDRA_MPEG_MODE_PARALLEL) {
1559 status |= update_by_mnemonic(state,
1560 xpt_enable_output[demod_id].reg_addr,
1561 xpt_enable_output[demod_id].lsb_pos,
1562 xpt_enable_output[demod_id].num_of_bits,
1563 mpeg_out_param_ptr->enable);
1564 }
1565 return status;
1566 }
1567
config_mux(struct mxl * state)1568 static int config_mux(struct mxl *state)
1569 {
1570 update_by_mnemonic(state, 0x9070000C, 0, 1, 0);
1571 update_by_mnemonic(state, 0x9070000C, 1, 1, 0);
1572 update_by_mnemonic(state, 0x9070000C, 2, 1, 0);
1573 update_by_mnemonic(state, 0x9070000C, 3, 1, 0);
1574 update_by_mnemonic(state, 0x9070000C, 4, 1, 0);
1575 update_by_mnemonic(state, 0x9070000C, 5, 1, 0);
1576 update_by_mnemonic(state, 0x9070000C, 6, 1, 0);
1577 update_by_mnemonic(state, 0x9070000C, 7, 1, 0);
1578 update_by_mnemonic(state, 0x90700008, 0, 2, 1);
1579 update_by_mnemonic(state, 0x90700008, 2, 2, 1);
1580 return 0;
1581 }
1582
load_fw(struct mxl * state,struct mxl5xx_cfg * cfg)1583 static int load_fw(struct mxl *state, struct mxl5xx_cfg *cfg)
1584 {
1585 int stat = 0;
1586 u8 *buf;
1587
1588 if (cfg->fw)
1589 return firmware_download(state, cfg->fw, cfg->fw_len);
1590
1591 if (!cfg->fw_read)
1592 return -1;
1593
1594 buf = vmalloc(0x40000);
1595 if (!buf)
1596 return -ENOMEM;
1597
1598 cfg->fw_read(cfg->fw_priv, buf, 0x40000);
1599 stat = firmware_download(state, buf, 0x40000);
1600 vfree(buf);
1601
1602 return stat;
1603 }
1604
validate_sku(struct mxl * state)1605 static int validate_sku(struct mxl *state)
1606 {
1607 u32 pad_mux_bond = 0, prcm_chip_id = 0, prcm_so_cid = 0;
1608 int status;
1609 u32 type = state->base->type;
1610
1611 status = read_by_mnemonic(state, 0x90000190, 0, 3, &pad_mux_bond);
1612 status |= read_by_mnemonic(state, 0x80030000, 0, 12, &prcm_chip_id);
1613 status |= read_by_mnemonic(state, 0x80030004, 24, 8, &prcm_so_cid);
1614 if (status)
1615 return -1;
1616
1617 dev_info(state->i2cdev, "padMuxBond=%08x, prcmChipId=%08x, prcmSoCId=%08x\n",
1618 pad_mux_bond, prcm_chip_id, prcm_so_cid);
1619
1620 if (prcm_chip_id != 0x560) {
1621 switch (pad_mux_bond) {
1622 case MXL_HYDRA_SKU_ID_581:
1623 if (type == MXL_HYDRA_DEVICE_581)
1624 return 0;
1625 if (type == MXL_HYDRA_DEVICE_581S) {
1626 state->base->type = MXL_HYDRA_DEVICE_581;
1627 return 0;
1628 }
1629 break;
1630 case MXL_HYDRA_SKU_ID_584:
1631 if (type == MXL_HYDRA_DEVICE_584)
1632 return 0;
1633 break;
1634 case MXL_HYDRA_SKU_ID_544:
1635 if (type == MXL_HYDRA_DEVICE_544)
1636 return 0;
1637 if (type == MXL_HYDRA_DEVICE_542)
1638 return 0;
1639 break;
1640 case MXL_HYDRA_SKU_ID_582:
1641 if (type == MXL_HYDRA_DEVICE_582)
1642 return 0;
1643 break;
1644 default:
1645 return -1;
1646 }
1647 }
1648 return -1;
1649 }
1650
get_fwinfo(struct mxl * state)1651 static int get_fwinfo(struct mxl *state)
1652 {
1653 int status;
1654 u32 val = 0;
1655
1656 status = read_by_mnemonic(state, 0x90000190, 0, 3, &val);
1657 if (status)
1658 return status;
1659 dev_info(state->i2cdev, "chipID=%08x\n", val);
1660
1661 status = read_by_mnemonic(state, 0x80030004, 8, 8, &val);
1662 if (status)
1663 return status;
1664 dev_info(state->i2cdev, "chipVer=%08x\n", val);
1665
1666 status = read_register(state, HYDRA_FIRMWARE_VERSION, &val);
1667 if (status)
1668 return status;
1669 dev_info(state->i2cdev, "FWVer=%08x\n", val);
1670
1671 state->base->fwversion = val;
1672 return status;
1673 }
1674
1675
1676 static u8 ts_map1_to_1[MXL_HYDRA_DEMOD_MAX] = {
1677 MXL_HYDRA_DEMOD_ID_0,
1678 MXL_HYDRA_DEMOD_ID_1,
1679 MXL_HYDRA_DEMOD_ID_2,
1680 MXL_HYDRA_DEMOD_ID_3,
1681 MXL_HYDRA_DEMOD_ID_4,
1682 MXL_HYDRA_DEMOD_ID_5,
1683 MXL_HYDRA_DEMOD_ID_6,
1684 MXL_HYDRA_DEMOD_ID_7,
1685 };
1686
1687 static u8 ts_map54x[MXL_HYDRA_DEMOD_MAX] = {
1688 MXL_HYDRA_DEMOD_ID_2,
1689 MXL_HYDRA_DEMOD_ID_3,
1690 MXL_HYDRA_DEMOD_ID_4,
1691 MXL_HYDRA_DEMOD_ID_5,
1692 MXL_HYDRA_DEMOD_MAX,
1693 MXL_HYDRA_DEMOD_MAX,
1694 MXL_HYDRA_DEMOD_MAX,
1695 MXL_HYDRA_DEMOD_MAX,
1696 };
1697
probe(struct mxl * state,struct mxl5xx_cfg * cfg)1698 static int probe(struct mxl *state, struct mxl5xx_cfg *cfg)
1699 {
1700 u32 chipver;
1701 int fw, status, j;
1702 struct MXL_HYDRA_MPEGOUT_PARAM_T mpeg_interface_cfg;
1703
1704 state->base->ts_map = ts_map1_to_1;
1705
1706 switch (state->base->type) {
1707 case MXL_HYDRA_DEVICE_581:
1708 case MXL_HYDRA_DEVICE_581S:
1709 state->base->can_clkout = 1;
1710 state->base->demod_num = 8;
1711 state->base->tuner_num = 1;
1712 state->base->sku_type = MXL_HYDRA_SKU_TYPE_581;
1713 break;
1714 case MXL_HYDRA_DEVICE_582:
1715 state->base->can_clkout = 1;
1716 state->base->demod_num = 8;
1717 state->base->tuner_num = 3;
1718 state->base->sku_type = MXL_HYDRA_SKU_TYPE_582;
1719 break;
1720 case MXL_HYDRA_DEVICE_585:
1721 state->base->can_clkout = 0;
1722 state->base->demod_num = 8;
1723 state->base->tuner_num = 4;
1724 state->base->sku_type = MXL_HYDRA_SKU_TYPE_585;
1725 break;
1726 case MXL_HYDRA_DEVICE_544:
1727 state->base->can_clkout = 0;
1728 state->base->demod_num = 4;
1729 state->base->tuner_num = 4;
1730 state->base->sku_type = MXL_HYDRA_SKU_TYPE_544;
1731 state->base->ts_map = ts_map54x;
1732 break;
1733 case MXL_HYDRA_DEVICE_541:
1734 case MXL_HYDRA_DEVICE_541S:
1735 state->base->can_clkout = 0;
1736 state->base->demod_num = 4;
1737 state->base->tuner_num = 1;
1738 state->base->sku_type = MXL_HYDRA_SKU_TYPE_541;
1739 state->base->ts_map = ts_map54x;
1740 break;
1741 case MXL_HYDRA_DEVICE_561:
1742 case MXL_HYDRA_DEVICE_561S:
1743 state->base->can_clkout = 0;
1744 state->base->demod_num = 6;
1745 state->base->tuner_num = 1;
1746 state->base->sku_type = MXL_HYDRA_SKU_TYPE_561;
1747 break;
1748 case MXL_HYDRA_DEVICE_568:
1749 state->base->can_clkout = 0;
1750 state->base->demod_num = 8;
1751 state->base->tuner_num = 1;
1752 state->base->chan_bond = 1;
1753 state->base->sku_type = MXL_HYDRA_SKU_TYPE_568;
1754 break;
1755 case MXL_HYDRA_DEVICE_542:
1756 state->base->can_clkout = 1;
1757 state->base->demod_num = 4;
1758 state->base->tuner_num = 3;
1759 state->base->sku_type = MXL_HYDRA_SKU_TYPE_542;
1760 state->base->ts_map = ts_map54x;
1761 break;
1762 case MXL_HYDRA_DEVICE_TEST:
1763 case MXL_HYDRA_DEVICE_584:
1764 default:
1765 state->base->can_clkout = 0;
1766 state->base->demod_num = 8;
1767 state->base->tuner_num = 4;
1768 state->base->sku_type = MXL_HYDRA_SKU_TYPE_584;
1769 break;
1770 }
1771
1772 status = validate_sku(state);
1773 if (status)
1774 return status;
1775
1776 update_by_mnemonic(state, 0x80030014, 9, 1, 1);
1777 update_by_mnemonic(state, 0x8003003C, 12, 1, 1);
1778 status = read_by_mnemonic(state, 0x80030000, 12, 4, &chipver);
1779 if (status)
1780 state->base->chipversion = 0;
1781 else
1782 state->base->chipversion = (chipver == 2) ? 2 : 1;
1783 dev_info(state->i2cdev, "Hydra chip version %u\n",
1784 state->base->chipversion);
1785
1786 cfg_dev_xtal(state, cfg->clk, cfg->cap, 0);
1787
1788 fw = firmware_is_alive(state);
1789 if (!fw) {
1790 status = load_fw(state, cfg);
1791 if (status)
1792 return status;
1793 }
1794 get_fwinfo(state);
1795
1796 config_mux(state);
1797 mpeg_interface_cfg.enable = MXL_ENABLE;
1798 mpeg_interface_cfg.lsb_or_msb_first = MXL_HYDRA_MPEG_SERIAL_MSB_1ST;
1799 /* supports only (0-104&139)MHz */
1800 if (cfg->ts_clk)
1801 mpeg_interface_cfg.max_mpeg_clk_rate = cfg->ts_clk;
1802 else
1803 mpeg_interface_cfg.max_mpeg_clk_rate = 69; /* 139; */
1804 mpeg_interface_cfg.mpeg_clk_phase = MXL_HYDRA_MPEG_CLK_PHASE_SHIFT_0_DEG;
1805 mpeg_interface_cfg.mpeg_clk_pol = MXL_HYDRA_MPEG_CLK_IN_PHASE;
1806 /* MXL_HYDRA_MPEG_CLK_GAPPED; */
1807 mpeg_interface_cfg.mpeg_clk_type = MXL_HYDRA_MPEG_CLK_CONTINUOUS;
1808 mpeg_interface_cfg.mpeg_error_indication =
1809 MXL_HYDRA_MPEG_ERR_INDICATION_DISABLED;
1810 mpeg_interface_cfg.mpeg_mode = MXL_HYDRA_MPEG_MODE_SERIAL_3_WIRE;
1811 mpeg_interface_cfg.mpeg_sync_pol = MXL_HYDRA_MPEG_ACTIVE_HIGH;
1812 mpeg_interface_cfg.mpeg_sync_pulse_width = MXL_HYDRA_MPEG_SYNC_WIDTH_BIT;
1813 mpeg_interface_cfg.mpeg_valid_pol = MXL_HYDRA_MPEG_ACTIVE_HIGH;
1814
1815 for (j = 0; j < state->base->demod_num; j++) {
1816 status = config_ts(state, (enum MXL_HYDRA_DEMOD_ID_E) j,
1817 &mpeg_interface_cfg);
1818 if (status)
1819 return status;
1820 }
1821 set_drive_strength(state, 1);
1822 return 0;
1823 }
1824
mxl5xx_attach(struct i2c_adapter * i2c,struct mxl5xx_cfg * cfg,u32 demod,u32 tuner,int (** fn_set_input)(struct dvb_frontend *,int))1825 struct dvb_frontend *mxl5xx_attach(struct i2c_adapter *i2c,
1826 struct mxl5xx_cfg *cfg, u32 demod, u32 tuner,
1827 int (**fn_set_input)(struct dvb_frontend *, int))
1828 {
1829 struct mxl *state;
1830 struct mxl_base *base;
1831
1832 state = kzalloc(sizeof(struct mxl), GFP_KERNEL);
1833 if (!state)
1834 return NULL;
1835
1836 state->demod = demod;
1837 state->tuner = tuner;
1838 state->tuner_in_use = 0xffffffff;
1839 state->i2cdev = &i2c->dev;
1840
1841 base = match_base(i2c, cfg->adr);
1842 if (base) {
1843 base->count++;
1844 if (base->count > base->demod_num)
1845 goto fail;
1846 state->base = base;
1847 } else {
1848 base = kzalloc(sizeof(struct mxl_base), GFP_KERNEL);
1849 if (!base)
1850 goto fail;
1851 base->i2c = i2c;
1852 base->adr = cfg->adr;
1853 base->type = cfg->type;
1854 base->count = 1;
1855 mutex_init(&base->i2c_lock);
1856 mutex_init(&base->status_lock);
1857 mutex_init(&base->tune_lock);
1858 INIT_LIST_HEAD(&base->mxls);
1859
1860 state->base = base;
1861 if (probe(state, cfg) < 0) {
1862 kfree(base);
1863 goto fail;
1864 }
1865 list_add(&base->mxllist, &mxllist);
1866 }
1867 state->fe.ops = mxl_ops;
1868 state->xbar[0] = 4;
1869 state->xbar[1] = demod;
1870 state->xbar[2] = 8;
1871 state->fe.demodulator_priv = state;
1872 *fn_set_input = set_input;
1873
1874 list_add(&state->mxl, &base->mxls);
1875 return &state->fe;
1876
1877 fail:
1878 kfree(state);
1879 return NULL;
1880 }
1881 EXPORT_SYMBOL_GPL(mxl5xx_attach);
1882
1883 MODULE_DESCRIPTION("MaxLinear MxL5xx DVB-S/S2 tuner-demodulator driver");
1884 MODULE_AUTHOR("Ralph and Marcus Metzler, Metzler Brothers Systementwicklung GbR");
1885 MODULE_LICENSE("GPL v2");
1886