1 /* 2 * Driver for Zarlink DVB-T MT352 demodulator 3 * 4 * Written by Holger Waechtler <holger@qanu.de> 5 * and Daniel Mack <daniel@qanu.de> 6 * 7 * AVerMedia AVerTV DVB-T 771 support by 8 * Wolfram Joost <dbox2@frokaschwei.de> 9 * 10 * Support for Samsung TDTC9251DH01C(M) tuner 11 * Copyright (C) 2004 Antonio Mancuso <antonio.mancuso@digitaltelevision.it> 12 * Amauri Celani <acelani@essegi.net> 13 * 14 * DVICO FusionHDTV DVB-T1 and DVICO FusionHDTV DVB-T Lite support by 15 * Christopher Pascoe <c.pascoe@itee.uq.edu.au> 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License as published by 19 * the Free Software Foundation; either version 2 of the License, or 20 * (at your option) any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * 26 * GNU General Public License for more details. 27 * 28 * You should have received a copy of the GNU General Public License 29 * along with this program; if not, write to the Free Software 30 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.= 31 */ 32 33 #include <linux/kernel.h> 34 #include <linux/module.h> 35 #include <linux/init.h> 36 #include <linux/delay.h> 37 #include <linux/string.h> 38 #include <linux/slab.h> 39 40 #include "dvb_frontend.h" 41 #include "mt352_priv.h" 42 #include "mt352.h" 43 44 struct mt352_state { 45 struct i2c_adapter* i2c; 46 struct dvb_frontend frontend; 47 48 /* configuration settings */ 49 struct mt352_config config; 50 }; 51 52 static int debug; 53 #define dprintk(args...) \ 54 do { \ 55 if (debug) printk(KERN_DEBUG "mt352: " args); \ 56 } while (0) 57 58 static int mt352_single_write(struct dvb_frontend *fe, u8 reg, u8 val) 59 { 60 struct mt352_state* state = fe->demodulator_priv; 61 u8 buf[2] = { reg, val }; 62 struct i2c_msg msg = { .addr = state->config.demod_address, .flags = 0, 63 .buf = buf, .len = 2 }; 64 int err = i2c_transfer(state->i2c, &msg, 1); 65 if (err != 1) { 66 printk("mt352_write() to reg %x failed (err = %d)!\n", reg, err); 67 return err; 68 } 69 return 0; 70 } 71 72 static int _mt352_write(struct dvb_frontend* fe, const u8 ibuf[], int ilen) 73 { 74 int err,i; 75 for (i=0; i < ilen-1; i++) 76 if ((err = mt352_single_write(fe,ibuf[0]+i,ibuf[i+1]))) 77 return err; 78 79 return 0; 80 } 81 82 static int mt352_read_register(struct mt352_state* state, u8 reg) 83 { 84 int ret; 85 u8 b0 [] = { reg }; 86 u8 b1 [] = { 0 }; 87 struct i2c_msg msg [] = { { .addr = state->config.demod_address, 88 .flags = 0, 89 .buf = b0, .len = 1 }, 90 { .addr = state->config.demod_address, 91 .flags = I2C_M_RD, 92 .buf = b1, .len = 1 } }; 93 94 ret = i2c_transfer(state->i2c, msg, 2); 95 96 if (ret != 2) { 97 printk("%s: readreg error (reg=%d, ret==%i)\n", 98 __func__, reg, ret); 99 return ret; 100 } 101 102 return b1[0]; 103 } 104 105 static int mt352_sleep(struct dvb_frontend* fe) 106 { 107 static u8 mt352_softdown[] = { CLOCK_CTL, 0x20, 0x08 }; 108 109 _mt352_write(fe, mt352_softdown, sizeof(mt352_softdown)); 110 return 0; 111 } 112 113 static void mt352_calc_nominal_rate(struct mt352_state* state, 114 u32 bandwidth, 115 unsigned char *buf) 116 { 117 u32 adc_clock = 20480; /* 20.340 MHz */ 118 u32 bw,value; 119 120 switch (bandwidth) { 121 case 6000000: 122 bw = 6; 123 break; 124 case 7000000: 125 bw = 7; 126 break; 127 case 8000000: 128 default: 129 bw = 8; 130 break; 131 } 132 if (state->config.adc_clock) 133 adc_clock = state->config.adc_clock; 134 135 value = 64 * bw * (1<<16) / (7 * 8); 136 value = value * 1000 / adc_clock; 137 dprintk("%s: bw %d, adc_clock %d => 0x%x\n", 138 __func__, bw, adc_clock, value); 139 buf[0] = msb(value); 140 buf[1] = lsb(value); 141 } 142 143 static void mt352_calc_input_freq(struct mt352_state* state, 144 unsigned char *buf) 145 { 146 int adc_clock = 20480; /* 20.480000 MHz */ 147 int if2 = 36167; /* 36.166667 MHz */ 148 int ife,value; 149 150 if (state->config.adc_clock) 151 adc_clock = state->config.adc_clock; 152 if (state->config.if2) 153 if2 = state->config.if2; 154 155 if (adc_clock >= if2 * 2) 156 ife = if2; 157 else { 158 ife = adc_clock - (if2 % adc_clock); 159 if (ife > adc_clock / 2) 160 ife = adc_clock - ife; 161 } 162 value = -16374 * ife / adc_clock; 163 dprintk("%s: if2 %d, ife %d, adc_clock %d => %d / 0x%x\n", 164 __func__, if2, ife, adc_clock, value, value & 0x3fff); 165 buf[0] = msb(value); 166 buf[1] = lsb(value); 167 } 168 169 static int mt352_set_parameters(struct dvb_frontend *fe) 170 { 171 struct dtv_frontend_properties *op = &fe->dtv_property_cache; 172 struct mt352_state* state = fe->demodulator_priv; 173 unsigned char buf[13]; 174 static unsigned char tuner_go[] = { 0x5d, 0x01 }; 175 static unsigned char fsm_go[] = { 0x5e, 0x01 }; 176 unsigned int tps = 0; 177 178 switch (op->code_rate_HP) { 179 case FEC_2_3: 180 tps |= (1 << 7); 181 break; 182 case FEC_3_4: 183 tps |= (2 << 7); 184 break; 185 case FEC_5_6: 186 tps |= (3 << 7); 187 break; 188 case FEC_7_8: 189 tps |= (4 << 7); 190 break; 191 case FEC_1_2: 192 case FEC_AUTO: 193 break; 194 default: 195 return -EINVAL; 196 } 197 198 switch (op->code_rate_LP) { 199 case FEC_2_3: 200 tps |= (1 << 4); 201 break; 202 case FEC_3_4: 203 tps |= (2 << 4); 204 break; 205 case FEC_5_6: 206 tps |= (3 << 4); 207 break; 208 case FEC_7_8: 209 tps |= (4 << 4); 210 break; 211 case FEC_1_2: 212 case FEC_AUTO: 213 break; 214 case FEC_NONE: 215 if (op->hierarchy == HIERARCHY_AUTO || 216 op->hierarchy == HIERARCHY_NONE) 217 break; 218 default: 219 return -EINVAL; 220 } 221 222 switch (op->modulation) { 223 case QPSK: 224 break; 225 case QAM_AUTO: 226 case QAM_16: 227 tps |= (1 << 13); 228 break; 229 case QAM_64: 230 tps |= (2 << 13); 231 break; 232 default: 233 return -EINVAL; 234 } 235 236 switch (op->transmission_mode) { 237 case TRANSMISSION_MODE_2K: 238 case TRANSMISSION_MODE_AUTO: 239 break; 240 case TRANSMISSION_MODE_8K: 241 tps |= (1 << 0); 242 break; 243 default: 244 return -EINVAL; 245 } 246 247 switch (op->guard_interval) { 248 case GUARD_INTERVAL_1_32: 249 case GUARD_INTERVAL_AUTO: 250 break; 251 case GUARD_INTERVAL_1_16: 252 tps |= (1 << 2); 253 break; 254 case GUARD_INTERVAL_1_8: 255 tps |= (2 << 2); 256 break; 257 case GUARD_INTERVAL_1_4: 258 tps |= (3 << 2); 259 break; 260 default: 261 return -EINVAL; 262 } 263 264 switch (op->hierarchy) { 265 case HIERARCHY_AUTO: 266 case HIERARCHY_NONE: 267 break; 268 case HIERARCHY_1: 269 tps |= (1 << 10); 270 break; 271 case HIERARCHY_2: 272 tps |= (2 << 10); 273 break; 274 case HIERARCHY_4: 275 tps |= (3 << 10); 276 break; 277 default: 278 return -EINVAL; 279 } 280 281 282 buf[0] = TPS_GIVEN_1; /* TPS_GIVEN_1 and following registers */ 283 284 buf[1] = msb(tps); /* TPS_GIVEN_(1|0) */ 285 buf[2] = lsb(tps); 286 287 buf[3] = 0x50; // old 288 // buf[3] = 0xf4; // pinnacle 289 290 mt352_calc_nominal_rate(state, op->bandwidth_hz, buf+4); 291 mt352_calc_input_freq(state, buf+6); 292 293 if (state->config.no_tuner) { 294 if (fe->ops.tuner_ops.set_params) { 295 fe->ops.tuner_ops.set_params(fe); 296 if (fe->ops.i2c_gate_ctrl) 297 fe->ops.i2c_gate_ctrl(fe, 0); 298 } 299 300 _mt352_write(fe, buf, 8); 301 _mt352_write(fe, fsm_go, 2); 302 } else { 303 if (fe->ops.tuner_ops.calc_regs) { 304 fe->ops.tuner_ops.calc_regs(fe, buf+8, 5); 305 buf[8] <<= 1; 306 _mt352_write(fe, buf, sizeof(buf)); 307 _mt352_write(fe, tuner_go, 2); 308 } 309 } 310 311 return 0; 312 } 313 314 static int mt352_get_parameters(struct dvb_frontend* fe, 315 struct dtv_frontend_properties *op) 316 { 317 struct mt352_state* state = fe->demodulator_priv; 318 u16 tps; 319 u16 div; 320 u8 trl; 321 static const u8 tps_fec_to_api[8] = 322 { 323 FEC_1_2, 324 FEC_2_3, 325 FEC_3_4, 326 FEC_5_6, 327 FEC_7_8, 328 FEC_AUTO, 329 FEC_AUTO, 330 FEC_AUTO 331 }; 332 333 if ( (mt352_read_register(state,0x00) & 0xC0) != 0xC0 ) 334 return -EINVAL; 335 336 /* Use TPS_RECEIVED-registers, not the TPS_CURRENT-registers because 337 * the mt352 sometimes works with the wrong parameters 338 */ 339 tps = (mt352_read_register(state, TPS_RECEIVED_1) << 8) | mt352_read_register(state, TPS_RECEIVED_0); 340 div = (mt352_read_register(state, CHAN_START_1) << 8) | mt352_read_register(state, CHAN_START_0); 341 trl = mt352_read_register(state, TRL_NOMINAL_RATE_1); 342 343 op->code_rate_HP = tps_fec_to_api[(tps >> 7) & 7]; 344 op->code_rate_LP = tps_fec_to_api[(tps >> 4) & 7]; 345 346 switch ( (tps >> 13) & 3) 347 { 348 case 0: 349 op->modulation = QPSK; 350 break; 351 case 1: 352 op->modulation = QAM_16; 353 break; 354 case 2: 355 op->modulation = QAM_64; 356 break; 357 default: 358 op->modulation = QAM_AUTO; 359 break; 360 } 361 362 op->transmission_mode = (tps & 0x01) ? TRANSMISSION_MODE_8K : TRANSMISSION_MODE_2K; 363 364 switch ( (tps >> 2) & 3) 365 { 366 case 0: 367 op->guard_interval = GUARD_INTERVAL_1_32; 368 break; 369 case 1: 370 op->guard_interval = GUARD_INTERVAL_1_16; 371 break; 372 case 2: 373 op->guard_interval = GUARD_INTERVAL_1_8; 374 break; 375 case 3: 376 op->guard_interval = GUARD_INTERVAL_1_4; 377 break; 378 default: 379 op->guard_interval = GUARD_INTERVAL_AUTO; 380 break; 381 } 382 383 switch ( (tps >> 10) & 7) 384 { 385 case 0: 386 op->hierarchy = HIERARCHY_NONE; 387 break; 388 case 1: 389 op->hierarchy = HIERARCHY_1; 390 break; 391 case 2: 392 op->hierarchy = HIERARCHY_2; 393 break; 394 case 3: 395 op->hierarchy = HIERARCHY_4; 396 break; 397 default: 398 op->hierarchy = HIERARCHY_AUTO; 399 break; 400 } 401 402 op->frequency = (500 * (div - IF_FREQUENCYx6)) / 3 * 1000; 403 404 if (trl == 0x72) 405 op->bandwidth_hz = 8000000; 406 else if (trl == 0x64) 407 op->bandwidth_hz = 7000000; 408 else 409 op->bandwidth_hz = 6000000; 410 411 412 if (mt352_read_register(state, STATUS_2) & 0x02) 413 op->inversion = INVERSION_OFF; 414 else 415 op->inversion = INVERSION_ON; 416 417 return 0; 418 } 419 420 static int mt352_read_status(struct dvb_frontend *fe, enum fe_status *status) 421 { 422 struct mt352_state* state = fe->demodulator_priv; 423 int s0, s1, s3; 424 425 /* FIXME: 426 * 427 * The MT352 design manual from Zarlink states (page 46-47): 428 * 429 * Notes about the TUNER_GO register: 430 * 431 * If the Read_Tuner_Byte (bit-1) is activated, then the tuner status 432 * byte is copied from the tuner to the STATUS_3 register and 433 * completion of the read operation is indicated by bit-5 of the 434 * INTERRUPT_3 register. 435 */ 436 437 if ((s0 = mt352_read_register(state, STATUS_0)) < 0) 438 return -EREMOTEIO; 439 if ((s1 = mt352_read_register(state, STATUS_1)) < 0) 440 return -EREMOTEIO; 441 if ((s3 = mt352_read_register(state, STATUS_3)) < 0) 442 return -EREMOTEIO; 443 444 *status = 0; 445 if (s0 & (1 << 4)) 446 *status |= FE_HAS_CARRIER; 447 if (s0 & (1 << 1)) 448 *status |= FE_HAS_VITERBI; 449 if (s0 & (1 << 5)) 450 *status |= FE_HAS_LOCK; 451 if (s1 & (1 << 1)) 452 *status |= FE_HAS_SYNC; 453 if (s3 & (1 << 6)) 454 *status |= FE_HAS_SIGNAL; 455 456 if ((*status & (FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)) != 457 (FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)) 458 *status &= ~FE_HAS_LOCK; 459 460 return 0; 461 } 462 463 static int mt352_read_ber(struct dvb_frontend* fe, u32* ber) 464 { 465 struct mt352_state* state = fe->demodulator_priv; 466 467 *ber = (mt352_read_register (state, RS_ERR_CNT_2) << 16) | 468 (mt352_read_register (state, RS_ERR_CNT_1) << 8) | 469 (mt352_read_register (state, RS_ERR_CNT_0)); 470 471 return 0; 472 } 473 474 static int mt352_read_signal_strength(struct dvb_frontend* fe, u16* strength) 475 { 476 struct mt352_state* state = fe->demodulator_priv; 477 478 /* align the 12 bit AGC gain with the most significant bits */ 479 u16 signal = ((mt352_read_register(state, AGC_GAIN_1) & 0x0f) << 12) | 480 (mt352_read_register(state, AGC_GAIN_0) << 4); 481 482 /* inverse of gain is signal strength */ 483 *strength = ~signal; 484 return 0; 485 } 486 487 static int mt352_read_snr(struct dvb_frontend* fe, u16* snr) 488 { 489 struct mt352_state* state = fe->demodulator_priv; 490 491 u8 _snr = mt352_read_register (state, SNR); 492 *snr = (_snr << 8) | _snr; 493 494 return 0; 495 } 496 497 static int mt352_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks) 498 { 499 struct mt352_state* state = fe->demodulator_priv; 500 501 *ucblocks = (mt352_read_register (state, RS_UBC_1) << 8) | 502 (mt352_read_register (state, RS_UBC_0)); 503 504 return 0; 505 } 506 507 static int mt352_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fe_tune_settings) 508 { 509 fe_tune_settings->min_delay_ms = 800; 510 fe_tune_settings->step_size = 0; 511 fe_tune_settings->max_drift = 0; 512 513 return 0; 514 } 515 516 static int mt352_init(struct dvb_frontend* fe) 517 { 518 struct mt352_state* state = fe->demodulator_priv; 519 520 static u8 mt352_reset_attach [] = { RESET, 0xC0 }; 521 522 dprintk("%s: hello\n",__func__); 523 524 if ((mt352_read_register(state, CLOCK_CTL) & 0x10) == 0 || 525 (mt352_read_register(state, CONFIG) & 0x20) == 0) { 526 527 /* Do a "hard" reset */ 528 _mt352_write(fe, mt352_reset_attach, sizeof(mt352_reset_attach)); 529 return state->config.demod_init(fe); 530 } 531 532 return 0; 533 } 534 535 static void mt352_release(struct dvb_frontend* fe) 536 { 537 struct mt352_state* state = fe->demodulator_priv; 538 kfree(state); 539 } 540 541 static struct dvb_frontend_ops mt352_ops; 542 543 struct dvb_frontend* mt352_attach(const struct mt352_config* config, 544 struct i2c_adapter* i2c) 545 { 546 struct mt352_state* state = NULL; 547 548 /* allocate memory for the internal state */ 549 state = kzalloc(sizeof(struct mt352_state), GFP_KERNEL); 550 if (state == NULL) goto error; 551 552 /* setup the state */ 553 state->i2c = i2c; 554 memcpy(&state->config,config,sizeof(struct mt352_config)); 555 556 /* check if the demod is there */ 557 if (mt352_read_register(state, CHIP_ID) != ID_MT352) goto error; 558 559 /* create dvb_frontend */ 560 memcpy(&state->frontend.ops, &mt352_ops, sizeof(struct dvb_frontend_ops)); 561 state->frontend.demodulator_priv = state; 562 return &state->frontend; 563 564 error: 565 kfree(state); 566 return NULL; 567 } 568 569 static struct dvb_frontend_ops mt352_ops = { 570 .delsys = { SYS_DVBT }, 571 .info = { 572 .name = "Zarlink MT352 DVB-T", 573 .frequency_min = 174000000, 574 .frequency_max = 862000000, 575 .frequency_stepsize = 166667, 576 .frequency_tolerance = 0, 577 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | 578 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | 579 FE_CAN_FEC_AUTO | 580 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | 581 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | 582 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | 583 FE_CAN_MUTE_TS 584 }, 585 586 .release = mt352_release, 587 588 .init = mt352_init, 589 .sleep = mt352_sleep, 590 .write = _mt352_write, 591 592 .set_frontend = mt352_set_parameters, 593 .get_frontend = mt352_get_parameters, 594 .get_tune_settings = mt352_get_tune_settings, 595 596 .read_status = mt352_read_status, 597 .read_ber = mt352_read_ber, 598 .read_signal_strength = mt352_read_signal_strength, 599 .read_snr = mt352_read_snr, 600 .read_ucblocks = mt352_read_ucblocks, 601 }; 602 603 module_param(debug, int, 0644); 604 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); 605 606 MODULE_DESCRIPTION("Zarlink MT352 DVB-T Demodulator driver"); 607 MODULE_AUTHOR("Holger Waechtler, Daniel Mack, Antonio Mancuso"); 608 MODULE_LICENSE("GPL"); 609 610 EXPORT_SYMBOL(mt352_attach); 611