1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Socionext MN88443x series demodulator driver for ISDB-S/ISDB-T. 4 // 5 // Copyright (c) 2018 Socionext Inc. 6 7 #include <linux/bitfield.h> 8 #include <linux/clk.h> 9 #include <linux/delay.h> 10 #include <linux/gpio/consumer.h> 11 #include <linux/of_device.h> 12 #include <linux/regmap.h> 13 #include <media/dvb_math.h> 14 15 #include "mn88443x.h" 16 17 /* ISDB-S registers */ 18 #define ATSIDU_S 0x2f 19 #define ATSIDL_S 0x30 20 #define TSSET_S 0x31 21 #define AGCREAD_S 0x5a 22 #define CPMON1_S 0x5e 23 #define CPMON1_S_FSYNC BIT(5) 24 #define CPMON1_S_ERRMON BIT(4) 25 #define CPMON1_S_SIGOFF BIT(3) 26 #define CPMON1_S_W2LOCK BIT(2) 27 #define CPMON1_S_W1LOCK BIT(1) 28 #define CPMON1_S_DW1LOCK BIT(0) 29 #define TRMON_S 0x60 30 #define BERCNFLG_S 0x68 31 #define BERCNFLG_S_BERVRDY BIT(5) 32 #define BERCNFLG_S_BERVCHK BIT(4) 33 #define BERCNFLG_S_BERDRDY BIT(3) 34 #define BERCNFLG_S_BERDCHK BIT(2) 35 #define CNRDXU_S 0x69 36 #define CNRDXL_S 0x6a 37 #define CNRDYU_S 0x6b 38 #define CNRDYL_S 0x6c 39 #define BERVRDU_S 0x71 40 #define BERVRDL_S 0x72 41 #define DOSET1_S 0x73 42 43 /* Primary ISDB-T */ 44 #define PLLASET1 0x00 45 #define PLLASET2 0x01 46 #define PLLBSET1 0x02 47 #define PLLBSET2 0x03 48 #define PLLSET 0x04 49 #define OUTCSET 0x08 50 #define OUTCSET_CHDRV_8MA 0xff 51 #define OUTCSET_CHDRV_4MA 0x00 52 #define PLDWSET 0x09 53 #define PLDWSET_NORMAL 0x00 54 #define PLDWSET_PULLDOWN 0xff 55 #define HIZSET1 0x0a 56 #define HIZSET2 0x0b 57 58 /* Secondary ISDB-T (for MN884434 only) */ 59 #define RCVSET 0x00 60 #define TSSET1_M 0x01 61 #define TSSET2_M 0x02 62 #define TSSET3_M 0x03 63 #define INTACSET 0x08 64 #define HIZSET3 0x0b 65 66 /* ISDB-T registers */ 67 #define TSSET1 0x05 68 #define TSSET1_TSASEL_MASK GENMASK(4, 3) 69 #define TSSET1_TSASEL_ISDBT (0x0 << 3) 70 #define TSSET1_TSASEL_ISDBS (0x1 << 3) 71 #define TSSET1_TSASEL_NONE (0x2 << 3) 72 #define TSSET1_TSBSEL_MASK GENMASK(2, 1) 73 #define TSSET1_TSBSEL_ISDBS (0x0 << 1) 74 #define TSSET1_TSBSEL_ISDBT (0x1 << 1) 75 #define TSSET1_TSBSEL_NONE (0x2 << 1) 76 #define TSSET2 0x06 77 #define TSSET3 0x07 78 #define TSSET3_INTASEL_MASK GENMASK(7, 6) 79 #define TSSET3_INTASEL_T (0x0 << 6) 80 #define TSSET3_INTASEL_S (0x1 << 6) 81 #define TSSET3_INTASEL_NONE (0x2 << 6) 82 #define TSSET3_INTBSEL_MASK GENMASK(5, 4) 83 #define TSSET3_INTBSEL_S (0x0 << 4) 84 #define TSSET3_INTBSEL_T (0x1 << 4) 85 #define TSSET3_INTBSEL_NONE (0x2 << 4) 86 #define OUTSET2 0x0d 87 #define PWDSET 0x0f 88 #define PWDSET_OFDMPD_MASK GENMASK(3, 2) 89 #define PWDSET_OFDMPD_DOWN BIT(3) 90 #define PWDSET_PSKPD_MASK GENMASK(1, 0) 91 #define PWDSET_PSKPD_DOWN BIT(1) 92 #define CLKSET1_T 0x11 93 #define MDSET_T 0x13 94 #define MDSET_T_MDAUTO_MASK GENMASK(7, 4) 95 #define MDSET_T_MDAUTO_AUTO (0xf << 4) 96 #define MDSET_T_MDAUTO_MANUAL (0x0 << 4) 97 #define MDSET_T_FFTS_MASK GENMASK(3, 2) 98 #define MDSET_T_FFTS_MODE1 (0x0 << 2) 99 #define MDSET_T_FFTS_MODE2 (0x1 << 2) 100 #define MDSET_T_FFTS_MODE3 (0x2 << 2) 101 #define MDSET_T_GI_MASK GENMASK(1, 0) 102 #define MDSET_T_GI_1_32 (0x0 << 0) 103 #define MDSET_T_GI_1_16 (0x1 << 0) 104 #define MDSET_T_GI_1_8 (0x2 << 0) 105 #define MDSET_T_GI_1_4 (0x3 << 0) 106 #define MDASET_T 0x14 107 #define ADCSET1_T 0x20 108 #define ADCSET1_T_REFSEL_MASK GENMASK(1, 0) 109 #define ADCSET1_T_REFSEL_2V (0x3 << 0) 110 #define ADCSET1_T_REFSEL_1_5V (0x2 << 0) 111 #define ADCSET1_T_REFSEL_1V (0x1 << 0) 112 #define NCOFREQU_T 0x24 113 #define NCOFREQM_T 0x25 114 #define NCOFREQL_T 0x26 115 #define FADU_T 0x27 116 #define FADM_T 0x28 117 #define FADL_T 0x29 118 #define AGCSET2_T 0x2c 119 #define AGCSET2_T_IFPOLINV_INC BIT(0) 120 #define AGCSET2_T_RFPOLINV_INC BIT(1) 121 #define AGCV3_T 0x3e 122 #define MDRD_T 0xa2 123 #define MDRD_T_SEGID_MASK GENMASK(5, 4) 124 #define MDRD_T_SEGID_13 (0x0 << 4) 125 #define MDRD_T_SEGID_1 (0x1 << 4) 126 #define MDRD_T_SEGID_3 (0x2 << 4) 127 #define MDRD_T_FFTS_MASK GENMASK(3, 2) 128 #define MDRD_T_FFTS_MODE1 (0x0 << 2) 129 #define MDRD_T_FFTS_MODE2 (0x1 << 2) 130 #define MDRD_T_FFTS_MODE3 (0x2 << 2) 131 #define MDRD_T_GI_MASK GENMASK(1, 0) 132 #define MDRD_T_GI_1_32 (0x0 << 0) 133 #define MDRD_T_GI_1_16 (0x1 << 0) 134 #define MDRD_T_GI_1_8 (0x2 << 0) 135 #define MDRD_T_GI_1_4 (0x3 << 0) 136 #define SSEQRD_T 0xa3 137 #define SSEQRD_T_SSEQSTRD_MASK GENMASK(3, 0) 138 #define SSEQRD_T_SSEQSTRD_RESET (0x0 << 0) 139 #define SSEQRD_T_SSEQSTRD_TUNING (0x1 << 0) 140 #define SSEQRD_T_SSEQSTRD_AGC (0x2 << 0) 141 #define SSEQRD_T_SSEQSTRD_SEARCH (0x3 << 0) 142 #define SSEQRD_T_SSEQSTRD_CLOCK_SYNC (0x4 << 0) 143 #define SSEQRD_T_SSEQSTRD_FREQ_SYNC (0x8 << 0) 144 #define SSEQRD_T_SSEQSTRD_FRAME_SYNC (0x9 << 0) 145 #define SSEQRD_T_SSEQSTRD_SYNC (0xa << 0) 146 #define SSEQRD_T_SSEQSTRD_LOCK (0xb << 0) 147 #define AGCRDU_T 0xa8 148 #define AGCRDL_T 0xa9 149 #define CNRDU_T 0xbe 150 #define CNRDL_T 0xbf 151 #define BERFLG_T 0xc0 152 #define BERFLG_T_BERDRDY BIT(7) 153 #define BERFLG_T_BERDCHK BIT(6) 154 #define BERFLG_T_BERVRDYA BIT(5) 155 #define BERFLG_T_BERVCHKA BIT(4) 156 #define BERFLG_T_BERVRDYB BIT(3) 157 #define BERFLG_T_BERVCHKB BIT(2) 158 #define BERFLG_T_BERVRDYC BIT(1) 159 #define BERFLG_T_BERVCHKC BIT(0) 160 #define BERRDU_T 0xc1 161 #define BERRDM_T 0xc2 162 #define BERRDL_T 0xc3 163 #define BERLENRDU_T 0xc4 164 #define BERLENRDL_T 0xc5 165 #define ERRFLG_T 0xc6 166 #define ERRFLG_T_BERDOVF BIT(7) 167 #define ERRFLG_T_BERVOVFA BIT(6) 168 #define ERRFLG_T_BERVOVFB BIT(5) 169 #define ERRFLG_T_BERVOVFC BIT(4) 170 #define ERRFLG_T_NERRFA BIT(3) 171 #define ERRFLG_T_NERRFB BIT(2) 172 #define ERRFLG_T_NERRFC BIT(1) 173 #define ERRFLG_T_NERRF BIT(0) 174 #define DOSET1_T 0xcf 175 176 #define CLK_LOW 4000000 177 #define CLK_DIRECT 20200000 178 #define CLK_MAX 25410000 179 180 #define S_T_FREQ 8126984 /* 512 / 63 MHz */ 181 182 struct mn88443x_spec { 183 bool primary; 184 }; 185 186 struct mn88443x_priv { 187 const struct mn88443x_spec *spec; 188 189 struct dvb_frontend fe; 190 struct clk *mclk; 191 struct gpio_desc *reset_gpio; 192 u32 clk_freq; 193 u32 if_freq; 194 195 /* Common */ 196 bool use_clkbuf; 197 198 /* ISDB-S */ 199 struct i2c_client *client_s; 200 struct regmap *regmap_s; 201 202 /* ISDB-T */ 203 struct i2c_client *client_t; 204 struct regmap *regmap_t; 205 }; 206 207 static int mn88443x_cmn_power_on(struct mn88443x_priv *chip) 208 { 209 struct device *dev = &chip->client_s->dev; 210 struct regmap *r_t = chip->regmap_t; 211 int ret; 212 213 ret = clk_prepare_enable(chip->mclk); 214 if (ret) { 215 dev_err(dev, "Failed to prepare and enable mclk: %d\n", 216 ret); 217 return ret; 218 } 219 220 gpiod_set_value_cansleep(chip->reset_gpio, 1); 221 usleep_range(100, 1000); 222 gpiod_set_value_cansleep(chip->reset_gpio, 0); 223 224 if (chip->spec->primary) { 225 regmap_write(r_t, OUTCSET, OUTCSET_CHDRV_8MA); 226 regmap_write(r_t, PLDWSET, PLDWSET_NORMAL); 227 regmap_write(r_t, HIZSET1, 0x80); 228 regmap_write(r_t, HIZSET2, 0xe0); 229 } else { 230 regmap_write(r_t, HIZSET3, 0x8f); 231 } 232 233 return 0; 234 } 235 236 static void mn88443x_cmn_power_off(struct mn88443x_priv *chip) 237 { 238 gpiod_set_value_cansleep(chip->reset_gpio, 1); 239 240 clk_disable_unprepare(chip->mclk); 241 } 242 243 static void mn88443x_s_sleep(struct mn88443x_priv *chip) 244 { 245 struct regmap *r_t = chip->regmap_t; 246 247 regmap_update_bits(r_t, PWDSET, PWDSET_PSKPD_MASK, 248 PWDSET_PSKPD_DOWN); 249 } 250 251 static void mn88443x_s_wake(struct mn88443x_priv *chip) 252 { 253 struct regmap *r_t = chip->regmap_t; 254 255 regmap_update_bits(r_t, PWDSET, PWDSET_PSKPD_MASK, 0); 256 } 257 258 static void mn88443x_s_tune(struct mn88443x_priv *chip, 259 struct dtv_frontend_properties *c) 260 { 261 struct regmap *r_s = chip->regmap_s; 262 263 regmap_write(r_s, ATSIDU_S, c->stream_id >> 8); 264 regmap_write(r_s, ATSIDL_S, c->stream_id); 265 regmap_write(r_s, TSSET_S, 0); 266 } 267 268 static int mn88443x_s_read_status(struct mn88443x_priv *chip, 269 struct dtv_frontend_properties *c, 270 enum fe_status *status) 271 { 272 struct regmap *r_s = chip->regmap_s; 273 u32 cpmon, tmpu, tmpl, flg; 274 u64 tmp; 275 276 /* Sync detection */ 277 regmap_read(r_s, CPMON1_S, &cpmon); 278 279 *status = 0; 280 if (cpmon & CPMON1_S_FSYNC) 281 *status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; 282 if (cpmon & CPMON1_S_W2LOCK) 283 *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER; 284 285 /* Signal strength */ 286 c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 287 288 if (*status & FE_HAS_SIGNAL) { 289 u32 agc; 290 291 regmap_read(r_s, AGCREAD_S, &tmpu); 292 agc = tmpu << 8; 293 294 c->strength.len = 1; 295 c->strength.stat[0].scale = FE_SCALE_RELATIVE; 296 c->strength.stat[0].uvalue = agc; 297 } 298 299 /* C/N rate */ 300 c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 301 302 if (*status & FE_HAS_VITERBI) { 303 u32 cnr = 0, x, y, d; 304 u64 d_3 = 0; 305 306 regmap_read(r_s, CNRDXU_S, &tmpu); 307 regmap_read(r_s, CNRDXL_S, &tmpl); 308 x = (tmpu << 8) | tmpl; 309 regmap_read(r_s, CNRDYU_S, &tmpu); 310 regmap_read(r_s, CNRDYL_S, &tmpl); 311 y = (tmpu << 8) | tmpl; 312 313 /* CNR[dB]: 10 * log10(D) - 30.74 / D^3 - 3 */ 314 /* D = x^2 / (2^15 * y - x^2) */ 315 d = (y << 15) - x * x; 316 if (d > 0) { 317 /* (2^4 * D)^3 = 2^12 * D^3 */ 318 /* 3.074 * 2^(12 + 24) = 211243671486 */ 319 d_3 = div_u64(16 * x * x, d); 320 d_3 = d_3 * d_3 * d_3; 321 if (d_3) 322 d_3 = div_u64(211243671486ULL, d_3); 323 } 324 325 if (d_3) { 326 /* 0.3 * 2^24 = 5033164 */ 327 tmp = (s64)2 * intlog10(x) - intlog10(abs(d)) - d_3 328 - 5033164; 329 cnr = div_u64(tmp * 10000, 1 << 24); 330 } 331 332 if (cnr) { 333 c->cnr.len = 1; 334 c->cnr.stat[0].scale = FE_SCALE_DECIBEL; 335 c->cnr.stat[0].uvalue = cnr; 336 } 337 } 338 339 /* BER */ 340 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 341 c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 342 343 regmap_read(r_s, BERCNFLG_S, &flg); 344 345 if ((*status & FE_HAS_VITERBI) && (flg & BERCNFLG_S_BERVRDY)) { 346 u32 bit_err, bit_cnt; 347 348 regmap_read(r_s, BERVRDU_S, &tmpu); 349 regmap_read(r_s, BERVRDL_S, &tmpl); 350 bit_err = (tmpu << 8) | tmpl; 351 bit_cnt = (1 << 13) * 204; 352 353 if (bit_cnt) { 354 c->post_bit_error.len = 1; 355 c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; 356 c->post_bit_error.stat[0].uvalue = bit_err; 357 c->post_bit_count.len = 1; 358 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; 359 c->post_bit_count.stat[0].uvalue = bit_cnt; 360 } 361 } 362 363 return 0; 364 } 365 366 static void mn88443x_t_sleep(struct mn88443x_priv *chip) 367 { 368 struct regmap *r_t = chip->regmap_t; 369 370 regmap_update_bits(r_t, PWDSET, PWDSET_OFDMPD_MASK, 371 PWDSET_OFDMPD_DOWN); 372 } 373 374 static void mn88443x_t_wake(struct mn88443x_priv *chip) 375 { 376 struct regmap *r_t = chip->regmap_t; 377 378 regmap_update_bits(r_t, PWDSET, PWDSET_OFDMPD_MASK, 0); 379 } 380 381 static bool mn88443x_t_is_valid_clk(u32 adckt, u32 if_freq) 382 { 383 if (if_freq == DIRECT_IF_57MHZ) { 384 if (adckt >= CLK_DIRECT && adckt <= 21000000) 385 return true; 386 if (adckt >= 25300000 && adckt <= CLK_MAX) 387 return true; 388 } else if (if_freq == DIRECT_IF_44MHZ) { 389 if (adckt >= 25000000 && adckt <= CLK_MAX) 390 return true; 391 } else if (if_freq >= LOW_IF_4MHZ && if_freq < DIRECT_IF_44MHZ) { 392 if (adckt >= CLK_DIRECT && adckt <= CLK_MAX) 393 return true; 394 } 395 396 return false; 397 } 398 399 static int mn88443x_t_set_freq(struct mn88443x_priv *chip) 400 { 401 struct device *dev = &chip->client_s->dev; 402 struct regmap *r_t = chip->regmap_t; 403 s64 adckt, nco, ad_t; 404 u32 m, v; 405 406 /* Clock buffer (but not supported) or XTAL */ 407 if (chip->clk_freq >= CLK_LOW && chip->clk_freq < CLK_DIRECT) { 408 chip->use_clkbuf = true; 409 regmap_write(r_t, CLKSET1_T, 0x07); 410 411 adckt = 0; 412 } else { 413 chip->use_clkbuf = false; 414 regmap_write(r_t, CLKSET1_T, 0x00); 415 416 adckt = chip->clk_freq; 417 } 418 if (!mn88443x_t_is_valid_clk(adckt, chip->if_freq)) { 419 dev_err(dev, "Invalid clock, CLK:%d, ADCKT:%lld, IF:%d\n", 420 chip->clk_freq, adckt, chip->if_freq); 421 return -EINVAL; 422 } 423 424 /* Direct IF or Low IF */ 425 if (chip->if_freq == DIRECT_IF_57MHZ || 426 chip->if_freq == DIRECT_IF_44MHZ) 427 nco = adckt * 2 - chip->if_freq; 428 else 429 nco = -((s64)chip->if_freq); 430 nco = div_s64(nco << 24, adckt); 431 ad_t = div_s64(adckt << 22, S_T_FREQ); 432 433 regmap_write(r_t, NCOFREQU_T, nco >> 16); 434 regmap_write(r_t, NCOFREQM_T, nco >> 8); 435 regmap_write(r_t, NCOFREQL_T, nco); 436 regmap_write(r_t, FADU_T, ad_t >> 16); 437 regmap_write(r_t, FADM_T, ad_t >> 8); 438 regmap_write(r_t, FADL_T, ad_t); 439 440 /* Level of IF */ 441 m = ADCSET1_T_REFSEL_MASK; 442 v = ADCSET1_T_REFSEL_1_5V; 443 regmap_update_bits(r_t, ADCSET1_T, m, v); 444 445 /* Polarity of AGC */ 446 v = AGCSET2_T_IFPOLINV_INC | AGCSET2_T_RFPOLINV_INC; 447 regmap_update_bits(r_t, AGCSET2_T, v, v); 448 449 /* Lower output level of AGC */ 450 regmap_write(r_t, AGCV3_T, 0x00); 451 452 regmap_write(r_t, MDSET_T, 0xfa); 453 454 return 0; 455 } 456 457 static void mn88443x_t_tune(struct mn88443x_priv *chip, 458 struct dtv_frontend_properties *c) 459 { 460 struct regmap *r_t = chip->regmap_t; 461 u32 m, v; 462 463 m = MDSET_T_MDAUTO_MASK | MDSET_T_FFTS_MASK | MDSET_T_GI_MASK; 464 v = MDSET_T_MDAUTO_AUTO | MDSET_T_FFTS_MODE3 | MDSET_T_GI_1_8; 465 regmap_update_bits(r_t, MDSET_T, m, v); 466 467 regmap_write(r_t, MDASET_T, 0); 468 } 469 470 static int mn88443x_t_read_status(struct mn88443x_priv *chip, 471 struct dtv_frontend_properties *c, 472 enum fe_status *status) 473 { 474 struct regmap *r_t = chip->regmap_t; 475 u32 seqrd, st, flg, tmpu, tmpm, tmpl; 476 u64 tmp; 477 478 /* Sync detection */ 479 regmap_read(r_t, SSEQRD_T, &seqrd); 480 st = seqrd & SSEQRD_T_SSEQSTRD_MASK; 481 482 *status = 0; 483 if (st >= SSEQRD_T_SSEQSTRD_SYNC) 484 *status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; 485 if (st >= SSEQRD_T_SSEQSTRD_FRAME_SYNC) 486 *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER; 487 488 /* Signal strength */ 489 c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 490 491 if (*status & FE_HAS_SIGNAL) { 492 u32 agc; 493 494 regmap_read(r_t, AGCRDU_T, &tmpu); 495 regmap_read(r_t, AGCRDL_T, &tmpl); 496 agc = (tmpu << 8) | tmpl; 497 498 c->strength.len = 1; 499 c->strength.stat[0].scale = FE_SCALE_RELATIVE; 500 c->strength.stat[0].uvalue = agc; 501 } 502 503 /* C/N rate */ 504 c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 505 506 if (*status & FE_HAS_VITERBI) { 507 u32 cnr; 508 509 regmap_read(r_t, CNRDU_T, &tmpu); 510 regmap_read(r_t, CNRDL_T, &tmpl); 511 512 if (tmpu || tmpl) { 513 /* CNR[dB]: 10 * (log10(65536 / value) + 0.2) */ 514 /* intlog10(65536) = 80807124, 0.2 * 2^24 = 3355443 */ 515 tmp = (u64)80807124 - intlog10((tmpu << 8) | tmpl) 516 + 3355443; 517 cnr = div_u64(tmp * 10000, 1 << 24); 518 } else { 519 cnr = 0; 520 } 521 522 c->cnr.len = 1; 523 c->cnr.stat[0].scale = FE_SCALE_DECIBEL; 524 c->cnr.stat[0].uvalue = cnr; 525 } 526 527 /* BER */ 528 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 529 c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 530 531 regmap_read(r_t, BERFLG_T, &flg); 532 533 if ((*status & FE_HAS_VITERBI) && (flg & BERFLG_T_BERVRDYA)) { 534 u32 bit_err, bit_cnt; 535 536 regmap_read(r_t, BERRDU_T, &tmpu); 537 regmap_read(r_t, BERRDM_T, &tmpm); 538 regmap_read(r_t, BERRDL_T, &tmpl); 539 bit_err = (tmpu << 16) | (tmpm << 8) | tmpl; 540 541 regmap_read(r_t, BERLENRDU_T, &tmpu); 542 regmap_read(r_t, BERLENRDL_T, &tmpl); 543 bit_cnt = ((tmpu << 8) | tmpl) * 203 * 8; 544 545 if (bit_cnt) { 546 c->post_bit_error.len = 1; 547 c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; 548 c->post_bit_error.stat[0].uvalue = bit_err; 549 c->post_bit_count.len = 1; 550 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; 551 c->post_bit_count.stat[0].uvalue = bit_cnt; 552 } 553 } 554 555 return 0; 556 } 557 558 static int mn88443x_sleep(struct dvb_frontend *fe) 559 { 560 struct mn88443x_priv *chip = fe->demodulator_priv; 561 562 mn88443x_s_sleep(chip); 563 mn88443x_t_sleep(chip); 564 565 return 0; 566 } 567 568 static int mn88443x_set_frontend(struct dvb_frontend *fe) 569 { 570 struct mn88443x_priv *chip = fe->demodulator_priv; 571 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 572 struct regmap *r_s = chip->regmap_s; 573 struct regmap *r_t = chip->regmap_t; 574 u8 tssel = 0, intsel = 0; 575 576 if (c->delivery_system == SYS_ISDBS) { 577 mn88443x_s_wake(chip); 578 mn88443x_t_sleep(chip); 579 580 tssel = TSSET1_TSASEL_ISDBS; 581 intsel = TSSET3_INTASEL_S; 582 } else if (c->delivery_system == SYS_ISDBT) { 583 mn88443x_s_sleep(chip); 584 mn88443x_t_wake(chip); 585 586 mn88443x_t_set_freq(chip); 587 588 tssel = TSSET1_TSASEL_ISDBT; 589 intsel = TSSET3_INTASEL_T; 590 } 591 592 regmap_update_bits(r_t, TSSET1, 593 TSSET1_TSASEL_MASK | TSSET1_TSBSEL_MASK, 594 tssel | TSSET1_TSBSEL_NONE); 595 regmap_write(r_t, TSSET2, 0); 596 regmap_update_bits(r_t, TSSET3, 597 TSSET3_INTASEL_MASK | TSSET3_INTBSEL_MASK, 598 intsel | TSSET3_INTBSEL_NONE); 599 600 regmap_write(r_t, DOSET1_T, 0x95); 601 regmap_write(r_s, DOSET1_S, 0x80); 602 603 if (c->delivery_system == SYS_ISDBS) 604 mn88443x_s_tune(chip, c); 605 else if (c->delivery_system == SYS_ISDBT) 606 mn88443x_t_tune(chip, c); 607 608 if (fe->ops.tuner_ops.set_params) { 609 if (fe->ops.i2c_gate_ctrl) 610 fe->ops.i2c_gate_ctrl(fe, 1); 611 fe->ops.tuner_ops.set_params(fe); 612 if (fe->ops.i2c_gate_ctrl) 613 fe->ops.i2c_gate_ctrl(fe, 0); 614 } 615 616 return 0; 617 } 618 619 static int mn88443x_get_tune_settings(struct dvb_frontend *fe, 620 struct dvb_frontend_tune_settings *s) 621 { 622 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 623 624 s->min_delay_ms = 850; 625 626 if (c->delivery_system == SYS_ISDBS) { 627 s->max_drift = 30000 * 2 + 1; 628 s->step_size = 30000; 629 } else if (c->delivery_system == SYS_ISDBT) { 630 s->max_drift = 142857 * 2 + 1; 631 s->step_size = 142857 * 2; 632 } 633 634 return 0; 635 } 636 637 static int mn88443x_read_status(struct dvb_frontend *fe, enum fe_status *status) 638 { 639 struct mn88443x_priv *chip = fe->demodulator_priv; 640 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 641 642 if (c->delivery_system == SYS_ISDBS) 643 return mn88443x_s_read_status(chip, c, status); 644 645 if (c->delivery_system == SYS_ISDBT) 646 return mn88443x_t_read_status(chip, c, status); 647 648 return -EINVAL; 649 } 650 651 static const struct dvb_frontend_ops mn88443x_ops = { 652 .delsys = { SYS_ISDBS, SYS_ISDBT }, 653 .info = { 654 .name = "Socionext MN88443x", 655 .frequency_min_hz = 470 * MHz, 656 .frequency_max_hz = 2071 * MHz, 657 .symbol_rate_min = 28860000, 658 .symbol_rate_max = 28860000, 659 .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_AUTO | 660 FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | 661 FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO, 662 }, 663 664 .sleep = mn88443x_sleep, 665 .set_frontend = mn88443x_set_frontend, 666 .get_tune_settings = mn88443x_get_tune_settings, 667 .read_status = mn88443x_read_status, 668 }; 669 670 static const struct regmap_config regmap_config = { 671 .reg_bits = 8, 672 .val_bits = 8, 673 .cache_type = REGCACHE_NONE, 674 }; 675 676 static int mn88443x_probe(struct i2c_client *client) 677 { 678 const struct i2c_device_id *id = i2c_client_get_device_id(client); 679 struct mn88443x_config *conf = client->dev.platform_data; 680 struct mn88443x_priv *chip; 681 struct device *dev = &client->dev; 682 int ret; 683 684 chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL); 685 if (!chip) 686 return -ENOMEM; 687 688 if (dev->of_node) 689 chip->spec = of_device_get_match_data(dev); 690 else 691 chip->spec = (struct mn88443x_spec *)id->driver_data; 692 if (!chip->spec) 693 return -EINVAL; 694 695 chip->mclk = devm_clk_get(dev, "mclk"); 696 if (IS_ERR(chip->mclk) && !conf) { 697 dev_err(dev, "Failed to request mclk: %ld\n", 698 PTR_ERR(chip->mclk)); 699 return PTR_ERR(chip->mclk); 700 } 701 702 ret = of_property_read_u32(dev->of_node, "if-frequency", 703 &chip->if_freq); 704 if (ret && !conf) { 705 dev_err(dev, "Failed to load IF frequency: %d.\n", ret); 706 return ret; 707 } 708 709 chip->reset_gpio = devm_gpiod_get_optional(dev, "reset", 710 GPIOD_OUT_HIGH); 711 if (IS_ERR(chip->reset_gpio)) { 712 dev_err(dev, "Failed to request reset_gpio: %ld\n", 713 PTR_ERR(chip->reset_gpio)); 714 return PTR_ERR(chip->reset_gpio); 715 } 716 717 if (conf) { 718 chip->mclk = conf->mclk; 719 chip->if_freq = conf->if_freq; 720 chip->reset_gpio = conf->reset_gpio; 721 722 *conf->fe = &chip->fe; 723 } 724 725 chip->client_s = client; 726 chip->regmap_s = devm_regmap_init_i2c(chip->client_s, ®map_config); 727 if (IS_ERR(chip->regmap_s)) 728 return PTR_ERR(chip->regmap_s); 729 730 /* 731 * Chip has two I2C addresses for each satellite/terrestrial system. 732 * ISDB-T uses address ISDB-S + 4, so we register a dummy client. 733 */ 734 chip->client_t = i2c_new_dummy_device(client->adapter, client->addr + 4); 735 if (IS_ERR(chip->client_t)) 736 return PTR_ERR(chip->client_t); 737 738 chip->regmap_t = devm_regmap_init_i2c(chip->client_t, ®map_config); 739 if (IS_ERR(chip->regmap_t)) { 740 ret = PTR_ERR(chip->regmap_t); 741 goto err_i2c_t; 742 } 743 744 chip->clk_freq = clk_get_rate(chip->mclk); 745 746 memcpy(&chip->fe.ops, &mn88443x_ops, sizeof(mn88443x_ops)); 747 chip->fe.demodulator_priv = chip; 748 i2c_set_clientdata(client, chip); 749 750 ret = mn88443x_cmn_power_on(chip); 751 if (ret) 752 goto err_i2c_t; 753 754 mn88443x_s_sleep(chip); 755 mn88443x_t_sleep(chip); 756 757 return 0; 758 759 err_i2c_t: 760 i2c_unregister_device(chip->client_t); 761 762 return ret; 763 } 764 765 static void mn88443x_remove(struct i2c_client *client) 766 { 767 struct mn88443x_priv *chip = i2c_get_clientdata(client); 768 769 mn88443x_cmn_power_off(chip); 770 771 i2c_unregister_device(chip->client_t); 772 } 773 774 static const struct mn88443x_spec mn88443x_spec_pri = { 775 .primary = true, 776 }; 777 778 static const struct mn88443x_spec mn88443x_spec_sec = { 779 .primary = false, 780 }; 781 782 static const struct of_device_id mn88443x_of_match[] = { 783 { .compatible = "socionext,mn884433", .data = &mn88443x_spec_pri, }, 784 { .compatible = "socionext,mn884434-0", .data = &mn88443x_spec_pri, }, 785 { .compatible = "socionext,mn884434-1", .data = &mn88443x_spec_sec, }, 786 {} 787 }; 788 MODULE_DEVICE_TABLE(of, mn88443x_of_match); 789 790 static const struct i2c_device_id mn88443x_i2c_id[] = { 791 { "mn884433", (kernel_ulong_t)&mn88443x_spec_pri }, 792 { "mn884434-0", (kernel_ulong_t)&mn88443x_spec_pri }, 793 { "mn884434-1", (kernel_ulong_t)&mn88443x_spec_sec }, 794 {} 795 }; 796 MODULE_DEVICE_TABLE(i2c, mn88443x_i2c_id); 797 798 static struct i2c_driver mn88443x_driver = { 799 .driver = { 800 .name = "mn88443x", 801 .of_match_table = of_match_ptr(mn88443x_of_match), 802 }, 803 .probe_new = mn88443x_probe, 804 .remove = mn88443x_remove, 805 .id_table = mn88443x_i2c_id, 806 }; 807 808 module_i2c_driver(mn88443x_driver); 809 810 MODULE_AUTHOR("Katsuhiro Suzuki <suzuki.katsuhiro@socionext.com>"); 811 MODULE_DESCRIPTION("Socionext MN88443x series demodulator driver."); 812 MODULE_LICENSE("GPL v2"); 813