1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Socionext MN88443x series demodulator driver for ISDB-S/ISDB-T.
4 //
5 // Copyright (c) 2018 Socionext Inc.
6
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/gpio/consumer.h>
11 #include <linux/of.h>
12 #include <linux/regmap.h>
13 #include <linux/int_log.h>
14
15 #include "mn88443x.h"
16
17 /* ISDB-S registers */
18 #define ATSIDU_S 0x2f
19 #define ATSIDL_S 0x30
20 #define TSSET_S 0x31
21 #define AGCREAD_S 0x5a
22 #define CPMON1_S 0x5e
23 #define CPMON1_S_FSYNC BIT(5)
24 #define CPMON1_S_ERRMON BIT(4)
25 #define CPMON1_S_SIGOFF BIT(3)
26 #define CPMON1_S_W2LOCK BIT(2)
27 #define CPMON1_S_W1LOCK BIT(1)
28 #define CPMON1_S_DW1LOCK BIT(0)
29 #define TRMON_S 0x60
30 #define BERCNFLG_S 0x68
31 #define BERCNFLG_S_BERVRDY BIT(5)
32 #define BERCNFLG_S_BERVCHK BIT(4)
33 #define BERCNFLG_S_BERDRDY BIT(3)
34 #define BERCNFLG_S_BERDCHK BIT(2)
35 #define CNRDXU_S 0x69
36 #define CNRDXL_S 0x6a
37 #define CNRDYU_S 0x6b
38 #define CNRDYL_S 0x6c
39 #define BERVRDU_S 0x71
40 #define BERVRDL_S 0x72
41 #define DOSET1_S 0x73
42
43 /* Primary ISDB-T */
44 #define PLLASET1 0x00
45 #define PLLASET2 0x01
46 #define PLLBSET1 0x02
47 #define PLLBSET2 0x03
48 #define PLLSET 0x04
49 #define OUTCSET 0x08
50 #define OUTCSET_CHDRV_8MA 0xff
51 #define OUTCSET_CHDRV_4MA 0x00
52 #define PLDWSET 0x09
53 #define PLDWSET_NORMAL 0x00
54 #define PLDWSET_PULLDOWN 0xff
55 #define HIZSET1 0x0a
56 #define HIZSET2 0x0b
57
58 /* Secondary ISDB-T (for MN884434 only) */
59 #define RCVSET 0x00
60 #define TSSET1_M 0x01
61 #define TSSET2_M 0x02
62 #define TSSET3_M 0x03
63 #define INTACSET 0x08
64 #define HIZSET3 0x0b
65
66 /* ISDB-T registers */
67 #define TSSET1 0x05
68 #define TSSET1_TSASEL_MASK GENMASK(4, 3)
69 #define TSSET1_TSASEL_ISDBT (0x0 << 3)
70 #define TSSET1_TSASEL_ISDBS (0x1 << 3)
71 #define TSSET1_TSASEL_NONE (0x2 << 3)
72 #define TSSET1_TSBSEL_MASK GENMASK(2, 1)
73 #define TSSET1_TSBSEL_ISDBS (0x0 << 1)
74 #define TSSET1_TSBSEL_ISDBT (0x1 << 1)
75 #define TSSET1_TSBSEL_NONE (0x2 << 1)
76 #define TSSET2 0x06
77 #define TSSET3 0x07
78 #define TSSET3_INTASEL_MASK GENMASK(7, 6)
79 #define TSSET3_INTASEL_T (0x0 << 6)
80 #define TSSET3_INTASEL_S (0x1 << 6)
81 #define TSSET3_INTASEL_NONE (0x2 << 6)
82 #define TSSET3_INTBSEL_MASK GENMASK(5, 4)
83 #define TSSET3_INTBSEL_S (0x0 << 4)
84 #define TSSET3_INTBSEL_T (0x1 << 4)
85 #define TSSET3_INTBSEL_NONE (0x2 << 4)
86 #define OUTSET2 0x0d
87 #define PWDSET 0x0f
88 #define PWDSET_OFDMPD_MASK GENMASK(3, 2)
89 #define PWDSET_OFDMPD_DOWN BIT(3)
90 #define PWDSET_PSKPD_MASK GENMASK(1, 0)
91 #define PWDSET_PSKPD_DOWN BIT(1)
92 #define CLKSET1_T 0x11
93 #define MDSET_T 0x13
94 #define MDSET_T_MDAUTO_MASK GENMASK(7, 4)
95 #define MDSET_T_MDAUTO_AUTO (0xf << 4)
96 #define MDSET_T_MDAUTO_MANUAL (0x0 << 4)
97 #define MDSET_T_FFTS_MASK GENMASK(3, 2)
98 #define MDSET_T_FFTS_MODE1 (0x0 << 2)
99 #define MDSET_T_FFTS_MODE2 (0x1 << 2)
100 #define MDSET_T_FFTS_MODE3 (0x2 << 2)
101 #define MDSET_T_GI_MASK GENMASK(1, 0)
102 #define MDSET_T_GI_1_32 (0x0 << 0)
103 #define MDSET_T_GI_1_16 (0x1 << 0)
104 #define MDSET_T_GI_1_8 (0x2 << 0)
105 #define MDSET_T_GI_1_4 (0x3 << 0)
106 #define MDASET_T 0x14
107 #define ADCSET1_T 0x20
108 #define ADCSET1_T_REFSEL_MASK GENMASK(1, 0)
109 #define ADCSET1_T_REFSEL_2V (0x3 << 0)
110 #define ADCSET1_T_REFSEL_1_5V (0x2 << 0)
111 #define ADCSET1_T_REFSEL_1V (0x1 << 0)
112 #define NCOFREQU_T 0x24
113 #define NCOFREQM_T 0x25
114 #define NCOFREQL_T 0x26
115 #define FADU_T 0x27
116 #define FADM_T 0x28
117 #define FADL_T 0x29
118 #define AGCSET2_T 0x2c
119 #define AGCSET2_T_IFPOLINV_INC BIT(0)
120 #define AGCSET2_T_RFPOLINV_INC BIT(1)
121 #define AGCV3_T 0x3e
122 #define MDRD_T 0xa2
123 #define MDRD_T_SEGID_MASK GENMASK(5, 4)
124 #define MDRD_T_SEGID_13 (0x0 << 4)
125 #define MDRD_T_SEGID_1 (0x1 << 4)
126 #define MDRD_T_SEGID_3 (0x2 << 4)
127 #define MDRD_T_FFTS_MASK GENMASK(3, 2)
128 #define MDRD_T_FFTS_MODE1 (0x0 << 2)
129 #define MDRD_T_FFTS_MODE2 (0x1 << 2)
130 #define MDRD_T_FFTS_MODE3 (0x2 << 2)
131 #define MDRD_T_GI_MASK GENMASK(1, 0)
132 #define MDRD_T_GI_1_32 (0x0 << 0)
133 #define MDRD_T_GI_1_16 (0x1 << 0)
134 #define MDRD_T_GI_1_8 (0x2 << 0)
135 #define MDRD_T_GI_1_4 (0x3 << 0)
136 #define SSEQRD_T 0xa3
137 #define SSEQRD_T_SSEQSTRD_MASK GENMASK(3, 0)
138 #define SSEQRD_T_SSEQSTRD_RESET (0x0 << 0)
139 #define SSEQRD_T_SSEQSTRD_TUNING (0x1 << 0)
140 #define SSEQRD_T_SSEQSTRD_AGC (0x2 << 0)
141 #define SSEQRD_T_SSEQSTRD_SEARCH (0x3 << 0)
142 #define SSEQRD_T_SSEQSTRD_CLOCK_SYNC (0x4 << 0)
143 #define SSEQRD_T_SSEQSTRD_FREQ_SYNC (0x8 << 0)
144 #define SSEQRD_T_SSEQSTRD_FRAME_SYNC (0x9 << 0)
145 #define SSEQRD_T_SSEQSTRD_SYNC (0xa << 0)
146 #define SSEQRD_T_SSEQSTRD_LOCK (0xb << 0)
147 #define AGCRDU_T 0xa8
148 #define AGCRDL_T 0xa9
149 #define CNRDU_T 0xbe
150 #define CNRDL_T 0xbf
151 #define BERFLG_T 0xc0
152 #define BERFLG_T_BERDRDY BIT(7)
153 #define BERFLG_T_BERDCHK BIT(6)
154 #define BERFLG_T_BERVRDYA BIT(5)
155 #define BERFLG_T_BERVCHKA BIT(4)
156 #define BERFLG_T_BERVRDYB BIT(3)
157 #define BERFLG_T_BERVCHKB BIT(2)
158 #define BERFLG_T_BERVRDYC BIT(1)
159 #define BERFLG_T_BERVCHKC BIT(0)
160 #define BERRDU_T 0xc1
161 #define BERRDM_T 0xc2
162 #define BERRDL_T 0xc3
163 #define BERLENRDU_T 0xc4
164 #define BERLENRDL_T 0xc5
165 #define ERRFLG_T 0xc6
166 #define ERRFLG_T_BERDOVF BIT(7)
167 #define ERRFLG_T_BERVOVFA BIT(6)
168 #define ERRFLG_T_BERVOVFB BIT(5)
169 #define ERRFLG_T_BERVOVFC BIT(4)
170 #define ERRFLG_T_NERRFA BIT(3)
171 #define ERRFLG_T_NERRFB BIT(2)
172 #define ERRFLG_T_NERRFC BIT(1)
173 #define ERRFLG_T_NERRF BIT(0)
174 #define DOSET1_T 0xcf
175
176 #define CLK_LOW 4000000
177 #define CLK_DIRECT 20200000
178 #define CLK_MAX 25410000
179
180 #define S_T_FREQ 8126984 /* 512 / 63 MHz */
181
182 struct mn88443x_spec {
183 bool primary;
184 };
185
186 struct mn88443x_priv {
187 const struct mn88443x_spec *spec;
188
189 struct dvb_frontend fe;
190 struct clk *mclk;
191 struct gpio_desc *reset_gpio;
192 u32 clk_freq;
193 u32 if_freq;
194
195 /* Common */
196 bool use_clkbuf;
197
198 /* ISDB-S */
199 struct i2c_client *client_s;
200 struct regmap *regmap_s;
201
202 /* ISDB-T */
203 struct i2c_client *client_t;
204 struct regmap *regmap_t;
205 };
206
mn88443x_cmn_power_on(struct mn88443x_priv * chip)207 static int mn88443x_cmn_power_on(struct mn88443x_priv *chip)
208 {
209 struct device *dev = &chip->client_s->dev;
210 struct regmap *r_t = chip->regmap_t;
211 int ret;
212
213 ret = clk_prepare_enable(chip->mclk);
214 if (ret) {
215 dev_err(dev, "Failed to prepare and enable mclk: %d\n",
216 ret);
217 return ret;
218 }
219
220 gpiod_set_value_cansleep(chip->reset_gpio, 1);
221 usleep_range(100, 1000);
222 gpiod_set_value_cansleep(chip->reset_gpio, 0);
223
224 if (chip->spec->primary) {
225 regmap_write(r_t, OUTCSET, OUTCSET_CHDRV_8MA);
226 regmap_write(r_t, PLDWSET, PLDWSET_NORMAL);
227 regmap_write(r_t, HIZSET1, 0x80);
228 regmap_write(r_t, HIZSET2, 0xe0);
229 } else {
230 regmap_write(r_t, HIZSET3, 0x8f);
231 }
232
233 return 0;
234 }
235
mn88443x_cmn_power_off(struct mn88443x_priv * chip)236 static void mn88443x_cmn_power_off(struct mn88443x_priv *chip)
237 {
238 gpiod_set_value_cansleep(chip->reset_gpio, 1);
239
240 clk_disable_unprepare(chip->mclk);
241 }
242
mn88443x_s_sleep(struct mn88443x_priv * chip)243 static void mn88443x_s_sleep(struct mn88443x_priv *chip)
244 {
245 struct regmap *r_t = chip->regmap_t;
246
247 regmap_update_bits(r_t, PWDSET, PWDSET_PSKPD_MASK,
248 PWDSET_PSKPD_DOWN);
249 }
250
mn88443x_s_wake(struct mn88443x_priv * chip)251 static void mn88443x_s_wake(struct mn88443x_priv *chip)
252 {
253 struct regmap *r_t = chip->regmap_t;
254
255 regmap_update_bits(r_t, PWDSET, PWDSET_PSKPD_MASK, 0);
256 }
257
mn88443x_s_tune(struct mn88443x_priv * chip,struct dtv_frontend_properties * c)258 static void mn88443x_s_tune(struct mn88443x_priv *chip,
259 struct dtv_frontend_properties *c)
260 {
261 struct regmap *r_s = chip->regmap_s;
262
263 regmap_write(r_s, ATSIDU_S, c->stream_id >> 8);
264 regmap_write(r_s, ATSIDL_S, c->stream_id);
265 regmap_write(r_s, TSSET_S, 0);
266 }
267
mn88443x_s_read_status(struct mn88443x_priv * chip,struct dtv_frontend_properties * c,enum fe_status * status)268 static int mn88443x_s_read_status(struct mn88443x_priv *chip,
269 struct dtv_frontend_properties *c,
270 enum fe_status *status)
271 {
272 struct regmap *r_s = chip->regmap_s;
273 u32 cpmon, tmpu, tmpl, flg;
274 u64 tmp;
275
276 /* Sync detection */
277 regmap_read(r_s, CPMON1_S, &cpmon);
278
279 *status = 0;
280 if (cpmon & CPMON1_S_FSYNC)
281 *status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
282 if (cpmon & CPMON1_S_W2LOCK)
283 *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER;
284
285 /* Signal strength */
286 c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
287
288 if (*status & FE_HAS_SIGNAL) {
289 u32 agc;
290
291 regmap_read(r_s, AGCREAD_S, &tmpu);
292 agc = tmpu << 8;
293
294 c->strength.len = 1;
295 c->strength.stat[0].scale = FE_SCALE_RELATIVE;
296 c->strength.stat[0].uvalue = agc;
297 }
298
299 /* C/N rate */
300 c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
301
302 if (*status & FE_HAS_VITERBI) {
303 u32 cnr = 0, x, y, d;
304 u64 d_3 = 0;
305
306 regmap_read(r_s, CNRDXU_S, &tmpu);
307 regmap_read(r_s, CNRDXL_S, &tmpl);
308 x = (tmpu << 8) | tmpl;
309 regmap_read(r_s, CNRDYU_S, &tmpu);
310 regmap_read(r_s, CNRDYL_S, &tmpl);
311 y = (tmpu << 8) | tmpl;
312
313 /* CNR[dB]: 10 * log10(D) - 30.74 / D^3 - 3 */
314 /* D = x^2 / (2^15 * y - x^2) */
315 d = (y << 15) - x * x;
316 if (d > 0) {
317 /* (2^4 * D)^3 = 2^12 * D^3 */
318 /* 3.074 * 2^(12 + 24) = 211243671486 */
319 d_3 = div_u64(16 * x * x, d);
320 d_3 = d_3 * d_3 * d_3;
321 if (d_3)
322 d_3 = div_u64(211243671486ULL, d_3);
323 }
324
325 if (d_3) {
326 /* 0.3 * 2^24 = 5033164 */
327 tmp = (s64)2 * intlog10(x) - intlog10(abs(d)) - d_3
328 - 5033164;
329 cnr = div_u64(tmp * 10000, 1 << 24);
330 }
331
332 if (cnr) {
333 c->cnr.len = 1;
334 c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
335 c->cnr.stat[0].uvalue = cnr;
336 }
337 }
338
339 /* BER */
340 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
341 c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
342
343 regmap_read(r_s, BERCNFLG_S, &flg);
344
345 if ((*status & FE_HAS_VITERBI) && (flg & BERCNFLG_S_BERVRDY)) {
346 u32 bit_err, bit_cnt;
347
348 regmap_read(r_s, BERVRDU_S, &tmpu);
349 regmap_read(r_s, BERVRDL_S, &tmpl);
350 bit_err = (tmpu << 8) | tmpl;
351 bit_cnt = (1 << 13) * 204;
352
353 if (bit_cnt) {
354 c->post_bit_error.len = 1;
355 c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
356 c->post_bit_error.stat[0].uvalue = bit_err;
357 c->post_bit_count.len = 1;
358 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
359 c->post_bit_count.stat[0].uvalue = bit_cnt;
360 }
361 }
362
363 return 0;
364 }
365
mn88443x_t_sleep(struct mn88443x_priv * chip)366 static void mn88443x_t_sleep(struct mn88443x_priv *chip)
367 {
368 struct regmap *r_t = chip->regmap_t;
369
370 regmap_update_bits(r_t, PWDSET, PWDSET_OFDMPD_MASK,
371 PWDSET_OFDMPD_DOWN);
372 }
373
mn88443x_t_wake(struct mn88443x_priv * chip)374 static void mn88443x_t_wake(struct mn88443x_priv *chip)
375 {
376 struct regmap *r_t = chip->regmap_t;
377
378 regmap_update_bits(r_t, PWDSET, PWDSET_OFDMPD_MASK, 0);
379 }
380
mn88443x_t_is_valid_clk(u32 adckt,u32 if_freq)381 static bool mn88443x_t_is_valid_clk(u32 adckt, u32 if_freq)
382 {
383 if (if_freq == DIRECT_IF_57MHZ) {
384 if (adckt >= CLK_DIRECT && adckt <= 21000000)
385 return true;
386 if (adckt >= 25300000 && adckt <= CLK_MAX)
387 return true;
388 } else if (if_freq == DIRECT_IF_44MHZ) {
389 if (adckt >= 25000000 && adckt <= CLK_MAX)
390 return true;
391 } else if (if_freq >= LOW_IF_4MHZ && if_freq < DIRECT_IF_44MHZ) {
392 if (adckt >= CLK_DIRECT && adckt <= CLK_MAX)
393 return true;
394 }
395
396 return false;
397 }
398
mn88443x_t_set_freq(struct mn88443x_priv * chip)399 static int mn88443x_t_set_freq(struct mn88443x_priv *chip)
400 {
401 struct device *dev = &chip->client_s->dev;
402 struct regmap *r_t = chip->regmap_t;
403 s64 adckt, nco, ad_t;
404 u32 m, v;
405
406 /* Clock buffer (but not supported) or XTAL */
407 if (chip->clk_freq >= CLK_LOW && chip->clk_freq < CLK_DIRECT) {
408 chip->use_clkbuf = true;
409 regmap_write(r_t, CLKSET1_T, 0x07);
410
411 adckt = 0;
412 } else {
413 chip->use_clkbuf = false;
414 regmap_write(r_t, CLKSET1_T, 0x00);
415
416 adckt = chip->clk_freq;
417 }
418 if (!mn88443x_t_is_valid_clk(adckt, chip->if_freq)) {
419 dev_err(dev, "Invalid clock, CLK:%d, ADCKT:%lld, IF:%d\n",
420 chip->clk_freq, adckt, chip->if_freq);
421 return -EINVAL;
422 }
423
424 /* Direct IF or Low IF */
425 if (chip->if_freq == DIRECT_IF_57MHZ ||
426 chip->if_freq == DIRECT_IF_44MHZ)
427 nco = adckt * 2 - chip->if_freq;
428 else
429 nco = -((s64)chip->if_freq);
430 nco = div_s64(nco << 24, adckt);
431 ad_t = div_s64(adckt << 22, S_T_FREQ);
432
433 regmap_write(r_t, NCOFREQU_T, nco >> 16);
434 regmap_write(r_t, NCOFREQM_T, nco >> 8);
435 regmap_write(r_t, NCOFREQL_T, nco);
436 regmap_write(r_t, FADU_T, ad_t >> 16);
437 regmap_write(r_t, FADM_T, ad_t >> 8);
438 regmap_write(r_t, FADL_T, ad_t);
439
440 /* Level of IF */
441 m = ADCSET1_T_REFSEL_MASK;
442 v = ADCSET1_T_REFSEL_1_5V;
443 regmap_update_bits(r_t, ADCSET1_T, m, v);
444
445 /* Polarity of AGC */
446 v = AGCSET2_T_IFPOLINV_INC | AGCSET2_T_RFPOLINV_INC;
447 regmap_update_bits(r_t, AGCSET2_T, v, v);
448
449 /* Lower output level of AGC */
450 regmap_write(r_t, AGCV3_T, 0x00);
451
452 regmap_write(r_t, MDSET_T, 0xfa);
453
454 return 0;
455 }
456
mn88443x_t_tune(struct mn88443x_priv * chip,struct dtv_frontend_properties * c)457 static void mn88443x_t_tune(struct mn88443x_priv *chip,
458 struct dtv_frontend_properties *c)
459 {
460 struct regmap *r_t = chip->regmap_t;
461 u32 m, v;
462
463 m = MDSET_T_MDAUTO_MASK | MDSET_T_FFTS_MASK | MDSET_T_GI_MASK;
464 v = MDSET_T_MDAUTO_AUTO | MDSET_T_FFTS_MODE3 | MDSET_T_GI_1_8;
465 regmap_update_bits(r_t, MDSET_T, m, v);
466
467 regmap_write(r_t, MDASET_T, 0);
468 }
469
mn88443x_t_read_status(struct mn88443x_priv * chip,struct dtv_frontend_properties * c,enum fe_status * status)470 static int mn88443x_t_read_status(struct mn88443x_priv *chip,
471 struct dtv_frontend_properties *c,
472 enum fe_status *status)
473 {
474 struct regmap *r_t = chip->regmap_t;
475 u32 seqrd, st, flg, tmpu, tmpm, tmpl;
476 u64 tmp;
477
478 /* Sync detection */
479 regmap_read(r_t, SSEQRD_T, &seqrd);
480 st = seqrd & SSEQRD_T_SSEQSTRD_MASK;
481
482 *status = 0;
483 if (st >= SSEQRD_T_SSEQSTRD_SYNC)
484 *status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
485 if (st >= SSEQRD_T_SSEQSTRD_FRAME_SYNC)
486 *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER;
487
488 /* Signal strength */
489 c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
490
491 if (*status & FE_HAS_SIGNAL) {
492 u32 agc;
493
494 regmap_read(r_t, AGCRDU_T, &tmpu);
495 regmap_read(r_t, AGCRDL_T, &tmpl);
496 agc = (tmpu << 8) | tmpl;
497
498 c->strength.len = 1;
499 c->strength.stat[0].scale = FE_SCALE_RELATIVE;
500 c->strength.stat[0].uvalue = agc;
501 }
502
503 /* C/N rate */
504 c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
505
506 if (*status & FE_HAS_VITERBI) {
507 u32 cnr;
508
509 regmap_read(r_t, CNRDU_T, &tmpu);
510 regmap_read(r_t, CNRDL_T, &tmpl);
511
512 if (tmpu || tmpl) {
513 /* CNR[dB]: 10 * (log10(65536 / value) + 0.2) */
514 /* intlog10(65536) = 80807124, 0.2 * 2^24 = 3355443 */
515 tmp = (u64)80807124 - intlog10((tmpu << 8) | tmpl)
516 + 3355443;
517 cnr = div_u64(tmp * 10000, 1 << 24);
518 } else {
519 cnr = 0;
520 }
521
522 c->cnr.len = 1;
523 c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
524 c->cnr.stat[0].uvalue = cnr;
525 }
526
527 /* BER */
528 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
529 c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
530
531 regmap_read(r_t, BERFLG_T, &flg);
532
533 if ((*status & FE_HAS_VITERBI) && (flg & BERFLG_T_BERVRDYA)) {
534 u32 bit_err, bit_cnt;
535
536 regmap_read(r_t, BERRDU_T, &tmpu);
537 regmap_read(r_t, BERRDM_T, &tmpm);
538 regmap_read(r_t, BERRDL_T, &tmpl);
539 bit_err = (tmpu << 16) | (tmpm << 8) | tmpl;
540
541 regmap_read(r_t, BERLENRDU_T, &tmpu);
542 regmap_read(r_t, BERLENRDL_T, &tmpl);
543 bit_cnt = ((tmpu << 8) | tmpl) * 203 * 8;
544
545 if (bit_cnt) {
546 c->post_bit_error.len = 1;
547 c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
548 c->post_bit_error.stat[0].uvalue = bit_err;
549 c->post_bit_count.len = 1;
550 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
551 c->post_bit_count.stat[0].uvalue = bit_cnt;
552 }
553 }
554
555 return 0;
556 }
557
mn88443x_sleep(struct dvb_frontend * fe)558 static int mn88443x_sleep(struct dvb_frontend *fe)
559 {
560 struct mn88443x_priv *chip = fe->demodulator_priv;
561
562 mn88443x_s_sleep(chip);
563 mn88443x_t_sleep(chip);
564
565 return 0;
566 }
567
mn88443x_set_frontend(struct dvb_frontend * fe)568 static int mn88443x_set_frontend(struct dvb_frontend *fe)
569 {
570 struct mn88443x_priv *chip = fe->demodulator_priv;
571 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
572 struct regmap *r_s = chip->regmap_s;
573 struct regmap *r_t = chip->regmap_t;
574 u8 tssel = 0, intsel = 0;
575
576 if (c->delivery_system == SYS_ISDBS) {
577 mn88443x_s_wake(chip);
578 mn88443x_t_sleep(chip);
579
580 tssel = TSSET1_TSASEL_ISDBS;
581 intsel = TSSET3_INTASEL_S;
582 } else if (c->delivery_system == SYS_ISDBT) {
583 mn88443x_s_sleep(chip);
584 mn88443x_t_wake(chip);
585
586 mn88443x_t_set_freq(chip);
587
588 tssel = TSSET1_TSASEL_ISDBT;
589 intsel = TSSET3_INTASEL_T;
590 }
591
592 regmap_update_bits(r_t, TSSET1,
593 TSSET1_TSASEL_MASK | TSSET1_TSBSEL_MASK,
594 tssel | TSSET1_TSBSEL_NONE);
595 regmap_write(r_t, TSSET2, 0);
596 regmap_update_bits(r_t, TSSET3,
597 TSSET3_INTASEL_MASK | TSSET3_INTBSEL_MASK,
598 intsel | TSSET3_INTBSEL_NONE);
599
600 regmap_write(r_t, DOSET1_T, 0x95);
601 regmap_write(r_s, DOSET1_S, 0x80);
602
603 if (c->delivery_system == SYS_ISDBS)
604 mn88443x_s_tune(chip, c);
605 else if (c->delivery_system == SYS_ISDBT)
606 mn88443x_t_tune(chip, c);
607
608 if (fe->ops.tuner_ops.set_params) {
609 if (fe->ops.i2c_gate_ctrl)
610 fe->ops.i2c_gate_ctrl(fe, 1);
611 fe->ops.tuner_ops.set_params(fe);
612 if (fe->ops.i2c_gate_ctrl)
613 fe->ops.i2c_gate_ctrl(fe, 0);
614 }
615
616 return 0;
617 }
618
mn88443x_get_tune_settings(struct dvb_frontend * fe,struct dvb_frontend_tune_settings * s)619 static int mn88443x_get_tune_settings(struct dvb_frontend *fe,
620 struct dvb_frontend_tune_settings *s)
621 {
622 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
623
624 s->min_delay_ms = 850;
625
626 if (c->delivery_system == SYS_ISDBS) {
627 s->max_drift = 30000 * 2 + 1;
628 s->step_size = 30000;
629 } else if (c->delivery_system == SYS_ISDBT) {
630 s->max_drift = 142857 * 2 + 1;
631 s->step_size = 142857 * 2;
632 }
633
634 return 0;
635 }
636
mn88443x_read_status(struct dvb_frontend * fe,enum fe_status * status)637 static int mn88443x_read_status(struct dvb_frontend *fe, enum fe_status *status)
638 {
639 struct mn88443x_priv *chip = fe->demodulator_priv;
640 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
641
642 if (c->delivery_system == SYS_ISDBS)
643 return mn88443x_s_read_status(chip, c, status);
644
645 if (c->delivery_system == SYS_ISDBT)
646 return mn88443x_t_read_status(chip, c, status);
647
648 return -EINVAL;
649 }
650
651 static const struct dvb_frontend_ops mn88443x_ops = {
652 .delsys = { SYS_ISDBS, SYS_ISDBT },
653 .info = {
654 .name = "Socionext MN88443x",
655 .frequency_min_hz = 470 * MHz,
656 .frequency_max_hz = 2071 * MHz,
657 .symbol_rate_min = 28860000,
658 .symbol_rate_max = 28860000,
659 .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_AUTO |
660 FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO |
661 FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO,
662 },
663
664 .sleep = mn88443x_sleep,
665 .set_frontend = mn88443x_set_frontend,
666 .get_tune_settings = mn88443x_get_tune_settings,
667 .read_status = mn88443x_read_status,
668 };
669
670 static const struct regmap_config regmap_config = {
671 .reg_bits = 8,
672 .val_bits = 8,
673 .cache_type = REGCACHE_NONE,
674 };
675
mn88443x_probe(struct i2c_client * client)676 static int mn88443x_probe(struct i2c_client *client)
677 {
678 const struct i2c_device_id *id = i2c_client_get_device_id(client);
679 struct mn88443x_config *conf = client->dev.platform_data;
680 struct mn88443x_priv *chip;
681 struct device *dev = &client->dev;
682 int ret;
683
684 chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
685 if (!chip)
686 return -ENOMEM;
687
688 if (dev->of_node)
689 chip->spec = of_device_get_match_data(dev);
690 else
691 chip->spec = (struct mn88443x_spec *)id->driver_data;
692 if (!chip->spec)
693 return -EINVAL;
694
695 chip->mclk = devm_clk_get(dev, "mclk");
696 if (IS_ERR(chip->mclk) && !conf) {
697 dev_err(dev, "Failed to request mclk: %ld\n",
698 PTR_ERR(chip->mclk));
699 return PTR_ERR(chip->mclk);
700 }
701
702 ret = of_property_read_u32(dev->of_node, "if-frequency",
703 &chip->if_freq);
704 if (ret && !conf) {
705 dev_err(dev, "Failed to load IF frequency: %d.\n", ret);
706 return ret;
707 }
708
709 chip->reset_gpio = devm_gpiod_get_optional(dev, "reset",
710 GPIOD_OUT_HIGH);
711 if (IS_ERR(chip->reset_gpio)) {
712 dev_err(dev, "Failed to request reset_gpio: %ld\n",
713 PTR_ERR(chip->reset_gpio));
714 return PTR_ERR(chip->reset_gpio);
715 }
716
717 if (conf) {
718 chip->mclk = conf->mclk;
719 chip->if_freq = conf->if_freq;
720 chip->reset_gpio = conf->reset_gpio;
721
722 *conf->fe = &chip->fe;
723 }
724
725 chip->client_s = client;
726 chip->regmap_s = devm_regmap_init_i2c(chip->client_s, ®map_config);
727 if (IS_ERR(chip->regmap_s))
728 return PTR_ERR(chip->regmap_s);
729
730 /*
731 * Chip has two I2C addresses for each satellite/terrestrial system.
732 * ISDB-T uses address ISDB-S + 4, so we register a dummy client.
733 */
734 chip->client_t = i2c_new_dummy_device(client->adapter, client->addr + 4);
735 if (IS_ERR(chip->client_t))
736 return PTR_ERR(chip->client_t);
737
738 chip->regmap_t = devm_regmap_init_i2c(chip->client_t, ®map_config);
739 if (IS_ERR(chip->regmap_t)) {
740 ret = PTR_ERR(chip->regmap_t);
741 goto err_i2c_t;
742 }
743
744 chip->clk_freq = clk_get_rate(chip->mclk);
745
746 memcpy(&chip->fe.ops, &mn88443x_ops, sizeof(mn88443x_ops));
747 chip->fe.demodulator_priv = chip;
748 i2c_set_clientdata(client, chip);
749
750 ret = mn88443x_cmn_power_on(chip);
751 if (ret)
752 goto err_i2c_t;
753
754 mn88443x_s_sleep(chip);
755 mn88443x_t_sleep(chip);
756
757 return 0;
758
759 err_i2c_t:
760 i2c_unregister_device(chip->client_t);
761
762 return ret;
763 }
764
mn88443x_remove(struct i2c_client * client)765 static void mn88443x_remove(struct i2c_client *client)
766 {
767 struct mn88443x_priv *chip = i2c_get_clientdata(client);
768
769 mn88443x_cmn_power_off(chip);
770
771 i2c_unregister_device(chip->client_t);
772 }
773
774 static const struct mn88443x_spec mn88443x_spec_pri = {
775 .primary = true,
776 };
777
778 static const struct mn88443x_spec mn88443x_spec_sec = {
779 .primary = false,
780 };
781
782 static const struct of_device_id mn88443x_of_match[] = {
783 { .compatible = "socionext,mn884433", .data = &mn88443x_spec_pri, },
784 { .compatible = "socionext,mn884434-0", .data = &mn88443x_spec_pri, },
785 { .compatible = "socionext,mn884434-1", .data = &mn88443x_spec_sec, },
786 {}
787 };
788 MODULE_DEVICE_TABLE(of, mn88443x_of_match);
789
790 static const struct i2c_device_id mn88443x_i2c_id[] = {
791 { "mn884433", (kernel_ulong_t)&mn88443x_spec_pri },
792 { "mn884434-0", (kernel_ulong_t)&mn88443x_spec_pri },
793 { "mn884434-1", (kernel_ulong_t)&mn88443x_spec_sec },
794 {}
795 };
796 MODULE_DEVICE_TABLE(i2c, mn88443x_i2c_id);
797
798 static struct i2c_driver mn88443x_driver = {
799 .driver = {
800 .name = "mn88443x",
801 .of_match_table = mn88443x_of_match,
802 },
803 .probe = mn88443x_probe,
804 .remove = mn88443x_remove,
805 .id_table = mn88443x_i2c_id,
806 };
807
808 module_i2c_driver(mn88443x_driver);
809
810 MODULE_AUTHOR("Katsuhiro Suzuki <suzuki.katsuhiro@socionext.com>");
811 MODULE_DESCRIPTION("Socionext MN88443x series demodulator driver.");
812 MODULE_LICENSE("GPL v2");
813