1 /*
2  *   Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
3  *
4  *   Copyright (C) 2010-2013 Mauro Carvalho Chehab <mchehab@redhat.com>
5  *   Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
6  *
7  *   This program is free software; you can redistribute it and/or
8  *   modify it under the terms of the GNU General Public License as
9  *   published by the Free Software Foundation version 2.
10  *
11  *   This program is distributed in the hope that it will be useful,
12  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  *   General Public License for more details.
15  */
16 
17 #include <linux/kernel.h>
18 #include <asm/div64.h>
19 
20 #include "dvb_frontend.h"
21 #include "mb86a20s.h"
22 
23 #define NUM_LAYERS 3
24 
25 static int debug = 1;
26 module_param(debug, int, 0644);
27 MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)");
28 
29 enum mb86a20s_bandwidth {
30 	MB86A20S_13SEG = 0,
31 	MB86A20S_13SEG_PARTIAL = 1,
32 	MB86A20S_1SEG = 2,
33 	MB86A20S_3SEG = 3,
34 };
35 
36 u8 mb86a20s_subchannel[] = {
37 	0xb0, 0xc0, 0xd0, 0xe0,
38 	0xf0, 0x00, 0x10, 0x20,
39 };
40 
41 struct mb86a20s_state {
42 	struct i2c_adapter *i2c;
43 	const struct mb86a20s_config *config;
44 	u32 last_frequency;
45 
46 	struct dvb_frontend frontend;
47 
48 	u32 if_freq;
49 	enum mb86a20s_bandwidth bw;
50 	bool inversion;
51 	u32 subchannel;
52 
53 	u32 estimated_rate[NUM_LAYERS];
54 	unsigned long get_strength_time;
55 
56 	bool need_init;
57 };
58 
59 struct regdata {
60 	u8 reg;
61 	u8 data;
62 };
63 
64 #define BER_SAMPLING_RATE	1	/* Seconds */
65 
66 /*
67  * Initialization sequence: Use whatevere default values that PV SBTVD
68  * does on its initialisation, obtained via USB snoop
69  */
70 static struct regdata mb86a20s_init1[] = {
71 	{ 0x70, 0x0f },
72 	{ 0x70, 0xff },
73 	{ 0x08, 0x01 },
74 	{ 0x50, 0xd1 }, { 0x51, 0x20 },
75 };
76 
77 static struct regdata mb86a20s_init2[] = {
78 	{ 0x28, 0x22 }, { 0x29, 0x00 }, { 0x2a, 0x1f }, { 0x2b, 0xf0 },
79 	{ 0x3b, 0x21 },
80 	{ 0x3c, 0x38 },
81 	{ 0x01, 0x0d },
82 	{ 0x04, 0x08 }, { 0x05, 0x03 },
83 	{ 0x04, 0x0e }, { 0x05, 0x00 },
84 	{ 0x04, 0x0f }, { 0x05, 0x37 },
85 	{ 0x04, 0x0b }, { 0x05, 0x78 },
86 	{ 0x04, 0x00 }, { 0x05, 0x00 },
87 	{ 0x04, 0x01 }, { 0x05, 0x1e },
88 	{ 0x04, 0x02 }, { 0x05, 0x07 },
89 	{ 0x04, 0x03 }, { 0x05, 0xd0 },
90 	{ 0x04, 0x09 }, { 0x05, 0x00 },
91 	{ 0x04, 0x0a }, { 0x05, 0xff },
92 	{ 0x04, 0x27 }, { 0x05, 0x00 },
93 	{ 0x04, 0x28 }, { 0x05, 0x00 },
94 	{ 0x04, 0x1e }, { 0x05, 0x00 },
95 	{ 0x04, 0x29 }, { 0x05, 0x64 },
96 	{ 0x04, 0x32 }, { 0x05, 0x02 },
97 	{ 0x04, 0x14 }, { 0x05, 0x02 },
98 	{ 0x04, 0x04 }, { 0x05, 0x00 },
99 	{ 0x04, 0x05 }, { 0x05, 0x22 },
100 	{ 0x04, 0x06 }, { 0x05, 0x0e },
101 	{ 0x04, 0x07 }, { 0x05, 0xd8 },
102 	{ 0x04, 0x12 }, { 0x05, 0x00 },
103 	{ 0x04, 0x13 }, { 0x05, 0xff },
104 	{ 0x04, 0x15 }, { 0x05, 0x4e },
105 	{ 0x04, 0x16 }, { 0x05, 0x20 },
106 
107 	/*
108 	 * On this demod, when the bit count reaches the count below,
109 	 * it collects the bit error count. The bit counters are initialized
110 	 * to 65535 here. This warrants that all of them will be quickly
111 	 * calculated when device gets locked. As TMCC is parsed, the values
112 	 * will be adjusted later in the driver's code.
113 	 */
114 	{ 0x52, 0x01 },				/* Turn on BER before Viterbi */
115 	{ 0x50, 0xa7 }, { 0x51, 0x00 },
116 	{ 0x50, 0xa8 }, { 0x51, 0xff },
117 	{ 0x50, 0xa9 }, { 0x51, 0xff },
118 	{ 0x50, 0xaa }, { 0x51, 0x00 },
119 	{ 0x50, 0xab }, { 0x51, 0xff },
120 	{ 0x50, 0xac }, { 0x51, 0xff },
121 	{ 0x50, 0xad }, { 0x51, 0x00 },
122 	{ 0x50, 0xae }, { 0x51, 0xff },
123 	{ 0x50, 0xaf }, { 0x51, 0xff },
124 
125 	/*
126 	 * On this demod, post BER counts blocks. When the count reaches the
127 	 * value below, it collects the block error count. The block counters
128 	 * are initialized to 127 here. This warrants that all of them will be
129 	 * quickly calculated when device gets locked. As TMCC is parsed, the
130 	 * values will be adjusted later in the driver's code.
131 	 */
132 	{ 0x5e, 0x07 },				/* Turn on BER after Viterbi */
133 	{ 0x50, 0xdc }, { 0x51, 0x00 },
134 	{ 0x50, 0xdd }, { 0x51, 0x7f },
135 	{ 0x50, 0xde }, { 0x51, 0x00 },
136 	{ 0x50, 0xdf }, { 0x51, 0x7f },
137 	{ 0x50, 0xe0 }, { 0x51, 0x00 },
138 	{ 0x50, 0xe1 }, { 0x51, 0x7f },
139 
140 	/*
141 	 * On this demod, when the block count reaches the count below,
142 	 * it collects the block error count. The block counters are initialized
143 	 * to 127 here. This warrants that all of them will be quickly
144 	 * calculated when device gets locked. As TMCC is parsed, the values
145 	 * will be adjusted later in the driver's code.
146 	 */
147 	{ 0x50, 0xb0 }, { 0x51, 0x07 },		/* Enable PER */
148 	{ 0x50, 0xb2 }, { 0x51, 0x00 },
149 	{ 0x50, 0xb3 }, { 0x51, 0x7f },
150 	{ 0x50, 0xb4 }, { 0x51, 0x00 },
151 	{ 0x50, 0xb5 }, { 0x51, 0x7f },
152 	{ 0x50, 0xb6 }, { 0x51, 0x00 },
153 	{ 0x50, 0xb7 }, { 0x51, 0x7f },
154 
155 	{ 0x50, 0x50 }, { 0x51, 0x02 },		/* MER manual mode */
156 	{ 0x50, 0x51 }, { 0x51, 0x04 },		/* MER symbol 4 */
157 	{ 0x45, 0x04 },				/* CN symbol 4 */
158 	{ 0x48, 0x04 },				/* CN manual mode */
159 
160 	{ 0x50, 0xd6 }, { 0x51, 0x1f },
161 	{ 0x50, 0xd2 }, { 0x51, 0x03 },
162 	{ 0x50, 0xd7 }, { 0x51, 0xbf },
163 	{ 0x28, 0x74 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0xff },
164 	{ 0x28, 0x46 }, { 0x29, 0x00 }, { 0x2a, 0x1a }, { 0x2b, 0x0c },
165 
166 	{ 0x04, 0x40 }, { 0x05, 0x00 },
167 	{ 0x28, 0x00 }, { 0x2b, 0x08 },
168 	{ 0x28, 0x05 }, { 0x2b, 0x00 },
169 	{ 0x1c, 0x01 },
170 	{ 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x1f },
171 	{ 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x18 },
172 	{ 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x12 },
173 	{ 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x30 },
174 	{ 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x37 },
175 	{ 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
176 	{ 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x09 },
177 	{ 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x06 },
178 	{ 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x7b },
179 	{ 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x76 },
180 	{ 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x7d },
181 	{ 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x08 },
182 	{ 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0b },
183 	{ 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 },
184 	{ 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xf2 },
185 	{ 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xf3 },
186 	{ 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x05 },
187 	{ 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
188 	{ 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
189 	{ 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xef },
190 	{ 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xd8 },
191 	{ 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xf1 },
192 	{ 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x3d },
193 	{ 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x94 },
194 	{ 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0xba },
195 	{ 0x50, 0x1e }, { 0x51, 0x5d },
196 	{ 0x50, 0x22 }, { 0x51, 0x00 },
197 	{ 0x50, 0x23 }, { 0x51, 0xc8 },
198 	{ 0x50, 0x24 }, { 0x51, 0x00 },
199 	{ 0x50, 0x25 }, { 0x51, 0xf0 },
200 	{ 0x50, 0x26 }, { 0x51, 0x00 },
201 	{ 0x50, 0x27 }, { 0x51, 0xc3 },
202 	{ 0x50, 0x39 }, { 0x51, 0x02 },
203 	{ 0xec, 0x0f },
204 	{ 0xeb, 0x1f },
205 	{ 0x28, 0x6a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 },
206 	{ 0xd0, 0x00 },
207 };
208 
209 static struct regdata mb86a20s_reset_reception[] = {
210 	{ 0x70, 0xf0 },
211 	{ 0x70, 0xff },
212 	{ 0x08, 0x01 },
213 	{ 0x08, 0x00 },
214 };
215 
216 static struct regdata mb86a20s_per_ber_reset[] = {
217 	{ 0x53, 0x00 },	/* pre BER Counter reset */
218 	{ 0x53, 0x07 },
219 
220 	{ 0x5f, 0x00 },	/* post BER Counter reset */
221 	{ 0x5f, 0x07 },
222 
223 	{ 0x50, 0xb1 },	/* PER Counter reset */
224 	{ 0x51, 0x07 },
225 	{ 0x51, 0x00 },
226 };
227 
228 /*
229  * I2C read/write functions and macros
230  */
231 
232 static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
233 			     u8 i2c_addr, u8 reg, u8 data)
234 {
235 	u8 buf[] = { reg, data };
236 	struct i2c_msg msg = {
237 		.addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
238 	};
239 	int rc;
240 
241 	rc = i2c_transfer(state->i2c, &msg, 1);
242 	if (rc != 1) {
243 		dev_err(&state->i2c->dev,
244 			"%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
245 			__func__, rc, reg, data);
246 		return rc;
247 	}
248 
249 	return 0;
250 }
251 
252 static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
253 				     u8 i2c_addr, struct regdata *rd, int size)
254 {
255 	int i, rc;
256 
257 	for (i = 0; i < size; i++) {
258 		rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
259 					   rd[i].data);
260 		if (rc < 0)
261 			return rc;
262 	}
263 	return 0;
264 }
265 
266 static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
267 				u8 i2c_addr, u8 reg)
268 {
269 	u8 val;
270 	int rc;
271 	struct i2c_msg msg[] = {
272 		{ .addr = i2c_addr, .flags = 0, .buf = &reg, .len = 1 },
273 		{ .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
274 	};
275 
276 	rc = i2c_transfer(state->i2c, msg, 2);
277 
278 	if (rc != 2) {
279 		dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
280 			__func__, reg, rc);
281 		return (rc < 0) ? rc : -EIO;
282 	}
283 
284 	return val;
285 }
286 
287 #define mb86a20s_readreg(state, reg) \
288 	mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
289 #define mb86a20s_writereg(state, reg, val) \
290 	mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
291 #define mb86a20s_writeregdata(state, regdata) \
292 	mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
293 	regdata, ARRAY_SIZE(regdata))
294 
295 /*
296  * Ancillary internal routines (likely compiled inlined)
297  *
298  * The functions below assume that gateway lock has already obtained
299  */
300 
301 static int mb86a20s_read_status(struct dvb_frontend *fe, fe_status_t *status)
302 {
303 	struct mb86a20s_state *state = fe->demodulator_priv;
304 	int val;
305 
306 	*status = 0;
307 
308 	val = mb86a20s_readreg(state, 0x0a) & 0xf;
309 	if (val < 0)
310 		return val;
311 
312 	if (val >= 2)
313 		*status |= FE_HAS_SIGNAL;
314 
315 	if (val >= 4)
316 		*status |= FE_HAS_CARRIER;
317 
318 	if (val >= 5)
319 		*status |= FE_HAS_VITERBI;
320 
321 	if (val >= 7)
322 		*status |= FE_HAS_SYNC;
323 
324 	if (val >= 8)				/* Maybe 9? */
325 		*status |= FE_HAS_LOCK;
326 
327 	dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
328 		 __func__, *status, val);
329 
330 	return val;
331 }
332 
333 static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
334 {
335 	struct mb86a20s_state *state = fe->demodulator_priv;
336 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
337 	int rc;
338 	unsigned rf_max, rf_min, rf;
339 
340 	if (state->get_strength_time &&
341 	   (!time_after(jiffies, state->get_strength_time)))
342 		return c->strength.stat[0].uvalue;
343 
344 	/* Reset its value if an error happen */
345 	c->strength.stat[0].uvalue = 0;
346 
347 	/* Does a binary search to get RF strength */
348 	rf_max = 0xfff;
349 	rf_min = 0;
350 	do {
351 		rf = (rf_max + rf_min) / 2;
352 		rc = mb86a20s_writereg(state, 0x04, 0x1f);
353 		if (rc < 0)
354 			return rc;
355 		rc = mb86a20s_writereg(state, 0x05, rf >> 8);
356 		if (rc < 0)
357 			return rc;
358 		rc = mb86a20s_writereg(state, 0x04, 0x20);
359 		if (rc < 0)
360 			return rc;
361 		rc = mb86a20s_writereg(state, 0x05, rf);
362 		if (rc < 0)
363 			return rc;
364 
365 		rc = mb86a20s_readreg(state, 0x02);
366 		if (rc < 0)
367 			return rc;
368 		if (rc & 0x08)
369 			rf_min = (rf_max + rf_min) / 2;
370 		else
371 			rf_max = (rf_max + rf_min) / 2;
372 		if (rf_max - rf_min < 4) {
373 			rf = (rf_max + rf_min) / 2;
374 
375 			/* Rescale it from 2^12 (4096) to 2^16 */
376 			rf = rf << (16 - 12);
377 			if (rf)
378 				rf |= (1 << 12) - 1;
379 
380 			dev_dbg(&state->i2c->dev,
381 				"%s: signal strength = %d (%d < RF=%d < %d)\n",
382 				__func__, rf, rf_min, rf >> 4, rf_max);
383 			c->strength.stat[0].uvalue = rf;
384 			state->get_strength_time = jiffies +
385 						   msecs_to_jiffies(1000);
386 			return 0;
387 		}
388 	} while (1);
389 }
390 
391 static int mb86a20s_get_modulation(struct mb86a20s_state *state,
392 				   unsigned layer)
393 {
394 	int rc;
395 	static unsigned char reg[] = {
396 		[0] = 0x86,	/* Layer A */
397 		[1] = 0x8a,	/* Layer B */
398 		[2] = 0x8e,	/* Layer C */
399 	};
400 
401 	if (layer >= ARRAY_SIZE(reg))
402 		return -EINVAL;
403 	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
404 	if (rc < 0)
405 		return rc;
406 	rc = mb86a20s_readreg(state, 0x6e);
407 	if (rc < 0)
408 		return rc;
409 	switch ((rc >> 4) & 0x07) {
410 	case 0:
411 		return DQPSK;
412 	case 1:
413 		return QPSK;
414 	case 2:
415 		return QAM_16;
416 	case 3:
417 		return QAM_64;
418 	default:
419 		return QAM_AUTO;
420 	}
421 }
422 
423 static int mb86a20s_get_fec(struct mb86a20s_state *state,
424 			    unsigned layer)
425 {
426 	int rc;
427 
428 	static unsigned char reg[] = {
429 		[0] = 0x87,	/* Layer A */
430 		[1] = 0x8b,	/* Layer B */
431 		[2] = 0x8f,	/* Layer C */
432 	};
433 
434 	if (layer >= ARRAY_SIZE(reg))
435 		return -EINVAL;
436 	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
437 	if (rc < 0)
438 		return rc;
439 	rc = mb86a20s_readreg(state, 0x6e);
440 	if (rc < 0)
441 		return rc;
442 	switch ((rc >> 4) & 0x07) {
443 	case 0:
444 		return FEC_1_2;
445 	case 1:
446 		return FEC_2_3;
447 	case 2:
448 		return FEC_3_4;
449 	case 3:
450 		return FEC_5_6;
451 	case 4:
452 		return FEC_7_8;
453 	default:
454 		return FEC_AUTO;
455 	}
456 }
457 
458 static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
459 				     unsigned layer)
460 {
461 	int rc;
462 
463 	static unsigned char reg[] = {
464 		[0] = 0x88,	/* Layer A */
465 		[1] = 0x8c,	/* Layer B */
466 		[2] = 0x90,	/* Layer C */
467 	};
468 
469 	if (layer >= ARRAY_SIZE(reg))
470 		return -EINVAL;
471 	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
472 	if (rc < 0)
473 		return rc;
474 	rc = mb86a20s_readreg(state, 0x6e);
475 	if (rc < 0)
476 		return rc;
477 
478 	switch ((rc >> 4) & 0x07) {
479 	case 1:
480 		return GUARD_INTERVAL_1_4;
481 	case 2:
482 		return GUARD_INTERVAL_1_8;
483 	case 3:
484 		return GUARD_INTERVAL_1_16;
485 	case 4:
486 		return GUARD_INTERVAL_1_32;
487 
488 	default:
489 	case 0:
490 		return GUARD_INTERVAL_AUTO;
491 	}
492 }
493 
494 static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
495 				      unsigned layer)
496 {
497 	int rc, count;
498 	static unsigned char reg[] = {
499 		[0] = 0x89,	/* Layer A */
500 		[1] = 0x8d,	/* Layer B */
501 		[2] = 0x91,	/* Layer C */
502 	};
503 
504 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
505 
506 	if (layer >= ARRAY_SIZE(reg))
507 		return -EINVAL;
508 
509 	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
510 	if (rc < 0)
511 		return rc;
512 	rc = mb86a20s_readreg(state, 0x6e);
513 	if (rc < 0)
514 		return rc;
515 	count = (rc >> 4) & 0x0f;
516 
517 	dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);
518 
519 	return count;
520 }
521 
522 static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
523 {
524 	struct mb86a20s_state *state = fe->demodulator_priv;
525 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
526 
527 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
528 
529 	/* Fixed parameters */
530 	c->delivery_system = SYS_ISDBT;
531 	c->bandwidth_hz = 6000000;
532 
533 	/* Initialize values that will be later autodetected */
534 	c->isdbt_layer_enabled = 0;
535 	c->transmission_mode = TRANSMISSION_MODE_AUTO;
536 	c->guard_interval = GUARD_INTERVAL_AUTO;
537 	c->isdbt_sb_mode = 0;
538 	c->isdbt_sb_segment_count = 0;
539 }
540 
541 /*
542  * Estimates the bit rate using the per-segment bit rate given by
543  * ABNT/NBR 15601 spec (table 4).
544  */
545 static u32 isdbt_rate[3][5][4] = {
546 	{	/* DQPSK/QPSK */
547 		{  280850,  312060,  330420,  340430 },	/* 1/2 */
548 		{  374470,  416080,  440560,  453910 },	/* 2/3 */
549 		{  421280,  468090,  495630,  510650 },	/* 3/4 */
550 		{  468090,  520100,  550700,  567390 },	/* 5/6 */
551 		{  491500,  546110,  578230,  595760 },	/* 7/8 */
552 	}, {	/* QAM16 */
553 		{  561710,  624130,  660840,  680870 },	/* 1/2 */
554 		{  748950,  832170,  881120,  907820 },	/* 2/3 */
555 		{  842570,  936190,  991260, 1021300 },	/* 3/4 */
556 		{  936190, 1040210, 1101400, 1134780 },	/* 5/6 */
557 		{  983000, 1092220, 1156470, 1191520 },	/* 7/8 */
558 	}, {	/* QAM64 */
559 		{  842570,  936190,  991260, 1021300 },	/* 1/2 */
560 		{ 1123430, 1248260, 1321680, 1361740 },	/* 2/3 */
561 		{ 1263860, 1404290, 1486900, 1531950 },	/* 3/4 */
562 		{ 1404290, 1560320, 1652110, 1702170 },	/* 5/6 */
563 		{ 1474500, 1638340, 1734710, 1787280 },	/* 7/8 */
564 	}
565 };
566 
567 static void mb86a20s_layer_bitrate(struct dvb_frontend *fe, u32 layer,
568 				   u32 modulation, u32 forward_error_correction,
569 				   u32 interleaving,
570 				   u32 segment)
571 {
572 	struct mb86a20s_state *state = fe->demodulator_priv;
573 	u32 rate;
574 	int mod, fec, guard;
575 
576 	/*
577 	 * If modulation/fec/interleaving is not detected, the default is
578 	 * to consider the lowest bit rate, to avoid taking too long time
579 	 * to get BER.
580 	 */
581 	switch (modulation) {
582 	case DQPSK:
583 	case QPSK:
584 	default:
585 		mod = 0;
586 		break;
587 	case QAM_16:
588 		mod = 1;
589 		break;
590 	case QAM_64:
591 		mod = 2;
592 		break;
593 	}
594 
595 	switch (forward_error_correction) {
596 	default:
597 	case FEC_1_2:
598 	case FEC_AUTO:
599 		fec = 0;
600 		break;
601 	case FEC_2_3:
602 		fec = 1;
603 		break;
604 	case FEC_3_4:
605 		fec = 2;
606 		break;
607 	case FEC_5_6:
608 		fec = 3;
609 		break;
610 	case FEC_7_8:
611 		fec = 4;
612 		break;
613 	}
614 
615 	switch (interleaving) {
616 	default:
617 	case GUARD_INTERVAL_1_4:
618 		guard = 0;
619 		break;
620 	case GUARD_INTERVAL_1_8:
621 		guard = 1;
622 		break;
623 	case GUARD_INTERVAL_1_16:
624 		guard = 2;
625 		break;
626 	case GUARD_INTERVAL_1_32:
627 		guard = 3;
628 		break;
629 	}
630 
631 	/* Samples BER at BER_SAMPLING_RATE seconds */
632 	rate = isdbt_rate[mod][fec][guard] * segment * BER_SAMPLING_RATE;
633 
634 	/* Avoids sampling too quickly or to overflow the register */
635 	if (rate < 256)
636 		rate = 256;
637 	else if (rate > (1 << 24) - 1)
638 		rate = (1 << 24) - 1;
639 
640 	dev_dbg(&state->i2c->dev,
641 		"%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
642 		__func__, 'A' + layer,
643 		segment * isdbt_rate[mod][fec][guard]/1000,
644 		rate, rate);
645 
646 	state->estimated_rate[layer] = rate;
647 }
648 
649 static int mb86a20s_get_frontend(struct dvb_frontend *fe)
650 {
651 	struct mb86a20s_state *state = fe->demodulator_priv;
652 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
653 	int layer, rc;
654 
655 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
656 
657 	/* Reset frontend cache to default values */
658 	mb86a20s_reset_frontend_cache(fe);
659 
660 	/* Check for partial reception */
661 	rc = mb86a20s_writereg(state, 0x6d, 0x85);
662 	if (rc < 0)
663 		return rc;
664 	rc = mb86a20s_readreg(state, 0x6e);
665 	if (rc < 0)
666 		return rc;
667 	c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
668 
669 	/* Get per-layer data */
670 
671 	for (layer = 0; layer < NUM_LAYERS; layer++) {
672 		dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
673 			__func__, 'A' + layer);
674 
675 		rc = mb86a20s_get_segment_count(state, layer);
676 		if (rc < 0)
677 			goto noperlayer_error;
678 		if (rc >= 0 && rc < 14) {
679 			c->layer[layer].segment_count = rc;
680 		} else {
681 			c->layer[layer].segment_count = 0;
682 			state->estimated_rate[layer] = 0;
683 			continue;
684 		}
685 		c->isdbt_layer_enabled |= 1 << layer;
686 		rc = mb86a20s_get_modulation(state, layer);
687 		if (rc < 0)
688 			goto noperlayer_error;
689 		dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
690 			__func__, rc);
691 		c->layer[layer].modulation = rc;
692 		rc = mb86a20s_get_fec(state, layer);
693 		if (rc < 0)
694 			goto noperlayer_error;
695 		dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
696 			__func__, rc);
697 		c->layer[layer].fec = rc;
698 		rc = mb86a20s_get_interleaving(state, layer);
699 		if (rc < 0)
700 			goto noperlayer_error;
701 		dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
702 			__func__, rc);
703 		c->layer[layer].interleaving = rc;
704 		mb86a20s_layer_bitrate(fe, layer, c->layer[layer].modulation,
705 				       c->layer[layer].fec,
706 				       c->layer[layer].interleaving,
707 				       c->layer[layer].segment_count);
708 	}
709 
710 	rc = mb86a20s_writereg(state, 0x6d, 0x84);
711 	if (rc < 0)
712 		return rc;
713 	if ((rc & 0x60) == 0x20) {
714 		c->isdbt_sb_mode = 1;
715 		/* At least, one segment should exist */
716 		if (!c->isdbt_sb_segment_count)
717 			c->isdbt_sb_segment_count = 1;
718 	}
719 
720 	/* Get transmission mode and guard interval */
721 	rc = mb86a20s_readreg(state, 0x07);
722 	if (rc < 0)
723 		return rc;
724 	if ((rc & 0x60) == 0x20) {
725 		switch (rc & 0x0c >> 2) {
726 		case 0:
727 			c->transmission_mode = TRANSMISSION_MODE_2K;
728 			break;
729 		case 1:
730 			c->transmission_mode = TRANSMISSION_MODE_4K;
731 			break;
732 		case 2:
733 			c->transmission_mode = TRANSMISSION_MODE_8K;
734 			break;
735 		}
736 	}
737 	if (!(rc & 0x10)) {
738 		switch (rc & 0x3) {
739 		case 0:
740 			c->guard_interval = GUARD_INTERVAL_1_4;
741 			break;
742 		case 1:
743 			c->guard_interval = GUARD_INTERVAL_1_8;
744 			break;
745 		case 2:
746 			c->guard_interval = GUARD_INTERVAL_1_16;
747 			break;
748 		}
749 	}
750 	return 0;
751 
752 noperlayer_error:
753 
754 	/* per-layer info is incomplete; discard all per-layer */
755 	c->isdbt_layer_enabled = 0;
756 
757 	return rc;
758 }
759 
760 static int mb86a20s_reset_counters(struct dvb_frontend *fe)
761 {
762 	struct mb86a20s_state *state = fe->demodulator_priv;
763 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
764 	int rc, val;
765 
766 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
767 
768 	/* Reset the counters, if the channel changed */
769 	if (state->last_frequency != c->frequency) {
770 		memset(&c->cnr, 0, sizeof(c->cnr));
771 		memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
772 		memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
773 		memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
774 		memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
775 		memset(&c->block_error, 0, sizeof(c->block_error));
776 		memset(&c->block_count, 0, sizeof(c->block_count));
777 
778 		state->last_frequency = c->frequency;
779 	}
780 
781 	/* Clear status for most stats */
782 
783 	/* BER/PER counter reset */
784 	rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
785 	if (rc < 0)
786 		goto err;
787 
788 	/* CNR counter reset */
789 	rc = mb86a20s_readreg(state, 0x45);
790 	if (rc < 0)
791 		goto err;
792 	val = rc;
793 	rc = mb86a20s_writereg(state, 0x45, val | 0x10);
794 	if (rc < 0)
795 		goto err;
796 	rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
797 	if (rc < 0)
798 		goto err;
799 
800 	/* MER counter reset */
801 	rc = mb86a20s_writereg(state, 0x50, 0x50);
802 	if (rc < 0)
803 		goto err;
804 	rc = mb86a20s_readreg(state, 0x51);
805 	if (rc < 0)
806 		goto err;
807 	val = rc;
808 	rc = mb86a20s_writereg(state, 0x51, val | 0x01);
809 	if (rc < 0)
810 		goto err;
811 	rc = mb86a20s_writereg(state, 0x51, val & 0x06);
812 	if (rc < 0)
813 		goto err;
814 
815 	goto ok;
816 err:
817 	dev_err(&state->i2c->dev,
818 		"%s: Can't reset FE statistics (error %d).\n",
819 		__func__, rc);
820 ok:
821 	return rc;
822 }
823 
824 static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
825 				unsigned layer,
826 				u32 *error, u32 *count)
827 {
828 	struct mb86a20s_state *state = fe->demodulator_priv;
829 	int rc, val;
830 
831 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
832 
833 	if (layer >= NUM_LAYERS)
834 		return -EINVAL;
835 
836 	/* Check if the BER measures are already available */
837 	rc = mb86a20s_readreg(state, 0x54);
838 	if (rc < 0)
839 		return rc;
840 
841 	/* Check if data is available for that layer */
842 	if (!(rc & (1 << layer))) {
843 		dev_dbg(&state->i2c->dev,
844 			"%s: preBER for layer %c is not available yet.\n",
845 			__func__, 'A' + layer);
846 		return -EBUSY;
847 	}
848 
849 	/* Read Bit Error Count */
850 	rc = mb86a20s_readreg(state, 0x55 + layer * 3);
851 	if (rc < 0)
852 		return rc;
853 	*error = rc << 16;
854 	rc = mb86a20s_readreg(state, 0x56 + layer * 3);
855 	if (rc < 0)
856 		return rc;
857 	*error |= rc << 8;
858 	rc = mb86a20s_readreg(state, 0x57 + layer * 3);
859 	if (rc < 0)
860 		return rc;
861 	*error |= rc;
862 
863 	dev_dbg(&state->i2c->dev,
864 		"%s: bit error before Viterbi for layer %c: %d.\n",
865 		__func__, 'A' + layer, *error);
866 
867 	/* Read Bit Count */
868 	rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
869 	if (rc < 0)
870 		return rc;
871 	rc = mb86a20s_readreg(state, 0x51);
872 	if (rc < 0)
873 		return rc;
874 	*count = rc << 16;
875 	rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
876 	if (rc < 0)
877 		return rc;
878 	rc = mb86a20s_readreg(state, 0x51);
879 	if (rc < 0)
880 		return rc;
881 	*count |= rc << 8;
882 	rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
883 	if (rc < 0)
884 		return rc;
885 	rc = mb86a20s_readreg(state, 0x51);
886 	if (rc < 0)
887 		return rc;
888 	*count |= rc;
889 
890 	dev_dbg(&state->i2c->dev,
891 		"%s: bit count before Viterbi for layer %c: %d.\n",
892 		__func__, 'A' + layer, *count);
893 
894 
895 	/*
896 	 * As we get TMCC data from the frontend, we can better estimate the
897 	 * BER bit counters, in order to do the BER measure during a longer
898 	 * time. Use those data, if available, to update the bit count
899 	 * measure.
900 	 */
901 
902 	if (state->estimated_rate[layer]
903 	    && state->estimated_rate[layer] != *count) {
904 		dev_dbg(&state->i2c->dev,
905 			"%s: updating layer %c preBER counter to %d.\n",
906 			__func__, 'A' + layer, state->estimated_rate[layer]);
907 
908 		/* Turn off BER before Viterbi */
909 		rc = mb86a20s_writereg(state, 0x52, 0x00);
910 
911 		/* Update counter for this layer */
912 		rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
913 		if (rc < 0)
914 			return rc;
915 		rc = mb86a20s_writereg(state, 0x51,
916 				       state->estimated_rate[layer] >> 16);
917 		if (rc < 0)
918 			return rc;
919 		rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
920 		if (rc < 0)
921 			return rc;
922 		rc = mb86a20s_writereg(state, 0x51,
923 				       state->estimated_rate[layer] >> 8);
924 		if (rc < 0)
925 			return rc;
926 		rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
927 		if (rc < 0)
928 			return rc;
929 		rc = mb86a20s_writereg(state, 0x51,
930 				       state->estimated_rate[layer]);
931 		if (rc < 0)
932 			return rc;
933 
934 		/* Turn on BER before Viterbi */
935 		rc = mb86a20s_writereg(state, 0x52, 0x01);
936 
937 		/* Reset all preBER counters */
938 		rc = mb86a20s_writereg(state, 0x53, 0x00);
939 		if (rc < 0)
940 			return rc;
941 		rc = mb86a20s_writereg(state, 0x53, 0x07);
942 	} else {
943 		/* Reset counter to collect new data */
944 		rc = mb86a20s_readreg(state, 0x53);
945 		if (rc < 0)
946 			return rc;
947 		val = rc;
948 		rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
949 		if (rc < 0)
950 			return rc;
951 		rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
952 	}
953 
954 	return rc;
955 }
956 
957 static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
958 				 unsigned layer,
959 				  u32 *error, u32 *count)
960 {
961 	struct mb86a20s_state *state = fe->demodulator_priv;
962 	u32 counter, collect_rate;
963 	int rc, val;
964 
965 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
966 
967 	if (layer >= NUM_LAYERS)
968 		return -EINVAL;
969 
970 	/* Check if the BER measures are already available */
971 	rc = mb86a20s_readreg(state, 0x60);
972 	if (rc < 0)
973 		return rc;
974 
975 	/* Check if data is available for that layer */
976 	if (!(rc & (1 << layer))) {
977 		dev_dbg(&state->i2c->dev,
978 			"%s: post BER for layer %c is not available yet.\n",
979 			__func__, 'A' + layer);
980 		return -EBUSY;
981 	}
982 
983 	/* Read Bit Error Count */
984 	rc = mb86a20s_readreg(state, 0x64 + layer * 3);
985 	if (rc < 0)
986 		return rc;
987 	*error = rc << 16;
988 	rc = mb86a20s_readreg(state, 0x65 + layer * 3);
989 	if (rc < 0)
990 		return rc;
991 	*error |= rc << 8;
992 	rc = mb86a20s_readreg(state, 0x66 + layer * 3);
993 	if (rc < 0)
994 		return rc;
995 	*error |= rc;
996 
997 	dev_dbg(&state->i2c->dev,
998 		"%s: post bit error for layer %c: %d.\n",
999 		__func__, 'A' + layer, *error);
1000 
1001 	/* Read Bit Count */
1002 	rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
1003 	if (rc < 0)
1004 		return rc;
1005 	rc = mb86a20s_readreg(state, 0x51);
1006 	if (rc < 0)
1007 		return rc;
1008 	counter = rc << 8;
1009 	rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
1010 	if (rc < 0)
1011 		return rc;
1012 	rc = mb86a20s_readreg(state, 0x51);
1013 	if (rc < 0)
1014 		return rc;
1015 	counter |= rc;
1016 	*count = counter * 204 * 8;
1017 
1018 	dev_dbg(&state->i2c->dev,
1019 		"%s: post bit count for layer %c: %d.\n",
1020 		__func__, 'A' + layer, *count);
1021 
1022 	/*
1023 	 * As we get TMCC data from the frontend, we can better estimate the
1024 	 * BER bit counters, in order to do the BER measure during a longer
1025 	 * time. Use those data, if available, to update the bit count
1026 	 * measure.
1027 	 */
1028 
1029 	if (!state->estimated_rate[layer])
1030 		goto reset_measurement;
1031 
1032 	collect_rate = state->estimated_rate[layer] / 204 / 8;
1033 	if (collect_rate < 32)
1034 		collect_rate = 32;
1035 	if (collect_rate > 65535)
1036 		collect_rate = 65535;
1037 	if (collect_rate != counter) {
1038 		dev_dbg(&state->i2c->dev,
1039 			"%s: updating postBER counter on layer %c to %d.\n",
1040 			__func__, 'A' + layer, collect_rate);
1041 
1042 		/* Turn off BER after Viterbi */
1043 		rc = mb86a20s_writereg(state, 0x5e, 0x00);
1044 
1045 		/* Update counter for this layer */
1046 		rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
1047 		if (rc < 0)
1048 			return rc;
1049 		rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1050 		if (rc < 0)
1051 			return rc;
1052 		rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
1053 		if (rc < 0)
1054 			return rc;
1055 		rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1056 		if (rc < 0)
1057 			return rc;
1058 
1059 		/* Turn on BER after Viterbi */
1060 		rc = mb86a20s_writereg(state, 0x5e, 0x07);
1061 
1062 		/* Reset all preBER counters */
1063 		rc = mb86a20s_writereg(state, 0x5f, 0x00);
1064 		if (rc < 0)
1065 			return rc;
1066 		rc = mb86a20s_writereg(state, 0x5f, 0x07);
1067 
1068 		return rc;
1069 	}
1070 
1071 reset_measurement:
1072 	/* Reset counter to collect new data */
1073 	rc = mb86a20s_readreg(state, 0x5f);
1074 	if (rc < 0)
1075 		return rc;
1076 	val = rc;
1077 	rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
1078 	if (rc < 0)
1079 		return rc;
1080 	rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
1081 
1082 	return rc;
1083 }
1084 
1085 static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
1086 			    unsigned layer,
1087 			    u32 *error, u32 *count)
1088 {
1089 	struct mb86a20s_state *state = fe->demodulator_priv;
1090 	int rc, val;
1091 	u32 collect_rate;
1092 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1093 
1094 	if (layer >= NUM_LAYERS)
1095 		return -EINVAL;
1096 
1097 	/* Check if the PER measures are already available */
1098 	rc = mb86a20s_writereg(state, 0x50, 0xb8);
1099 	if (rc < 0)
1100 		return rc;
1101 	rc = mb86a20s_readreg(state, 0x51);
1102 	if (rc < 0)
1103 		return rc;
1104 
1105 	/* Check if data is available for that layer */
1106 
1107 	if (!(rc & (1 << layer))) {
1108 		dev_dbg(&state->i2c->dev,
1109 			"%s: block counts for layer %c aren't available yet.\n",
1110 			__func__, 'A' + layer);
1111 		return -EBUSY;
1112 	}
1113 
1114 	/* Read Packet error Count */
1115 	rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
1116 	if (rc < 0)
1117 		return rc;
1118 	rc = mb86a20s_readreg(state, 0x51);
1119 	if (rc < 0)
1120 		return rc;
1121 	*error = rc << 8;
1122 	rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
1123 	if (rc < 0)
1124 		return rc;
1125 	rc = mb86a20s_readreg(state, 0x51);
1126 	if (rc < 0)
1127 		return rc;
1128 	*error |= rc;
1129 	dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
1130 		__func__, 'A' + layer, *error);
1131 
1132 	/* Read Bit Count */
1133 	rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1134 	if (rc < 0)
1135 		return rc;
1136 	rc = mb86a20s_readreg(state, 0x51);
1137 	if (rc < 0)
1138 		return rc;
1139 	*count = rc << 8;
1140 	rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1141 	if (rc < 0)
1142 		return rc;
1143 	rc = mb86a20s_readreg(state, 0x51);
1144 	if (rc < 0)
1145 		return rc;
1146 	*count |= rc;
1147 
1148 	dev_dbg(&state->i2c->dev,
1149 		"%s: block count for layer %c: %d.\n",
1150 		__func__, 'A' + layer, *count);
1151 
1152 	/*
1153 	 * As we get TMCC data from the frontend, we can better estimate the
1154 	 * BER bit counters, in order to do the BER measure during a longer
1155 	 * time. Use those data, if available, to update the bit count
1156 	 * measure.
1157 	 */
1158 
1159 	if (!state->estimated_rate[layer])
1160 		goto reset_measurement;
1161 
1162 	collect_rate = state->estimated_rate[layer] / 204 / 8;
1163 	if (collect_rate < 32)
1164 		collect_rate = 32;
1165 	if (collect_rate > 65535)
1166 		collect_rate = 65535;
1167 
1168 	if (collect_rate != *count) {
1169 		dev_dbg(&state->i2c->dev,
1170 			"%s: updating PER counter on layer %c to %d.\n",
1171 			__func__, 'A' + layer, collect_rate);
1172 
1173 		/* Stop PER measurement */
1174 		rc = mb86a20s_writereg(state, 0x50, 0xb0);
1175 		if (rc < 0)
1176 			return rc;
1177 		rc = mb86a20s_writereg(state, 0x51, 0x00);
1178 		if (rc < 0)
1179 			return rc;
1180 
1181 		/* Update this layer's counter */
1182 		rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1183 		if (rc < 0)
1184 			return rc;
1185 		rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1186 		if (rc < 0)
1187 			return rc;
1188 		rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1189 		if (rc < 0)
1190 			return rc;
1191 		rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1192 		if (rc < 0)
1193 			return rc;
1194 
1195 		/* start PER measurement */
1196 		rc = mb86a20s_writereg(state, 0x50, 0xb0);
1197 		if (rc < 0)
1198 			return rc;
1199 		rc = mb86a20s_writereg(state, 0x51, 0x07);
1200 		if (rc < 0)
1201 			return rc;
1202 
1203 		/* Reset all counters to collect new data */
1204 		rc = mb86a20s_writereg(state, 0x50, 0xb1);
1205 		if (rc < 0)
1206 			return rc;
1207 		rc = mb86a20s_writereg(state, 0x51, 0x07);
1208 		if (rc < 0)
1209 			return rc;
1210 		rc = mb86a20s_writereg(state, 0x51, 0x00);
1211 
1212 		return rc;
1213 	}
1214 
1215 reset_measurement:
1216 	/* Reset counter to collect new data */
1217 	rc = mb86a20s_writereg(state, 0x50, 0xb1);
1218 	if (rc < 0)
1219 		return rc;
1220 	rc = mb86a20s_readreg(state, 0x51);
1221 	if (rc < 0)
1222 		return rc;
1223 	val = rc;
1224 	rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
1225 	if (rc < 0)
1226 		return rc;
1227 	rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
1228 
1229 	return rc;
1230 }
1231 
1232 struct linear_segments {
1233 	unsigned x, y;
1234 };
1235 
1236 /*
1237  * All tables below return a dB/1000 measurement
1238  */
1239 
1240 static struct linear_segments cnr_to_db_table[] = {
1241 	{ 19648,     0},
1242 	{ 18187,  1000},
1243 	{ 16534,  2000},
1244 	{ 14823,  3000},
1245 	{ 13161,  4000},
1246 	{ 11622,  5000},
1247 	{ 10279,  6000},
1248 	{  9089,  7000},
1249 	{  8042,  8000},
1250 	{  7137,  9000},
1251 	{  6342, 10000},
1252 	{  5641, 11000},
1253 	{  5030, 12000},
1254 	{  4474, 13000},
1255 	{  3988, 14000},
1256 	{  3556, 15000},
1257 	{  3180, 16000},
1258 	{  2841, 17000},
1259 	{  2541, 18000},
1260 	{  2276, 19000},
1261 	{  2038, 20000},
1262 	{  1800, 21000},
1263 	{  1625, 22000},
1264 	{  1462, 23000},
1265 	{  1324, 24000},
1266 	{  1175, 25000},
1267 	{  1063, 26000},
1268 	{   980, 27000},
1269 	{   907, 28000},
1270 	{   840, 29000},
1271 	{   788, 30000},
1272 };
1273 
1274 static struct linear_segments cnr_64qam_table[] = {
1275 	{ 3922688,     0},
1276 	{ 3920384,  1000},
1277 	{ 3902720,  2000},
1278 	{ 3894784,  3000},
1279 	{ 3882496,  4000},
1280 	{ 3872768,  5000},
1281 	{ 3858944,  6000},
1282 	{ 3851520,  7000},
1283 	{ 3838976,  8000},
1284 	{ 3829248,  9000},
1285 	{ 3818240, 10000},
1286 	{ 3806976, 11000},
1287 	{ 3791872, 12000},
1288 	{ 3767040, 13000},
1289 	{ 3720960, 14000},
1290 	{ 3637504, 15000},
1291 	{ 3498496, 16000},
1292 	{ 3296000, 17000},
1293 	{ 3031040, 18000},
1294 	{ 2715392, 19000},
1295 	{ 2362624, 20000},
1296 	{ 1963264, 21000},
1297 	{ 1649664, 22000},
1298 	{ 1366784, 23000},
1299 	{ 1120768, 24000},
1300 	{  890880, 25000},
1301 	{  723456, 26000},
1302 	{  612096, 27000},
1303 	{  518912, 28000},
1304 	{  448256, 29000},
1305 	{  388864, 30000},
1306 };
1307 
1308 static struct linear_segments cnr_16qam_table[] = {
1309 	{ 5314816,     0},
1310 	{ 5219072,  1000},
1311 	{ 5118720,  2000},
1312 	{ 4998912,  3000},
1313 	{ 4875520,  4000},
1314 	{ 4736000,  5000},
1315 	{ 4604160,  6000},
1316 	{ 4458752,  7000},
1317 	{ 4300288,  8000},
1318 	{ 4092928,  9000},
1319 	{ 3836160, 10000},
1320 	{ 3521024, 11000},
1321 	{ 3155968, 12000},
1322 	{ 2756864, 13000},
1323 	{ 2347008, 14000},
1324 	{ 1955072, 15000},
1325 	{ 1593600, 16000},
1326 	{ 1297920, 17000},
1327 	{ 1043968, 18000},
1328 	{  839680, 19000},
1329 	{  672256, 20000},
1330 	{  523008, 21000},
1331 	{  424704, 22000},
1332 	{  345088, 23000},
1333 	{  280064, 24000},
1334 	{  221440, 25000},
1335 	{  179712, 26000},
1336 	{  151040, 27000},
1337 	{  128512, 28000},
1338 	{  110080, 29000},
1339 	{   95744, 30000},
1340 };
1341 
1342 struct linear_segments cnr_qpsk_table[] = {
1343 	{ 2834176,     0},
1344 	{ 2683648,  1000},
1345 	{ 2536960,  2000},
1346 	{ 2391808,  3000},
1347 	{ 2133248,  4000},
1348 	{ 1906176,  5000},
1349 	{ 1666560,  6000},
1350 	{ 1422080,  7000},
1351 	{ 1189632,  8000},
1352 	{  976384,  9000},
1353 	{  790272, 10000},
1354 	{  633344, 11000},
1355 	{  505600, 12000},
1356 	{  402944, 13000},
1357 	{  320768, 14000},
1358 	{  255488, 15000},
1359 	{  204032, 16000},
1360 	{  163072, 17000},
1361 	{  130304, 18000},
1362 	{  105216, 19000},
1363 	{   83456, 20000},
1364 	{   65024, 21000},
1365 	{   52480, 22000},
1366 	{   42752, 23000},
1367 	{   34560, 24000},
1368 	{   27136, 25000},
1369 	{   22016, 26000},
1370 	{   18432, 27000},
1371 	{   15616, 28000},
1372 	{   13312, 29000},
1373 	{   11520, 30000},
1374 };
1375 
1376 static u32 interpolate_value(u32 value, struct linear_segments *segments,
1377 			     unsigned len)
1378 {
1379 	u64 tmp64;
1380 	u32 dx, dy;
1381 	int i, ret;
1382 
1383 	if (value >= segments[0].x)
1384 		return segments[0].y;
1385 	if (value < segments[len-1].x)
1386 		return segments[len-1].y;
1387 
1388 	for (i = 1; i < len - 1; i++) {
1389 		/* If value is identical, no need to interpolate */
1390 		if (value == segments[i].x)
1391 			return segments[i].y;
1392 		if (value > segments[i].x)
1393 			break;
1394 	}
1395 
1396 	/* Linear interpolation between the two (x,y) points */
1397 	dy = segments[i].y - segments[i - 1].y;
1398 	dx = segments[i - 1].x - segments[i].x;
1399 	tmp64 = value - segments[i].x;
1400 	tmp64 *= dy;
1401 	do_div(tmp64, dx);
1402 	ret = segments[i].y - tmp64;
1403 
1404 	return ret;
1405 }
1406 
1407 static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
1408 {
1409 	struct mb86a20s_state *state = fe->demodulator_priv;
1410 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1411 	u32 cnr_linear, cnr;
1412 	int rc, val;
1413 
1414 	/* Check if CNR is available */
1415 	rc = mb86a20s_readreg(state, 0x45);
1416 	if (rc < 0)
1417 		return rc;
1418 
1419 	if (!(rc & 0x40)) {
1420 		dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n",
1421 			 __func__);
1422 		return -EBUSY;
1423 	}
1424 	val = rc;
1425 
1426 	rc = mb86a20s_readreg(state, 0x46);
1427 	if (rc < 0)
1428 		return rc;
1429 	cnr_linear = rc << 8;
1430 
1431 	rc = mb86a20s_readreg(state, 0x46);
1432 	if (rc < 0)
1433 		return rc;
1434 	cnr_linear |= rc;
1435 
1436 	cnr = interpolate_value(cnr_linear,
1437 				cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));
1438 
1439 	c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1440 	c->cnr.stat[0].svalue = cnr;
1441 
1442 	dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
1443 		__func__, cnr / 1000, cnr % 1000, cnr_linear);
1444 
1445 	/* CNR counter reset */
1446 	rc = mb86a20s_writereg(state, 0x45, val | 0x10);
1447 	if (rc < 0)
1448 		return rc;
1449 	rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
1450 
1451 	return rc;
1452 }
1453 
1454 static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
1455 {
1456 	struct mb86a20s_state *state = fe->demodulator_priv;
1457 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1458 	u32 mer, cnr;
1459 	int rc, val, layer;
1460 	struct linear_segments *segs;
1461 	unsigned segs_len;
1462 
1463 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1464 
1465 	/* Check if the measures are already available */
1466 	rc = mb86a20s_writereg(state, 0x50, 0x5b);
1467 	if (rc < 0)
1468 		return rc;
1469 	rc = mb86a20s_readreg(state, 0x51);
1470 	if (rc < 0)
1471 		return rc;
1472 
1473 	/* Check if data is available */
1474 	if (!(rc & 0x01)) {
1475 		dev_dbg(&state->i2c->dev,
1476 			"%s: MER measures aren't available yet.\n", __func__);
1477 		return -EBUSY;
1478 	}
1479 
1480 	/* Read all layers */
1481 	for (layer = 0; layer < NUM_LAYERS; layer++) {
1482 		if (!(c->isdbt_layer_enabled & (1 << layer))) {
1483 			c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1484 			continue;
1485 		}
1486 
1487 		rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3);
1488 		if (rc < 0)
1489 			return rc;
1490 		rc = mb86a20s_readreg(state, 0x51);
1491 		if (rc < 0)
1492 			return rc;
1493 		mer = rc << 16;
1494 		rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3);
1495 		if (rc < 0)
1496 			return rc;
1497 		rc = mb86a20s_readreg(state, 0x51);
1498 		if (rc < 0)
1499 			return rc;
1500 		mer |= rc << 8;
1501 		rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3);
1502 		if (rc < 0)
1503 			return rc;
1504 		rc = mb86a20s_readreg(state, 0x51);
1505 		if (rc < 0)
1506 			return rc;
1507 		mer |= rc;
1508 
1509 		switch (c->layer[layer].modulation) {
1510 		case DQPSK:
1511 		case QPSK:
1512 			segs = cnr_qpsk_table;
1513 			segs_len = ARRAY_SIZE(cnr_qpsk_table);
1514 			break;
1515 		case QAM_16:
1516 			segs = cnr_16qam_table;
1517 			segs_len = ARRAY_SIZE(cnr_16qam_table);
1518 			break;
1519 		default:
1520 		case QAM_64:
1521 			segs = cnr_64qam_table;
1522 			segs_len = ARRAY_SIZE(cnr_64qam_table);
1523 			break;
1524 		}
1525 		cnr = interpolate_value(mer, segs, segs_len);
1526 
1527 		c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL;
1528 		c->cnr.stat[1 + layer].svalue = cnr;
1529 
1530 		dev_dbg(&state->i2c->dev,
1531 			"%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
1532 			__func__, 'A' + layer, cnr / 1000, cnr % 1000, mer);
1533 
1534 	}
1535 
1536 	/* Start a new MER measurement */
1537 	/* MER counter reset */
1538 	rc = mb86a20s_writereg(state, 0x50, 0x50);
1539 	if (rc < 0)
1540 		return rc;
1541 	rc = mb86a20s_readreg(state, 0x51);
1542 	if (rc < 0)
1543 		return rc;
1544 	val = rc;
1545 
1546 	rc = mb86a20s_writereg(state, 0x51, val | 0x01);
1547 	if (rc < 0)
1548 		return rc;
1549 	rc = mb86a20s_writereg(state, 0x51, val & 0x06);
1550 	if (rc < 0)
1551 		return rc;
1552 
1553 	return 0;
1554 }
1555 
1556 static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
1557 {
1558 	struct mb86a20s_state *state = fe->demodulator_priv;
1559 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1560 	int layer;
1561 
1562 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1563 
1564 	/* Fill the length of each status counter */
1565 
1566 	/* Only global stats */
1567 	c->strength.len = 1;
1568 
1569 	/* Per-layer stats - 3 layers + global */
1570 	c->cnr.len = NUM_LAYERS + 1;
1571 	c->pre_bit_error.len = NUM_LAYERS + 1;
1572 	c->pre_bit_count.len = NUM_LAYERS + 1;
1573 	c->post_bit_error.len = NUM_LAYERS + 1;
1574 	c->post_bit_count.len = NUM_LAYERS + 1;
1575 	c->block_error.len = NUM_LAYERS + 1;
1576 	c->block_count.len = NUM_LAYERS + 1;
1577 
1578 	/* Signal is always available */
1579 	c->strength.stat[0].scale = FE_SCALE_RELATIVE;
1580 	c->strength.stat[0].uvalue = 0;
1581 
1582 	/* Put all of them at FE_SCALE_NOT_AVAILABLE */
1583 	for (layer = 0; layer < NUM_LAYERS + 1; layer++) {
1584 		c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1585 		c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1586 		c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1587 		c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1588 		c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1589 		c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1590 		c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1591 	}
1592 }
1593 
1594 static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr)
1595 {
1596 	struct mb86a20s_state *state = fe->demodulator_priv;
1597 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1598 	int rc = 0, layer;
1599 	u32 bit_error = 0, bit_count = 0;
1600 	u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
1601 	u32 t_post_bit_error = 0, t_post_bit_count = 0;
1602 	u32 block_error = 0, block_count = 0;
1603 	u32 t_block_error = 0, t_block_count = 0;
1604 	int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0;
1605 	int per_layers = 0;
1606 
1607 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1608 
1609 	mb86a20s_get_main_CNR(fe);
1610 
1611 	/* Get per-layer stats */
1612 	mb86a20s_get_blk_error_layer_CNR(fe);
1613 
1614 	/*
1615 	 * At state 7, only CNR is available
1616 	 * For BER measures, state=9 is required
1617 	 * FIXME: we may get MER measures with state=8
1618 	 */
1619 	if (status_nr < 9)
1620 		return 0;
1621 
1622 	for (layer = 0; layer < NUM_LAYERS; layer++) {
1623 		if (c->isdbt_layer_enabled & (1 << layer)) {
1624 			/* Layer is active and has rc segments */
1625 			active_layers++;
1626 
1627 			/* Handle BER before vterbi */
1628 			rc = mb86a20s_get_pre_ber(fe, layer,
1629 						  &bit_error, &bit_count);
1630 			if (rc >= 0) {
1631 				c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1632 				c->pre_bit_error.stat[1 + layer].uvalue += bit_error;
1633 				c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1634 				c->pre_bit_count.stat[1 + layer].uvalue += bit_count;
1635 			} else if (rc != -EBUSY) {
1636 				/*
1637 					* If an I/O error happened,
1638 					* measures are now unavailable
1639 					*/
1640 				c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1641 				c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1642 				dev_err(&state->i2c->dev,
1643 					"%s: Can't get BER for layer %c (error %d).\n",
1644 					__func__, 'A' + layer, rc);
1645 			}
1646 			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1647 				pre_ber_layers++;
1648 
1649 			/* Handle BER post vterbi */
1650 			rc = mb86a20s_get_post_ber(fe, layer,
1651 						   &bit_error, &bit_count);
1652 			if (rc >= 0) {
1653 				c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1654 				c->post_bit_error.stat[1 + layer].uvalue += bit_error;
1655 				c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1656 				c->post_bit_count.stat[1 + layer].uvalue += bit_count;
1657 			} else if (rc != -EBUSY) {
1658 				/*
1659 					* If an I/O error happened,
1660 					* measures are now unavailable
1661 					*/
1662 				c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1663 				c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1664 				dev_err(&state->i2c->dev,
1665 					"%s: Can't get BER for layer %c (error %d).\n",
1666 					__func__, 'A' + layer, rc);
1667 			}
1668 			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1669 				post_ber_layers++;
1670 
1671 			/* Handle Block errors for PER/UCB reports */
1672 			rc = mb86a20s_get_blk_error(fe, layer,
1673 						&block_error,
1674 						&block_count);
1675 			if (rc >= 0) {
1676 				c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1677 				c->block_error.stat[1 + layer].uvalue += block_error;
1678 				c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1679 				c->block_count.stat[1 + layer].uvalue += block_count;
1680 			} else if (rc != -EBUSY) {
1681 				/*
1682 					* If an I/O error happened,
1683 					* measures are now unavailable
1684 					*/
1685 				c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1686 				c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1687 				dev_err(&state->i2c->dev,
1688 					"%s: Can't get PER for layer %c (error %d).\n",
1689 					__func__, 'A' + layer, rc);
1690 
1691 			}
1692 			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1693 				per_layers++;
1694 
1695 			/* Update total preBER */
1696 			t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue;
1697 			t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue;
1698 
1699 			/* Update total postBER */
1700 			t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue;
1701 			t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue;
1702 
1703 			/* Update total PER */
1704 			t_block_error += c->block_error.stat[1 + layer].uvalue;
1705 			t_block_count += c->block_count.stat[1 + layer].uvalue;
1706 		}
1707 	}
1708 
1709 	/*
1710 	 * Start showing global count if at least one error count is
1711 	 * available.
1712 	 */
1713 	if (pre_ber_layers) {
1714 		/*
1715 		 * At least one per-layer BER measure was read. We can now
1716 		 * calculate the total BER
1717 		 *
1718 		 * Total Bit Error/Count is calculated as the sum of the
1719 		 * bit errors on all active layers.
1720 		 */
1721 		c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1722 		c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
1723 		c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1724 		c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
1725 	} else {
1726 		c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1727 		c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1728 	}
1729 
1730 	/*
1731 	 * Start showing global count if at least one error count is
1732 	 * available.
1733 	 */
1734 	if (post_ber_layers) {
1735 		/*
1736 		 * At least one per-layer BER measure was read. We can now
1737 		 * calculate the total BER
1738 		 *
1739 		 * Total Bit Error/Count is calculated as the sum of the
1740 		 * bit errors on all active layers.
1741 		 */
1742 		c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1743 		c->post_bit_error.stat[0].uvalue = t_post_bit_error;
1744 		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1745 		c->post_bit_count.stat[0].uvalue = t_post_bit_count;
1746 	} else {
1747 		c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1748 		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1749 	}
1750 
1751 	if (per_layers) {
1752 		/*
1753 		 * At least one per-layer UCB measure was read. We can now
1754 		 * calculate the total UCB
1755 		 *
1756 		 * Total block Error/Count is calculated as the sum of the
1757 		 * block errors on all active layers.
1758 		 */
1759 		c->block_error.stat[0].scale = FE_SCALE_COUNTER;
1760 		c->block_error.stat[0].uvalue = t_block_error;
1761 		c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1762 		c->block_count.stat[0].uvalue = t_block_count;
1763 	} else {
1764 		c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1765 		c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1766 	}
1767 
1768 	return rc;
1769 }
1770 
1771 /*
1772  * The functions below are called via DVB callbacks, so they need to
1773  * properly use the I2C gate control
1774  */
1775 
1776 static int mb86a20s_initfe(struct dvb_frontend *fe)
1777 {
1778 	struct mb86a20s_state *state = fe->demodulator_priv;
1779 	u64 pll;
1780 	u32 fclk;
1781 	int rc;
1782 	u8  regD5 = 1, reg71, reg09 = 0x3a;
1783 
1784 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1785 
1786 	if (fe->ops.i2c_gate_ctrl)
1787 		fe->ops.i2c_gate_ctrl(fe, 0);
1788 
1789 	/* Initialize the frontend */
1790 	rc = mb86a20s_writeregdata(state, mb86a20s_init1);
1791 	if (rc < 0)
1792 		goto err;
1793 
1794 	if (!state->inversion)
1795 		reg09 |= 0x04;
1796 	rc = mb86a20s_writereg(state, 0x09, reg09);
1797 	if (rc < 0)
1798 		goto err;
1799 	if (!state->bw)
1800 		reg71 = 1;
1801 	else
1802 		reg71 = 0;
1803 	rc = mb86a20s_writereg(state, 0x39, reg71);
1804 	if (rc < 0)
1805 		goto err;
1806 	rc = mb86a20s_writereg(state, 0x71, state->bw);
1807 	if (rc < 0)
1808 		goto err;
1809 	if (state->subchannel) {
1810 		rc = mb86a20s_writereg(state, 0x44, state->subchannel);
1811 		if (rc < 0)
1812 			goto err;
1813 	}
1814 
1815 	fclk = state->config->fclk;
1816 	if (!fclk)
1817 		fclk = 32571428;
1818 
1819 	/* Adjust IF frequency to match tuner */
1820 	if (fe->ops.tuner_ops.get_if_frequency)
1821 		fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq);
1822 
1823 	if (!state->if_freq)
1824 		state->if_freq = 3300000;
1825 
1826 	pll = (((u64)1) << 34) * state->if_freq;
1827 	do_div(pll, 63 * fclk);
1828 	pll = (1 << 25) - pll;
1829 	rc = mb86a20s_writereg(state, 0x28, 0x2a);
1830 	if (rc < 0)
1831 		goto err;
1832 	rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1833 	if (rc < 0)
1834 		goto err;
1835 	rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1836 	if (rc < 0)
1837 		goto err;
1838 	rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1839 	if (rc < 0)
1840 		goto err;
1841 	dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n",
1842 		__func__, fclk, state->if_freq, (long long)pll);
1843 
1844 	/* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */
1845 	pll = state->if_freq * 1677721600L;
1846 	do_div(pll, 1628571429L);
1847 	rc = mb86a20s_writereg(state, 0x28, 0x20);
1848 	if (rc < 0)
1849 		goto err;
1850 	rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1851 	if (rc < 0)
1852 		goto err;
1853 	rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1854 	if (rc < 0)
1855 		goto err;
1856 	rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1857 	if (rc < 0)
1858 		goto err;
1859 	dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n",
1860 		__func__, state->if_freq, (long long)pll);
1861 
1862 	if (!state->config->is_serial)
1863 		regD5 &= ~1;
1864 
1865 	rc = mb86a20s_writereg(state, 0x50, 0xd5);
1866 	if (rc < 0)
1867 		goto err;
1868 	rc = mb86a20s_writereg(state, 0x51, regD5);
1869 	if (rc < 0)
1870 		goto err;
1871 
1872 	rc = mb86a20s_writeregdata(state, mb86a20s_init2);
1873 	if (rc < 0)
1874 		goto err;
1875 
1876 
1877 err:
1878 	if (fe->ops.i2c_gate_ctrl)
1879 		fe->ops.i2c_gate_ctrl(fe, 1);
1880 
1881 	if (rc < 0) {
1882 		state->need_init = true;
1883 		dev_info(&state->i2c->dev,
1884 			 "mb86a20s: Init failed. Will try again later\n");
1885 	} else {
1886 		state->need_init = false;
1887 		dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
1888 	}
1889 	return rc;
1890 }
1891 
1892 static int mb86a20s_set_frontend(struct dvb_frontend *fe)
1893 {
1894 	struct mb86a20s_state *state = fe->demodulator_priv;
1895 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1896 	int rc, if_freq;
1897 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1898 
1899 	if (!c->isdbt_layer_enabled)
1900 		c->isdbt_layer_enabled = 7;
1901 
1902 	if (c->isdbt_layer_enabled == 1)
1903 		state->bw = MB86A20S_1SEG;
1904 	else if (c->isdbt_partial_reception)
1905 		state->bw = MB86A20S_13SEG_PARTIAL;
1906 	else
1907 		state->bw = MB86A20S_13SEG;
1908 
1909 	if (c->inversion == INVERSION_ON)
1910 		state->inversion = true;
1911 	else
1912 		state->inversion = false;
1913 
1914 	if (!c->isdbt_sb_mode) {
1915 		state->subchannel = 0;
1916 	} else {
1917 		if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel))
1918 			c->isdbt_sb_subchannel = 0;
1919 
1920 		state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel];
1921 	}
1922 
1923 	/*
1924 	 * Gate should already be opened, but it doesn't hurt to
1925 	 * double-check
1926 	 */
1927 	if (fe->ops.i2c_gate_ctrl)
1928 		fe->ops.i2c_gate_ctrl(fe, 1);
1929 	fe->ops.tuner_ops.set_params(fe);
1930 
1931 	if (fe->ops.tuner_ops.get_if_frequency)
1932 		fe->ops.tuner_ops.get_if_frequency(fe, &if_freq);
1933 
1934 	/*
1935 	 * Make it more reliable: if, for some reason, the initial
1936 	 * device initialization doesn't happen, initialize it when
1937 	 * a SBTVD parameters are adjusted.
1938 	 *
1939 	 * Unfortunately, due to a hard to track bug at tda829x/tda18271,
1940 	 * the agc callback logic is not called during DVB attach time,
1941 	 * causing mb86a20s to not be initialized with Kworld SBTVD.
1942 	 * So, this hack is needed, in order to make Kworld SBTVD to work.
1943 	 *
1944 	 * It is also needed to change the IF after the initial init.
1945 	 *
1946 	 * HACK: Always init the frontend when set_frontend is called:
1947 	 * it was noticed that, on some devices, it fails to lock on a
1948 	 * different channel. So, it is better to reset everything, even
1949 	 * wasting some time, than to loose channel lock.
1950 	 */
1951 	mb86a20s_initfe(fe);
1952 
1953 	if (fe->ops.i2c_gate_ctrl)
1954 		fe->ops.i2c_gate_ctrl(fe, 0);
1955 
1956 	rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
1957 	mb86a20s_reset_counters(fe);
1958 	mb86a20s_stats_not_ready(fe);
1959 
1960 	if (fe->ops.i2c_gate_ctrl)
1961 		fe->ops.i2c_gate_ctrl(fe, 1);
1962 
1963 	return rc;
1964 }
1965 
1966 static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
1967 					  fe_status_t *status)
1968 {
1969 	struct mb86a20s_state *state = fe->demodulator_priv;
1970 	int rc, status_nr;
1971 
1972 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1973 
1974 	if (fe->ops.i2c_gate_ctrl)
1975 		fe->ops.i2c_gate_ctrl(fe, 0);
1976 
1977 	/* Get lock */
1978 	status_nr = mb86a20s_read_status(fe, status);
1979 	if (status_nr < 7) {
1980 		mb86a20s_stats_not_ready(fe);
1981 		mb86a20s_reset_frontend_cache(fe);
1982 	}
1983 	if (status_nr < 0) {
1984 		dev_err(&state->i2c->dev,
1985 			"%s: Can't read frontend lock status\n", __func__);
1986 		goto error;
1987 	}
1988 
1989 	/* Get signal strength */
1990 	rc = mb86a20s_read_signal_strength(fe);
1991 	if (rc < 0) {
1992 		dev_err(&state->i2c->dev,
1993 			"%s: Can't reset VBER registers.\n", __func__);
1994 		mb86a20s_stats_not_ready(fe);
1995 		mb86a20s_reset_frontend_cache(fe);
1996 
1997 		rc = 0;		/* Status is OK */
1998 		goto error;
1999 	}
2000 
2001 	if (status_nr >= 7) {
2002 		/* Get TMCC info*/
2003 		rc = mb86a20s_get_frontend(fe);
2004 		if (rc < 0) {
2005 			dev_err(&state->i2c->dev,
2006 				"%s: Can't get FE TMCC data.\n", __func__);
2007 			rc = 0;		/* Status is OK */
2008 			goto error;
2009 		}
2010 
2011 		/* Get statistics */
2012 		rc = mb86a20s_get_stats(fe, status_nr);
2013 		if (rc < 0 && rc != -EBUSY) {
2014 			dev_err(&state->i2c->dev,
2015 				"%s: Can't get FE statistics.\n", __func__);
2016 			rc = 0;
2017 			goto error;
2018 		}
2019 		rc = 0;	/* Don't return EBUSY to userspace */
2020 	}
2021 	goto ok;
2022 
2023 error:
2024 	mb86a20s_stats_not_ready(fe);
2025 
2026 ok:
2027 	if (fe->ops.i2c_gate_ctrl)
2028 		fe->ops.i2c_gate_ctrl(fe, 1);
2029 
2030 	return rc;
2031 }
2032 
2033 static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
2034 						    u16 *strength)
2035 {
2036 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2037 
2038 
2039 	*strength = c->strength.stat[0].uvalue;
2040 
2041 	return 0;
2042 }
2043 
2044 static int mb86a20s_get_frontend_dummy(struct dvb_frontend *fe)
2045 {
2046 	/*
2047 	 * get_frontend is now handled together with other stats
2048 	 * retrival, when read_status() is called, as some statistics
2049 	 * will depend on the layers detection.
2050 	 */
2051 	return 0;
2052 };
2053 
2054 static int mb86a20s_tune(struct dvb_frontend *fe,
2055 			bool re_tune,
2056 			unsigned int mode_flags,
2057 			unsigned int *delay,
2058 			fe_status_t *status)
2059 {
2060 	struct mb86a20s_state *state = fe->demodulator_priv;
2061 	int rc = 0;
2062 
2063 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2064 
2065 	if (re_tune)
2066 		rc = mb86a20s_set_frontend(fe);
2067 
2068 	if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
2069 		mb86a20s_read_status_and_stats(fe, status);
2070 
2071 	return rc;
2072 }
2073 
2074 static void mb86a20s_release(struct dvb_frontend *fe)
2075 {
2076 	struct mb86a20s_state *state = fe->demodulator_priv;
2077 
2078 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2079 
2080 	kfree(state);
2081 }
2082 
2083 static struct dvb_frontend_ops mb86a20s_ops;
2084 
2085 struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
2086 				    struct i2c_adapter *i2c)
2087 {
2088 	struct mb86a20s_state *state;
2089 	u8	rev;
2090 
2091 	dev_dbg(&i2c->dev, "%s called.\n", __func__);
2092 
2093 	/* allocate memory for the internal state */
2094 	state = kzalloc(sizeof(struct mb86a20s_state), GFP_KERNEL);
2095 	if (state == NULL) {
2096 		dev_err(&i2c->dev,
2097 			"%s: unable to allocate memory for state\n", __func__);
2098 		goto error;
2099 	}
2100 
2101 	/* setup the state */
2102 	state->config = config;
2103 	state->i2c = i2c;
2104 
2105 	/* create dvb_frontend */
2106 	memcpy(&state->frontend.ops, &mb86a20s_ops,
2107 		sizeof(struct dvb_frontend_ops));
2108 	state->frontend.demodulator_priv = state;
2109 
2110 	/* Check if it is a mb86a20s frontend */
2111 	rev = mb86a20s_readreg(state, 0);
2112 
2113 	if (rev == 0x13) {
2114 		dev_info(&i2c->dev,
2115 			 "Detected a Fujitsu mb86a20s frontend\n");
2116 	} else {
2117 		dev_dbg(&i2c->dev,
2118 			"Frontend revision %d is unknown - aborting.\n",
2119 		       rev);
2120 		goto error;
2121 	}
2122 
2123 	return &state->frontend;
2124 
2125 error:
2126 	kfree(state);
2127 	return NULL;
2128 }
2129 EXPORT_SYMBOL(mb86a20s_attach);
2130 
2131 static struct dvb_frontend_ops mb86a20s_ops = {
2132 	.delsys = { SYS_ISDBT },
2133 	/* Use dib8000 values per default */
2134 	.info = {
2135 		.name = "Fujitsu mb86A20s",
2136 		.caps = FE_CAN_RECOVER  |
2137 			FE_CAN_FEC_1_2  | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
2138 			FE_CAN_FEC_5_6  | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
2139 			FE_CAN_QPSK     | FE_CAN_QAM_16  | FE_CAN_QAM_64 |
2140 			FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
2141 			FE_CAN_GUARD_INTERVAL_AUTO    | FE_CAN_HIERARCHY_AUTO,
2142 		/* Actually, those values depend on the used tuner */
2143 		.frequency_min = 45000000,
2144 		.frequency_max = 864000000,
2145 		.frequency_stepsize = 62500,
2146 	},
2147 
2148 	.release = mb86a20s_release,
2149 
2150 	.init = mb86a20s_initfe,
2151 	.set_frontend = mb86a20s_set_frontend,
2152 	.get_frontend = mb86a20s_get_frontend_dummy,
2153 	.read_status = mb86a20s_read_status_and_stats,
2154 	.read_signal_strength = mb86a20s_read_signal_strength_from_cache,
2155 	.tune = mb86a20s_tune,
2156 };
2157 
2158 MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
2159 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
2160 MODULE_LICENSE("GPL");
2161