xref: /openbmc/linux/drivers/media/dvb-frontends/mb86a20s.c (revision 6396bb221514d2876fd6dc0aa2a1f240d99b37bb)
1 /*
2  *   Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
3  *
4  *   Copyright (C) 2010-2013 Mauro Carvalho Chehab
5  *   Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
6  *
7  *   This program is free software; you can redistribute it and/or
8  *   modify it under the terms of the GNU General Public License as
9  *   published by the Free Software Foundation version 2.
10  *
11  *   This program is distributed in the hope that it will be useful,
12  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  *   General Public License for more details.
15  */
16 
17 #include <linux/kernel.h>
18 #include <asm/div64.h>
19 
20 #include <media/dvb_frontend.h>
21 #include "mb86a20s.h"
22 
23 #define NUM_LAYERS 3
24 
25 enum mb86a20s_bandwidth {
26 	MB86A20S_13SEG = 0,
27 	MB86A20S_13SEG_PARTIAL = 1,
28 	MB86A20S_1SEG = 2,
29 	MB86A20S_3SEG = 3,
30 };
31 
32 static u8 mb86a20s_subchannel[] = {
33 	0xb0, 0xc0, 0xd0, 0xe0,
34 	0xf0, 0x00, 0x10, 0x20,
35 };
36 
37 struct mb86a20s_state {
38 	struct i2c_adapter *i2c;
39 	const struct mb86a20s_config *config;
40 	u32 last_frequency;
41 
42 	struct dvb_frontend frontend;
43 
44 	u32 if_freq;
45 	enum mb86a20s_bandwidth bw;
46 	bool inversion;
47 	u32 subchannel;
48 
49 	u32 estimated_rate[NUM_LAYERS];
50 	unsigned long get_strength_time;
51 
52 	bool need_init;
53 };
54 
55 struct regdata {
56 	u8 reg;
57 	u8 data;
58 };
59 
60 #define BER_SAMPLING_RATE	1	/* Seconds */
61 
62 /*
63  * Initialization sequence: Use whatevere default values that PV SBTVD
64  * does on its initialisation, obtained via USB snoop
65  */
66 static struct regdata mb86a20s_init1[] = {
67 	{ 0x70, 0x0f },
68 	{ 0x70, 0xff },
69 	{ 0x08, 0x01 },
70 	{ 0x50, 0xd1 }, { 0x51, 0x20 },
71 };
72 
73 static struct regdata mb86a20s_init2[] = {
74 	{ 0x50, 0xd1 }, { 0x51, 0x22 },
75 	{ 0x39, 0x01 },
76 	{ 0x71, 0x00 },
77 	{ 0x3b, 0x21 },
78 	{ 0x3c, 0x3a },
79 	{ 0x01, 0x0d },
80 	{ 0x04, 0x08 }, { 0x05, 0x05 },
81 	{ 0x04, 0x0e }, { 0x05, 0x00 },
82 	{ 0x04, 0x0f }, { 0x05, 0x14 },
83 	{ 0x04, 0x0b }, { 0x05, 0x8c },
84 	{ 0x04, 0x00 }, { 0x05, 0x00 },
85 	{ 0x04, 0x01 }, { 0x05, 0x07 },
86 	{ 0x04, 0x02 }, { 0x05, 0x0f },
87 	{ 0x04, 0x03 }, { 0x05, 0xa0 },
88 	{ 0x04, 0x09 }, { 0x05, 0x00 },
89 	{ 0x04, 0x0a }, { 0x05, 0xff },
90 	{ 0x04, 0x27 }, { 0x05, 0x64 },
91 	{ 0x04, 0x28 }, { 0x05, 0x00 },
92 	{ 0x04, 0x1e }, { 0x05, 0xff },
93 	{ 0x04, 0x29 }, { 0x05, 0x0a },
94 	{ 0x04, 0x32 }, { 0x05, 0x0a },
95 	{ 0x04, 0x14 }, { 0x05, 0x02 },
96 	{ 0x04, 0x04 }, { 0x05, 0x00 },
97 	{ 0x04, 0x05 }, { 0x05, 0x22 },
98 	{ 0x04, 0x06 }, { 0x05, 0x0e },
99 	{ 0x04, 0x07 }, { 0x05, 0xd8 },
100 	{ 0x04, 0x12 }, { 0x05, 0x00 },
101 	{ 0x04, 0x13 }, { 0x05, 0xff },
102 
103 	/*
104 	 * On this demod, when the bit count reaches the count below,
105 	 * it collects the bit error count. The bit counters are initialized
106 	 * to 65535 here. This warrants that all of them will be quickly
107 	 * calculated when device gets locked. As TMCC is parsed, the values
108 	 * will be adjusted later in the driver's code.
109 	 */
110 	{ 0x52, 0x01 },				/* Turn on BER before Viterbi */
111 	{ 0x50, 0xa7 }, { 0x51, 0x00 },
112 	{ 0x50, 0xa8 }, { 0x51, 0xff },
113 	{ 0x50, 0xa9 }, { 0x51, 0xff },
114 	{ 0x50, 0xaa }, { 0x51, 0x00 },
115 	{ 0x50, 0xab }, { 0x51, 0xff },
116 	{ 0x50, 0xac }, { 0x51, 0xff },
117 	{ 0x50, 0xad }, { 0x51, 0x00 },
118 	{ 0x50, 0xae }, { 0x51, 0xff },
119 	{ 0x50, 0xaf }, { 0x51, 0xff },
120 
121 	/*
122 	 * On this demod, post BER counts blocks. When the count reaches the
123 	 * value below, it collects the block error count. The block counters
124 	 * are initialized to 127 here. This warrants that all of them will be
125 	 * quickly calculated when device gets locked. As TMCC is parsed, the
126 	 * values will be adjusted later in the driver's code.
127 	 */
128 	{ 0x5e, 0x07 },				/* Turn on BER after Viterbi */
129 	{ 0x50, 0xdc }, { 0x51, 0x00 },
130 	{ 0x50, 0xdd }, { 0x51, 0x7f },
131 	{ 0x50, 0xde }, { 0x51, 0x00 },
132 	{ 0x50, 0xdf }, { 0x51, 0x7f },
133 	{ 0x50, 0xe0 }, { 0x51, 0x00 },
134 	{ 0x50, 0xe1 }, { 0x51, 0x7f },
135 
136 	/*
137 	 * On this demod, when the block count reaches the count below,
138 	 * it collects the block error count. The block counters are initialized
139 	 * to 127 here. This warrants that all of them will be quickly
140 	 * calculated when device gets locked. As TMCC is parsed, the values
141 	 * will be adjusted later in the driver's code.
142 	 */
143 	{ 0x50, 0xb0 }, { 0x51, 0x07 },		/* Enable PER */
144 	{ 0x50, 0xb2 }, { 0x51, 0x00 },
145 	{ 0x50, 0xb3 }, { 0x51, 0x7f },
146 	{ 0x50, 0xb4 }, { 0x51, 0x00 },
147 	{ 0x50, 0xb5 }, { 0x51, 0x7f },
148 	{ 0x50, 0xb6 }, { 0x51, 0x00 },
149 	{ 0x50, 0xb7 }, { 0x51, 0x7f },
150 
151 	{ 0x50, 0x50 }, { 0x51, 0x02 },		/* MER manual mode */
152 	{ 0x50, 0x51 }, { 0x51, 0x04 },		/* MER symbol 4 */
153 	{ 0x45, 0x04 },				/* CN symbol 4 */
154 	{ 0x48, 0x04 },				/* CN manual mode */
155 	{ 0x50, 0xd5 }, { 0x51, 0x01 },
156 	{ 0x50, 0xd6 }, { 0x51, 0x1f },
157 	{ 0x50, 0xd2 }, { 0x51, 0x03 },
158 	{ 0x50, 0xd7 }, { 0x51, 0x3f },
159 	{ 0x1c, 0x01 },
160 	{ 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x03 },
161 	{ 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0d },
162 	{ 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
163 	{ 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x01 },
164 	{ 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x21 },
165 	{ 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x29 },
166 	{ 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
167 	{ 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x31 },
168 	{ 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0e },
169 	{ 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x4e },
170 	{ 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x46 },
171 	{ 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
172 	{ 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x56 },
173 	{ 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x35 },
174 	{ 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbe },
175 	{ 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0x84 },
176 	{ 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x03 }, { 0x2b, 0xee },
177 	{ 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x98 },
178 	{ 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x9f },
179 	{ 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xb2 },
180 	{ 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0xc2 },
181 	{ 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0x4a },
182 	{ 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbc },
183 	{ 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x04 }, { 0x2b, 0xba },
184 	{ 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0x14 },
185 	{ 0x50, 0x1e }, { 0x51, 0x5d },
186 	{ 0x50, 0x22 }, { 0x51, 0x00 },
187 	{ 0x50, 0x23 }, { 0x51, 0xc8 },
188 	{ 0x50, 0x24 }, { 0x51, 0x00 },
189 	{ 0x50, 0x25 }, { 0x51, 0xf0 },
190 	{ 0x50, 0x26 }, { 0x51, 0x00 },
191 	{ 0x50, 0x27 }, { 0x51, 0xc3 },
192 	{ 0x50, 0x39 }, { 0x51, 0x02 },
193 	{ 0x50, 0xd5 }, { 0x51, 0x01 },
194 	{ 0xd0, 0x00 },
195 };
196 
197 static struct regdata mb86a20s_reset_reception[] = {
198 	{ 0x70, 0xf0 },
199 	{ 0x70, 0xff },
200 	{ 0x08, 0x01 },
201 	{ 0x08, 0x00 },
202 };
203 
204 static struct regdata mb86a20s_per_ber_reset[] = {
205 	{ 0x53, 0x00 },	/* pre BER Counter reset */
206 	{ 0x53, 0x07 },
207 
208 	{ 0x5f, 0x00 },	/* post BER Counter reset */
209 	{ 0x5f, 0x07 },
210 
211 	{ 0x50, 0xb1 },	/* PER Counter reset */
212 	{ 0x51, 0x07 },
213 	{ 0x51, 0x00 },
214 };
215 
216 /*
217  * I2C read/write functions and macros
218  */
219 
220 static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
221 			     u8 i2c_addr, u8 reg, u8 data)
222 {
223 	u8 buf[] = { reg, data };
224 	struct i2c_msg msg = {
225 		.addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
226 	};
227 	int rc;
228 
229 	rc = i2c_transfer(state->i2c, &msg, 1);
230 	if (rc != 1) {
231 		dev_err(&state->i2c->dev,
232 			"%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
233 			__func__, rc, reg, data);
234 		return rc;
235 	}
236 
237 	return 0;
238 }
239 
240 static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
241 				     u8 i2c_addr, struct regdata *rd, int size)
242 {
243 	int i, rc;
244 
245 	for (i = 0; i < size; i++) {
246 		rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
247 					   rd[i].data);
248 		if (rc < 0)
249 			return rc;
250 	}
251 	return 0;
252 }
253 
254 static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
255 				u8 i2c_addr, u8 reg)
256 {
257 	u8 val;
258 	int rc;
259 	struct i2c_msg msg[] = {
260 		{ .addr = i2c_addr, .flags = 0, .buf = &reg, .len = 1 },
261 		{ .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
262 	};
263 
264 	rc = i2c_transfer(state->i2c, msg, 2);
265 
266 	if (rc != 2) {
267 		dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
268 			__func__, reg, rc);
269 		return (rc < 0) ? rc : -EIO;
270 	}
271 
272 	return val;
273 }
274 
275 #define mb86a20s_readreg(state, reg) \
276 	mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
277 #define mb86a20s_writereg(state, reg, val) \
278 	mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
279 #define mb86a20s_writeregdata(state, regdata) \
280 	mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
281 	regdata, ARRAY_SIZE(regdata))
282 
283 /*
284  * Ancillary internal routines (likely compiled inlined)
285  *
286  * The functions below assume that gateway lock has already obtained
287  */
288 
289 static int mb86a20s_read_status(struct dvb_frontend *fe, enum fe_status *status)
290 {
291 	struct mb86a20s_state *state = fe->demodulator_priv;
292 	int val;
293 
294 	*status = 0;
295 
296 	val = mb86a20s_readreg(state, 0x0a);
297 	if (val < 0)
298 		return val;
299 
300 	val &= 0xf;
301 	if (val >= 2)
302 		*status |= FE_HAS_SIGNAL;
303 
304 	if (val >= 4)
305 		*status |= FE_HAS_CARRIER;
306 
307 	if (val >= 5)
308 		*status |= FE_HAS_VITERBI;
309 
310 	if (val >= 7)
311 		*status |= FE_HAS_SYNC;
312 
313 	/*
314 	 * Actually, on state S8, it starts receiving TS, but the TS
315 	 * output is only on normal state after the transition to S9.
316 	 */
317 	if (val >= 9)
318 		*status |= FE_HAS_LOCK;
319 
320 	dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
321 		 __func__, *status, val);
322 
323 	return val;
324 }
325 
326 static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
327 {
328 	struct mb86a20s_state *state = fe->demodulator_priv;
329 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
330 	int rc;
331 	unsigned rf_max, rf_min, rf;
332 
333 	if (state->get_strength_time &&
334 	   (!time_after(jiffies, state->get_strength_time)))
335 		return c->strength.stat[0].uvalue;
336 
337 	/* Reset its value if an error happen */
338 	c->strength.stat[0].uvalue = 0;
339 
340 	/* Does a binary search to get RF strength */
341 	rf_max = 0xfff;
342 	rf_min = 0;
343 	do {
344 		rf = (rf_max + rf_min) / 2;
345 		rc = mb86a20s_writereg(state, 0x04, 0x1f);
346 		if (rc < 0)
347 			return rc;
348 		rc = mb86a20s_writereg(state, 0x05, rf >> 8);
349 		if (rc < 0)
350 			return rc;
351 		rc = mb86a20s_writereg(state, 0x04, 0x20);
352 		if (rc < 0)
353 			return rc;
354 		rc = mb86a20s_writereg(state, 0x05, rf);
355 		if (rc < 0)
356 			return rc;
357 
358 		rc = mb86a20s_readreg(state, 0x02);
359 		if (rc < 0)
360 			return rc;
361 		if (rc & 0x08)
362 			rf_min = (rf_max + rf_min) / 2;
363 		else
364 			rf_max = (rf_max + rf_min) / 2;
365 		if (rf_max - rf_min < 4) {
366 			rf = (rf_max + rf_min) / 2;
367 
368 			/* Rescale it from 2^12 (4096) to 2^16 */
369 			rf = rf << (16 - 12);
370 			if (rf)
371 				rf |= (1 << 12) - 1;
372 
373 			dev_dbg(&state->i2c->dev,
374 				"%s: signal strength = %d (%d < RF=%d < %d)\n",
375 				__func__, rf, rf_min, rf >> 4, rf_max);
376 			c->strength.stat[0].uvalue = rf;
377 			state->get_strength_time = jiffies +
378 						   msecs_to_jiffies(1000);
379 			return 0;
380 		}
381 	} while (1);
382 }
383 
384 static int mb86a20s_get_modulation(struct mb86a20s_state *state,
385 				   unsigned layer)
386 {
387 	int rc;
388 	static unsigned char reg[] = {
389 		[0] = 0x86,	/* Layer A */
390 		[1] = 0x8a,	/* Layer B */
391 		[2] = 0x8e,	/* Layer C */
392 	};
393 
394 	if (layer >= ARRAY_SIZE(reg))
395 		return -EINVAL;
396 	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
397 	if (rc < 0)
398 		return rc;
399 	rc = mb86a20s_readreg(state, 0x6e);
400 	if (rc < 0)
401 		return rc;
402 	switch ((rc >> 4) & 0x07) {
403 	case 0:
404 		return DQPSK;
405 	case 1:
406 		return QPSK;
407 	case 2:
408 		return QAM_16;
409 	case 3:
410 		return QAM_64;
411 	default:
412 		return QAM_AUTO;
413 	}
414 }
415 
416 static int mb86a20s_get_fec(struct mb86a20s_state *state,
417 			    unsigned layer)
418 {
419 	int rc;
420 
421 	static unsigned char reg[] = {
422 		[0] = 0x87,	/* Layer A */
423 		[1] = 0x8b,	/* Layer B */
424 		[2] = 0x8f,	/* Layer C */
425 	};
426 
427 	if (layer >= ARRAY_SIZE(reg))
428 		return -EINVAL;
429 	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
430 	if (rc < 0)
431 		return rc;
432 	rc = mb86a20s_readreg(state, 0x6e);
433 	if (rc < 0)
434 		return rc;
435 	switch ((rc >> 4) & 0x07) {
436 	case 0:
437 		return FEC_1_2;
438 	case 1:
439 		return FEC_2_3;
440 	case 2:
441 		return FEC_3_4;
442 	case 3:
443 		return FEC_5_6;
444 	case 4:
445 		return FEC_7_8;
446 	default:
447 		return FEC_AUTO;
448 	}
449 }
450 
451 static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
452 				     unsigned layer)
453 {
454 	int rc;
455 	int interleaving[] = {
456 		0, 1, 2, 4, 8
457 	};
458 
459 	static unsigned char reg[] = {
460 		[0] = 0x88,	/* Layer A */
461 		[1] = 0x8c,	/* Layer B */
462 		[2] = 0x90,	/* Layer C */
463 	};
464 
465 	if (layer >= ARRAY_SIZE(reg))
466 		return -EINVAL;
467 	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
468 	if (rc < 0)
469 		return rc;
470 	rc = mb86a20s_readreg(state, 0x6e);
471 	if (rc < 0)
472 		return rc;
473 
474 	return interleaving[(rc >> 4) & 0x07];
475 }
476 
477 static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
478 				      unsigned layer)
479 {
480 	int rc, count;
481 	static unsigned char reg[] = {
482 		[0] = 0x89,	/* Layer A */
483 		[1] = 0x8d,	/* Layer B */
484 		[2] = 0x91,	/* Layer C */
485 	};
486 
487 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
488 
489 	if (layer >= ARRAY_SIZE(reg))
490 		return -EINVAL;
491 
492 	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
493 	if (rc < 0)
494 		return rc;
495 	rc = mb86a20s_readreg(state, 0x6e);
496 	if (rc < 0)
497 		return rc;
498 	count = (rc >> 4) & 0x0f;
499 
500 	dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);
501 
502 	return count;
503 }
504 
505 static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
506 {
507 	struct mb86a20s_state *state = fe->demodulator_priv;
508 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
509 
510 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
511 
512 	/* Fixed parameters */
513 	c->delivery_system = SYS_ISDBT;
514 	c->bandwidth_hz = 6000000;
515 
516 	/* Initialize values that will be later autodetected */
517 	c->isdbt_layer_enabled = 0;
518 	c->transmission_mode = TRANSMISSION_MODE_AUTO;
519 	c->guard_interval = GUARD_INTERVAL_AUTO;
520 	c->isdbt_sb_mode = 0;
521 	c->isdbt_sb_segment_count = 0;
522 }
523 
524 /*
525  * Estimates the bit rate using the per-segment bit rate given by
526  * ABNT/NBR 15601 spec (table 4).
527  */
528 static u32 isdbt_rate[3][5][4] = {
529 	{	/* DQPSK/QPSK */
530 		{  280850,  312060,  330420,  340430 },	/* 1/2 */
531 		{  374470,  416080,  440560,  453910 },	/* 2/3 */
532 		{  421280,  468090,  495630,  510650 },	/* 3/4 */
533 		{  468090,  520100,  550700,  567390 },	/* 5/6 */
534 		{  491500,  546110,  578230,  595760 },	/* 7/8 */
535 	}, {	/* QAM16 */
536 		{  561710,  624130,  660840,  680870 },	/* 1/2 */
537 		{  748950,  832170,  881120,  907820 },	/* 2/3 */
538 		{  842570,  936190,  991260, 1021300 },	/* 3/4 */
539 		{  936190, 1040210, 1101400, 1134780 },	/* 5/6 */
540 		{  983000, 1092220, 1156470, 1191520 },	/* 7/8 */
541 	}, {	/* QAM64 */
542 		{  842570,  936190,  991260, 1021300 },	/* 1/2 */
543 		{ 1123430, 1248260, 1321680, 1361740 },	/* 2/3 */
544 		{ 1263860, 1404290, 1486900, 1531950 },	/* 3/4 */
545 		{ 1404290, 1560320, 1652110, 1702170 },	/* 5/6 */
546 		{ 1474500, 1638340, 1734710, 1787280 },	/* 7/8 */
547 	}
548 };
549 
550 static void mb86a20s_layer_bitrate(struct dvb_frontend *fe, u32 layer,
551 				   u32 modulation, u32 forward_error_correction,
552 				   u32 guard_interval,
553 				   u32 segment)
554 {
555 	struct mb86a20s_state *state = fe->demodulator_priv;
556 	u32 rate;
557 	int mod, fec, guard;
558 
559 	/*
560 	 * If modulation/fec/guard is not detected, the default is
561 	 * to consider the lowest bit rate, to avoid taking too long time
562 	 * to get BER.
563 	 */
564 	switch (modulation) {
565 	case DQPSK:
566 	case QPSK:
567 	default:
568 		mod = 0;
569 		break;
570 	case QAM_16:
571 		mod = 1;
572 		break;
573 	case QAM_64:
574 		mod = 2;
575 		break;
576 	}
577 
578 	switch (forward_error_correction) {
579 	default:
580 	case FEC_1_2:
581 	case FEC_AUTO:
582 		fec = 0;
583 		break;
584 	case FEC_2_3:
585 		fec = 1;
586 		break;
587 	case FEC_3_4:
588 		fec = 2;
589 		break;
590 	case FEC_5_6:
591 		fec = 3;
592 		break;
593 	case FEC_7_8:
594 		fec = 4;
595 		break;
596 	}
597 
598 	switch (guard_interval) {
599 	default:
600 	case GUARD_INTERVAL_1_4:
601 		guard = 0;
602 		break;
603 	case GUARD_INTERVAL_1_8:
604 		guard = 1;
605 		break;
606 	case GUARD_INTERVAL_1_16:
607 		guard = 2;
608 		break;
609 	case GUARD_INTERVAL_1_32:
610 		guard = 3;
611 		break;
612 	}
613 
614 	/* Samples BER at BER_SAMPLING_RATE seconds */
615 	rate = isdbt_rate[mod][fec][guard] * segment * BER_SAMPLING_RATE;
616 
617 	/* Avoids sampling too quickly or to overflow the register */
618 	if (rate < 256)
619 		rate = 256;
620 	else if (rate > (1 << 24) - 1)
621 		rate = (1 << 24) - 1;
622 
623 	dev_dbg(&state->i2c->dev,
624 		"%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
625 		__func__, 'A' + layer,
626 		segment * isdbt_rate[mod][fec][guard]/1000,
627 		rate, rate);
628 
629 	state->estimated_rate[layer] = rate;
630 }
631 
632 static int mb86a20s_get_frontend(struct dvb_frontend *fe)
633 {
634 	struct mb86a20s_state *state = fe->demodulator_priv;
635 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
636 	int layer, rc;
637 
638 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
639 
640 	/* Reset frontend cache to default values */
641 	mb86a20s_reset_frontend_cache(fe);
642 
643 	/* Check for partial reception */
644 	rc = mb86a20s_writereg(state, 0x6d, 0x85);
645 	if (rc < 0)
646 		return rc;
647 	rc = mb86a20s_readreg(state, 0x6e);
648 	if (rc < 0)
649 		return rc;
650 	c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
651 
652 	/* Get per-layer data */
653 
654 	for (layer = 0; layer < NUM_LAYERS; layer++) {
655 		dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
656 			__func__, 'A' + layer);
657 
658 		rc = mb86a20s_get_segment_count(state, layer);
659 		if (rc < 0)
660 			goto noperlayer_error;
661 		if (rc >= 0 && rc < 14) {
662 			c->layer[layer].segment_count = rc;
663 		} else {
664 			c->layer[layer].segment_count = 0;
665 			state->estimated_rate[layer] = 0;
666 			continue;
667 		}
668 		c->isdbt_layer_enabled |= 1 << layer;
669 		rc = mb86a20s_get_modulation(state, layer);
670 		if (rc < 0)
671 			goto noperlayer_error;
672 		dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
673 			__func__, rc);
674 		c->layer[layer].modulation = rc;
675 		rc = mb86a20s_get_fec(state, layer);
676 		if (rc < 0)
677 			goto noperlayer_error;
678 		dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
679 			__func__, rc);
680 		c->layer[layer].fec = rc;
681 		rc = mb86a20s_get_interleaving(state, layer);
682 		if (rc < 0)
683 			goto noperlayer_error;
684 		dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
685 			__func__, rc);
686 		c->layer[layer].interleaving = rc;
687 		mb86a20s_layer_bitrate(fe, layer, c->layer[layer].modulation,
688 				       c->layer[layer].fec,
689 				       c->guard_interval,
690 				       c->layer[layer].segment_count);
691 	}
692 
693 	rc = mb86a20s_writereg(state, 0x6d, 0x84);
694 	if (rc < 0)
695 		return rc;
696 	if ((rc & 0x60) == 0x20) {
697 		c->isdbt_sb_mode = 1;
698 		/* At least, one segment should exist */
699 		if (!c->isdbt_sb_segment_count)
700 			c->isdbt_sb_segment_count = 1;
701 	}
702 
703 	/* Get transmission mode and guard interval */
704 	rc = mb86a20s_readreg(state, 0x07);
705 	if (rc < 0)
706 		return rc;
707 	c->transmission_mode = TRANSMISSION_MODE_AUTO;
708 	if ((rc & 0x60) == 0x20) {
709 		/* Only modes 2 and 3 are supported */
710 		switch ((rc >> 2) & 0x03) {
711 		case 1:
712 			c->transmission_mode = TRANSMISSION_MODE_4K;
713 			break;
714 		case 2:
715 			c->transmission_mode = TRANSMISSION_MODE_8K;
716 			break;
717 		}
718 	}
719 	c->guard_interval = GUARD_INTERVAL_AUTO;
720 	if (!(rc & 0x10)) {
721 		/* Guard interval 1/32 is not supported */
722 		switch (rc & 0x3) {
723 		case 0:
724 			c->guard_interval = GUARD_INTERVAL_1_4;
725 			break;
726 		case 1:
727 			c->guard_interval = GUARD_INTERVAL_1_8;
728 			break;
729 		case 2:
730 			c->guard_interval = GUARD_INTERVAL_1_16;
731 			break;
732 		}
733 	}
734 	return 0;
735 
736 noperlayer_error:
737 
738 	/* per-layer info is incomplete; discard all per-layer */
739 	c->isdbt_layer_enabled = 0;
740 
741 	return rc;
742 }
743 
744 static int mb86a20s_reset_counters(struct dvb_frontend *fe)
745 {
746 	struct mb86a20s_state *state = fe->demodulator_priv;
747 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
748 	int rc, val;
749 
750 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
751 
752 	/* Reset the counters, if the channel changed */
753 	if (state->last_frequency != c->frequency) {
754 		memset(&c->cnr, 0, sizeof(c->cnr));
755 		memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
756 		memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
757 		memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
758 		memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
759 		memset(&c->block_error, 0, sizeof(c->block_error));
760 		memset(&c->block_count, 0, sizeof(c->block_count));
761 
762 		state->last_frequency = c->frequency;
763 	}
764 
765 	/* Clear status for most stats */
766 
767 	/* BER/PER counter reset */
768 	rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
769 	if (rc < 0)
770 		goto err;
771 
772 	/* CNR counter reset */
773 	rc = mb86a20s_readreg(state, 0x45);
774 	if (rc < 0)
775 		goto err;
776 	val = rc;
777 	rc = mb86a20s_writereg(state, 0x45, val | 0x10);
778 	if (rc < 0)
779 		goto err;
780 	rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
781 	if (rc < 0)
782 		goto err;
783 
784 	/* MER counter reset */
785 	rc = mb86a20s_writereg(state, 0x50, 0x50);
786 	if (rc < 0)
787 		goto err;
788 	rc = mb86a20s_readreg(state, 0x51);
789 	if (rc < 0)
790 		goto err;
791 	val = rc;
792 	rc = mb86a20s_writereg(state, 0x51, val | 0x01);
793 	if (rc < 0)
794 		goto err;
795 	rc = mb86a20s_writereg(state, 0x51, val & 0x06);
796 	if (rc < 0)
797 		goto err;
798 
799 	goto ok;
800 err:
801 	dev_err(&state->i2c->dev,
802 		"%s: Can't reset FE statistics (error %d).\n",
803 		__func__, rc);
804 ok:
805 	return rc;
806 }
807 
808 static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
809 				unsigned layer,
810 				u32 *error, u32 *count)
811 {
812 	struct mb86a20s_state *state = fe->demodulator_priv;
813 	int rc, val;
814 
815 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
816 
817 	if (layer >= NUM_LAYERS)
818 		return -EINVAL;
819 
820 	/* Check if the BER measures are already available */
821 	rc = mb86a20s_readreg(state, 0x54);
822 	if (rc < 0)
823 		return rc;
824 
825 	/* Check if data is available for that layer */
826 	if (!(rc & (1 << layer))) {
827 		dev_dbg(&state->i2c->dev,
828 			"%s: preBER for layer %c is not available yet.\n",
829 			__func__, 'A' + layer);
830 		return -EBUSY;
831 	}
832 
833 	/* Read Bit Error Count */
834 	rc = mb86a20s_readreg(state, 0x55 + layer * 3);
835 	if (rc < 0)
836 		return rc;
837 	*error = rc << 16;
838 	rc = mb86a20s_readreg(state, 0x56 + layer * 3);
839 	if (rc < 0)
840 		return rc;
841 	*error |= rc << 8;
842 	rc = mb86a20s_readreg(state, 0x57 + layer * 3);
843 	if (rc < 0)
844 		return rc;
845 	*error |= rc;
846 
847 	dev_dbg(&state->i2c->dev,
848 		"%s: bit error before Viterbi for layer %c: %d.\n",
849 		__func__, 'A' + layer, *error);
850 
851 	/* Read Bit Count */
852 	rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
853 	if (rc < 0)
854 		return rc;
855 	rc = mb86a20s_readreg(state, 0x51);
856 	if (rc < 0)
857 		return rc;
858 	*count = rc << 16;
859 	rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
860 	if (rc < 0)
861 		return rc;
862 	rc = mb86a20s_readreg(state, 0x51);
863 	if (rc < 0)
864 		return rc;
865 	*count |= rc << 8;
866 	rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
867 	if (rc < 0)
868 		return rc;
869 	rc = mb86a20s_readreg(state, 0x51);
870 	if (rc < 0)
871 		return rc;
872 	*count |= rc;
873 
874 	dev_dbg(&state->i2c->dev,
875 		"%s: bit count before Viterbi for layer %c: %d.\n",
876 		__func__, 'A' + layer, *count);
877 
878 
879 	/*
880 	 * As we get TMCC data from the frontend, we can better estimate the
881 	 * BER bit counters, in order to do the BER measure during a longer
882 	 * time. Use those data, if available, to update the bit count
883 	 * measure.
884 	 */
885 
886 	if (state->estimated_rate[layer]
887 	    && state->estimated_rate[layer] != *count) {
888 		dev_dbg(&state->i2c->dev,
889 			"%s: updating layer %c preBER counter to %d.\n",
890 			__func__, 'A' + layer, state->estimated_rate[layer]);
891 
892 		/* Turn off BER before Viterbi */
893 		rc = mb86a20s_writereg(state, 0x52, 0x00);
894 
895 		/* Update counter for this layer */
896 		rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
897 		if (rc < 0)
898 			return rc;
899 		rc = mb86a20s_writereg(state, 0x51,
900 				       state->estimated_rate[layer] >> 16);
901 		if (rc < 0)
902 			return rc;
903 		rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
904 		if (rc < 0)
905 			return rc;
906 		rc = mb86a20s_writereg(state, 0x51,
907 				       state->estimated_rate[layer] >> 8);
908 		if (rc < 0)
909 			return rc;
910 		rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
911 		if (rc < 0)
912 			return rc;
913 		rc = mb86a20s_writereg(state, 0x51,
914 				       state->estimated_rate[layer]);
915 		if (rc < 0)
916 			return rc;
917 
918 		/* Turn on BER before Viterbi */
919 		rc = mb86a20s_writereg(state, 0x52, 0x01);
920 
921 		/* Reset all preBER counters */
922 		rc = mb86a20s_writereg(state, 0x53, 0x00);
923 		if (rc < 0)
924 			return rc;
925 		rc = mb86a20s_writereg(state, 0x53, 0x07);
926 	} else {
927 		/* Reset counter to collect new data */
928 		rc = mb86a20s_readreg(state, 0x53);
929 		if (rc < 0)
930 			return rc;
931 		val = rc;
932 		rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
933 		if (rc < 0)
934 			return rc;
935 		rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
936 	}
937 
938 	return rc;
939 }
940 
941 static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
942 				 unsigned layer,
943 				  u32 *error, u32 *count)
944 {
945 	struct mb86a20s_state *state = fe->demodulator_priv;
946 	u32 counter, collect_rate;
947 	int rc, val;
948 
949 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
950 
951 	if (layer >= NUM_LAYERS)
952 		return -EINVAL;
953 
954 	/* Check if the BER measures are already available */
955 	rc = mb86a20s_readreg(state, 0x60);
956 	if (rc < 0)
957 		return rc;
958 
959 	/* Check if data is available for that layer */
960 	if (!(rc & (1 << layer))) {
961 		dev_dbg(&state->i2c->dev,
962 			"%s: post BER for layer %c is not available yet.\n",
963 			__func__, 'A' + layer);
964 		return -EBUSY;
965 	}
966 
967 	/* Read Bit Error Count */
968 	rc = mb86a20s_readreg(state, 0x64 + layer * 3);
969 	if (rc < 0)
970 		return rc;
971 	*error = rc << 16;
972 	rc = mb86a20s_readreg(state, 0x65 + layer * 3);
973 	if (rc < 0)
974 		return rc;
975 	*error |= rc << 8;
976 	rc = mb86a20s_readreg(state, 0x66 + layer * 3);
977 	if (rc < 0)
978 		return rc;
979 	*error |= rc;
980 
981 	dev_dbg(&state->i2c->dev,
982 		"%s: post bit error for layer %c: %d.\n",
983 		__func__, 'A' + layer, *error);
984 
985 	/* Read Bit Count */
986 	rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
987 	if (rc < 0)
988 		return rc;
989 	rc = mb86a20s_readreg(state, 0x51);
990 	if (rc < 0)
991 		return rc;
992 	counter = rc << 8;
993 	rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
994 	if (rc < 0)
995 		return rc;
996 	rc = mb86a20s_readreg(state, 0x51);
997 	if (rc < 0)
998 		return rc;
999 	counter |= rc;
1000 	*count = counter * 204 * 8;
1001 
1002 	dev_dbg(&state->i2c->dev,
1003 		"%s: post bit count for layer %c: %d.\n",
1004 		__func__, 'A' + layer, *count);
1005 
1006 	/*
1007 	 * As we get TMCC data from the frontend, we can better estimate the
1008 	 * BER bit counters, in order to do the BER measure during a longer
1009 	 * time. Use those data, if available, to update the bit count
1010 	 * measure.
1011 	 */
1012 
1013 	if (!state->estimated_rate[layer])
1014 		goto reset_measurement;
1015 
1016 	collect_rate = state->estimated_rate[layer] / 204 / 8;
1017 	if (collect_rate < 32)
1018 		collect_rate = 32;
1019 	if (collect_rate > 65535)
1020 		collect_rate = 65535;
1021 	if (collect_rate != counter) {
1022 		dev_dbg(&state->i2c->dev,
1023 			"%s: updating postBER counter on layer %c to %d.\n",
1024 			__func__, 'A' + layer, collect_rate);
1025 
1026 		/* Turn off BER after Viterbi */
1027 		rc = mb86a20s_writereg(state, 0x5e, 0x00);
1028 
1029 		/* Update counter for this layer */
1030 		rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
1031 		if (rc < 0)
1032 			return rc;
1033 		rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1034 		if (rc < 0)
1035 			return rc;
1036 		rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
1037 		if (rc < 0)
1038 			return rc;
1039 		rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1040 		if (rc < 0)
1041 			return rc;
1042 
1043 		/* Turn on BER after Viterbi */
1044 		rc = mb86a20s_writereg(state, 0x5e, 0x07);
1045 
1046 		/* Reset all preBER counters */
1047 		rc = mb86a20s_writereg(state, 0x5f, 0x00);
1048 		if (rc < 0)
1049 			return rc;
1050 		rc = mb86a20s_writereg(state, 0x5f, 0x07);
1051 
1052 		return rc;
1053 	}
1054 
1055 reset_measurement:
1056 	/* Reset counter to collect new data */
1057 	rc = mb86a20s_readreg(state, 0x5f);
1058 	if (rc < 0)
1059 		return rc;
1060 	val = rc;
1061 	rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
1062 	if (rc < 0)
1063 		return rc;
1064 	rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
1065 
1066 	return rc;
1067 }
1068 
1069 static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
1070 			    unsigned layer,
1071 			    u32 *error, u32 *count)
1072 {
1073 	struct mb86a20s_state *state = fe->demodulator_priv;
1074 	int rc, val;
1075 	u32 collect_rate;
1076 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1077 
1078 	if (layer >= NUM_LAYERS)
1079 		return -EINVAL;
1080 
1081 	/* Check if the PER measures are already available */
1082 	rc = mb86a20s_writereg(state, 0x50, 0xb8);
1083 	if (rc < 0)
1084 		return rc;
1085 	rc = mb86a20s_readreg(state, 0x51);
1086 	if (rc < 0)
1087 		return rc;
1088 
1089 	/* Check if data is available for that layer */
1090 
1091 	if (!(rc & (1 << layer))) {
1092 		dev_dbg(&state->i2c->dev,
1093 			"%s: block counts for layer %c aren't available yet.\n",
1094 			__func__, 'A' + layer);
1095 		return -EBUSY;
1096 	}
1097 
1098 	/* Read Packet error Count */
1099 	rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
1100 	if (rc < 0)
1101 		return rc;
1102 	rc = mb86a20s_readreg(state, 0x51);
1103 	if (rc < 0)
1104 		return rc;
1105 	*error = rc << 8;
1106 	rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
1107 	if (rc < 0)
1108 		return rc;
1109 	rc = mb86a20s_readreg(state, 0x51);
1110 	if (rc < 0)
1111 		return rc;
1112 	*error |= rc;
1113 	dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
1114 		__func__, 'A' + layer, *error);
1115 
1116 	/* Read Bit Count */
1117 	rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1118 	if (rc < 0)
1119 		return rc;
1120 	rc = mb86a20s_readreg(state, 0x51);
1121 	if (rc < 0)
1122 		return rc;
1123 	*count = rc << 8;
1124 	rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1125 	if (rc < 0)
1126 		return rc;
1127 	rc = mb86a20s_readreg(state, 0x51);
1128 	if (rc < 0)
1129 		return rc;
1130 	*count |= rc;
1131 
1132 	dev_dbg(&state->i2c->dev,
1133 		"%s: block count for layer %c: %d.\n",
1134 		__func__, 'A' + layer, *count);
1135 
1136 	/*
1137 	 * As we get TMCC data from the frontend, we can better estimate the
1138 	 * BER bit counters, in order to do the BER measure during a longer
1139 	 * time. Use those data, if available, to update the bit count
1140 	 * measure.
1141 	 */
1142 
1143 	if (!state->estimated_rate[layer])
1144 		goto reset_measurement;
1145 
1146 	collect_rate = state->estimated_rate[layer] / 204 / 8;
1147 	if (collect_rate < 32)
1148 		collect_rate = 32;
1149 	if (collect_rate > 65535)
1150 		collect_rate = 65535;
1151 
1152 	if (collect_rate != *count) {
1153 		dev_dbg(&state->i2c->dev,
1154 			"%s: updating PER counter on layer %c to %d.\n",
1155 			__func__, 'A' + layer, collect_rate);
1156 
1157 		/* Stop PER measurement */
1158 		rc = mb86a20s_writereg(state, 0x50, 0xb0);
1159 		if (rc < 0)
1160 			return rc;
1161 		rc = mb86a20s_writereg(state, 0x51, 0x00);
1162 		if (rc < 0)
1163 			return rc;
1164 
1165 		/* Update this layer's counter */
1166 		rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1167 		if (rc < 0)
1168 			return rc;
1169 		rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1170 		if (rc < 0)
1171 			return rc;
1172 		rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1173 		if (rc < 0)
1174 			return rc;
1175 		rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1176 		if (rc < 0)
1177 			return rc;
1178 
1179 		/* start PER measurement */
1180 		rc = mb86a20s_writereg(state, 0x50, 0xb0);
1181 		if (rc < 0)
1182 			return rc;
1183 		rc = mb86a20s_writereg(state, 0x51, 0x07);
1184 		if (rc < 0)
1185 			return rc;
1186 
1187 		/* Reset all counters to collect new data */
1188 		rc = mb86a20s_writereg(state, 0x50, 0xb1);
1189 		if (rc < 0)
1190 			return rc;
1191 		rc = mb86a20s_writereg(state, 0x51, 0x07);
1192 		if (rc < 0)
1193 			return rc;
1194 		rc = mb86a20s_writereg(state, 0x51, 0x00);
1195 
1196 		return rc;
1197 	}
1198 
1199 reset_measurement:
1200 	/* Reset counter to collect new data */
1201 	rc = mb86a20s_writereg(state, 0x50, 0xb1);
1202 	if (rc < 0)
1203 		return rc;
1204 	rc = mb86a20s_readreg(state, 0x51);
1205 	if (rc < 0)
1206 		return rc;
1207 	val = rc;
1208 	rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
1209 	if (rc < 0)
1210 		return rc;
1211 	rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
1212 
1213 	return rc;
1214 }
1215 
1216 struct linear_segments {
1217 	unsigned x, y;
1218 };
1219 
1220 /*
1221  * All tables below return a dB/1000 measurement
1222  */
1223 
1224 static const struct linear_segments cnr_to_db_table[] = {
1225 	{ 19648,     0},
1226 	{ 18187,  1000},
1227 	{ 16534,  2000},
1228 	{ 14823,  3000},
1229 	{ 13161,  4000},
1230 	{ 11622,  5000},
1231 	{ 10279,  6000},
1232 	{  9089,  7000},
1233 	{  8042,  8000},
1234 	{  7137,  9000},
1235 	{  6342, 10000},
1236 	{  5641, 11000},
1237 	{  5030, 12000},
1238 	{  4474, 13000},
1239 	{  3988, 14000},
1240 	{  3556, 15000},
1241 	{  3180, 16000},
1242 	{  2841, 17000},
1243 	{  2541, 18000},
1244 	{  2276, 19000},
1245 	{  2038, 20000},
1246 	{  1800, 21000},
1247 	{  1625, 22000},
1248 	{  1462, 23000},
1249 	{  1324, 24000},
1250 	{  1175, 25000},
1251 	{  1063, 26000},
1252 	{   980, 27000},
1253 	{   907, 28000},
1254 	{   840, 29000},
1255 	{   788, 30000},
1256 };
1257 
1258 static const struct linear_segments cnr_64qam_table[] = {
1259 	{ 3922688,     0},
1260 	{ 3920384,  1000},
1261 	{ 3902720,  2000},
1262 	{ 3894784,  3000},
1263 	{ 3882496,  4000},
1264 	{ 3872768,  5000},
1265 	{ 3858944,  6000},
1266 	{ 3851520,  7000},
1267 	{ 3838976,  8000},
1268 	{ 3829248,  9000},
1269 	{ 3818240, 10000},
1270 	{ 3806976, 11000},
1271 	{ 3791872, 12000},
1272 	{ 3767040, 13000},
1273 	{ 3720960, 14000},
1274 	{ 3637504, 15000},
1275 	{ 3498496, 16000},
1276 	{ 3296000, 17000},
1277 	{ 3031040, 18000},
1278 	{ 2715392, 19000},
1279 	{ 2362624, 20000},
1280 	{ 1963264, 21000},
1281 	{ 1649664, 22000},
1282 	{ 1366784, 23000},
1283 	{ 1120768, 24000},
1284 	{  890880, 25000},
1285 	{  723456, 26000},
1286 	{  612096, 27000},
1287 	{  518912, 28000},
1288 	{  448256, 29000},
1289 	{  388864, 30000},
1290 };
1291 
1292 static const struct linear_segments cnr_16qam_table[] = {
1293 	{ 5314816,     0},
1294 	{ 5219072,  1000},
1295 	{ 5118720,  2000},
1296 	{ 4998912,  3000},
1297 	{ 4875520,  4000},
1298 	{ 4736000,  5000},
1299 	{ 4604160,  6000},
1300 	{ 4458752,  7000},
1301 	{ 4300288,  8000},
1302 	{ 4092928,  9000},
1303 	{ 3836160, 10000},
1304 	{ 3521024, 11000},
1305 	{ 3155968, 12000},
1306 	{ 2756864, 13000},
1307 	{ 2347008, 14000},
1308 	{ 1955072, 15000},
1309 	{ 1593600, 16000},
1310 	{ 1297920, 17000},
1311 	{ 1043968, 18000},
1312 	{  839680, 19000},
1313 	{  672256, 20000},
1314 	{  523008, 21000},
1315 	{  424704, 22000},
1316 	{  345088, 23000},
1317 	{  280064, 24000},
1318 	{  221440, 25000},
1319 	{  179712, 26000},
1320 	{  151040, 27000},
1321 	{  128512, 28000},
1322 	{  110080, 29000},
1323 	{   95744, 30000},
1324 };
1325 
1326 static const struct linear_segments cnr_qpsk_table[] = {
1327 	{ 2834176,     0},
1328 	{ 2683648,  1000},
1329 	{ 2536960,  2000},
1330 	{ 2391808,  3000},
1331 	{ 2133248,  4000},
1332 	{ 1906176,  5000},
1333 	{ 1666560,  6000},
1334 	{ 1422080,  7000},
1335 	{ 1189632,  8000},
1336 	{  976384,  9000},
1337 	{  790272, 10000},
1338 	{  633344, 11000},
1339 	{  505600, 12000},
1340 	{  402944, 13000},
1341 	{  320768, 14000},
1342 	{  255488, 15000},
1343 	{  204032, 16000},
1344 	{  163072, 17000},
1345 	{  130304, 18000},
1346 	{  105216, 19000},
1347 	{   83456, 20000},
1348 	{   65024, 21000},
1349 	{   52480, 22000},
1350 	{   42752, 23000},
1351 	{   34560, 24000},
1352 	{   27136, 25000},
1353 	{   22016, 26000},
1354 	{   18432, 27000},
1355 	{   15616, 28000},
1356 	{   13312, 29000},
1357 	{   11520, 30000},
1358 };
1359 
1360 static u32 interpolate_value(u32 value, const struct linear_segments *segments,
1361 			     unsigned len)
1362 {
1363 	u64 tmp64;
1364 	u32 dx, dy;
1365 	int i, ret;
1366 
1367 	if (value >= segments[0].x)
1368 		return segments[0].y;
1369 	if (value < segments[len-1].x)
1370 		return segments[len-1].y;
1371 
1372 	for (i = 1; i < len - 1; i++) {
1373 		/* If value is identical, no need to interpolate */
1374 		if (value == segments[i].x)
1375 			return segments[i].y;
1376 		if (value > segments[i].x)
1377 			break;
1378 	}
1379 
1380 	/* Linear interpolation between the two (x,y) points */
1381 	dy = segments[i].y - segments[i - 1].y;
1382 	dx = segments[i - 1].x - segments[i].x;
1383 	tmp64 = value - segments[i].x;
1384 	tmp64 *= dy;
1385 	do_div(tmp64, dx);
1386 	ret = segments[i].y - tmp64;
1387 
1388 	return ret;
1389 }
1390 
1391 static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
1392 {
1393 	struct mb86a20s_state *state = fe->demodulator_priv;
1394 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1395 	u32 cnr_linear, cnr;
1396 	int rc, val;
1397 
1398 	/* Check if CNR is available */
1399 	rc = mb86a20s_readreg(state, 0x45);
1400 	if (rc < 0)
1401 		return rc;
1402 
1403 	if (!(rc & 0x40)) {
1404 		dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n",
1405 			 __func__);
1406 		return -EBUSY;
1407 	}
1408 	val = rc;
1409 
1410 	rc = mb86a20s_readreg(state, 0x46);
1411 	if (rc < 0)
1412 		return rc;
1413 	cnr_linear = rc << 8;
1414 
1415 	rc = mb86a20s_readreg(state, 0x46);
1416 	if (rc < 0)
1417 		return rc;
1418 	cnr_linear |= rc;
1419 
1420 	cnr = interpolate_value(cnr_linear,
1421 				cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));
1422 
1423 	c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1424 	c->cnr.stat[0].svalue = cnr;
1425 
1426 	dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
1427 		__func__, cnr / 1000, cnr % 1000, cnr_linear);
1428 
1429 	/* CNR counter reset */
1430 	rc = mb86a20s_writereg(state, 0x45, val | 0x10);
1431 	if (rc < 0)
1432 		return rc;
1433 	rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
1434 
1435 	return rc;
1436 }
1437 
1438 static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
1439 {
1440 	struct mb86a20s_state *state = fe->demodulator_priv;
1441 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1442 	u32 mer, cnr;
1443 	int rc, val, layer;
1444 	const struct linear_segments *segs;
1445 	unsigned segs_len;
1446 
1447 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1448 
1449 	/* Check if the measures are already available */
1450 	rc = mb86a20s_writereg(state, 0x50, 0x5b);
1451 	if (rc < 0)
1452 		return rc;
1453 	rc = mb86a20s_readreg(state, 0x51);
1454 	if (rc < 0)
1455 		return rc;
1456 
1457 	/* Check if data is available */
1458 	if (!(rc & 0x01)) {
1459 		dev_dbg(&state->i2c->dev,
1460 			"%s: MER measures aren't available yet.\n", __func__);
1461 		return -EBUSY;
1462 	}
1463 
1464 	/* Read all layers */
1465 	for (layer = 0; layer < NUM_LAYERS; layer++) {
1466 		if (!(c->isdbt_layer_enabled & (1 << layer))) {
1467 			c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1468 			continue;
1469 		}
1470 
1471 		rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3);
1472 		if (rc < 0)
1473 			return rc;
1474 		rc = mb86a20s_readreg(state, 0x51);
1475 		if (rc < 0)
1476 			return rc;
1477 		mer = rc << 16;
1478 		rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3);
1479 		if (rc < 0)
1480 			return rc;
1481 		rc = mb86a20s_readreg(state, 0x51);
1482 		if (rc < 0)
1483 			return rc;
1484 		mer |= rc << 8;
1485 		rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3);
1486 		if (rc < 0)
1487 			return rc;
1488 		rc = mb86a20s_readreg(state, 0x51);
1489 		if (rc < 0)
1490 			return rc;
1491 		mer |= rc;
1492 
1493 		switch (c->layer[layer].modulation) {
1494 		case DQPSK:
1495 		case QPSK:
1496 			segs = cnr_qpsk_table;
1497 			segs_len = ARRAY_SIZE(cnr_qpsk_table);
1498 			break;
1499 		case QAM_16:
1500 			segs = cnr_16qam_table;
1501 			segs_len = ARRAY_SIZE(cnr_16qam_table);
1502 			break;
1503 		default:
1504 		case QAM_64:
1505 			segs = cnr_64qam_table;
1506 			segs_len = ARRAY_SIZE(cnr_64qam_table);
1507 			break;
1508 		}
1509 		cnr = interpolate_value(mer, segs, segs_len);
1510 
1511 		c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL;
1512 		c->cnr.stat[1 + layer].svalue = cnr;
1513 
1514 		dev_dbg(&state->i2c->dev,
1515 			"%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
1516 			__func__, 'A' + layer, cnr / 1000, cnr % 1000, mer);
1517 
1518 	}
1519 
1520 	/* Start a new MER measurement */
1521 	/* MER counter reset */
1522 	rc = mb86a20s_writereg(state, 0x50, 0x50);
1523 	if (rc < 0)
1524 		return rc;
1525 	rc = mb86a20s_readreg(state, 0x51);
1526 	if (rc < 0)
1527 		return rc;
1528 	val = rc;
1529 
1530 	rc = mb86a20s_writereg(state, 0x51, val | 0x01);
1531 	if (rc < 0)
1532 		return rc;
1533 	rc = mb86a20s_writereg(state, 0x51, val & 0x06);
1534 	if (rc < 0)
1535 		return rc;
1536 
1537 	return 0;
1538 }
1539 
1540 static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
1541 {
1542 	struct mb86a20s_state *state = fe->demodulator_priv;
1543 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1544 	int layer;
1545 
1546 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1547 
1548 	/* Fill the length of each status counter */
1549 
1550 	/* Only global stats */
1551 	c->strength.len = 1;
1552 
1553 	/* Per-layer stats - 3 layers + global */
1554 	c->cnr.len = NUM_LAYERS + 1;
1555 	c->pre_bit_error.len = NUM_LAYERS + 1;
1556 	c->pre_bit_count.len = NUM_LAYERS + 1;
1557 	c->post_bit_error.len = NUM_LAYERS + 1;
1558 	c->post_bit_count.len = NUM_LAYERS + 1;
1559 	c->block_error.len = NUM_LAYERS + 1;
1560 	c->block_count.len = NUM_LAYERS + 1;
1561 
1562 	/* Signal is always available */
1563 	c->strength.stat[0].scale = FE_SCALE_RELATIVE;
1564 	c->strength.stat[0].uvalue = 0;
1565 
1566 	/* Put all of them at FE_SCALE_NOT_AVAILABLE */
1567 	for (layer = 0; layer < NUM_LAYERS + 1; layer++) {
1568 		c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1569 		c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1570 		c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1571 		c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1572 		c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1573 		c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1574 		c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1575 	}
1576 }
1577 
1578 static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr)
1579 {
1580 	struct mb86a20s_state *state = fe->demodulator_priv;
1581 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1582 	int rc = 0, layer;
1583 	u32 bit_error = 0, bit_count = 0;
1584 	u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
1585 	u32 t_post_bit_error = 0, t_post_bit_count = 0;
1586 	u32 block_error = 0, block_count = 0;
1587 	u32 t_block_error = 0, t_block_count = 0;
1588 	int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0;
1589 	int per_layers = 0;
1590 
1591 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1592 
1593 	mb86a20s_get_main_CNR(fe);
1594 
1595 	/* Get per-layer stats */
1596 	mb86a20s_get_blk_error_layer_CNR(fe);
1597 
1598 	/*
1599 	 * At state 7, only CNR is available
1600 	 * For BER measures, state=9 is required
1601 	 * FIXME: we may get MER measures with state=8
1602 	 */
1603 	if (status_nr < 9)
1604 		return 0;
1605 
1606 	for (layer = 0; layer < NUM_LAYERS; layer++) {
1607 		if (c->isdbt_layer_enabled & (1 << layer)) {
1608 			/* Layer is active and has rc segments */
1609 			active_layers++;
1610 
1611 			/* Handle BER before vterbi */
1612 			rc = mb86a20s_get_pre_ber(fe, layer,
1613 						  &bit_error, &bit_count);
1614 			if (rc >= 0) {
1615 				c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1616 				c->pre_bit_error.stat[1 + layer].uvalue += bit_error;
1617 				c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1618 				c->pre_bit_count.stat[1 + layer].uvalue += bit_count;
1619 			} else if (rc != -EBUSY) {
1620 				/*
1621 					* If an I/O error happened,
1622 					* measures are now unavailable
1623 					*/
1624 				c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1625 				c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1626 				dev_err(&state->i2c->dev,
1627 					"%s: Can't get BER for layer %c (error %d).\n",
1628 					__func__, 'A' + layer, rc);
1629 			}
1630 			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1631 				pre_ber_layers++;
1632 
1633 			/* Handle BER post vterbi */
1634 			rc = mb86a20s_get_post_ber(fe, layer,
1635 						   &bit_error, &bit_count);
1636 			if (rc >= 0) {
1637 				c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1638 				c->post_bit_error.stat[1 + layer].uvalue += bit_error;
1639 				c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1640 				c->post_bit_count.stat[1 + layer].uvalue += bit_count;
1641 			} else if (rc != -EBUSY) {
1642 				/*
1643 					* If an I/O error happened,
1644 					* measures are now unavailable
1645 					*/
1646 				c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1647 				c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1648 				dev_err(&state->i2c->dev,
1649 					"%s: Can't get BER for layer %c (error %d).\n",
1650 					__func__, 'A' + layer, rc);
1651 			}
1652 			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1653 				post_ber_layers++;
1654 
1655 			/* Handle Block errors for PER/UCB reports */
1656 			rc = mb86a20s_get_blk_error(fe, layer,
1657 						&block_error,
1658 						&block_count);
1659 			if (rc >= 0) {
1660 				c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1661 				c->block_error.stat[1 + layer].uvalue += block_error;
1662 				c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1663 				c->block_count.stat[1 + layer].uvalue += block_count;
1664 			} else if (rc != -EBUSY) {
1665 				/*
1666 					* If an I/O error happened,
1667 					* measures are now unavailable
1668 					*/
1669 				c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1670 				c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1671 				dev_err(&state->i2c->dev,
1672 					"%s: Can't get PER for layer %c (error %d).\n",
1673 					__func__, 'A' + layer, rc);
1674 
1675 			}
1676 			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1677 				per_layers++;
1678 
1679 			/* Update total preBER */
1680 			t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue;
1681 			t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue;
1682 
1683 			/* Update total postBER */
1684 			t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue;
1685 			t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue;
1686 
1687 			/* Update total PER */
1688 			t_block_error += c->block_error.stat[1 + layer].uvalue;
1689 			t_block_count += c->block_count.stat[1 + layer].uvalue;
1690 		}
1691 	}
1692 
1693 	/*
1694 	 * Start showing global count if at least one error count is
1695 	 * available.
1696 	 */
1697 	if (pre_ber_layers) {
1698 		/*
1699 		 * At least one per-layer BER measure was read. We can now
1700 		 * calculate the total BER
1701 		 *
1702 		 * Total Bit Error/Count is calculated as the sum of the
1703 		 * bit errors on all active layers.
1704 		 */
1705 		c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1706 		c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
1707 		c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1708 		c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
1709 	} else {
1710 		c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1711 		c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1712 	}
1713 
1714 	/*
1715 	 * Start showing global count if at least one error count is
1716 	 * available.
1717 	 */
1718 	if (post_ber_layers) {
1719 		/*
1720 		 * At least one per-layer BER measure was read. We can now
1721 		 * calculate the total BER
1722 		 *
1723 		 * Total Bit Error/Count is calculated as the sum of the
1724 		 * bit errors on all active layers.
1725 		 */
1726 		c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1727 		c->post_bit_error.stat[0].uvalue = t_post_bit_error;
1728 		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1729 		c->post_bit_count.stat[0].uvalue = t_post_bit_count;
1730 	} else {
1731 		c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1732 		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1733 	}
1734 
1735 	if (per_layers) {
1736 		/*
1737 		 * At least one per-layer UCB measure was read. We can now
1738 		 * calculate the total UCB
1739 		 *
1740 		 * Total block Error/Count is calculated as the sum of the
1741 		 * block errors on all active layers.
1742 		 */
1743 		c->block_error.stat[0].scale = FE_SCALE_COUNTER;
1744 		c->block_error.stat[0].uvalue = t_block_error;
1745 		c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1746 		c->block_count.stat[0].uvalue = t_block_count;
1747 	} else {
1748 		c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1749 		c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1750 	}
1751 
1752 	return rc;
1753 }
1754 
1755 /*
1756  * The functions below are called via DVB callbacks, so they need to
1757  * properly use the I2C gate control
1758  */
1759 
1760 static int mb86a20s_initfe(struct dvb_frontend *fe)
1761 {
1762 	struct mb86a20s_state *state = fe->demodulator_priv;
1763 	u64 pll;
1764 	u32 fclk;
1765 	int rc;
1766 	u8  regD5 = 1, reg71, reg09 = 0x3a;
1767 
1768 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1769 
1770 	if (fe->ops.i2c_gate_ctrl)
1771 		fe->ops.i2c_gate_ctrl(fe, 0);
1772 
1773 	/* Initialize the frontend */
1774 	rc = mb86a20s_writeregdata(state, mb86a20s_init1);
1775 	if (rc < 0)
1776 		goto err;
1777 
1778 	if (!state->inversion)
1779 		reg09 |= 0x04;
1780 	rc = mb86a20s_writereg(state, 0x09, reg09);
1781 	if (rc < 0)
1782 		goto err;
1783 	if (!state->bw)
1784 		reg71 = 1;
1785 	else
1786 		reg71 = 0;
1787 	rc = mb86a20s_writereg(state, 0x39, reg71);
1788 	if (rc < 0)
1789 		goto err;
1790 	rc = mb86a20s_writereg(state, 0x71, state->bw);
1791 	if (rc < 0)
1792 		goto err;
1793 	if (state->subchannel) {
1794 		rc = mb86a20s_writereg(state, 0x44, state->subchannel);
1795 		if (rc < 0)
1796 			goto err;
1797 	}
1798 
1799 	fclk = state->config->fclk;
1800 	if (!fclk)
1801 		fclk = 32571428;
1802 
1803 	/* Adjust IF frequency to match tuner */
1804 	if (fe->ops.tuner_ops.get_if_frequency)
1805 		fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq);
1806 
1807 	if (!state->if_freq)
1808 		state->if_freq = 3300000;
1809 
1810 	pll = (((u64)1) << 34) * state->if_freq;
1811 	do_div(pll, 63 * fclk);
1812 	pll = (1 << 25) - pll;
1813 	rc = mb86a20s_writereg(state, 0x28, 0x2a);
1814 	if (rc < 0)
1815 		goto err;
1816 	rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1817 	if (rc < 0)
1818 		goto err;
1819 	rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1820 	if (rc < 0)
1821 		goto err;
1822 	rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1823 	if (rc < 0)
1824 		goto err;
1825 	dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n",
1826 		__func__, fclk, state->if_freq, (long long)pll);
1827 
1828 	/* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */
1829 	pll = state->if_freq * 1677721600L;
1830 	do_div(pll, 1628571429L);
1831 	rc = mb86a20s_writereg(state, 0x28, 0x20);
1832 	if (rc < 0)
1833 		goto err;
1834 	rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1835 	if (rc < 0)
1836 		goto err;
1837 	rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1838 	if (rc < 0)
1839 		goto err;
1840 	rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1841 	if (rc < 0)
1842 		goto err;
1843 	dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n",
1844 		__func__, state->if_freq, (long long)pll);
1845 
1846 	if (!state->config->is_serial)
1847 		regD5 &= ~1;
1848 
1849 	rc = mb86a20s_writereg(state, 0x50, 0xd5);
1850 	if (rc < 0)
1851 		goto err;
1852 	rc = mb86a20s_writereg(state, 0x51, regD5);
1853 	if (rc < 0)
1854 		goto err;
1855 
1856 	rc = mb86a20s_writeregdata(state, mb86a20s_init2);
1857 	if (rc < 0)
1858 		goto err;
1859 
1860 
1861 err:
1862 	if (fe->ops.i2c_gate_ctrl)
1863 		fe->ops.i2c_gate_ctrl(fe, 1);
1864 
1865 	if (rc < 0) {
1866 		state->need_init = true;
1867 		dev_info(&state->i2c->dev,
1868 			 "mb86a20s: Init failed. Will try again later\n");
1869 	} else {
1870 		state->need_init = false;
1871 		dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
1872 	}
1873 	return rc;
1874 }
1875 
1876 static int mb86a20s_set_frontend(struct dvb_frontend *fe)
1877 {
1878 	struct mb86a20s_state *state = fe->demodulator_priv;
1879 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1880 	int rc, if_freq;
1881 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1882 
1883 	if (!c->isdbt_layer_enabled)
1884 		c->isdbt_layer_enabled = 7;
1885 
1886 	if (c->isdbt_layer_enabled == 1)
1887 		state->bw = MB86A20S_1SEG;
1888 	else if (c->isdbt_partial_reception)
1889 		state->bw = MB86A20S_13SEG_PARTIAL;
1890 	else
1891 		state->bw = MB86A20S_13SEG;
1892 
1893 	if (c->inversion == INVERSION_ON)
1894 		state->inversion = true;
1895 	else
1896 		state->inversion = false;
1897 
1898 	if (!c->isdbt_sb_mode) {
1899 		state->subchannel = 0;
1900 	} else {
1901 		if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel))
1902 			c->isdbt_sb_subchannel = 0;
1903 
1904 		state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel];
1905 	}
1906 
1907 	/*
1908 	 * Gate should already be opened, but it doesn't hurt to
1909 	 * double-check
1910 	 */
1911 	if (fe->ops.i2c_gate_ctrl)
1912 		fe->ops.i2c_gate_ctrl(fe, 1);
1913 	fe->ops.tuner_ops.set_params(fe);
1914 
1915 	if (fe->ops.tuner_ops.get_if_frequency)
1916 		fe->ops.tuner_ops.get_if_frequency(fe, &if_freq);
1917 
1918 	/*
1919 	 * Make it more reliable: if, for some reason, the initial
1920 	 * device initialization doesn't happen, initialize it when
1921 	 * a SBTVD parameters are adjusted.
1922 	 *
1923 	 * Unfortunately, due to a hard to track bug at tda829x/tda18271,
1924 	 * the agc callback logic is not called during DVB attach time,
1925 	 * causing mb86a20s to not be initialized with Kworld SBTVD.
1926 	 * So, this hack is needed, in order to make Kworld SBTVD to work.
1927 	 *
1928 	 * It is also needed to change the IF after the initial init.
1929 	 *
1930 	 * HACK: Always init the frontend when set_frontend is called:
1931 	 * it was noticed that, on some devices, it fails to lock on a
1932 	 * different channel. So, it is better to reset everything, even
1933 	 * wasting some time, than to loose channel lock.
1934 	 */
1935 	mb86a20s_initfe(fe);
1936 
1937 	if (fe->ops.i2c_gate_ctrl)
1938 		fe->ops.i2c_gate_ctrl(fe, 0);
1939 
1940 	rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
1941 	mb86a20s_reset_counters(fe);
1942 	mb86a20s_stats_not_ready(fe);
1943 
1944 	if (fe->ops.i2c_gate_ctrl)
1945 		fe->ops.i2c_gate_ctrl(fe, 1);
1946 
1947 	return rc;
1948 }
1949 
1950 static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
1951 					  enum fe_status *status)
1952 {
1953 	struct mb86a20s_state *state = fe->demodulator_priv;
1954 	int rc, status_nr;
1955 
1956 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1957 
1958 	if (fe->ops.i2c_gate_ctrl)
1959 		fe->ops.i2c_gate_ctrl(fe, 0);
1960 
1961 	/* Get lock */
1962 	status_nr = mb86a20s_read_status(fe, status);
1963 	if (status_nr < 7) {
1964 		mb86a20s_stats_not_ready(fe);
1965 		mb86a20s_reset_frontend_cache(fe);
1966 	}
1967 	if (status_nr < 0) {
1968 		dev_err(&state->i2c->dev,
1969 			"%s: Can't read frontend lock status\n", __func__);
1970 		rc = status_nr;
1971 		goto error;
1972 	}
1973 
1974 	/* Get signal strength */
1975 	rc = mb86a20s_read_signal_strength(fe);
1976 	if (rc < 0) {
1977 		dev_err(&state->i2c->dev,
1978 			"%s: Can't reset VBER registers.\n", __func__);
1979 		mb86a20s_stats_not_ready(fe);
1980 		mb86a20s_reset_frontend_cache(fe);
1981 
1982 		rc = 0;		/* Status is OK */
1983 		goto error;
1984 	}
1985 
1986 	if (status_nr >= 7) {
1987 		/* Get TMCC info*/
1988 		rc = mb86a20s_get_frontend(fe);
1989 		if (rc < 0) {
1990 			dev_err(&state->i2c->dev,
1991 				"%s: Can't get FE TMCC data.\n", __func__);
1992 			rc = 0;		/* Status is OK */
1993 			goto error;
1994 		}
1995 
1996 		/* Get statistics */
1997 		rc = mb86a20s_get_stats(fe, status_nr);
1998 		if (rc < 0 && rc != -EBUSY) {
1999 			dev_err(&state->i2c->dev,
2000 				"%s: Can't get FE statistics.\n", __func__);
2001 			rc = 0;
2002 			goto error;
2003 		}
2004 		rc = 0;	/* Don't return EBUSY to userspace */
2005 	}
2006 	goto ok;
2007 
2008 error:
2009 	mb86a20s_stats_not_ready(fe);
2010 
2011 ok:
2012 	if (fe->ops.i2c_gate_ctrl)
2013 		fe->ops.i2c_gate_ctrl(fe, 1);
2014 
2015 	return rc;
2016 }
2017 
2018 static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
2019 						    u16 *strength)
2020 {
2021 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2022 
2023 
2024 	*strength = c->strength.stat[0].uvalue;
2025 
2026 	return 0;
2027 }
2028 
2029 static int mb86a20s_tune(struct dvb_frontend *fe,
2030 			bool re_tune,
2031 			unsigned int mode_flags,
2032 			unsigned int *delay,
2033 			enum fe_status *status)
2034 {
2035 	struct mb86a20s_state *state = fe->demodulator_priv;
2036 	int rc = 0;
2037 
2038 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2039 
2040 	if (re_tune)
2041 		rc = mb86a20s_set_frontend(fe);
2042 
2043 	if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
2044 		mb86a20s_read_status_and_stats(fe, status);
2045 
2046 	return rc;
2047 }
2048 
2049 static void mb86a20s_release(struct dvb_frontend *fe)
2050 {
2051 	struct mb86a20s_state *state = fe->demodulator_priv;
2052 
2053 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2054 
2055 	kfree(state);
2056 }
2057 
2058 static enum dvbfe_algo mb86a20s_get_frontend_algo(struct dvb_frontend *fe)
2059 {
2060 	return DVBFE_ALGO_HW;
2061 }
2062 
2063 static const struct dvb_frontend_ops mb86a20s_ops;
2064 
2065 struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
2066 				    struct i2c_adapter *i2c)
2067 {
2068 	struct mb86a20s_state *state;
2069 	u8	rev;
2070 
2071 	dev_dbg(&i2c->dev, "%s called.\n", __func__);
2072 
2073 	/* allocate memory for the internal state */
2074 	state = kzalloc(sizeof(*state), GFP_KERNEL);
2075 	if (!state)
2076 		return NULL;
2077 
2078 	/* setup the state */
2079 	state->config = config;
2080 	state->i2c = i2c;
2081 
2082 	/* create dvb_frontend */
2083 	memcpy(&state->frontend.ops, &mb86a20s_ops,
2084 		sizeof(struct dvb_frontend_ops));
2085 	state->frontend.demodulator_priv = state;
2086 
2087 	/* Check if it is a mb86a20s frontend */
2088 	rev = mb86a20s_readreg(state, 0);
2089 	if (rev != 0x13) {
2090 		kfree(state);
2091 		dev_dbg(&i2c->dev,
2092 			"Frontend revision %d is unknown - aborting.\n",
2093 		       rev);
2094 		return NULL;
2095 	}
2096 
2097 	dev_info(&i2c->dev, "Detected a Fujitsu mb86a20s frontend\n");
2098 	return &state->frontend;
2099 }
2100 EXPORT_SYMBOL(mb86a20s_attach);
2101 
2102 static const struct dvb_frontend_ops mb86a20s_ops = {
2103 	.delsys = { SYS_ISDBT },
2104 	/* Use dib8000 values per default */
2105 	.info = {
2106 		.name = "Fujitsu mb86A20s",
2107 		.caps = FE_CAN_RECOVER  |
2108 			FE_CAN_FEC_1_2  | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
2109 			FE_CAN_FEC_5_6  | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
2110 			FE_CAN_QPSK     | FE_CAN_QAM_16  | FE_CAN_QAM_64 |
2111 			FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
2112 			FE_CAN_GUARD_INTERVAL_AUTO    | FE_CAN_HIERARCHY_AUTO,
2113 		/* Actually, those values depend on the used tuner */
2114 		.frequency_min = 45000000,
2115 		.frequency_max = 864000000,
2116 		.frequency_stepsize = 62500,
2117 	},
2118 
2119 	.release = mb86a20s_release,
2120 
2121 	.init = mb86a20s_initfe,
2122 	.set_frontend = mb86a20s_set_frontend,
2123 	.read_status = mb86a20s_read_status_and_stats,
2124 	.read_signal_strength = mb86a20s_read_signal_strength_from_cache,
2125 	.tune = mb86a20s_tune,
2126 	.get_frontend_algo = mb86a20s_get_frontend_algo,
2127 };
2128 
2129 MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
2130 MODULE_AUTHOR("Mauro Carvalho Chehab");
2131 MODULE_LICENSE("GPL");
2132