1 /*
2  *   Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
3  *
4  *   Copyright (C) 2010-2013 Mauro Carvalho Chehab
5  *   Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
6  *
7  *   This program is free software; you can redistribute it and/or
8  *   modify it under the terms of the GNU General Public License as
9  *   published by the Free Software Foundation version 2.
10  *
11  *   This program is distributed in the hope that it will be useful,
12  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  *   General Public License for more details.
15  */
16 
17 #include <linux/kernel.h>
18 #include <asm/div64.h>
19 
20 #include "dvb_frontend.h"
21 #include "mb86a20s.h"
22 
23 #define NUM_LAYERS 3
24 
25 enum mb86a20s_bandwidth {
26 	MB86A20S_13SEG = 0,
27 	MB86A20S_13SEG_PARTIAL = 1,
28 	MB86A20S_1SEG = 2,
29 	MB86A20S_3SEG = 3,
30 };
31 
32 static u8 mb86a20s_subchannel[] = {
33 	0xb0, 0xc0, 0xd0, 0xe0,
34 	0xf0, 0x00, 0x10, 0x20,
35 };
36 
37 struct mb86a20s_state {
38 	struct i2c_adapter *i2c;
39 	const struct mb86a20s_config *config;
40 	u32 last_frequency;
41 
42 	struct dvb_frontend frontend;
43 
44 	u32 if_freq;
45 	enum mb86a20s_bandwidth bw;
46 	bool inversion;
47 	u32 subchannel;
48 
49 	u32 estimated_rate[NUM_LAYERS];
50 	unsigned long get_strength_time;
51 
52 	bool need_init;
53 };
54 
55 struct regdata {
56 	u8 reg;
57 	u8 data;
58 };
59 
60 #define BER_SAMPLING_RATE	1	/* Seconds */
61 
62 /*
63  * Initialization sequence: Use whatevere default values that PV SBTVD
64  * does on its initialisation, obtained via USB snoop
65  */
66 static struct regdata mb86a20s_init1[] = {
67 	{ 0x70, 0x0f },
68 	{ 0x70, 0xff },
69 	{ 0x08, 0x01 },
70 	{ 0x50, 0xd1 }, { 0x51, 0x20 },
71 };
72 
73 static struct regdata mb86a20s_init2[] = {
74 	{ 0x28, 0x22 }, { 0x29, 0x00 }, { 0x2a, 0x1f }, { 0x2b, 0xf0 },
75 	{ 0x3b, 0x21 },
76 	{ 0x3c, 0x38 },
77 	{ 0x01, 0x0d },
78 	{ 0x04, 0x08 }, { 0x05, 0x03 },
79 	{ 0x04, 0x0e }, { 0x05, 0x00 },
80 	{ 0x04, 0x0f }, { 0x05, 0x37 },
81 	{ 0x04, 0x0b }, { 0x05, 0x78 },
82 	{ 0x04, 0x00 }, { 0x05, 0x00 },
83 	{ 0x04, 0x01 }, { 0x05, 0x1e },
84 	{ 0x04, 0x02 }, { 0x05, 0x07 },
85 	{ 0x04, 0x03 }, { 0x05, 0xd0 },
86 	{ 0x04, 0x09 }, { 0x05, 0x00 },
87 	{ 0x04, 0x0a }, { 0x05, 0xff },
88 	{ 0x04, 0x27 }, { 0x05, 0x00 },
89 	{ 0x04, 0x28 }, { 0x05, 0x00 },
90 	{ 0x04, 0x1e }, { 0x05, 0x00 },
91 	{ 0x04, 0x29 }, { 0x05, 0x64 },
92 	{ 0x04, 0x32 }, { 0x05, 0x02 },
93 	{ 0x04, 0x14 }, { 0x05, 0x02 },
94 	{ 0x04, 0x04 }, { 0x05, 0x00 },
95 	{ 0x04, 0x05 }, { 0x05, 0x22 },
96 	{ 0x04, 0x06 }, { 0x05, 0x0e },
97 	{ 0x04, 0x07 }, { 0x05, 0xd8 },
98 	{ 0x04, 0x12 }, { 0x05, 0x00 },
99 	{ 0x04, 0x13 }, { 0x05, 0xff },
100 	{ 0x04, 0x15 }, { 0x05, 0x4e },
101 	{ 0x04, 0x16 }, { 0x05, 0x20 },
102 
103 	/*
104 	 * On this demod, when the bit count reaches the count below,
105 	 * it collects the bit error count. The bit counters are initialized
106 	 * to 65535 here. This warrants that all of them will be quickly
107 	 * calculated when device gets locked. As TMCC is parsed, the values
108 	 * will be adjusted later in the driver's code.
109 	 */
110 	{ 0x52, 0x01 },				/* Turn on BER before Viterbi */
111 	{ 0x50, 0xa7 }, { 0x51, 0x00 },
112 	{ 0x50, 0xa8 }, { 0x51, 0xff },
113 	{ 0x50, 0xa9 }, { 0x51, 0xff },
114 	{ 0x50, 0xaa }, { 0x51, 0x00 },
115 	{ 0x50, 0xab }, { 0x51, 0xff },
116 	{ 0x50, 0xac }, { 0x51, 0xff },
117 	{ 0x50, 0xad }, { 0x51, 0x00 },
118 	{ 0x50, 0xae }, { 0x51, 0xff },
119 	{ 0x50, 0xaf }, { 0x51, 0xff },
120 
121 	/*
122 	 * On this demod, post BER counts blocks. When the count reaches the
123 	 * value below, it collects the block error count. The block counters
124 	 * are initialized to 127 here. This warrants that all of them will be
125 	 * quickly calculated when device gets locked. As TMCC is parsed, the
126 	 * values will be adjusted later in the driver's code.
127 	 */
128 	{ 0x5e, 0x07 },				/* Turn on BER after Viterbi */
129 	{ 0x50, 0xdc }, { 0x51, 0x00 },
130 	{ 0x50, 0xdd }, { 0x51, 0x7f },
131 	{ 0x50, 0xde }, { 0x51, 0x00 },
132 	{ 0x50, 0xdf }, { 0x51, 0x7f },
133 	{ 0x50, 0xe0 }, { 0x51, 0x00 },
134 	{ 0x50, 0xe1 }, { 0x51, 0x7f },
135 
136 	/*
137 	 * On this demod, when the block count reaches the count below,
138 	 * it collects the block error count. The block counters are initialized
139 	 * to 127 here. This warrants that all of them will be quickly
140 	 * calculated when device gets locked. As TMCC is parsed, the values
141 	 * will be adjusted later in the driver's code.
142 	 */
143 	{ 0x50, 0xb0 }, { 0x51, 0x07 },		/* Enable PER */
144 	{ 0x50, 0xb2 }, { 0x51, 0x00 },
145 	{ 0x50, 0xb3 }, { 0x51, 0x7f },
146 	{ 0x50, 0xb4 }, { 0x51, 0x00 },
147 	{ 0x50, 0xb5 }, { 0x51, 0x7f },
148 	{ 0x50, 0xb6 }, { 0x51, 0x00 },
149 	{ 0x50, 0xb7 }, { 0x51, 0x7f },
150 
151 	{ 0x50, 0x50 }, { 0x51, 0x02 },		/* MER manual mode */
152 	{ 0x50, 0x51 }, { 0x51, 0x04 },		/* MER symbol 4 */
153 	{ 0x45, 0x04 },				/* CN symbol 4 */
154 	{ 0x48, 0x04 },				/* CN manual mode */
155 
156 	{ 0x50, 0xd6 }, { 0x51, 0x1f },
157 	{ 0x50, 0xd2 }, { 0x51, 0x03 },
158 	{ 0x50, 0xd7 }, { 0x51, 0xbf },
159 	{ 0x28, 0x74 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0xff },
160 	{ 0x28, 0x46 }, { 0x29, 0x00 }, { 0x2a, 0x1a }, { 0x2b, 0x0c },
161 
162 	{ 0x04, 0x40 }, { 0x05, 0x00 },
163 	{ 0x28, 0x00 }, { 0x2b, 0x08 },
164 	{ 0x28, 0x05 }, { 0x2b, 0x00 },
165 	{ 0x1c, 0x01 },
166 	{ 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x1f },
167 	{ 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x18 },
168 	{ 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x12 },
169 	{ 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x30 },
170 	{ 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x37 },
171 	{ 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
172 	{ 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x09 },
173 	{ 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x06 },
174 	{ 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x7b },
175 	{ 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x76 },
176 	{ 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x7d },
177 	{ 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x08 },
178 	{ 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0b },
179 	{ 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 },
180 	{ 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xf2 },
181 	{ 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xf3 },
182 	{ 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x05 },
183 	{ 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
184 	{ 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
185 	{ 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xef },
186 	{ 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xd8 },
187 	{ 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xf1 },
188 	{ 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x3d },
189 	{ 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x94 },
190 	{ 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0xba },
191 	{ 0x50, 0x1e }, { 0x51, 0x5d },
192 	{ 0x50, 0x22 }, { 0x51, 0x00 },
193 	{ 0x50, 0x23 }, { 0x51, 0xc8 },
194 	{ 0x50, 0x24 }, { 0x51, 0x00 },
195 	{ 0x50, 0x25 }, { 0x51, 0xf0 },
196 	{ 0x50, 0x26 }, { 0x51, 0x00 },
197 	{ 0x50, 0x27 }, { 0x51, 0xc3 },
198 	{ 0x50, 0x39 }, { 0x51, 0x02 },
199 	{ 0xec, 0x0f },
200 	{ 0xeb, 0x1f },
201 	{ 0x28, 0x6a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 },
202 	{ 0xd0, 0x00 },
203 };
204 
205 static struct regdata mb86a20s_reset_reception[] = {
206 	{ 0x70, 0xf0 },
207 	{ 0x70, 0xff },
208 	{ 0x08, 0x01 },
209 	{ 0x08, 0x00 },
210 };
211 
212 static struct regdata mb86a20s_per_ber_reset[] = {
213 	{ 0x53, 0x00 },	/* pre BER Counter reset */
214 	{ 0x53, 0x07 },
215 
216 	{ 0x5f, 0x00 },	/* post BER Counter reset */
217 	{ 0x5f, 0x07 },
218 
219 	{ 0x50, 0xb1 },	/* PER Counter reset */
220 	{ 0x51, 0x07 },
221 	{ 0x51, 0x00 },
222 };
223 
224 /*
225  * I2C read/write functions and macros
226  */
227 
228 static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
229 			     u8 i2c_addr, u8 reg, u8 data)
230 {
231 	u8 buf[] = { reg, data };
232 	struct i2c_msg msg = {
233 		.addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
234 	};
235 	int rc;
236 
237 	rc = i2c_transfer(state->i2c, &msg, 1);
238 	if (rc != 1) {
239 		dev_err(&state->i2c->dev,
240 			"%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
241 			__func__, rc, reg, data);
242 		return rc;
243 	}
244 
245 	return 0;
246 }
247 
248 static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
249 				     u8 i2c_addr, struct regdata *rd, int size)
250 {
251 	int i, rc;
252 
253 	for (i = 0; i < size; i++) {
254 		rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
255 					   rd[i].data);
256 		if (rc < 0)
257 			return rc;
258 	}
259 	return 0;
260 }
261 
262 static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
263 				u8 i2c_addr, u8 reg)
264 {
265 	u8 val;
266 	int rc;
267 	struct i2c_msg msg[] = {
268 		{ .addr = i2c_addr, .flags = 0, .buf = &reg, .len = 1 },
269 		{ .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
270 	};
271 
272 	rc = i2c_transfer(state->i2c, msg, 2);
273 
274 	if (rc != 2) {
275 		dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
276 			__func__, reg, rc);
277 		return (rc < 0) ? rc : -EIO;
278 	}
279 
280 	return val;
281 }
282 
283 #define mb86a20s_readreg(state, reg) \
284 	mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
285 #define mb86a20s_writereg(state, reg, val) \
286 	mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
287 #define mb86a20s_writeregdata(state, regdata) \
288 	mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
289 	regdata, ARRAY_SIZE(regdata))
290 
291 /*
292  * Ancillary internal routines (likely compiled inlined)
293  *
294  * The functions below assume that gateway lock has already obtained
295  */
296 
297 static int mb86a20s_read_status(struct dvb_frontend *fe, enum fe_status *status)
298 {
299 	struct mb86a20s_state *state = fe->demodulator_priv;
300 	int val;
301 
302 	*status = 0;
303 
304 	val = mb86a20s_readreg(state, 0x0a);
305 	if (val < 0)
306 		return val;
307 
308 	val &= 0xf;
309 	if (val >= 2)
310 		*status |= FE_HAS_SIGNAL;
311 
312 	if (val >= 4)
313 		*status |= FE_HAS_CARRIER;
314 
315 	if (val >= 5)
316 		*status |= FE_HAS_VITERBI;
317 
318 	if (val >= 7)
319 		*status |= FE_HAS_SYNC;
320 
321 	if (val >= 8)				/* Maybe 9? */
322 		*status |= FE_HAS_LOCK;
323 
324 	dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
325 		 __func__, *status, val);
326 
327 	return val;
328 }
329 
330 static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
331 {
332 	struct mb86a20s_state *state = fe->demodulator_priv;
333 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
334 	int rc;
335 	unsigned rf_max, rf_min, rf;
336 
337 	if (state->get_strength_time &&
338 	   (!time_after(jiffies, state->get_strength_time)))
339 		return c->strength.stat[0].uvalue;
340 
341 	/* Reset its value if an error happen */
342 	c->strength.stat[0].uvalue = 0;
343 
344 	/* Does a binary search to get RF strength */
345 	rf_max = 0xfff;
346 	rf_min = 0;
347 	do {
348 		rf = (rf_max + rf_min) / 2;
349 		rc = mb86a20s_writereg(state, 0x04, 0x1f);
350 		if (rc < 0)
351 			return rc;
352 		rc = mb86a20s_writereg(state, 0x05, rf >> 8);
353 		if (rc < 0)
354 			return rc;
355 		rc = mb86a20s_writereg(state, 0x04, 0x20);
356 		if (rc < 0)
357 			return rc;
358 		rc = mb86a20s_writereg(state, 0x05, rf);
359 		if (rc < 0)
360 			return rc;
361 
362 		rc = mb86a20s_readreg(state, 0x02);
363 		if (rc < 0)
364 			return rc;
365 		if (rc & 0x08)
366 			rf_min = (rf_max + rf_min) / 2;
367 		else
368 			rf_max = (rf_max + rf_min) / 2;
369 		if (rf_max - rf_min < 4) {
370 			rf = (rf_max + rf_min) / 2;
371 
372 			/* Rescale it from 2^12 (4096) to 2^16 */
373 			rf = rf << (16 - 12);
374 			if (rf)
375 				rf |= (1 << 12) - 1;
376 
377 			dev_dbg(&state->i2c->dev,
378 				"%s: signal strength = %d (%d < RF=%d < %d)\n",
379 				__func__, rf, rf_min, rf >> 4, rf_max);
380 			c->strength.stat[0].uvalue = rf;
381 			state->get_strength_time = jiffies +
382 						   msecs_to_jiffies(1000);
383 			return 0;
384 		}
385 	} while (1);
386 }
387 
388 static int mb86a20s_get_modulation(struct mb86a20s_state *state,
389 				   unsigned layer)
390 {
391 	int rc;
392 	static unsigned char reg[] = {
393 		[0] = 0x86,	/* Layer A */
394 		[1] = 0x8a,	/* Layer B */
395 		[2] = 0x8e,	/* Layer C */
396 	};
397 
398 	if (layer >= ARRAY_SIZE(reg))
399 		return -EINVAL;
400 	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
401 	if (rc < 0)
402 		return rc;
403 	rc = mb86a20s_readreg(state, 0x6e);
404 	if (rc < 0)
405 		return rc;
406 	switch ((rc >> 4) & 0x07) {
407 	case 0:
408 		return DQPSK;
409 	case 1:
410 		return QPSK;
411 	case 2:
412 		return QAM_16;
413 	case 3:
414 		return QAM_64;
415 	default:
416 		return QAM_AUTO;
417 	}
418 }
419 
420 static int mb86a20s_get_fec(struct mb86a20s_state *state,
421 			    unsigned layer)
422 {
423 	int rc;
424 
425 	static unsigned char reg[] = {
426 		[0] = 0x87,	/* Layer A */
427 		[1] = 0x8b,	/* Layer B */
428 		[2] = 0x8f,	/* Layer C */
429 	};
430 
431 	if (layer >= ARRAY_SIZE(reg))
432 		return -EINVAL;
433 	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
434 	if (rc < 0)
435 		return rc;
436 	rc = mb86a20s_readreg(state, 0x6e);
437 	if (rc < 0)
438 		return rc;
439 	switch ((rc >> 4) & 0x07) {
440 	case 0:
441 		return FEC_1_2;
442 	case 1:
443 		return FEC_2_3;
444 	case 2:
445 		return FEC_3_4;
446 	case 3:
447 		return FEC_5_6;
448 	case 4:
449 		return FEC_7_8;
450 	default:
451 		return FEC_AUTO;
452 	}
453 }
454 
455 static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
456 				     unsigned layer)
457 {
458 	int rc;
459 	int interleaving[] = {
460 		0, 1, 2, 4, 8
461 	};
462 
463 	static unsigned char reg[] = {
464 		[0] = 0x88,	/* Layer A */
465 		[1] = 0x8c,	/* Layer B */
466 		[2] = 0x90,	/* Layer C */
467 	};
468 
469 	if (layer >= ARRAY_SIZE(reg))
470 		return -EINVAL;
471 	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
472 	if (rc < 0)
473 		return rc;
474 	rc = mb86a20s_readreg(state, 0x6e);
475 	if (rc < 0)
476 		return rc;
477 
478 	return interleaving[(rc >> 4) & 0x07];
479 }
480 
481 static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
482 				      unsigned layer)
483 {
484 	int rc, count;
485 	static unsigned char reg[] = {
486 		[0] = 0x89,	/* Layer A */
487 		[1] = 0x8d,	/* Layer B */
488 		[2] = 0x91,	/* Layer C */
489 	};
490 
491 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
492 
493 	if (layer >= ARRAY_SIZE(reg))
494 		return -EINVAL;
495 
496 	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
497 	if (rc < 0)
498 		return rc;
499 	rc = mb86a20s_readreg(state, 0x6e);
500 	if (rc < 0)
501 		return rc;
502 	count = (rc >> 4) & 0x0f;
503 
504 	dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);
505 
506 	return count;
507 }
508 
509 static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
510 {
511 	struct mb86a20s_state *state = fe->demodulator_priv;
512 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
513 
514 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
515 
516 	/* Fixed parameters */
517 	c->delivery_system = SYS_ISDBT;
518 	c->bandwidth_hz = 6000000;
519 
520 	/* Initialize values that will be later autodetected */
521 	c->isdbt_layer_enabled = 0;
522 	c->transmission_mode = TRANSMISSION_MODE_AUTO;
523 	c->guard_interval = GUARD_INTERVAL_AUTO;
524 	c->isdbt_sb_mode = 0;
525 	c->isdbt_sb_segment_count = 0;
526 }
527 
528 /*
529  * Estimates the bit rate using the per-segment bit rate given by
530  * ABNT/NBR 15601 spec (table 4).
531  */
532 static u32 isdbt_rate[3][5][4] = {
533 	{	/* DQPSK/QPSK */
534 		{  280850,  312060,  330420,  340430 },	/* 1/2 */
535 		{  374470,  416080,  440560,  453910 },	/* 2/3 */
536 		{  421280,  468090,  495630,  510650 },	/* 3/4 */
537 		{  468090,  520100,  550700,  567390 },	/* 5/6 */
538 		{  491500,  546110,  578230,  595760 },	/* 7/8 */
539 	}, {	/* QAM16 */
540 		{  561710,  624130,  660840,  680870 },	/* 1/2 */
541 		{  748950,  832170,  881120,  907820 },	/* 2/3 */
542 		{  842570,  936190,  991260, 1021300 },	/* 3/4 */
543 		{  936190, 1040210, 1101400, 1134780 },	/* 5/6 */
544 		{  983000, 1092220, 1156470, 1191520 },	/* 7/8 */
545 	}, {	/* QAM64 */
546 		{  842570,  936190,  991260, 1021300 },	/* 1/2 */
547 		{ 1123430, 1248260, 1321680, 1361740 },	/* 2/3 */
548 		{ 1263860, 1404290, 1486900, 1531950 },	/* 3/4 */
549 		{ 1404290, 1560320, 1652110, 1702170 },	/* 5/6 */
550 		{ 1474500, 1638340, 1734710, 1787280 },	/* 7/8 */
551 	}
552 };
553 
554 static void mb86a20s_layer_bitrate(struct dvb_frontend *fe, u32 layer,
555 				   u32 modulation, u32 forward_error_correction,
556 				   u32 guard_interval,
557 				   u32 segment)
558 {
559 	struct mb86a20s_state *state = fe->demodulator_priv;
560 	u32 rate;
561 	int mod, fec, guard;
562 
563 	/*
564 	 * If modulation/fec/guard is not detected, the default is
565 	 * to consider the lowest bit rate, to avoid taking too long time
566 	 * to get BER.
567 	 */
568 	switch (modulation) {
569 	case DQPSK:
570 	case QPSK:
571 	default:
572 		mod = 0;
573 		break;
574 	case QAM_16:
575 		mod = 1;
576 		break;
577 	case QAM_64:
578 		mod = 2;
579 		break;
580 	}
581 
582 	switch (forward_error_correction) {
583 	default:
584 	case FEC_1_2:
585 	case FEC_AUTO:
586 		fec = 0;
587 		break;
588 	case FEC_2_3:
589 		fec = 1;
590 		break;
591 	case FEC_3_4:
592 		fec = 2;
593 		break;
594 	case FEC_5_6:
595 		fec = 3;
596 		break;
597 	case FEC_7_8:
598 		fec = 4;
599 		break;
600 	}
601 
602 	switch (guard_interval) {
603 	default:
604 	case GUARD_INTERVAL_1_4:
605 		guard = 0;
606 		break;
607 	case GUARD_INTERVAL_1_8:
608 		guard = 1;
609 		break;
610 	case GUARD_INTERVAL_1_16:
611 		guard = 2;
612 		break;
613 	case GUARD_INTERVAL_1_32:
614 		guard = 3;
615 		break;
616 	}
617 
618 	/* Samples BER at BER_SAMPLING_RATE seconds */
619 	rate = isdbt_rate[mod][fec][guard] * segment * BER_SAMPLING_RATE;
620 
621 	/* Avoids sampling too quickly or to overflow the register */
622 	if (rate < 256)
623 		rate = 256;
624 	else if (rate > (1 << 24) - 1)
625 		rate = (1 << 24) - 1;
626 
627 	dev_dbg(&state->i2c->dev,
628 		"%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
629 		__func__, 'A' + layer,
630 		segment * isdbt_rate[mod][fec][guard]/1000,
631 		rate, rate);
632 
633 	state->estimated_rate[layer] = rate;
634 }
635 
636 static int mb86a20s_get_frontend(struct dvb_frontend *fe)
637 {
638 	struct mb86a20s_state *state = fe->demodulator_priv;
639 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
640 	int layer, rc;
641 
642 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
643 
644 	/* Reset frontend cache to default values */
645 	mb86a20s_reset_frontend_cache(fe);
646 
647 	/* Check for partial reception */
648 	rc = mb86a20s_writereg(state, 0x6d, 0x85);
649 	if (rc < 0)
650 		return rc;
651 	rc = mb86a20s_readreg(state, 0x6e);
652 	if (rc < 0)
653 		return rc;
654 	c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
655 
656 	/* Get per-layer data */
657 
658 	for (layer = 0; layer < NUM_LAYERS; layer++) {
659 		dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
660 			__func__, 'A' + layer);
661 
662 		rc = mb86a20s_get_segment_count(state, layer);
663 		if (rc < 0)
664 			goto noperlayer_error;
665 		if (rc >= 0 && rc < 14) {
666 			c->layer[layer].segment_count = rc;
667 		} else {
668 			c->layer[layer].segment_count = 0;
669 			state->estimated_rate[layer] = 0;
670 			continue;
671 		}
672 		c->isdbt_layer_enabled |= 1 << layer;
673 		rc = mb86a20s_get_modulation(state, layer);
674 		if (rc < 0)
675 			goto noperlayer_error;
676 		dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
677 			__func__, rc);
678 		c->layer[layer].modulation = rc;
679 		rc = mb86a20s_get_fec(state, layer);
680 		if (rc < 0)
681 			goto noperlayer_error;
682 		dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
683 			__func__, rc);
684 		c->layer[layer].fec = rc;
685 		rc = mb86a20s_get_interleaving(state, layer);
686 		if (rc < 0)
687 			goto noperlayer_error;
688 		dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
689 			__func__, rc);
690 		c->layer[layer].interleaving = rc;
691 		mb86a20s_layer_bitrate(fe, layer, c->layer[layer].modulation,
692 				       c->layer[layer].fec,
693 				       c->guard_interval,
694 				       c->layer[layer].segment_count);
695 	}
696 
697 	rc = mb86a20s_writereg(state, 0x6d, 0x84);
698 	if (rc < 0)
699 		return rc;
700 	if ((rc & 0x60) == 0x20) {
701 		c->isdbt_sb_mode = 1;
702 		/* At least, one segment should exist */
703 		if (!c->isdbt_sb_segment_count)
704 			c->isdbt_sb_segment_count = 1;
705 	}
706 
707 	/* Get transmission mode and guard interval */
708 	rc = mb86a20s_readreg(state, 0x07);
709 	if (rc < 0)
710 		return rc;
711 	c->transmission_mode = TRANSMISSION_MODE_AUTO;
712 	if ((rc & 0x60) == 0x20) {
713 		/* Only modes 2 and 3 are supported */
714 		switch ((rc >> 2) & 0x03) {
715 		case 1:
716 			c->transmission_mode = TRANSMISSION_MODE_4K;
717 			break;
718 		case 2:
719 			c->transmission_mode = TRANSMISSION_MODE_8K;
720 			break;
721 		}
722 	}
723 	c->guard_interval = GUARD_INTERVAL_AUTO;
724 	if (!(rc & 0x10)) {
725 		/* Guard interval 1/32 is not supported */
726 		switch (rc & 0x3) {
727 		case 0:
728 			c->guard_interval = GUARD_INTERVAL_1_4;
729 			break;
730 		case 1:
731 			c->guard_interval = GUARD_INTERVAL_1_8;
732 			break;
733 		case 2:
734 			c->guard_interval = GUARD_INTERVAL_1_16;
735 			break;
736 		}
737 	}
738 	return 0;
739 
740 noperlayer_error:
741 
742 	/* per-layer info is incomplete; discard all per-layer */
743 	c->isdbt_layer_enabled = 0;
744 
745 	return rc;
746 }
747 
748 static int mb86a20s_reset_counters(struct dvb_frontend *fe)
749 {
750 	struct mb86a20s_state *state = fe->demodulator_priv;
751 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
752 	int rc, val;
753 
754 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
755 
756 	/* Reset the counters, if the channel changed */
757 	if (state->last_frequency != c->frequency) {
758 		memset(&c->cnr, 0, sizeof(c->cnr));
759 		memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
760 		memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
761 		memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
762 		memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
763 		memset(&c->block_error, 0, sizeof(c->block_error));
764 		memset(&c->block_count, 0, sizeof(c->block_count));
765 
766 		state->last_frequency = c->frequency;
767 	}
768 
769 	/* Clear status for most stats */
770 
771 	/* BER/PER counter reset */
772 	rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
773 	if (rc < 0)
774 		goto err;
775 
776 	/* CNR counter reset */
777 	rc = mb86a20s_readreg(state, 0x45);
778 	if (rc < 0)
779 		goto err;
780 	val = rc;
781 	rc = mb86a20s_writereg(state, 0x45, val | 0x10);
782 	if (rc < 0)
783 		goto err;
784 	rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
785 	if (rc < 0)
786 		goto err;
787 
788 	/* MER counter reset */
789 	rc = mb86a20s_writereg(state, 0x50, 0x50);
790 	if (rc < 0)
791 		goto err;
792 	rc = mb86a20s_readreg(state, 0x51);
793 	if (rc < 0)
794 		goto err;
795 	val = rc;
796 	rc = mb86a20s_writereg(state, 0x51, val | 0x01);
797 	if (rc < 0)
798 		goto err;
799 	rc = mb86a20s_writereg(state, 0x51, val & 0x06);
800 	if (rc < 0)
801 		goto err;
802 
803 	goto ok;
804 err:
805 	dev_err(&state->i2c->dev,
806 		"%s: Can't reset FE statistics (error %d).\n",
807 		__func__, rc);
808 ok:
809 	return rc;
810 }
811 
812 static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
813 				unsigned layer,
814 				u32 *error, u32 *count)
815 {
816 	struct mb86a20s_state *state = fe->demodulator_priv;
817 	int rc, val;
818 
819 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
820 
821 	if (layer >= NUM_LAYERS)
822 		return -EINVAL;
823 
824 	/* Check if the BER measures are already available */
825 	rc = mb86a20s_readreg(state, 0x54);
826 	if (rc < 0)
827 		return rc;
828 
829 	/* Check if data is available for that layer */
830 	if (!(rc & (1 << layer))) {
831 		dev_dbg(&state->i2c->dev,
832 			"%s: preBER for layer %c is not available yet.\n",
833 			__func__, 'A' + layer);
834 		return -EBUSY;
835 	}
836 
837 	/* Read Bit Error Count */
838 	rc = mb86a20s_readreg(state, 0x55 + layer * 3);
839 	if (rc < 0)
840 		return rc;
841 	*error = rc << 16;
842 	rc = mb86a20s_readreg(state, 0x56 + layer * 3);
843 	if (rc < 0)
844 		return rc;
845 	*error |= rc << 8;
846 	rc = mb86a20s_readreg(state, 0x57 + layer * 3);
847 	if (rc < 0)
848 		return rc;
849 	*error |= rc;
850 
851 	dev_dbg(&state->i2c->dev,
852 		"%s: bit error before Viterbi for layer %c: %d.\n",
853 		__func__, 'A' + layer, *error);
854 
855 	/* Read Bit Count */
856 	rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
857 	if (rc < 0)
858 		return rc;
859 	rc = mb86a20s_readreg(state, 0x51);
860 	if (rc < 0)
861 		return rc;
862 	*count = rc << 16;
863 	rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
864 	if (rc < 0)
865 		return rc;
866 	rc = mb86a20s_readreg(state, 0x51);
867 	if (rc < 0)
868 		return rc;
869 	*count |= rc << 8;
870 	rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
871 	if (rc < 0)
872 		return rc;
873 	rc = mb86a20s_readreg(state, 0x51);
874 	if (rc < 0)
875 		return rc;
876 	*count |= rc;
877 
878 	dev_dbg(&state->i2c->dev,
879 		"%s: bit count before Viterbi for layer %c: %d.\n",
880 		__func__, 'A' + layer, *count);
881 
882 
883 	/*
884 	 * As we get TMCC data from the frontend, we can better estimate the
885 	 * BER bit counters, in order to do the BER measure during a longer
886 	 * time. Use those data, if available, to update the bit count
887 	 * measure.
888 	 */
889 
890 	if (state->estimated_rate[layer]
891 	    && state->estimated_rate[layer] != *count) {
892 		dev_dbg(&state->i2c->dev,
893 			"%s: updating layer %c preBER counter to %d.\n",
894 			__func__, 'A' + layer, state->estimated_rate[layer]);
895 
896 		/* Turn off BER before Viterbi */
897 		rc = mb86a20s_writereg(state, 0x52, 0x00);
898 
899 		/* Update counter for this layer */
900 		rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
901 		if (rc < 0)
902 			return rc;
903 		rc = mb86a20s_writereg(state, 0x51,
904 				       state->estimated_rate[layer] >> 16);
905 		if (rc < 0)
906 			return rc;
907 		rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
908 		if (rc < 0)
909 			return rc;
910 		rc = mb86a20s_writereg(state, 0x51,
911 				       state->estimated_rate[layer] >> 8);
912 		if (rc < 0)
913 			return rc;
914 		rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
915 		if (rc < 0)
916 			return rc;
917 		rc = mb86a20s_writereg(state, 0x51,
918 				       state->estimated_rate[layer]);
919 		if (rc < 0)
920 			return rc;
921 
922 		/* Turn on BER before Viterbi */
923 		rc = mb86a20s_writereg(state, 0x52, 0x01);
924 
925 		/* Reset all preBER counters */
926 		rc = mb86a20s_writereg(state, 0x53, 0x00);
927 		if (rc < 0)
928 			return rc;
929 		rc = mb86a20s_writereg(state, 0x53, 0x07);
930 	} else {
931 		/* Reset counter to collect new data */
932 		rc = mb86a20s_readreg(state, 0x53);
933 		if (rc < 0)
934 			return rc;
935 		val = rc;
936 		rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
937 		if (rc < 0)
938 			return rc;
939 		rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
940 	}
941 
942 	return rc;
943 }
944 
945 static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
946 				 unsigned layer,
947 				  u32 *error, u32 *count)
948 {
949 	struct mb86a20s_state *state = fe->demodulator_priv;
950 	u32 counter, collect_rate;
951 	int rc, val;
952 
953 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
954 
955 	if (layer >= NUM_LAYERS)
956 		return -EINVAL;
957 
958 	/* Check if the BER measures are already available */
959 	rc = mb86a20s_readreg(state, 0x60);
960 	if (rc < 0)
961 		return rc;
962 
963 	/* Check if data is available for that layer */
964 	if (!(rc & (1 << layer))) {
965 		dev_dbg(&state->i2c->dev,
966 			"%s: post BER for layer %c is not available yet.\n",
967 			__func__, 'A' + layer);
968 		return -EBUSY;
969 	}
970 
971 	/* Read Bit Error Count */
972 	rc = mb86a20s_readreg(state, 0x64 + layer * 3);
973 	if (rc < 0)
974 		return rc;
975 	*error = rc << 16;
976 	rc = mb86a20s_readreg(state, 0x65 + layer * 3);
977 	if (rc < 0)
978 		return rc;
979 	*error |= rc << 8;
980 	rc = mb86a20s_readreg(state, 0x66 + layer * 3);
981 	if (rc < 0)
982 		return rc;
983 	*error |= rc;
984 
985 	dev_dbg(&state->i2c->dev,
986 		"%s: post bit error for layer %c: %d.\n",
987 		__func__, 'A' + layer, *error);
988 
989 	/* Read Bit Count */
990 	rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
991 	if (rc < 0)
992 		return rc;
993 	rc = mb86a20s_readreg(state, 0x51);
994 	if (rc < 0)
995 		return rc;
996 	counter = rc << 8;
997 	rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
998 	if (rc < 0)
999 		return rc;
1000 	rc = mb86a20s_readreg(state, 0x51);
1001 	if (rc < 0)
1002 		return rc;
1003 	counter |= rc;
1004 	*count = counter * 204 * 8;
1005 
1006 	dev_dbg(&state->i2c->dev,
1007 		"%s: post bit count for layer %c: %d.\n",
1008 		__func__, 'A' + layer, *count);
1009 
1010 	/*
1011 	 * As we get TMCC data from the frontend, we can better estimate the
1012 	 * BER bit counters, in order to do the BER measure during a longer
1013 	 * time. Use those data, if available, to update the bit count
1014 	 * measure.
1015 	 */
1016 
1017 	if (!state->estimated_rate[layer])
1018 		goto reset_measurement;
1019 
1020 	collect_rate = state->estimated_rate[layer] / 204 / 8;
1021 	if (collect_rate < 32)
1022 		collect_rate = 32;
1023 	if (collect_rate > 65535)
1024 		collect_rate = 65535;
1025 	if (collect_rate != counter) {
1026 		dev_dbg(&state->i2c->dev,
1027 			"%s: updating postBER counter on layer %c to %d.\n",
1028 			__func__, 'A' + layer, collect_rate);
1029 
1030 		/* Turn off BER after Viterbi */
1031 		rc = mb86a20s_writereg(state, 0x5e, 0x00);
1032 
1033 		/* Update counter for this layer */
1034 		rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
1035 		if (rc < 0)
1036 			return rc;
1037 		rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1038 		if (rc < 0)
1039 			return rc;
1040 		rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
1041 		if (rc < 0)
1042 			return rc;
1043 		rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1044 		if (rc < 0)
1045 			return rc;
1046 
1047 		/* Turn on BER after Viterbi */
1048 		rc = mb86a20s_writereg(state, 0x5e, 0x07);
1049 
1050 		/* Reset all preBER counters */
1051 		rc = mb86a20s_writereg(state, 0x5f, 0x00);
1052 		if (rc < 0)
1053 			return rc;
1054 		rc = mb86a20s_writereg(state, 0x5f, 0x07);
1055 
1056 		return rc;
1057 	}
1058 
1059 reset_measurement:
1060 	/* Reset counter to collect new data */
1061 	rc = mb86a20s_readreg(state, 0x5f);
1062 	if (rc < 0)
1063 		return rc;
1064 	val = rc;
1065 	rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
1066 	if (rc < 0)
1067 		return rc;
1068 	rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
1069 
1070 	return rc;
1071 }
1072 
1073 static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
1074 			    unsigned layer,
1075 			    u32 *error, u32 *count)
1076 {
1077 	struct mb86a20s_state *state = fe->demodulator_priv;
1078 	int rc, val;
1079 	u32 collect_rate;
1080 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1081 
1082 	if (layer >= NUM_LAYERS)
1083 		return -EINVAL;
1084 
1085 	/* Check if the PER measures are already available */
1086 	rc = mb86a20s_writereg(state, 0x50, 0xb8);
1087 	if (rc < 0)
1088 		return rc;
1089 	rc = mb86a20s_readreg(state, 0x51);
1090 	if (rc < 0)
1091 		return rc;
1092 
1093 	/* Check if data is available for that layer */
1094 
1095 	if (!(rc & (1 << layer))) {
1096 		dev_dbg(&state->i2c->dev,
1097 			"%s: block counts for layer %c aren't available yet.\n",
1098 			__func__, 'A' + layer);
1099 		return -EBUSY;
1100 	}
1101 
1102 	/* Read Packet error Count */
1103 	rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
1104 	if (rc < 0)
1105 		return rc;
1106 	rc = mb86a20s_readreg(state, 0x51);
1107 	if (rc < 0)
1108 		return rc;
1109 	*error = rc << 8;
1110 	rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
1111 	if (rc < 0)
1112 		return rc;
1113 	rc = mb86a20s_readreg(state, 0x51);
1114 	if (rc < 0)
1115 		return rc;
1116 	*error |= rc;
1117 	dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
1118 		__func__, 'A' + layer, *error);
1119 
1120 	/* Read Bit Count */
1121 	rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1122 	if (rc < 0)
1123 		return rc;
1124 	rc = mb86a20s_readreg(state, 0x51);
1125 	if (rc < 0)
1126 		return rc;
1127 	*count = rc << 8;
1128 	rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1129 	if (rc < 0)
1130 		return rc;
1131 	rc = mb86a20s_readreg(state, 0x51);
1132 	if (rc < 0)
1133 		return rc;
1134 	*count |= rc;
1135 
1136 	dev_dbg(&state->i2c->dev,
1137 		"%s: block count for layer %c: %d.\n",
1138 		__func__, 'A' + layer, *count);
1139 
1140 	/*
1141 	 * As we get TMCC data from the frontend, we can better estimate the
1142 	 * BER bit counters, in order to do the BER measure during a longer
1143 	 * time. Use those data, if available, to update the bit count
1144 	 * measure.
1145 	 */
1146 
1147 	if (!state->estimated_rate[layer])
1148 		goto reset_measurement;
1149 
1150 	collect_rate = state->estimated_rate[layer] / 204 / 8;
1151 	if (collect_rate < 32)
1152 		collect_rate = 32;
1153 	if (collect_rate > 65535)
1154 		collect_rate = 65535;
1155 
1156 	if (collect_rate != *count) {
1157 		dev_dbg(&state->i2c->dev,
1158 			"%s: updating PER counter on layer %c to %d.\n",
1159 			__func__, 'A' + layer, collect_rate);
1160 
1161 		/* Stop PER measurement */
1162 		rc = mb86a20s_writereg(state, 0x50, 0xb0);
1163 		if (rc < 0)
1164 			return rc;
1165 		rc = mb86a20s_writereg(state, 0x51, 0x00);
1166 		if (rc < 0)
1167 			return rc;
1168 
1169 		/* Update this layer's counter */
1170 		rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1171 		if (rc < 0)
1172 			return rc;
1173 		rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1174 		if (rc < 0)
1175 			return rc;
1176 		rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1177 		if (rc < 0)
1178 			return rc;
1179 		rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1180 		if (rc < 0)
1181 			return rc;
1182 
1183 		/* start PER measurement */
1184 		rc = mb86a20s_writereg(state, 0x50, 0xb0);
1185 		if (rc < 0)
1186 			return rc;
1187 		rc = mb86a20s_writereg(state, 0x51, 0x07);
1188 		if (rc < 0)
1189 			return rc;
1190 
1191 		/* Reset all counters to collect new data */
1192 		rc = mb86a20s_writereg(state, 0x50, 0xb1);
1193 		if (rc < 0)
1194 			return rc;
1195 		rc = mb86a20s_writereg(state, 0x51, 0x07);
1196 		if (rc < 0)
1197 			return rc;
1198 		rc = mb86a20s_writereg(state, 0x51, 0x00);
1199 
1200 		return rc;
1201 	}
1202 
1203 reset_measurement:
1204 	/* Reset counter to collect new data */
1205 	rc = mb86a20s_writereg(state, 0x50, 0xb1);
1206 	if (rc < 0)
1207 		return rc;
1208 	rc = mb86a20s_readreg(state, 0x51);
1209 	if (rc < 0)
1210 		return rc;
1211 	val = rc;
1212 	rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
1213 	if (rc < 0)
1214 		return rc;
1215 	rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
1216 
1217 	return rc;
1218 }
1219 
1220 struct linear_segments {
1221 	unsigned x, y;
1222 };
1223 
1224 /*
1225  * All tables below return a dB/1000 measurement
1226  */
1227 
1228 static const struct linear_segments cnr_to_db_table[] = {
1229 	{ 19648,     0},
1230 	{ 18187,  1000},
1231 	{ 16534,  2000},
1232 	{ 14823,  3000},
1233 	{ 13161,  4000},
1234 	{ 11622,  5000},
1235 	{ 10279,  6000},
1236 	{  9089,  7000},
1237 	{  8042,  8000},
1238 	{  7137,  9000},
1239 	{  6342, 10000},
1240 	{  5641, 11000},
1241 	{  5030, 12000},
1242 	{  4474, 13000},
1243 	{  3988, 14000},
1244 	{  3556, 15000},
1245 	{  3180, 16000},
1246 	{  2841, 17000},
1247 	{  2541, 18000},
1248 	{  2276, 19000},
1249 	{  2038, 20000},
1250 	{  1800, 21000},
1251 	{  1625, 22000},
1252 	{  1462, 23000},
1253 	{  1324, 24000},
1254 	{  1175, 25000},
1255 	{  1063, 26000},
1256 	{   980, 27000},
1257 	{   907, 28000},
1258 	{   840, 29000},
1259 	{   788, 30000},
1260 };
1261 
1262 static const struct linear_segments cnr_64qam_table[] = {
1263 	{ 3922688,     0},
1264 	{ 3920384,  1000},
1265 	{ 3902720,  2000},
1266 	{ 3894784,  3000},
1267 	{ 3882496,  4000},
1268 	{ 3872768,  5000},
1269 	{ 3858944,  6000},
1270 	{ 3851520,  7000},
1271 	{ 3838976,  8000},
1272 	{ 3829248,  9000},
1273 	{ 3818240, 10000},
1274 	{ 3806976, 11000},
1275 	{ 3791872, 12000},
1276 	{ 3767040, 13000},
1277 	{ 3720960, 14000},
1278 	{ 3637504, 15000},
1279 	{ 3498496, 16000},
1280 	{ 3296000, 17000},
1281 	{ 3031040, 18000},
1282 	{ 2715392, 19000},
1283 	{ 2362624, 20000},
1284 	{ 1963264, 21000},
1285 	{ 1649664, 22000},
1286 	{ 1366784, 23000},
1287 	{ 1120768, 24000},
1288 	{  890880, 25000},
1289 	{  723456, 26000},
1290 	{  612096, 27000},
1291 	{  518912, 28000},
1292 	{  448256, 29000},
1293 	{  388864, 30000},
1294 };
1295 
1296 static const struct linear_segments cnr_16qam_table[] = {
1297 	{ 5314816,     0},
1298 	{ 5219072,  1000},
1299 	{ 5118720,  2000},
1300 	{ 4998912,  3000},
1301 	{ 4875520,  4000},
1302 	{ 4736000,  5000},
1303 	{ 4604160,  6000},
1304 	{ 4458752,  7000},
1305 	{ 4300288,  8000},
1306 	{ 4092928,  9000},
1307 	{ 3836160, 10000},
1308 	{ 3521024, 11000},
1309 	{ 3155968, 12000},
1310 	{ 2756864, 13000},
1311 	{ 2347008, 14000},
1312 	{ 1955072, 15000},
1313 	{ 1593600, 16000},
1314 	{ 1297920, 17000},
1315 	{ 1043968, 18000},
1316 	{  839680, 19000},
1317 	{  672256, 20000},
1318 	{  523008, 21000},
1319 	{  424704, 22000},
1320 	{  345088, 23000},
1321 	{  280064, 24000},
1322 	{  221440, 25000},
1323 	{  179712, 26000},
1324 	{  151040, 27000},
1325 	{  128512, 28000},
1326 	{  110080, 29000},
1327 	{   95744, 30000},
1328 };
1329 
1330 static const struct linear_segments cnr_qpsk_table[] = {
1331 	{ 2834176,     0},
1332 	{ 2683648,  1000},
1333 	{ 2536960,  2000},
1334 	{ 2391808,  3000},
1335 	{ 2133248,  4000},
1336 	{ 1906176,  5000},
1337 	{ 1666560,  6000},
1338 	{ 1422080,  7000},
1339 	{ 1189632,  8000},
1340 	{  976384,  9000},
1341 	{  790272, 10000},
1342 	{  633344, 11000},
1343 	{  505600, 12000},
1344 	{  402944, 13000},
1345 	{  320768, 14000},
1346 	{  255488, 15000},
1347 	{  204032, 16000},
1348 	{  163072, 17000},
1349 	{  130304, 18000},
1350 	{  105216, 19000},
1351 	{   83456, 20000},
1352 	{   65024, 21000},
1353 	{   52480, 22000},
1354 	{   42752, 23000},
1355 	{   34560, 24000},
1356 	{   27136, 25000},
1357 	{   22016, 26000},
1358 	{   18432, 27000},
1359 	{   15616, 28000},
1360 	{   13312, 29000},
1361 	{   11520, 30000},
1362 };
1363 
1364 static u32 interpolate_value(u32 value, const struct linear_segments *segments,
1365 			     unsigned len)
1366 {
1367 	u64 tmp64;
1368 	u32 dx, dy;
1369 	int i, ret;
1370 
1371 	if (value >= segments[0].x)
1372 		return segments[0].y;
1373 	if (value < segments[len-1].x)
1374 		return segments[len-1].y;
1375 
1376 	for (i = 1; i < len - 1; i++) {
1377 		/* If value is identical, no need to interpolate */
1378 		if (value == segments[i].x)
1379 			return segments[i].y;
1380 		if (value > segments[i].x)
1381 			break;
1382 	}
1383 
1384 	/* Linear interpolation between the two (x,y) points */
1385 	dy = segments[i].y - segments[i - 1].y;
1386 	dx = segments[i - 1].x - segments[i].x;
1387 	tmp64 = value - segments[i].x;
1388 	tmp64 *= dy;
1389 	do_div(tmp64, dx);
1390 	ret = segments[i].y - tmp64;
1391 
1392 	return ret;
1393 }
1394 
1395 static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
1396 {
1397 	struct mb86a20s_state *state = fe->demodulator_priv;
1398 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1399 	u32 cnr_linear, cnr;
1400 	int rc, val;
1401 
1402 	/* Check if CNR is available */
1403 	rc = mb86a20s_readreg(state, 0x45);
1404 	if (rc < 0)
1405 		return rc;
1406 
1407 	if (!(rc & 0x40)) {
1408 		dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n",
1409 			 __func__);
1410 		return -EBUSY;
1411 	}
1412 	val = rc;
1413 
1414 	rc = mb86a20s_readreg(state, 0x46);
1415 	if (rc < 0)
1416 		return rc;
1417 	cnr_linear = rc << 8;
1418 
1419 	rc = mb86a20s_readreg(state, 0x46);
1420 	if (rc < 0)
1421 		return rc;
1422 	cnr_linear |= rc;
1423 
1424 	cnr = interpolate_value(cnr_linear,
1425 				cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));
1426 
1427 	c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1428 	c->cnr.stat[0].svalue = cnr;
1429 
1430 	dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
1431 		__func__, cnr / 1000, cnr % 1000, cnr_linear);
1432 
1433 	/* CNR counter reset */
1434 	rc = mb86a20s_writereg(state, 0x45, val | 0x10);
1435 	if (rc < 0)
1436 		return rc;
1437 	rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
1438 
1439 	return rc;
1440 }
1441 
1442 static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
1443 {
1444 	struct mb86a20s_state *state = fe->demodulator_priv;
1445 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1446 	u32 mer, cnr;
1447 	int rc, val, layer;
1448 	const struct linear_segments *segs;
1449 	unsigned segs_len;
1450 
1451 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1452 
1453 	/* Check if the measures are already available */
1454 	rc = mb86a20s_writereg(state, 0x50, 0x5b);
1455 	if (rc < 0)
1456 		return rc;
1457 	rc = mb86a20s_readreg(state, 0x51);
1458 	if (rc < 0)
1459 		return rc;
1460 
1461 	/* Check if data is available */
1462 	if (!(rc & 0x01)) {
1463 		dev_dbg(&state->i2c->dev,
1464 			"%s: MER measures aren't available yet.\n", __func__);
1465 		return -EBUSY;
1466 	}
1467 
1468 	/* Read all layers */
1469 	for (layer = 0; layer < NUM_LAYERS; layer++) {
1470 		if (!(c->isdbt_layer_enabled & (1 << layer))) {
1471 			c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1472 			continue;
1473 		}
1474 
1475 		rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3);
1476 		if (rc < 0)
1477 			return rc;
1478 		rc = mb86a20s_readreg(state, 0x51);
1479 		if (rc < 0)
1480 			return rc;
1481 		mer = rc << 16;
1482 		rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3);
1483 		if (rc < 0)
1484 			return rc;
1485 		rc = mb86a20s_readreg(state, 0x51);
1486 		if (rc < 0)
1487 			return rc;
1488 		mer |= rc << 8;
1489 		rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3);
1490 		if (rc < 0)
1491 			return rc;
1492 		rc = mb86a20s_readreg(state, 0x51);
1493 		if (rc < 0)
1494 			return rc;
1495 		mer |= rc;
1496 
1497 		switch (c->layer[layer].modulation) {
1498 		case DQPSK:
1499 		case QPSK:
1500 			segs = cnr_qpsk_table;
1501 			segs_len = ARRAY_SIZE(cnr_qpsk_table);
1502 			break;
1503 		case QAM_16:
1504 			segs = cnr_16qam_table;
1505 			segs_len = ARRAY_SIZE(cnr_16qam_table);
1506 			break;
1507 		default:
1508 		case QAM_64:
1509 			segs = cnr_64qam_table;
1510 			segs_len = ARRAY_SIZE(cnr_64qam_table);
1511 			break;
1512 		}
1513 		cnr = interpolate_value(mer, segs, segs_len);
1514 
1515 		c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL;
1516 		c->cnr.stat[1 + layer].svalue = cnr;
1517 
1518 		dev_dbg(&state->i2c->dev,
1519 			"%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
1520 			__func__, 'A' + layer, cnr / 1000, cnr % 1000, mer);
1521 
1522 	}
1523 
1524 	/* Start a new MER measurement */
1525 	/* MER counter reset */
1526 	rc = mb86a20s_writereg(state, 0x50, 0x50);
1527 	if (rc < 0)
1528 		return rc;
1529 	rc = mb86a20s_readreg(state, 0x51);
1530 	if (rc < 0)
1531 		return rc;
1532 	val = rc;
1533 
1534 	rc = mb86a20s_writereg(state, 0x51, val | 0x01);
1535 	if (rc < 0)
1536 		return rc;
1537 	rc = mb86a20s_writereg(state, 0x51, val & 0x06);
1538 	if (rc < 0)
1539 		return rc;
1540 
1541 	return 0;
1542 }
1543 
1544 static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
1545 {
1546 	struct mb86a20s_state *state = fe->demodulator_priv;
1547 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1548 	int layer;
1549 
1550 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1551 
1552 	/* Fill the length of each status counter */
1553 
1554 	/* Only global stats */
1555 	c->strength.len = 1;
1556 
1557 	/* Per-layer stats - 3 layers + global */
1558 	c->cnr.len = NUM_LAYERS + 1;
1559 	c->pre_bit_error.len = NUM_LAYERS + 1;
1560 	c->pre_bit_count.len = NUM_LAYERS + 1;
1561 	c->post_bit_error.len = NUM_LAYERS + 1;
1562 	c->post_bit_count.len = NUM_LAYERS + 1;
1563 	c->block_error.len = NUM_LAYERS + 1;
1564 	c->block_count.len = NUM_LAYERS + 1;
1565 
1566 	/* Signal is always available */
1567 	c->strength.stat[0].scale = FE_SCALE_RELATIVE;
1568 	c->strength.stat[0].uvalue = 0;
1569 
1570 	/* Put all of them at FE_SCALE_NOT_AVAILABLE */
1571 	for (layer = 0; layer < NUM_LAYERS + 1; layer++) {
1572 		c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1573 		c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1574 		c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1575 		c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1576 		c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1577 		c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1578 		c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1579 	}
1580 }
1581 
1582 static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr)
1583 {
1584 	struct mb86a20s_state *state = fe->demodulator_priv;
1585 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1586 	int rc = 0, layer;
1587 	u32 bit_error = 0, bit_count = 0;
1588 	u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
1589 	u32 t_post_bit_error = 0, t_post_bit_count = 0;
1590 	u32 block_error = 0, block_count = 0;
1591 	u32 t_block_error = 0, t_block_count = 0;
1592 	int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0;
1593 	int per_layers = 0;
1594 
1595 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1596 
1597 	mb86a20s_get_main_CNR(fe);
1598 
1599 	/* Get per-layer stats */
1600 	mb86a20s_get_blk_error_layer_CNR(fe);
1601 
1602 	/*
1603 	 * At state 7, only CNR is available
1604 	 * For BER measures, state=9 is required
1605 	 * FIXME: we may get MER measures with state=8
1606 	 */
1607 	if (status_nr < 9)
1608 		return 0;
1609 
1610 	for (layer = 0; layer < NUM_LAYERS; layer++) {
1611 		if (c->isdbt_layer_enabled & (1 << layer)) {
1612 			/* Layer is active and has rc segments */
1613 			active_layers++;
1614 
1615 			/* Handle BER before vterbi */
1616 			rc = mb86a20s_get_pre_ber(fe, layer,
1617 						  &bit_error, &bit_count);
1618 			if (rc >= 0) {
1619 				c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1620 				c->pre_bit_error.stat[1 + layer].uvalue += bit_error;
1621 				c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1622 				c->pre_bit_count.stat[1 + layer].uvalue += bit_count;
1623 			} else if (rc != -EBUSY) {
1624 				/*
1625 					* If an I/O error happened,
1626 					* measures are now unavailable
1627 					*/
1628 				c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1629 				c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1630 				dev_err(&state->i2c->dev,
1631 					"%s: Can't get BER for layer %c (error %d).\n",
1632 					__func__, 'A' + layer, rc);
1633 			}
1634 			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1635 				pre_ber_layers++;
1636 
1637 			/* Handle BER post vterbi */
1638 			rc = mb86a20s_get_post_ber(fe, layer,
1639 						   &bit_error, &bit_count);
1640 			if (rc >= 0) {
1641 				c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1642 				c->post_bit_error.stat[1 + layer].uvalue += bit_error;
1643 				c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1644 				c->post_bit_count.stat[1 + layer].uvalue += bit_count;
1645 			} else if (rc != -EBUSY) {
1646 				/*
1647 					* If an I/O error happened,
1648 					* measures are now unavailable
1649 					*/
1650 				c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1651 				c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1652 				dev_err(&state->i2c->dev,
1653 					"%s: Can't get BER for layer %c (error %d).\n",
1654 					__func__, 'A' + layer, rc);
1655 			}
1656 			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1657 				post_ber_layers++;
1658 
1659 			/* Handle Block errors for PER/UCB reports */
1660 			rc = mb86a20s_get_blk_error(fe, layer,
1661 						&block_error,
1662 						&block_count);
1663 			if (rc >= 0) {
1664 				c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1665 				c->block_error.stat[1 + layer].uvalue += block_error;
1666 				c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1667 				c->block_count.stat[1 + layer].uvalue += block_count;
1668 			} else if (rc != -EBUSY) {
1669 				/*
1670 					* If an I/O error happened,
1671 					* measures are now unavailable
1672 					*/
1673 				c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1674 				c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1675 				dev_err(&state->i2c->dev,
1676 					"%s: Can't get PER for layer %c (error %d).\n",
1677 					__func__, 'A' + layer, rc);
1678 
1679 			}
1680 			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1681 				per_layers++;
1682 
1683 			/* Update total preBER */
1684 			t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue;
1685 			t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue;
1686 
1687 			/* Update total postBER */
1688 			t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue;
1689 			t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue;
1690 
1691 			/* Update total PER */
1692 			t_block_error += c->block_error.stat[1 + layer].uvalue;
1693 			t_block_count += c->block_count.stat[1 + layer].uvalue;
1694 		}
1695 	}
1696 
1697 	/*
1698 	 * Start showing global count if at least one error count is
1699 	 * available.
1700 	 */
1701 	if (pre_ber_layers) {
1702 		/*
1703 		 * At least one per-layer BER measure was read. We can now
1704 		 * calculate the total BER
1705 		 *
1706 		 * Total Bit Error/Count is calculated as the sum of the
1707 		 * bit errors on all active layers.
1708 		 */
1709 		c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1710 		c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
1711 		c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1712 		c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
1713 	} else {
1714 		c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1715 		c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1716 	}
1717 
1718 	/*
1719 	 * Start showing global count if at least one error count is
1720 	 * available.
1721 	 */
1722 	if (post_ber_layers) {
1723 		/*
1724 		 * At least one per-layer BER measure was read. We can now
1725 		 * calculate the total BER
1726 		 *
1727 		 * Total Bit Error/Count is calculated as the sum of the
1728 		 * bit errors on all active layers.
1729 		 */
1730 		c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1731 		c->post_bit_error.stat[0].uvalue = t_post_bit_error;
1732 		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1733 		c->post_bit_count.stat[0].uvalue = t_post_bit_count;
1734 	} else {
1735 		c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1736 		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1737 	}
1738 
1739 	if (per_layers) {
1740 		/*
1741 		 * At least one per-layer UCB measure was read. We can now
1742 		 * calculate the total UCB
1743 		 *
1744 		 * Total block Error/Count is calculated as the sum of the
1745 		 * block errors on all active layers.
1746 		 */
1747 		c->block_error.stat[0].scale = FE_SCALE_COUNTER;
1748 		c->block_error.stat[0].uvalue = t_block_error;
1749 		c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1750 		c->block_count.stat[0].uvalue = t_block_count;
1751 	} else {
1752 		c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1753 		c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1754 	}
1755 
1756 	return rc;
1757 }
1758 
1759 /*
1760  * The functions below are called via DVB callbacks, so they need to
1761  * properly use the I2C gate control
1762  */
1763 
1764 static int mb86a20s_initfe(struct dvb_frontend *fe)
1765 {
1766 	struct mb86a20s_state *state = fe->demodulator_priv;
1767 	u64 pll;
1768 	u32 fclk;
1769 	int rc;
1770 	u8  regD5 = 1, reg71, reg09 = 0x3a;
1771 
1772 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1773 
1774 	if (fe->ops.i2c_gate_ctrl)
1775 		fe->ops.i2c_gate_ctrl(fe, 0);
1776 
1777 	/* Initialize the frontend */
1778 	rc = mb86a20s_writeregdata(state, mb86a20s_init1);
1779 	if (rc < 0)
1780 		goto err;
1781 
1782 	if (!state->inversion)
1783 		reg09 |= 0x04;
1784 	rc = mb86a20s_writereg(state, 0x09, reg09);
1785 	if (rc < 0)
1786 		goto err;
1787 	if (!state->bw)
1788 		reg71 = 1;
1789 	else
1790 		reg71 = 0;
1791 	rc = mb86a20s_writereg(state, 0x39, reg71);
1792 	if (rc < 0)
1793 		goto err;
1794 	rc = mb86a20s_writereg(state, 0x71, state->bw);
1795 	if (rc < 0)
1796 		goto err;
1797 	if (state->subchannel) {
1798 		rc = mb86a20s_writereg(state, 0x44, state->subchannel);
1799 		if (rc < 0)
1800 			goto err;
1801 	}
1802 
1803 	fclk = state->config->fclk;
1804 	if (!fclk)
1805 		fclk = 32571428;
1806 
1807 	/* Adjust IF frequency to match tuner */
1808 	if (fe->ops.tuner_ops.get_if_frequency)
1809 		fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq);
1810 
1811 	if (!state->if_freq)
1812 		state->if_freq = 3300000;
1813 
1814 	pll = (((u64)1) << 34) * state->if_freq;
1815 	do_div(pll, 63 * fclk);
1816 	pll = (1 << 25) - pll;
1817 	rc = mb86a20s_writereg(state, 0x28, 0x2a);
1818 	if (rc < 0)
1819 		goto err;
1820 	rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1821 	if (rc < 0)
1822 		goto err;
1823 	rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1824 	if (rc < 0)
1825 		goto err;
1826 	rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1827 	if (rc < 0)
1828 		goto err;
1829 	dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n",
1830 		__func__, fclk, state->if_freq, (long long)pll);
1831 
1832 	/* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */
1833 	pll = state->if_freq * 1677721600L;
1834 	do_div(pll, 1628571429L);
1835 	rc = mb86a20s_writereg(state, 0x28, 0x20);
1836 	if (rc < 0)
1837 		goto err;
1838 	rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1839 	if (rc < 0)
1840 		goto err;
1841 	rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1842 	if (rc < 0)
1843 		goto err;
1844 	rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1845 	if (rc < 0)
1846 		goto err;
1847 	dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n",
1848 		__func__, state->if_freq, (long long)pll);
1849 
1850 	if (!state->config->is_serial)
1851 		regD5 &= ~1;
1852 
1853 	rc = mb86a20s_writereg(state, 0x50, 0xd5);
1854 	if (rc < 0)
1855 		goto err;
1856 	rc = mb86a20s_writereg(state, 0x51, regD5);
1857 	if (rc < 0)
1858 		goto err;
1859 
1860 	rc = mb86a20s_writeregdata(state, mb86a20s_init2);
1861 	if (rc < 0)
1862 		goto err;
1863 
1864 
1865 err:
1866 	if (fe->ops.i2c_gate_ctrl)
1867 		fe->ops.i2c_gate_ctrl(fe, 1);
1868 
1869 	if (rc < 0) {
1870 		state->need_init = true;
1871 		dev_info(&state->i2c->dev,
1872 			 "mb86a20s: Init failed. Will try again later\n");
1873 	} else {
1874 		state->need_init = false;
1875 		dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
1876 	}
1877 	return rc;
1878 }
1879 
1880 static int mb86a20s_set_frontend(struct dvb_frontend *fe)
1881 {
1882 	struct mb86a20s_state *state = fe->demodulator_priv;
1883 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1884 	int rc, if_freq;
1885 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1886 
1887 	if (!c->isdbt_layer_enabled)
1888 		c->isdbt_layer_enabled = 7;
1889 
1890 	if (c->isdbt_layer_enabled == 1)
1891 		state->bw = MB86A20S_1SEG;
1892 	else if (c->isdbt_partial_reception)
1893 		state->bw = MB86A20S_13SEG_PARTIAL;
1894 	else
1895 		state->bw = MB86A20S_13SEG;
1896 
1897 	if (c->inversion == INVERSION_ON)
1898 		state->inversion = true;
1899 	else
1900 		state->inversion = false;
1901 
1902 	if (!c->isdbt_sb_mode) {
1903 		state->subchannel = 0;
1904 	} else {
1905 		if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel))
1906 			c->isdbt_sb_subchannel = 0;
1907 
1908 		state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel];
1909 	}
1910 
1911 	/*
1912 	 * Gate should already be opened, but it doesn't hurt to
1913 	 * double-check
1914 	 */
1915 	if (fe->ops.i2c_gate_ctrl)
1916 		fe->ops.i2c_gate_ctrl(fe, 1);
1917 	fe->ops.tuner_ops.set_params(fe);
1918 
1919 	if (fe->ops.tuner_ops.get_if_frequency)
1920 		fe->ops.tuner_ops.get_if_frequency(fe, &if_freq);
1921 
1922 	/*
1923 	 * Make it more reliable: if, for some reason, the initial
1924 	 * device initialization doesn't happen, initialize it when
1925 	 * a SBTVD parameters are adjusted.
1926 	 *
1927 	 * Unfortunately, due to a hard to track bug at tda829x/tda18271,
1928 	 * the agc callback logic is not called during DVB attach time,
1929 	 * causing mb86a20s to not be initialized with Kworld SBTVD.
1930 	 * So, this hack is needed, in order to make Kworld SBTVD to work.
1931 	 *
1932 	 * It is also needed to change the IF after the initial init.
1933 	 *
1934 	 * HACK: Always init the frontend when set_frontend is called:
1935 	 * it was noticed that, on some devices, it fails to lock on a
1936 	 * different channel. So, it is better to reset everything, even
1937 	 * wasting some time, than to loose channel lock.
1938 	 */
1939 	mb86a20s_initfe(fe);
1940 
1941 	if (fe->ops.i2c_gate_ctrl)
1942 		fe->ops.i2c_gate_ctrl(fe, 0);
1943 
1944 	rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
1945 	mb86a20s_reset_counters(fe);
1946 	mb86a20s_stats_not_ready(fe);
1947 
1948 	if (fe->ops.i2c_gate_ctrl)
1949 		fe->ops.i2c_gate_ctrl(fe, 1);
1950 
1951 	return rc;
1952 }
1953 
1954 static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
1955 					  enum fe_status *status)
1956 {
1957 	struct mb86a20s_state *state = fe->demodulator_priv;
1958 	int rc, status_nr;
1959 
1960 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1961 
1962 	if (fe->ops.i2c_gate_ctrl)
1963 		fe->ops.i2c_gate_ctrl(fe, 0);
1964 
1965 	/* Get lock */
1966 	status_nr = mb86a20s_read_status(fe, status);
1967 	if (status_nr < 7) {
1968 		mb86a20s_stats_not_ready(fe);
1969 		mb86a20s_reset_frontend_cache(fe);
1970 	}
1971 	if (status_nr < 0) {
1972 		dev_err(&state->i2c->dev,
1973 			"%s: Can't read frontend lock status\n", __func__);
1974 		goto error;
1975 	}
1976 
1977 	/* Get signal strength */
1978 	rc = mb86a20s_read_signal_strength(fe);
1979 	if (rc < 0) {
1980 		dev_err(&state->i2c->dev,
1981 			"%s: Can't reset VBER registers.\n", __func__);
1982 		mb86a20s_stats_not_ready(fe);
1983 		mb86a20s_reset_frontend_cache(fe);
1984 
1985 		rc = 0;		/* Status is OK */
1986 		goto error;
1987 	}
1988 
1989 	if (status_nr >= 7) {
1990 		/* Get TMCC info*/
1991 		rc = mb86a20s_get_frontend(fe);
1992 		if (rc < 0) {
1993 			dev_err(&state->i2c->dev,
1994 				"%s: Can't get FE TMCC data.\n", __func__);
1995 			rc = 0;		/* Status is OK */
1996 			goto error;
1997 		}
1998 
1999 		/* Get statistics */
2000 		rc = mb86a20s_get_stats(fe, status_nr);
2001 		if (rc < 0 && rc != -EBUSY) {
2002 			dev_err(&state->i2c->dev,
2003 				"%s: Can't get FE statistics.\n", __func__);
2004 			rc = 0;
2005 			goto error;
2006 		}
2007 		rc = 0;	/* Don't return EBUSY to userspace */
2008 	}
2009 	goto ok;
2010 
2011 error:
2012 	mb86a20s_stats_not_ready(fe);
2013 
2014 ok:
2015 	if (fe->ops.i2c_gate_ctrl)
2016 		fe->ops.i2c_gate_ctrl(fe, 1);
2017 
2018 	return rc;
2019 }
2020 
2021 static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
2022 						    u16 *strength)
2023 {
2024 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2025 
2026 
2027 	*strength = c->strength.stat[0].uvalue;
2028 
2029 	return 0;
2030 }
2031 
2032 static int mb86a20s_tune(struct dvb_frontend *fe,
2033 			bool re_tune,
2034 			unsigned int mode_flags,
2035 			unsigned int *delay,
2036 			enum fe_status *status)
2037 {
2038 	struct mb86a20s_state *state = fe->demodulator_priv;
2039 	int rc = 0;
2040 
2041 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2042 
2043 	if (re_tune)
2044 		rc = mb86a20s_set_frontend(fe);
2045 
2046 	if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
2047 		mb86a20s_read_status_and_stats(fe, status);
2048 
2049 	return rc;
2050 }
2051 
2052 static void mb86a20s_release(struct dvb_frontend *fe)
2053 {
2054 	struct mb86a20s_state *state = fe->demodulator_priv;
2055 
2056 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2057 
2058 	kfree(state);
2059 }
2060 
2061 static struct dvb_frontend_ops mb86a20s_ops;
2062 
2063 struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
2064 				    struct i2c_adapter *i2c)
2065 {
2066 	struct mb86a20s_state *state;
2067 	u8	rev;
2068 
2069 	dev_dbg(&i2c->dev, "%s called.\n", __func__);
2070 
2071 	/* allocate memory for the internal state */
2072 	state = kzalloc(sizeof(struct mb86a20s_state), GFP_KERNEL);
2073 	if (state == NULL) {
2074 		dev_err(&i2c->dev,
2075 			"%s: unable to allocate memory for state\n", __func__);
2076 		goto error;
2077 	}
2078 
2079 	/* setup the state */
2080 	state->config = config;
2081 	state->i2c = i2c;
2082 
2083 	/* create dvb_frontend */
2084 	memcpy(&state->frontend.ops, &mb86a20s_ops,
2085 		sizeof(struct dvb_frontend_ops));
2086 	state->frontend.demodulator_priv = state;
2087 
2088 	/* Check if it is a mb86a20s frontend */
2089 	rev = mb86a20s_readreg(state, 0);
2090 
2091 	if (rev == 0x13) {
2092 		dev_info(&i2c->dev,
2093 			 "Detected a Fujitsu mb86a20s frontend\n");
2094 	} else {
2095 		dev_dbg(&i2c->dev,
2096 			"Frontend revision %d is unknown - aborting.\n",
2097 		       rev);
2098 		goto error;
2099 	}
2100 
2101 	return &state->frontend;
2102 
2103 error:
2104 	kfree(state);
2105 	return NULL;
2106 }
2107 EXPORT_SYMBOL(mb86a20s_attach);
2108 
2109 static struct dvb_frontend_ops mb86a20s_ops = {
2110 	.delsys = { SYS_ISDBT },
2111 	/* Use dib8000 values per default */
2112 	.info = {
2113 		.name = "Fujitsu mb86A20s",
2114 		.caps = FE_CAN_RECOVER  |
2115 			FE_CAN_FEC_1_2  | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
2116 			FE_CAN_FEC_5_6  | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
2117 			FE_CAN_QPSK     | FE_CAN_QAM_16  | FE_CAN_QAM_64 |
2118 			FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
2119 			FE_CAN_GUARD_INTERVAL_AUTO    | FE_CAN_HIERARCHY_AUTO,
2120 		/* Actually, those values depend on the used tuner */
2121 		.frequency_min = 45000000,
2122 		.frequency_max = 864000000,
2123 		.frequency_stepsize = 62500,
2124 	},
2125 
2126 	.release = mb86a20s_release,
2127 
2128 	.init = mb86a20s_initfe,
2129 	.set_frontend = mb86a20s_set_frontend,
2130 	.read_status = mb86a20s_read_status_and_stats,
2131 	.read_signal_strength = mb86a20s_read_signal_strength_from_cache,
2132 	.tune = mb86a20s_tune,
2133 };
2134 
2135 MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
2136 MODULE_AUTHOR("Mauro Carvalho Chehab");
2137 MODULE_LICENSE("GPL");
2138