1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver 4 * 5 * Copyright (C) 2010-2013 Mauro Carvalho Chehab 6 * Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com> 7 */ 8 9 #include <linux/kernel.h> 10 #include <asm/div64.h> 11 12 #include <media/dvb_frontend.h> 13 #include "mb86a20s.h" 14 15 #define NUM_LAYERS 3 16 17 enum mb86a20s_bandwidth { 18 MB86A20S_13SEG = 0, 19 MB86A20S_13SEG_PARTIAL = 1, 20 MB86A20S_1SEG = 2, 21 MB86A20S_3SEG = 3, 22 }; 23 24 static u8 mb86a20s_subchannel[] = { 25 0xb0, 0xc0, 0xd0, 0xe0, 26 0xf0, 0x00, 0x10, 0x20, 27 }; 28 29 struct mb86a20s_state { 30 struct i2c_adapter *i2c; 31 const struct mb86a20s_config *config; 32 u32 last_frequency; 33 34 struct dvb_frontend frontend; 35 36 u32 if_freq; 37 enum mb86a20s_bandwidth bw; 38 bool inversion; 39 u32 subchannel; 40 41 u32 estimated_rate[NUM_LAYERS]; 42 unsigned long get_strength_time; 43 44 bool need_init; 45 }; 46 47 struct regdata { 48 u8 reg; 49 u8 data; 50 }; 51 52 #define BER_SAMPLING_RATE 1 /* Seconds */ 53 54 /* 55 * Initialization sequence: Use whatevere default values that PV SBTVD 56 * does on its initialisation, obtained via USB snoop 57 */ 58 static struct regdata mb86a20s_init1[] = { 59 { 0x70, 0x0f }, 60 { 0x70, 0xff }, 61 { 0x08, 0x01 }, 62 { 0x50, 0xd1 }, { 0x51, 0x20 }, 63 }; 64 65 static struct regdata mb86a20s_init2[] = { 66 { 0x50, 0xd1 }, { 0x51, 0x22 }, 67 { 0x39, 0x01 }, 68 { 0x71, 0x00 }, 69 { 0x3b, 0x21 }, 70 { 0x3c, 0x3a }, 71 { 0x01, 0x0d }, 72 { 0x04, 0x08 }, { 0x05, 0x05 }, 73 { 0x04, 0x0e }, { 0x05, 0x00 }, 74 { 0x04, 0x0f }, { 0x05, 0x14 }, 75 { 0x04, 0x0b }, { 0x05, 0x8c }, 76 { 0x04, 0x00 }, { 0x05, 0x00 }, 77 { 0x04, 0x01 }, { 0x05, 0x07 }, 78 { 0x04, 0x02 }, { 0x05, 0x0f }, 79 { 0x04, 0x03 }, { 0x05, 0xa0 }, 80 { 0x04, 0x09 }, { 0x05, 0x00 }, 81 { 0x04, 0x0a }, { 0x05, 0xff }, 82 { 0x04, 0x27 }, { 0x05, 0x64 }, 83 { 0x04, 0x28 }, { 0x05, 0x00 }, 84 { 0x04, 0x1e }, { 0x05, 0xff }, 85 { 0x04, 0x29 }, { 0x05, 0x0a }, 86 { 0x04, 0x32 }, { 0x05, 0x0a }, 87 { 0x04, 0x14 }, { 0x05, 0x02 }, 88 { 0x04, 0x04 }, { 0x05, 0x00 }, 89 { 0x04, 0x05 }, { 0x05, 0x22 }, 90 { 0x04, 0x06 }, { 0x05, 0x0e }, 91 { 0x04, 0x07 }, { 0x05, 0xd8 }, 92 { 0x04, 0x12 }, { 0x05, 0x00 }, 93 { 0x04, 0x13 }, { 0x05, 0xff }, 94 95 /* 96 * On this demod, when the bit count reaches the count below, 97 * it collects the bit error count. The bit counters are initialized 98 * to 65535 here. This warrants that all of them will be quickly 99 * calculated when device gets locked. As TMCC is parsed, the values 100 * will be adjusted later in the driver's code. 101 */ 102 { 0x52, 0x01 }, /* Turn on BER before Viterbi */ 103 { 0x50, 0xa7 }, { 0x51, 0x00 }, 104 { 0x50, 0xa8 }, { 0x51, 0xff }, 105 { 0x50, 0xa9 }, { 0x51, 0xff }, 106 { 0x50, 0xaa }, { 0x51, 0x00 }, 107 { 0x50, 0xab }, { 0x51, 0xff }, 108 { 0x50, 0xac }, { 0x51, 0xff }, 109 { 0x50, 0xad }, { 0x51, 0x00 }, 110 { 0x50, 0xae }, { 0x51, 0xff }, 111 { 0x50, 0xaf }, { 0x51, 0xff }, 112 113 /* 114 * On this demod, post BER counts blocks. When the count reaches the 115 * value below, it collects the block error count. The block counters 116 * are initialized to 127 here. This warrants that all of them will be 117 * quickly calculated when device gets locked. As TMCC is parsed, the 118 * values will be adjusted later in the driver's code. 119 */ 120 { 0x5e, 0x07 }, /* Turn on BER after Viterbi */ 121 { 0x50, 0xdc }, { 0x51, 0x00 }, 122 { 0x50, 0xdd }, { 0x51, 0x7f }, 123 { 0x50, 0xde }, { 0x51, 0x00 }, 124 { 0x50, 0xdf }, { 0x51, 0x7f }, 125 { 0x50, 0xe0 }, { 0x51, 0x00 }, 126 { 0x50, 0xe1 }, { 0x51, 0x7f }, 127 128 /* 129 * On this demod, when the block count reaches the count below, 130 * it collects the block error count. The block counters are initialized 131 * to 127 here. This warrants that all of them will be quickly 132 * calculated when device gets locked. As TMCC is parsed, the values 133 * will be adjusted later in the driver's code. 134 */ 135 { 0x50, 0xb0 }, { 0x51, 0x07 }, /* Enable PER */ 136 { 0x50, 0xb2 }, { 0x51, 0x00 }, 137 { 0x50, 0xb3 }, { 0x51, 0x7f }, 138 { 0x50, 0xb4 }, { 0x51, 0x00 }, 139 { 0x50, 0xb5 }, { 0x51, 0x7f }, 140 { 0x50, 0xb6 }, { 0x51, 0x00 }, 141 { 0x50, 0xb7 }, { 0x51, 0x7f }, 142 143 { 0x50, 0x50 }, { 0x51, 0x02 }, /* MER manual mode */ 144 { 0x50, 0x51 }, { 0x51, 0x04 }, /* MER symbol 4 */ 145 { 0x45, 0x04 }, /* CN symbol 4 */ 146 { 0x48, 0x04 }, /* CN manual mode */ 147 { 0x50, 0xd5 }, { 0x51, 0x01 }, 148 { 0x50, 0xd6 }, { 0x51, 0x1f }, 149 { 0x50, 0xd2 }, { 0x51, 0x03 }, 150 { 0x50, 0xd7 }, { 0x51, 0x3f }, 151 { 0x1c, 0x01 }, 152 { 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x03 }, 153 { 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0d }, 154 { 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 }, 155 { 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x01 }, 156 { 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x21 }, 157 { 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x29 }, 158 { 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 }, 159 { 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x31 }, 160 { 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0e }, 161 { 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x4e }, 162 { 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x46 }, 163 { 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f }, 164 { 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x56 }, 165 { 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x35 }, 166 { 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbe }, 167 { 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0x84 }, 168 { 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x03 }, { 0x2b, 0xee }, 169 { 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x98 }, 170 { 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x9f }, 171 { 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xb2 }, 172 { 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0xc2 }, 173 { 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0x4a }, 174 { 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbc }, 175 { 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x04 }, { 0x2b, 0xba }, 176 { 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0x14 }, 177 { 0x50, 0x1e }, { 0x51, 0x5d }, 178 { 0x50, 0x22 }, { 0x51, 0x00 }, 179 { 0x50, 0x23 }, { 0x51, 0xc8 }, 180 { 0x50, 0x24 }, { 0x51, 0x00 }, 181 { 0x50, 0x25 }, { 0x51, 0xf0 }, 182 { 0x50, 0x26 }, { 0x51, 0x00 }, 183 { 0x50, 0x27 }, { 0x51, 0xc3 }, 184 { 0x50, 0x39 }, { 0x51, 0x02 }, 185 { 0x50, 0xd5 }, { 0x51, 0x01 }, 186 { 0xd0, 0x00 }, 187 }; 188 189 static struct regdata mb86a20s_reset_reception[] = { 190 { 0x70, 0xf0 }, 191 { 0x70, 0xff }, 192 { 0x08, 0x01 }, 193 { 0x08, 0x00 }, 194 }; 195 196 static struct regdata mb86a20s_per_ber_reset[] = { 197 { 0x53, 0x00 }, /* pre BER Counter reset */ 198 { 0x53, 0x07 }, 199 200 { 0x5f, 0x00 }, /* post BER Counter reset */ 201 { 0x5f, 0x07 }, 202 203 { 0x50, 0xb1 }, /* PER Counter reset */ 204 { 0x51, 0x07 }, 205 { 0x51, 0x00 }, 206 }; 207 208 /* 209 * I2C read/write functions and macros 210 */ 211 212 static int mb86a20s_i2c_writereg(struct mb86a20s_state *state, 213 u8 i2c_addr, u8 reg, u8 data) 214 { 215 u8 buf[] = { reg, data }; 216 struct i2c_msg msg = { 217 .addr = i2c_addr, .flags = 0, .buf = buf, .len = 2 218 }; 219 int rc; 220 221 rc = i2c_transfer(state->i2c, &msg, 1); 222 if (rc != 1) { 223 dev_err(&state->i2c->dev, 224 "%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n", 225 __func__, rc, reg, data); 226 return rc; 227 } 228 229 return 0; 230 } 231 232 static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state, 233 u8 i2c_addr, struct regdata *rd, int size) 234 { 235 int i, rc; 236 237 for (i = 0; i < size; i++) { 238 rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg, 239 rd[i].data); 240 if (rc < 0) 241 return rc; 242 } 243 return 0; 244 } 245 246 static int mb86a20s_i2c_readreg(struct mb86a20s_state *state, 247 u8 i2c_addr, u8 reg) 248 { 249 u8 val; 250 int rc; 251 struct i2c_msg msg[] = { 252 { .addr = i2c_addr, .flags = 0, .buf = ®, .len = 1 }, 253 { .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 } 254 }; 255 256 rc = i2c_transfer(state->i2c, msg, 2); 257 258 if (rc != 2) { 259 dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n", 260 __func__, reg, rc); 261 return (rc < 0) ? rc : -EIO; 262 } 263 264 return val; 265 } 266 267 #define mb86a20s_readreg(state, reg) \ 268 mb86a20s_i2c_readreg(state, state->config->demod_address, reg) 269 #define mb86a20s_writereg(state, reg, val) \ 270 mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val) 271 #define mb86a20s_writeregdata(state, regdata) \ 272 mb86a20s_i2c_writeregdata(state, state->config->demod_address, \ 273 regdata, ARRAY_SIZE(regdata)) 274 275 /* 276 * Ancillary internal routines (likely compiled inlined) 277 * 278 * The functions below assume that gateway lock has already obtained 279 */ 280 281 static int mb86a20s_read_status(struct dvb_frontend *fe, enum fe_status *status) 282 { 283 struct mb86a20s_state *state = fe->demodulator_priv; 284 int val; 285 286 *status = 0; 287 288 val = mb86a20s_readreg(state, 0x0a); 289 if (val < 0) 290 return val; 291 292 val &= 0xf; 293 if (val >= 2) 294 *status |= FE_HAS_SIGNAL; 295 296 if (val >= 4) 297 *status |= FE_HAS_CARRIER; 298 299 if (val >= 5) 300 *status |= FE_HAS_VITERBI; 301 302 if (val >= 7) 303 *status |= FE_HAS_SYNC; 304 305 /* 306 * Actually, on state S8, it starts receiving TS, but the TS 307 * output is only on normal state after the transition to S9. 308 */ 309 if (val >= 9) 310 *status |= FE_HAS_LOCK; 311 312 dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n", 313 __func__, *status, val); 314 315 return val; 316 } 317 318 static int mb86a20s_read_signal_strength(struct dvb_frontend *fe) 319 { 320 struct mb86a20s_state *state = fe->demodulator_priv; 321 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 322 int rc; 323 unsigned rf_max, rf_min, rf; 324 325 if (state->get_strength_time && 326 (!time_after(jiffies, state->get_strength_time))) 327 return c->strength.stat[0].uvalue; 328 329 /* Reset its value if an error happen */ 330 c->strength.stat[0].uvalue = 0; 331 332 /* Does a binary search to get RF strength */ 333 rf_max = 0xfff; 334 rf_min = 0; 335 do { 336 rf = (rf_max + rf_min) / 2; 337 rc = mb86a20s_writereg(state, 0x04, 0x1f); 338 if (rc < 0) 339 return rc; 340 rc = mb86a20s_writereg(state, 0x05, rf >> 8); 341 if (rc < 0) 342 return rc; 343 rc = mb86a20s_writereg(state, 0x04, 0x20); 344 if (rc < 0) 345 return rc; 346 rc = mb86a20s_writereg(state, 0x05, rf); 347 if (rc < 0) 348 return rc; 349 350 rc = mb86a20s_readreg(state, 0x02); 351 if (rc < 0) 352 return rc; 353 if (rc & 0x08) 354 rf_min = (rf_max + rf_min) / 2; 355 else 356 rf_max = (rf_max + rf_min) / 2; 357 if (rf_max - rf_min < 4) { 358 rf = (rf_max + rf_min) / 2; 359 360 /* Rescale it from 2^12 (4096) to 2^16 */ 361 rf = rf << (16 - 12); 362 if (rf) 363 rf |= (1 << 12) - 1; 364 365 dev_dbg(&state->i2c->dev, 366 "%s: signal strength = %d (%d < RF=%d < %d)\n", 367 __func__, rf, rf_min, rf >> 4, rf_max); 368 c->strength.stat[0].uvalue = rf; 369 state->get_strength_time = jiffies + 370 msecs_to_jiffies(1000); 371 return 0; 372 } 373 } while (1); 374 } 375 376 static int mb86a20s_get_modulation(struct mb86a20s_state *state, 377 unsigned layer) 378 { 379 int rc; 380 static unsigned char reg[] = { 381 [0] = 0x86, /* Layer A */ 382 [1] = 0x8a, /* Layer B */ 383 [2] = 0x8e, /* Layer C */ 384 }; 385 386 if (layer >= ARRAY_SIZE(reg)) 387 return -EINVAL; 388 rc = mb86a20s_writereg(state, 0x6d, reg[layer]); 389 if (rc < 0) 390 return rc; 391 rc = mb86a20s_readreg(state, 0x6e); 392 if (rc < 0) 393 return rc; 394 switch ((rc >> 4) & 0x07) { 395 case 0: 396 return DQPSK; 397 case 1: 398 return QPSK; 399 case 2: 400 return QAM_16; 401 case 3: 402 return QAM_64; 403 default: 404 return QAM_AUTO; 405 } 406 } 407 408 static int mb86a20s_get_fec(struct mb86a20s_state *state, 409 unsigned layer) 410 { 411 int rc; 412 413 static unsigned char reg[] = { 414 [0] = 0x87, /* Layer A */ 415 [1] = 0x8b, /* Layer B */ 416 [2] = 0x8f, /* Layer C */ 417 }; 418 419 if (layer >= ARRAY_SIZE(reg)) 420 return -EINVAL; 421 rc = mb86a20s_writereg(state, 0x6d, reg[layer]); 422 if (rc < 0) 423 return rc; 424 rc = mb86a20s_readreg(state, 0x6e); 425 if (rc < 0) 426 return rc; 427 switch ((rc >> 4) & 0x07) { 428 case 0: 429 return FEC_1_2; 430 case 1: 431 return FEC_2_3; 432 case 2: 433 return FEC_3_4; 434 case 3: 435 return FEC_5_6; 436 case 4: 437 return FEC_7_8; 438 default: 439 return FEC_AUTO; 440 } 441 } 442 443 static int mb86a20s_get_interleaving(struct mb86a20s_state *state, 444 unsigned layer) 445 { 446 int rc; 447 static const int interleaving[] = { 448 0, 1, 2, 4, 8 449 }; 450 451 static const unsigned char reg[] = { 452 [0] = 0x88, /* Layer A */ 453 [1] = 0x8c, /* Layer B */ 454 [2] = 0x90, /* Layer C */ 455 }; 456 457 if (layer >= ARRAY_SIZE(reg)) 458 return -EINVAL; 459 rc = mb86a20s_writereg(state, 0x6d, reg[layer]); 460 if (rc < 0) 461 return rc; 462 rc = mb86a20s_readreg(state, 0x6e); 463 if (rc < 0) 464 return rc; 465 466 return interleaving[(rc >> 4) & 0x07]; 467 } 468 469 static int mb86a20s_get_segment_count(struct mb86a20s_state *state, 470 unsigned layer) 471 { 472 int rc, count; 473 static unsigned char reg[] = { 474 [0] = 0x89, /* Layer A */ 475 [1] = 0x8d, /* Layer B */ 476 [2] = 0x91, /* Layer C */ 477 }; 478 479 dev_dbg(&state->i2c->dev, "%s called.\n", __func__); 480 481 if (layer >= ARRAY_SIZE(reg)) 482 return -EINVAL; 483 484 rc = mb86a20s_writereg(state, 0x6d, reg[layer]); 485 if (rc < 0) 486 return rc; 487 rc = mb86a20s_readreg(state, 0x6e); 488 if (rc < 0) 489 return rc; 490 count = (rc >> 4) & 0x0f; 491 492 dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count); 493 494 return count; 495 } 496 497 static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe) 498 { 499 struct mb86a20s_state *state = fe->demodulator_priv; 500 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 501 502 dev_dbg(&state->i2c->dev, "%s called.\n", __func__); 503 504 /* Fixed parameters */ 505 c->delivery_system = SYS_ISDBT; 506 c->bandwidth_hz = 6000000; 507 508 /* Initialize values that will be later autodetected */ 509 c->isdbt_layer_enabled = 0; 510 c->transmission_mode = TRANSMISSION_MODE_AUTO; 511 c->guard_interval = GUARD_INTERVAL_AUTO; 512 c->isdbt_sb_mode = 0; 513 c->isdbt_sb_segment_count = 0; 514 } 515 516 /* 517 * Estimates the bit rate using the per-segment bit rate given by 518 * ABNT/NBR 15601 spec (table 4). 519 */ 520 static const u32 isdbt_rate[3][5][4] = { 521 { /* DQPSK/QPSK */ 522 { 280850, 312060, 330420, 340430 }, /* 1/2 */ 523 { 374470, 416080, 440560, 453910 }, /* 2/3 */ 524 { 421280, 468090, 495630, 510650 }, /* 3/4 */ 525 { 468090, 520100, 550700, 567390 }, /* 5/6 */ 526 { 491500, 546110, 578230, 595760 }, /* 7/8 */ 527 }, { /* QAM16 */ 528 { 561710, 624130, 660840, 680870 }, /* 1/2 */ 529 { 748950, 832170, 881120, 907820 }, /* 2/3 */ 530 { 842570, 936190, 991260, 1021300 }, /* 3/4 */ 531 { 936190, 1040210, 1101400, 1134780 }, /* 5/6 */ 532 { 983000, 1092220, 1156470, 1191520 }, /* 7/8 */ 533 }, { /* QAM64 */ 534 { 842570, 936190, 991260, 1021300 }, /* 1/2 */ 535 { 1123430, 1248260, 1321680, 1361740 }, /* 2/3 */ 536 { 1263860, 1404290, 1486900, 1531950 }, /* 3/4 */ 537 { 1404290, 1560320, 1652110, 1702170 }, /* 5/6 */ 538 { 1474500, 1638340, 1734710, 1787280 }, /* 7/8 */ 539 } 540 }; 541 542 static u32 isdbt_layer_min_bitrate(struct dtv_frontend_properties *c, 543 u32 layer) 544 { 545 int mod, fec, guard; 546 547 /* 548 * If modulation/fec/guard is not detected, the default is 549 * to consider the lowest bit rate, to avoid taking too long time 550 * to get BER. 551 */ 552 switch (c->layer[layer].modulation) { 553 case DQPSK: 554 case QPSK: 555 default: 556 mod = 0; 557 break; 558 case QAM_16: 559 mod = 1; 560 break; 561 case QAM_64: 562 mod = 2; 563 break; 564 } 565 566 switch (c->layer[layer].fec) { 567 default: 568 case FEC_1_2: 569 case FEC_AUTO: 570 fec = 0; 571 break; 572 case FEC_2_3: 573 fec = 1; 574 break; 575 case FEC_3_4: 576 fec = 2; 577 break; 578 case FEC_5_6: 579 fec = 3; 580 break; 581 case FEC_7_8: 582 fec = 4; 583 break; 584 } 585 586 switch (c->guard_interval) { 587 default: 588 case GUARD_INTERVAL_1_4: 589 guard = 0; 590 break; 591 case GUARD_INTERVAL_1_8: 592 guard = 1; 593 break; 594 case GUARD_INTERVAL_1_16: 595 guard = 2; 596 break; 597 case GUARD_INTERVAL_1_32: 598 guard = 3; 599 break; 600 } 601 602 return isdbt_rate[mod][fec][guard] * c->layer[layer].segment_count; 603 } 604 605 static int mb86a20s_get_frontend(struct dvb_frontend *fe) 606 { 607 struct mb86a20s_state *state = fe->demodulator_priv; 608 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 609 int layer, rc, rate, counter; 610 611 dev_dbg(&state->i2c->dev, "%s called.\n", __func__); 612 613 /* Reset frontend cache to default values */ 614 mb86a20s_reset_frontend_cache(fe); 615 616 /* Check for partial reception */ 617 rc = mb86a20s_writereg(state, 0x6d, 0x85); 618 if (rc < 0) 619 return rc; 620 rc = mb86a20s_readreg(state, 0x6e); 621 if (rc < 0) 622 return rc; 623 c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0; 624 625 /* Get per-layer data */ 626 627 for (layer = 0; layer < NUM_LAYERS; layer++) { 628 dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n", 629 __func__, 'A' + layer); 630 631 rc = mb86a20s_get_segment_count(state, layer); 632 if (rc < 0) 633 goto noperlayer_error; 634 if (rc >= 0 && rc < 14) { 635 c->layer[layer].segment_count = rc; 636 } else { 637 c->layer[layer].segment_count = 0; 638 state->estimated_rate[layer] = 0; 639 continue; 640 } 641 c->isdbt_layer_enabled |= 1 << layer; 642 rc = mb86a20s_get_modulation(state, layer); 643 if (rc < 0) 644 goto noperlayer_error; 645 dev_dbg(&state->i2c->dev, "%s: modulation %d.\n", 646 __func__, rc); 647 c->layer[layer].modulation = rc; 648 rc = mb86a20s_get_fec(state, layer); 649 if (rc < 0) 650 goto noperlayer_error; 651 dev_dbg(&state->i2c->dev, "%s: FEC %d.\n", 652 __func__, rc); 653 c->layer[layer].fec = rc; 654 rc = mb86a20s_get_interleaving(state, layer); 655 if (rc < 0) 656 goto noperlayer_error; 657 dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n", 658 __func__, rc); 659 c->layer[layer].interleaving = rc; 660 661 rate = isdbt_layer_min_bitrate(c, layer); 662 counter = rate * BER_SAMPLING_RATE; 663 664 /* Avoids sampling too quickly or to overflow the register */ 665 if (counter < 256) 666 counter = 256; 667 else if (counter > (1 << 24) - 1) 668 counter = (1 << 24) - 1; 669 670 dev_dbg(&state->i2c->dev, 671 "%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n", 672 __func__, 'A' + layer, rate / 1000, counter, counter); 673 674 state->estimated_rate[layer] = counter; 675 } 676 677 rc = mb86a20s_writereg(state, 0x6d, 0x84); 678 if (rc < 0) 679 return rc; 680 if ((rc & 0x60) == 0x20) { 681 c->isdbt_sb_mode = 1; 682 /* At least, one segment should exist */ 683 if (!c->isdbt_sb_segment_count) 684 c->isdbt_sb_segment_count = 1; 685 } 686 687 /* Get transmission mode and guard interval */ 688 rc = mb86a20s_readreg(state, 0x07); 689 if (rc < 0) 690 return rc; 691 c->transmission_mode = TRANSMISSION_MODE_AUTO; 692 if ((rc & 0x60) == 0x20) { 693 /* Only modes 2 and 3 are supported */ 694 switch ((rc >> 2) & 0x03) { 695 case 1: 696 c->transmission_mode = TRANSMISSION_MODE_4K; 697 break; 698 case 2: 699 c->transmission_mode = TRANSMISSION_MODE_8K; 700 break; 701 } 702 } 703 c->guard_interval = GUARD_INTERVAL_AUTO; 704 if (!(rc & 0x10)) { 705 /* Guard interval 1/32 is not supported */ 706 switch (rc & 0x3) { 707 case 0: 708 c->guard_interval = GUARD_INTERVAL_1_4; 709 break; 710 case 1: 711 c->guard_interval = GUARD_INTERVAL_1_8; 712 break; 713 case 2: 714 c->guard_interval = GUARD_INTERVAL_1_16; 715 break; 716 } 717 } 718 return 0; 719 720 noperlayer_error: 721 722 /* per-layer info is incomplete; discard all per-layer */ 723 c->isdbt_layer_enabled = 0; 724 725 return rc; 726 } 727 728 static int mb86a20s_reset_counters(struct dvb_frontend *fe) 729 { 730 struct mb86a20s_state *state = fe->demodulator_priv; 731 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 732 int rc, val; 733 734 dev_dbg(&state->i2c->dev, "%s called.\n", __func__); 735 736 /* Reset the counters, if the channel changed */ 737 if (state->last_frequency != c->frequency) { 738 memset(&c->cnr, 0, sizeof(c->cnr)); 739 memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error)); 740 memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count)); 741 memset(&c->post_bit_error, 0, sizeof(c->post_bit_error)); 742 memset(&c->post_bit_count, 0, sizeof(c->post_bit_count)); 743 memset(&c->block_error, 0, sizeof(c->block_error)); 744 memset(&c->block_count, 0, sizeof(c->block_count)); 745 746 state->last_frequency = c->frequency; 747 } 748 749 /* Clear status for most stats */ 750 751 /* BER/PER counter reset */ 752 rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset); 753 if (rc < 0) 754 goto err; 755 756 /* CNR counter reset */ 757 rc = mb86a20s_readreg(state, 0x45); 758 if (rc < 0) 759 goto err; 760 val = rc; 761 rc = mb86a20s_writereg(state, 0x45, val | 0x10); 762 if (rc < 0) 763 goto err; 764 rc = mb86a20s_writereg(state, 0x45, val & 0x6f); 765 if (rc < 0) 766 goto err; 767 768 /* MER counter reset */ 769 rc = mb86a20s_writereg(state, 0x50, 0x50); 770 if (rc < 0) 771 goto err; 772 rc = mb86a20s_readreg(state, 0x51); 773 if (rc < 0) 774 goto err; 775 val = rc; 776 rc = mb86a20s_writereg(state, 0x51, val | 0x01); 777 if (rc < 0) 778 goto err; 779 rc = mb86a20s_writereg(state, 0x51, val & 0x06); 780 if (rc < 0) 781 goto err; 782 783 goto ok; 784 err: 785 dev_err(&state->i2c->dev, 786 "%s: Can't reset FE statistics (error %d).\n", 787 __func__, rc); 788 ok: 789 return rc; 790 } 791 792 static int mb86a20s_get_pre_ber(struct dvb_frontend *fe, 793 unsigned layer, 794 u32 *error, u32 *count) 795 { 796 struct mb86a20s_state *state = fe->demodulator_priv; 797 int rc, val; 798 799 dev_dbg(&state->i2c->dev, "%s called.\n", __func__); 800 801 if (layer >= NUM_LAYERS) 802 return -EINVAL; 803 804 /* Check if the BER measures are already available */ 805 rc = mb86a20s_readreg(state, 0x54); 806 if (rc < 0) 807 return rc; 808 809 /* Check if data is available for that layer */ 810 if (!(rc & (1 << layer))) { 811 dev_dbg(&state->i2c->dev, 812 "%s: preBER for layer %c is not available yet.\n", 813 __func__, 'A' + layer); 814 return -EBUSY; 815 } 816 817 /* Read Bit Error Count */ 818 rc = mb86a20s_readreg(state, 0x55 + layer * 3); 819 if (rc < 0) 820 return rc; 821 *error = rc << 16; 822 rc = mb86a20s_readreg(state, 0x56 + layer * 3); 823 if (rc < 0) 824 return rc; 825 *error |= rc << 8; 826 rc = mb86a20s_readreg(state, 0x57 + layer * 3); 827 if (rc < 0) 828 return rc; 829 *error |= rc; 830 831 dev_dbg(&state->i2c->dev, 832 "%s: bit error before Viterbi for layer %c: %d.\n", 833 __func__, 'A' + layer, *error); 834 835 /* Read Bit Count */ 836 rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3); 837 if (rc < 0) 838 return rc; 839 rc = mb86a20s_readreg(state, 0x51); 840 if (rc < 0) 841 return rc; 842 *count = rc << 16; 843 rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3); 844 if (rc < 0) 845 return rc; 846 rc = mb86a20s_readreg(state, 0x51); 847 if (rc < 0) 848 return rc; 849 *count |= rc << 8; 850 rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3); 851 if (rc < 0) 852 return rc; 853 rc = mb86a20s_readreg(state, 0x51); 854 if (rc < 0) 855 return rc; 856 *count |= rc; 857 858 dev_dbg(&state->i2c->dev, 859 "%s: bit count before Viterbi for layer %c: %d.\n", 860 __func__, 'A' + layer, *count); 861 862 863 /* 864 * As we get TMCC data from the frontend, we can better estimate the 865 * BER bit counters, in order to do the BER measure during a longer 866 * time. Use those data, if available, to update the bit count 867 * measure. 868 */ 869 870 if (state->estimated_rate[layer] 871 && state->estimated_rate[layer] != *count) { 872 dev_dbg(&state->i2c->dev, 873 "%s: updating layer %c preBER counter to %d.\n", 874 __func__, 'A' + layer, state->estimated_rate[layer]); 875 876 /* Turn off BER before Viterbi */ 877 rc = mb86a20s_writereg(state, 0x52, 0x00); 878 879 /* Update counter for this layer */ 880 rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3); 881 if (rc < 0) 882 return rc; 883 rc = mb86a20s_writereg(state, 0x51, 884 state->estimated_rate[layer] >> 16); 885 if (rc < 0) 886 return rc; 887 rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3); 888 if (rc < 0) 889 return rc; 890 rc = mb86a20s_writereg(state, 0x51, 891 state->estimated_rate[layer] >> 8); 892 if (rc < 0) 893 return rc; 894 rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3); 895 if (rc < 0) 896 return rc; 897 rc = mb86a20s_writereg(state, 0x51, 898 state->estimated_rate[layer]); 899 if (rc < 0) 900 return rc; 901 902 /* Turn on BER before Viterbi */ 903 rc = mb86a20s_writereg(state, 0x52, 0x01); 904 905 /* Reset all preBER counters */ 906 rc = mb86a20s_writereg(state, 0x53, 0x00); 907 if (rc < 0) 908 return rc; 909 rc = mb86a20s_writereg(state, 0x53, 0x07); 910 } else { 911 /* Reset counter to collect new data */ 912 rc = mb86a20s_readreg(state, 0x53); 913 if (rc < 0) 914 return rc; 915 val = rc; 916 rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer)); 917 if (rc < 0) 918 return rc; 919 rc = mb86a20s_writereg(state, 0x53, val | (1 << layer)); 920 } 921 922 return rc; 923 } 924 925 static int mb86a20s_get_post_ber(struct dvb_frontend *fe, 926 unsigned layer, 927 u32 *error, u32 *count) 928 { 929 struct mb86a20s_state *state = fe->demodulator_priv; 930 u32 counter, collect_rate; 931 int rc, val; 932 933 dev_dbg(&state->i2c->dev, "%s called.\n", __func__); 934 935 if (layer >= NUM_LAYERS) 936 return -EINVAL; 937 938 /* Check if the BER measures are already available */ 939 rc = mb86a20s_readreg(state, 0x60); 940 if (rc < 0) 941 return rc; 942 943 /* Check if data is available for that layer */ 944 if (!(rc & (1 << layer))) { 945 dev_dbg(&state->i2c->dev, 946 "%s: post BER for layer %c is not available yet.\n", 947 __func__, 'A' + layer); 948 return -EBUSY; 949 } 950 951 /* Read Bit Error Count */ 952 rc = mb86a20s_readreg(state, 0x64 + layer * 3); 953 if (rc < 0) 954 return rc; 955 *error = rc << 16; 956 rc = mb86a20s_readreg(state, 0x65 + layer * 3); 957 if (rc < 0) 958 return rc; 959 *error |= rc << 8; 960 rc = mb86a20s_readreg(state, 0x66 + layer * 3); 961 if (rc < 0) 962 return rc; 963 *error |= rc; 964 965 dev_dbg(&state->i2c->dev, 966 "%s: post bit error for layer %c: %d.\n", 967 __func__, 'A' + layer, *error); 968 969 /* Read Bit Count */ 970 rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2); 971 if (rc < 0) 972 return rc; 973 rc = mb86a20s_readreg(state, 0x51); 974 if (rc < 0) 975 return rc; 976 counter = rc << 8; 977 rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2); 978 if (rc < 0) 979 return rc; 980 rc = mb86a20s_readreg(state, 0x51); 981 if (rc < 0) 982 return rc; 983 counter |= rc; 984 *count = counter * 204 * 8; 985 986 dev_dbg(&state->i2c->dev, 987 "%s: post bit count for layer %c: %d.\n", 988 __func__, 'A' + layer, *count); 989 990 /* 991 * As we get TMCC data from the frontend, we can better estimate the 992 * BER bit counters, in order to do the BER measure during a longer 993 * time. Use those data, if available, to update the bit count 994 * measure. 995 */ 996 997 if (!state->estimated_rate[layer]) 998 goto reset_measurement; 999 1000 collect_rate = state->estimated_rate[layer] / 204 / 8; 1001 if (collect_rate < 32) 1002 collect_rate = 32; 1003 if (collect_rate > 65535) 1004 collect_rate = 65535; 1005 if (collect_rate != counter) { 1006 dev_dbg(&state->i2c->dev, 1007 "%s: updating postBER counter on layer %c to %d.\n", 1008 __func__, 'A' + layer, collect_rate); 1009 1010 /* Turn off BER after Viterbi */ 1011 rc = mb86a20s_writereg(state, 0x5e, 0x00); 1012 1013 /* Update counter for this layer */ 1014 rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2); 1015 if (rc < 0) 1016 return rc; 1017 rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8); 1018 if (rc < 0) 1019 return rc; 1020 rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2); 1021 if (rc < 0) 1022 return rc; 1023 rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff); 1024 if (rc < 0) 1025 return rc; 1026 1027 /* Turn on BER after Viterbi */ 1028 rc = mb86a20s_writereg(state, 0x5e, 0x07); 1029 1030 /* Reset all preBER counters */ 1031 rc = mb86a20s_writereg(state, 0x5f, 0x00); 1032 if (rc < 0) 1033 return rc; 1034 rc = mb86a20s_writereg(state, 0x5f, 0x07); 1035 1036 return rc; 1037 } 1038 1039 reset_measurement: 1040 /* Reset counter to collect new data */ 1041 rc = mb86a20s_readreg(state, 0x5f); 1042 if (rc < 0) 1043 return rc; 1044 val = rc; 1045 rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer)); 1046 if (rc < 0) 1047 return rc; 1048 rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer)); 1049 1050 return rc; 1051 } 1052 1053 static int mb86a20s_get_blk_error(struct dvb_frontend *fe, 1054 unsigned layer, 1055 u32 *error, u32 *count) 1056 { 1057 struct mb86a20s_state *state = fe->demodulator_priv; 1058 int rc, val; 1059 u32 collect_rate; 1060 dev_dbg(&state->i2c->dev, "%s called.\n", __func__); 1061 1062 if (layer >= NUM_LAYERS) 1063 return -EINVAL; 1064 1065 /* Check if the PER measures are already available */ 1066 rc = mb86a20s_writereg(state, 0x50, 0xb8); 1067 if (rc < 0) 1068 return rc; 1069 rc = mb86a20s_readreg(state, 0x51); 1070 if (rc < 0) 1071 return rc; 1072 1073 /* Check if data is available for that layer */ 1074 1075 if (!(rc & (1 << layer))) { 1076 dev_dbg(&state->i2c->dev, 1077 "%s: block counts for layer %c aren't available yet.\n", 1078 __func__, 'A' + layer); 1079 return -EBUSY; 1080 } 1081 1082 /* Read Packet error Count */ 1083 rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2); 1084 if (rc < 0) 1085 return rc; 1086 rc = mb86a20s_readreg(state, 0x51); 1087 if (rc < 0) 1088 return rc; 1089 *error = rc << 8; 1090 rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2); 1091 if (rc < 0) 1092 return rc; 1093 rc = mb86a20s_readreg(state, 0x51); 1094 if (rc < 0) 1095 return rc; 1096 *error |= rc; 1097 dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n", 1098 __func__, 'A' + layer, *error); 1099 1100 /* Read Bit Count */ 1101 rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2); 1102 if (rc < 0) 1103 return rc; 1104 rc = mb86a20s_readreg(state, 0x51); 1105 if (rc < 0) 1106 return rc; 1107 *count = rc << 8; 1108 rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2); 1109 if (rc < 0) 1110 return rc; 1111 rc = mb86a20s_readreg(state, 0x51); 1112 if (rc < 0) 1113 return rc; 1114 *count |= rc; 1115 1116 dev_dbg(&state->i2c->dev, 1117 "%s: block count for layer %c: %d.\n", 1118 __func__, 'A' + layer, *count); 1119 1120 /* 1121 * As we get TMCC data from the frontend, we can better estimate the 1122 * BER bit counters, in order to do the BER measure during a longer 1123 * time. Use those data, if available, to update the bit count 1124 * measure. 1125 */ 1126 1127 if (!state->estimated_rate[layer]) 1128 goto reset_measurement; 1129 1130 collect_rate = state->estimated_rate[layer] / 204 / 8; 1131 if (collect_rate < 32) 1132 collect_rate = 32; 1133 if (collect_rate > 65535) 1134 collect_rate = 65535; 1135 1136 if (collect_rate != *count) { 1137 dev_dbg(&state->i2c->dev, 1138 "%s: updating PER counter on layer %c to %d.\n", 1139 __func__, 'A' + layer, collect_rate); 1140 1141 /* Stop PER measurement */ 1142 rc = mb86a20s_writereg(state, 0x50, 0xb0); 1143 if (rc < 0) 1144 return rc; 1145 rc = mb86a20s_writereg(state, 0x51, 0x00); 1146 if (rc < 0) 1147 return rc; 1148 1149 /* Update this layer's counter */ 1150 rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2); 1151 if (rc < 0) 1152 return rc; 1153 rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8); 1154 if (rc < 0) 1155 return rc; 1156 rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2); 1157 if (rc < 0) 1158 return rc; 1159 rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff); 1160 if (rc < 0) 1161 return rc; 1162 1163 /* start PER measurement */ 1164 rc = mb86a20s_writereg(state, 0x50, 0xb0); 1165 if (rc < 0) 1166 return rc; 1167 rc = mb86a20s_writereg(state, 0x51, 0x07); 1168 if (rc < 0) 1169 return rc; 1170 1171 /* Reset all counters to collect new data */ 1172 rc = mb86a20s_writereg(state, 0x50, 0xb1); 1173 if (rc < 0) 1174 return rc; 1175 rc = mb86a20s_writereg(state, 0x51, 0x07); 1176 if (rc < 0) 1177 return rc; 1178 rc = mb86a20s_writereg(state, 0x51, 0x00); 1179 1180 return rc; 1181 } 1182 1183 reset_measurement: 1184 /* Reset counter to collect new data */ 1185 rc = mb86a20s_writereg(state, 0x50, 0xb1); 1186 if (rc < 0) 1187 return rc; 1188 rc = mb86a20s_readreg(state, 0x51); 1189 if (rc < 0) 1190 return rc; 1191 val = rc; 1192 rc = mb86a20s_writereg(state, 0x51, val | (1 << layer)); 1193 if (rc < 0) 1194 return rc; 1195 rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer)); 1196 1197 return rc; 1198 } 1199 1200 struct linear_segments { 1201 unsigned x, y; 1202 }; 1203 1204 /* 1205 * All tables below return a dB/1000 measurement 1206 */ 1207 1208 static const struct linear_segments cnr_to_db_table[] = { 1209 { 19648, 0}, 1210 { 18187, 1000}, 1211 { 16534, 2000}, 1212 { 14823, 3000}, 1213 { 13161, 4000}, 1214 { 11622, 5000}, 1215 { 10279, 6000}, 1216 { 9089, 7000}, 1217 { 8042, 8000}, 1218 { 7137, 9000}, 1219 { 6342, 10000}, 1220 { 5641, 11000}, 1221 { 5030, 12000}, 1222 { 4474, 13000}, 1223 { 3988, 14000}, 1224 { 3556, 15000}, 1225 { 3180, 16000}, 1226 { 2841, 17000}, 1227 { 2541, 18000}, 1228 { 2276, 19000}, 1229 { 2038, 20000}, 1230 { 1800, 21000}, 1231 { 1625, 22000}, 1232 { 1462, 23000}, 1233 { 1324, 24000}, 1234 { 1175, 25000}, 1235 { 1063, 26000}, 1236 { 980, 27000}, 1237 { 907, 28000}, 1238 { 840, 29000}, 1239 { 788, 30000}, 1240 }; 1241 1242 static const struct linear_segments cnr_64qam_table[] = { 1243 { 3922688, 0}, 1244 { 3920384, 1000}, 1245 { 3902720, 2000}, 1246 { 3894784, 3000}, 1247 { 3882496, 4000}, 1248 { 3872768, 5000}, 1249 { 3858944, 6000}, 1250 { 3851520, 7000}, 1251 { 3838976, 8000}, 1252 { 3829248, 9000}, 1253 { 3818240, 10000}, 1254 { 3806976, 11000}, 1255 { 3791872, 12000}, 1256 { 3767040, 13000}, 1257 { 3720960, 14000}, 1258 { 3637504, 15000}, 1259 { 3498496, 16000}, 1260 { 3296000, 17000}, 1261 { 3031040, 18000}, 1262 { 2715392, 19000}, 1263 { 2362624, 20000}, 1264 { 1963264, 21000}, 1265 { 1649664, 22000}, 1266 { 1366784, 23000}, 1267 { 1120768, 24000}, 1268 { 890880, 25000}, 1269 { 723456, 26000}, 1270 { 612096, 27000}, 1271 { 518912, 28000}, 1272 { 448256, 29000}, 1273 { 388864, 30000}, 1274 }; 1275 1276 static const struct linear_segments cnr_16qam_table[] = { 1277 { 5314816, 0}, 1278 { 5219072, 1000}, 1279 { 5118720, 2000}, 1280 { 4998912, 3000}, 1281 { 4875520, 4000}, 1282 { 4736000, 5000}, 1283 { 4604160, 6000}, 1284 { 4458752, 7000}, 1285 { 4300288, 8000}, 1286 { 4092928, 9000}, 1287 { 3836160, 10000}, 1288 { 3521024, 11000}, 1289 { 3155968, 12000}, 1290 { 2756864, 13000}, 1291 { 2347008, 14000}, 1292 { 1955072, 15000}, 1293 { 1593600, 16000}, 1294 { 1297920, 17000}, 1295 { 1043968, 18000}, 1296 { 839680, 19000}, 1297 { 672256, 20000}, 1298 { 523008, 21000}, 1299 { 424704, 22000}, 1300 { 345088, 23000}, 1301 { 280064, 24000}, 1302 { 221440, 25000}, 1303 { 179712, 26000}, 1304 { 151040, 27000}, 1305 { 128512, 28000}, 1306 { 110080, 29000}, 1307 { 95744, 30000}, 1308 }; 1309 1310 static const struct linear_segments cnr_qpsk_table[] = { 1311 { 2834176, 0}, 1312 { 2683648, 1000}, 1313 { 2536960, 2000}, 1314 { 2391808, 3000}, 1315 { 2133248, 4000}, 1316 { 1906176, 5000}, 1317 { 1666560, 6000}, 1318 { 1422080, 7000}, 1319 { 1189632, 8000}, 1320 { 976384, 9000}, 1321 { 790272, 10000}, 1322 { 633344, 11000}, 1323 { 505600, 12000}, 1324 { 402944, 13000}, 1325 { 320768, 14000}, 1326 { 255488, 15000}, 1327 { 204032, 16000}, 1328 { 163072, 17000}, 1329 { 130304, 18000}, 1330 { 105216, 19000}, 1331 { 83456, 20000}, 1332 { 65024, 21000}, 1333 { 52480, 22000}, 1334 { 42752, 23000}, 1335 { 34560, 24000}, 1336 { 27136, 25000}, 1337 { 22016, 26000}, 1338 { 18432, 27000}, 1339 { 15616, 28000}, 1340 { 13312, 29000}, 1341 { 11520, 30000}, 1342 }; 1343 1344 static u32 interpolate_value(u32 value, const struct linear_segments *segments, 1345 unsigned len) 1346 { 1347 u64 tmp64; 1348 u32 dx, dy; 1349 int i, ret; 1350 1351 if (value >= segments[0].x) 1352 return segments[0].y; 1353 if (value < segments[len-1].x) 1354 return segments[len-1].y; 1355 1356 for (i = 1; i < len - 1; i++) { 1357 /* If value is identical, no need to interpolate */ 1358 if (value == segments[i].x) 1359 return segments[i].y; 1360 if (value > segments[i].x) 1361 break; 1362 } 1363 1364 /* Linear interpolation between the two (x,y) points */ 1365 dy = segments[i].y - segments[i - 1].y; 1366 dx = segments[i - 1].x - segments[i].x; 1367 tmp64 = value - segments[i].x; 1368 tmp64 *= dy; 1369 do_div(tmp64, dx); 1370 ret = segments[i].y - tmp64; 1371 1372 return ret; 1373 } 1374 1375 static int mb86a20s_get_main_CNR(struct dvb_frontend *fe) 1376 { 1377 struct mb86a20s_state *state = fe->demodulator_priv; 1378 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 1379 u32 cnr_linear, cnr; 1380 int rc, val; 1381 1382 /* Check if CNR is available */ 1383 rc = mb86a20s_readreg(state, 0x45); 1384 if (rc < 0) 1385 return rc; 1386 1387 if (!(rc & 0x40)) { 1388 dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n", 1389 __func__); 1390 return -EBUSY; 1391 } 1392 val = rc; 1393 1394 rc = mb86a20s_readreg(state, 0x46); 1395 if (rc < 0) 1396 return rc; 1397 cnr_linear = rc << 8; 1398 1399 rc = mb86a20s_readreg(state, 0x46); 1400 if (rc < 0) 1401 return rc; 1402 cnr_linear |= rc; 1403 1404 cnr = interpolate_value(cnr_linear, 1405 cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table)); 1406 1407 c->cnr.stat[0].scale = FE_SCALE_DECIBEL; 1408 c->cnr.stat[0].svalue = cnr; 1409 1410 dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n", 1411 __func__, cnr / 1000, cnr % 1000, cnr_linear); 1412 1413 /* CNR counter reset */ 1414 rc = mb86a20s_writereg(state, 0x45, val | 0x10); 1415 if (rc < 0) 1416 return rc; 1417 rc = mb86a20s_writereg(state, 0x45, val & 0x6f); 1418 1419 return rc; 1420 } 1421 1422 static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe) 1423 { 1424 struct mb86a20s_state *state = fe->demodulator_priv; 1425 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 1426 u32 mer, cnr; 1427 int rc, val, layer; 1428 const struct linear_segments *segs; 1429 unsigned segs_len; 1430 1431 dev_dbg(&state->i2c->dev, "%s called.\n", __func__); 1432 1433 /* Check if the measures are already available */ 1434 rc = mb86a20s_writereg(state, 0x50, 0x5b); 1435 if (rc < 0) 1436 return rc; 1437 rc = mb86a20s_readreg(state, 0x51); 1438 if (rc < 0) 1439 return rc; 1440 1441 /* Check if data is available */ 1442 if (!(rc & 0x01)) { 1443 dev_dbg(&state->i2c->dev, 1444 "%s: MER measures aren't available yet.\n", __func__); 1445 return -EBUSY; 1446 } 1447 1448 /* Read all layers */ 1449 for (layer = 0; layer < NUM_LAYERS; layer++) { 1450 if (!(c->isdbt_layer_enabled & (1 << layer))) { 1451 c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; 1452 continue; 1453 } 1454 1455 rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3); 1456 if (rc < 0) 1457 return rc; 1458 rc = mb86a20s_readreg(state, 0x51); 1459 if (rc < 0) 1460 return rc; 1461 mer = rc << 16; 1462 rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3); 1463 if (rc < 0) 1464 return rc; 1465 rc = mb86a20s_readreg(state, 0x51); 1466 if (rc < 0) 1467 return rc; 1468 mer |= rc << 8; 1469 rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3); 1470 if (rc < 0) 1471 return rc; 1472 rc = mb86a20s_readreg(state, 0x51); 1473 if (rc < 0) 1474 return rc; 1475 mer |= rc; 1476 1477 switch (c->layer[layer].modulation) { 1478 case DQPSK: 1479 case QPSK: 1480 segs = cnr_qpsk_table; 1481 segs_len = ARRAY_SIZE(cnr_qpsk_table); 1482 break; 1483 case QAM_16: 1484 segs = cnr_16qam_table; 1485 segs_len = ARRAY_SIZE(cnr_16qam_table); 1486 break; 1487 default: 1488 case QAM_64: 1489 segs = cnr_64qam_table; 1490 segs_len = ARRAY_SIZE(cnr_64qam_table); 1491 break; 1492 } 1493 cnr = interpolate_value(mer, segs, segs_len); 1494 1495 c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL; 1496 c->cnr.stat[1 + layer].svalue = cnr; 1497 1498 dev_dbg(&state->i2c->dev, 1499 "%s: CNR for layer %c is %d.%03d dB (MER = %d).\n", 1500 __func__, 'A' + layer, cnr / 1000, cnr % 1000, mer); 1501 1502 } 1503 1504 /* Start a new MER measurement */ 1505 /* MER counter reset */ 1506 rc = mb86a20s_writereg(state, 0x50, 0x50); 1507 if (rc < 0) 1508 return rc; 1509 rc = mb86a20s_readreg(state, 0x51); 1510 if (rc < 0) 1511 return rc; 1512 val = rc; 1513 1514 rc = mb86a20s_writereg(state, 0x51, val | 0x01); 1515 if (rc < 0) 1516 return rc; 1517 rc = mb86a20s_writereg(state, 0x51, val & 0x06); 1518 if (rc < 0) 1519 return rc; 1520 1521 return 0; 1522 } 1523 1524 static void mb86a20s_stats_not_ready(struct dvb_frontend *fe) 1525 { 1526 struct mb86a20s_state *state = fe->demodulator_priv; 1527 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 1528 int layer; 1529 1530 dev_dbg(&state->i2c->dev, "%s called.\n", __func__); 1531 1532 /* Fill the length of each status counter */ 1533 1534 /* Only global stats */ 1535 c->strength.len = 1; 1536 1537 /* Per-layer stats - 3 layers + global */ 1538 c->cnr.len = NUM_LAYERS + 1; 1539 c->pre_bit_error.len = NUM_LAYERS + 1; 1540 c->pre_bit_count.len = NUM_LAYERS + 1; 1541 c->post_bit_error.len = NUM_LAYERS + 1; 1542 c->post_bit_count.len = NUM_LAYERS + 1; 1543 c->block_error.len = NUM_LAYERS + 1; 1544 c->block_count.len = NUM_LAYERS + 1; 1545 1546 /* Signal is always available */ 1547 c->strength.stat[0].scale = FE_SCALE_RELATIVE; 1548 c->strength.stat[0].uvalue = 0; 1549 1550 /* Put all of them at FE_SCALE_NOT_AVAILABLE */ 1551 for (layer = 0; layer < NUM_LAYERS + 1; layer++) { 1552 c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; 1553 c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; 1554 c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; 1555 c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; 1556 c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; 1557 c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; 1558 c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; 1559 } 1560 } 1561 1562 static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr) 1563 { 1564 struct mb86a20s_state *state = fe->demodulator_priv; 1565 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 1566 int rc = 0, layer; 1567 u32 bit_error = 0, bit_count = 0; 1568 u32 t_pre_bit_error = 0, t_pre_bit_count = 0; 1569 u32 t_post_bit_error = 0, t_post_bit_count = 0; 1570 u32 block_error = 0, block_count = 0; 1571 u32 t_block_error = 0, t_block_count = 0; 1572 int pre_ber_layers = 0, post_ber_layers = 0; 1573 int per_layers = 0; 1574 1575 dev_dbg(&state->i2c->dev, "%s called.\n", __func__); 1576 1577 mb86a20s_get_main_CNR(fe); 1578 1579 /* Get per-layer stats */ 1580 mb86a20s_get_blk_error_layer_CNR(fe); 1581 1582 /* 1583 * At state 7, only CNR is available 1584 * For BER measures, state=9 is required 1585 * FIXME: we may get MER measures with state=8 1586 */ 1587 if (status_nr < 9) 1588 return 0; 1589 1590 for (layer = 0; layer < NUM_LAYERS; layer++) { 1591 if (c->isdbt_layer_enabled & (1 << layer)) { 1592 /* Handle BER before vterbi */ 1593 rc = mb86a20s_get_pre_ber(fe, layer, 1594 &bit_error, &bit_count); 1595 if (rc >= 0) { 1596 c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER; 1597 c->pre_bit_error.stat[1 + layer].uvalue += bit_error; 1598 c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER; 1599 c->pre_bit_count.stat[1 + layer].uvalue += bit_count; 1600 } else if (rc != -EBUSY) { 1601 /* 1602 * If an I/O error happened, 1603 * measures are now unavailable 1604 */ 1605 c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; 1606 c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; 1607 dev_err(&state->i2c->dev, 1608 "%s: Can't get BER for layer %c (error %d).\n", 1609 __func__, 'A' + layer, rc); 1610 } 1611 if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE) 1612 pre_ber_layers++; 1613 1614 /* Handle BER post vterbi */ 1615 rc = mb86a20s_get_post_ber(fe, layer, 1616 &bit_error, &bit_count); 1617 if (rc >= 0) { 1618 c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER; 1619 c->post_bit_error.stat[1 + layer].uvalue += bit_error; 1620 c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER; 1621 c->post_bit_count.stat[1 + layer].uvalue += bit_count; 1622 } else if (rc != -EBUSY) { 1623 /* 1624 * If an I/O error happened, 1625 * measures are now unavailable 1626 */ 1627 c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; 1628 c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; 1629 dev_err(&state->i2c->dev, 1630 "%s: Can't get BER for layer %c (error %d).\n", 1631 __func__, 'A' + layer, rc); 1632 } 1633 if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE) 1634 post_ber_layers++; 1635 1636 /* Handle Block errors for PER/UCB reports */ 1637 rc = mb86a20s_get_blk_error(fe, layer, 1638 &block_error, 1639 &block_count); 1640 if (rc >= 0) { 1641 c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER; 1642 c->block_error.stat[1 + layer].uvalue += block_error; 1643 c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER; 1644 c->block_count.stat[1 + layer].uvalue += block_count; 1645 } else if (rc != -EBUSY) { 1646 /* 1647 * If an I/O error happened, 1648 * measures are now unavailable 1649 */ 1650 c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; 1651 c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; 1652 dev_err(&state->i2c->dev, 1653 "%s: Can't get PER for layer %c (error %d).\n", 1654 __func__, 'A' + layer, rc); 1655 1656 } 1657 if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE) 1658 per_layers++; 1659 1660 /* Update total preBER */ 1661 t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue; 1662 t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue; 1663 1664 /* Update total postBER */ 1665 t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue; 1666 t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue; 1667 1668 /* Update total PER */ 1669 t_block_error += c->block_error.stat[1 + layer].uvalue; 1670 t_block_count += c->block_count.stat[1 + layer].uvalue; 1671 } 1672 } 1673 1674 /* 1675 * Start showing global count if at least one error count is 1676 * available. 1677 */ 1678 if (pre_ber_layers) { 1679 /* 1680 * At least one per-layer BER measure was read. We can now 1681 * calculate the total BER 1682 * 1683 * Total Bit Error/Count is calculated as the sum of the 1684 * bit errors on all active layers. 1685 */ 1686 c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER; 1687 c->pre_bit_error.stat[0].uvalue = t_pre_bit_error; 1688 c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER; 1689 c->pre_bit_count.stat[0].uvalue = t_pre_bit_count; 1690 } else { 1691 c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1692 c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER; 1693 } 1694 1695 /* 1696 * Start showing global count if at least one error count is 1697 * available. 1698 */ 1699 if (post_ber_layers) { 1700 /* 1701 * At least one per-layer BER measure was read. We can now 1702 * calculate the total BER 1703 * 1704 * Total Bit Error/Count is calculated as the sum of the 1705 * bit errors on all active layers. 1706 */ 1707 c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; 1708 c->post_bit_error.stat[0].uvalue = t_post_bit_error; 1709 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; 1710 c->post_bit_count.stat[0].uvalue = t_post_bit_count; 1711 } else { 1712 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1713 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; 1714 } 1715 1716 if (per_layers) { 1717 /* 1718 * At least one per-layer UCB measure was read. We can now 1719 * calculate the total UCB 1720 * 1721 * Total block Error/Count is calculated as the sum of the 1722 * block errors on all active layers. 1723 */ 1724 c->block_error.stat[0].scale = FE_SCALE_COUNTER; 1725 c->block_error.stat[0].uvalue = t_block_error; 1726 c->block_count.stat[0].scale = FE_SCALE_COUNTER; 1727 c->block_count.stat[0].uvalue = t_block_count; 1728 } else { 1729 c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1730 c->block_count.stat[0].scale = FE_SCALE_COUNTER; 1731 } 1732 1733 return rc; 1734 } 1735 1736 /* 1737 * The functions below are called via DVB callbacks, so they need to 1738 * properly use the I2C gate control 1739 */ 1740 1741 static int mb86a20s_initfe(struct dvb_frontend *fe) 1742 { 1743 struct mb86a20s_state *state = fe->demodulator_priv; 1744 u64 pll; 1745 u32 fclk; 1746 int rc; 1747 u8 regD5 = 1, reg71, reg09 = 0x3a; 1748 1749 dev_dbg(&state->i2c->dev, "%s called.\n", __func__); 1750 1751 if (fe->ops.i2c_gate_ctrl) 1752 fe->ops.i2c_gate_ctrl(fe, 0); 1753 1754 /* Initialize the frontend */ 1755 rc = mb86a20s_writeregdata(state, mb86a20s_init1); 1756 if (rc < 0) 1757 goto err; 1758 1759 if (!state->inversion) 1760 reg09 |= 0x04; 1761 rc = mb86a20s_writereg(state, 0x09, reg09); 1762 if (rc < 0) 1763 goto err; 1764 if (!state->bw) 1765 reg71 = 1; 1766 else 1767 reg71 = 0; 1768 rc = mb86a20s_writereg(state, 0x39, reg71); 1769 if (rc < 0) 1770 goto err; 1771 rc = mb86a20s_writereg(state, 0x71, state->bw); 1772 if (rc < 0) 1773 goto err; 1774 if (state->subchannel) { 1775 rc = mb86a20s_writereg(state, 0x44, state->subchannel); 1776 if (rc < 0) 1777 goto err; 1778 } 1779 1780 fclk = state->config->fclk; 1781 if (!fclk) 1782 fclk = 32571428; 1783 1784 /* Adjust IF frequency to match tuner */ 1785 if (fe->ops.tuner_ops.get_if_frequency) 1786 fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq); 1787 1788 if (!state->if_freq) 1789 state->if_freq = 3300000; 1790 1791 pll = (((u64)1) << 34) * state->if_freq; 1792 do_div(pll, 63 * fclk); 1793 pll = (1 << 25) - pll; 1794 rc = mb86a20s_writereg(state, 0x28, 0x2a); 1795 if (rc < 0) 1796 goto err; 1797 rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff); 1798 if (rc < 0) 1799 goto err; 1800 rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff); 1801 if (rc < 0) 1802 goto err; 1803 rc = mb86a20s_writereg(state, 0x2b, pll & 0xff); 1804 if (rc < 0) 1805 goto err; 1806 dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n", 1807 __func__, fclk, state->if_freq, (long long)pll); 1808 1809 /* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */ 1810 pll = state->if_freq * 1677721600L; 1811 do_div(pll, 1628571429L); 1812 rc = mb86a20s_writereg(state, 0x28, 0x20); 1813 if (rc < 0) 1814 goto err; 1815 rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff); 1816 if (rc < 0) 1817 goto err; 1818 rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff); 1819 if (rc < 0) 1820 goto err; 1821 rc = mb86a20s_writereg(state, 0x2b, pll & 0xff); 1822 if (rc < 0) 1823 goto err; 1824 dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n", 1825 __func__, state->if_freq, (long long)pll); 1826 1827 if (!state->config->is_serial) 1828 regD5 &= ~1; 1829 1830 rc = mb86a20s_writereg(state, 0x50, 0xd5); 1831 if (rc < 0) 1832 goto err; 1833 rc = mb86a20s_writereg(state, 0x51, regD5); 1834 if (rc < 0) 1835 goto err; 1836 1837 rc = mb86a20s_writeregdata(state, mb86a20s_init2); 1838 if (rc < 0) 1839 goto err; 1840 1841 1842 err: 1843 if (fe->ops.i2c_gate_ctrl) 1844 fe->ops.i2c_gate_ctrl(fe, 1); 1845 1846 if (rc < 0) { 1847 state->need_init = true; 1848 dev_info(&state->i2c->dev, 1849 "mb86a20s: Init failed. Will try again later\n"); 1850 } else { 1851 state->need_init = false; 1852 dev_dbg(&state->i2c->dev, "Initialization succeeded.\n"); 1853 } 1854 return rc; 1855 } 1856 1857 static int mb86a20s_set_frontend(struct dvb_frontend *fe) 1858 { 1859 struct mb86a20s_state *state = fe->demodulator_priv; 1860 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 1861 int rc, if_freq; 1862 dev_dbg(&state->i2c->dev, "%s called.\n", __func__); 1863 1864 if (!c->isdbt_layer_enabled) 1865 c->isdbt_layer_enabled = 7; 1866 1867 if (c->isdbt_layer_enabled == 1) 1868 state->bw = MB86A20S_1SEG; 1869 else if (c->isdbt_partial_reception) 1870 state->bw = MB86A20S_13SEG_PARTIAL; 1871 else 1872 state->bw = MB86A20S_13SEG; 1873 1874 if (c->inversion == INVERSION_ON) 1875 state->inversion = true; 1876 else 1877 state->inversion = false; 1878 1879 if (!c->isdbt_sb_mode) { 1880 state->subchannel = 0; 1881 } else { 1882 if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel)) 1883 c->isdbt_sb_subchannel = 0; 1884 1885 state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel]; 1886 } 1887 1888 /* 1889 * Gate should already be opened, but it doesn't hurt to 1890 * double-check 1891 */ 1892 if (fe->ops.i2c_gate_ctrl) 1893 fe->ops.i2c_gate_ctrl(fe, 1); 1894 fe->ops.tuner_ops.set_params(fe); 1895 1896 if (fe->ops.tuner_ops.get_if_frequency) 1897 fe->ops.tuner_ops.get_if_frequency(fe, &if_freq); 1898 1899 /* 1900 * Make it more reliable: if, for some reason, the initial 1901 * device initialization doesn't happen, initialize it when 1902 * a SBTVD parameters are adjusted. 1903 * 1904 * Unfortunately, due to a hard to track bug at tda829x/tda18271, 1905 * the agc callback logic is not called during DVB attach time, 1906 * causing mb86a20s to not be initialized with Kworld SBTVD. 1907 * So, this hack is needed, in order to make Kworld SBTVD to work. 1908 * 1909 * It is also needed to change the IF after the initial init. 1910 * 1911 * HACK: Always init the frontend when set_frontend is called: 1912 * it was noticed that, on some devices, it fails to lock on a 1913 * different channel. So, it is better to reset everything, even 1914 * wasting some time, than to loose channel lock. 1915 */ 1916 mb86a20s_initfe(fe); 1917 1918 if (fe->ops.i2c_gate_ctrl) 1919 fe->ops.i2c_gate_ctrl(fe, 0); 1920 1921 rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception); 1922 mb86a20s_reset_counters(fe); 1923 mb86a20s_stats_not_ready(fe); 1924 1925 if (fe->ops.i2c_gate_ctrl) 1926 fe->ops.i2c_gate_ctrl(fe, 1); 1927 1928 return rc; 1929 } 1930 1931 static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe, 1932 enum fe_status *status) 1933 { 1934 struct mb86a20s_state *state = fe->demodulator_priv; 1935 int rc, status_nr; 1936 1937 dev_dbg(&state->i2c->dev, "%s called.\n", __func__); 1938 1939 if (fe->ops.i2c_gate_ctrl) 1940 fe->ops.i2c_gate_ctrl(fe, 0); 1941 1942 /* Get lock */ 1943 status_nr = mb86a20s_read_status(fe, status); 1944 if (status_nr < 7) { 1945 mb86a20s_stats_not_ready(fe); 1946 mb86a20s_reset_frontend_cache(fe); 1947 } 1948 if (status_nr < 0) { 1949 dev_err(&state->i2c->dev, 1950 "%s: Can't read frontend lock status\n", __func__); 1951 rc = status_nr; 1952 goto error; 1953 } 1954 1955 /* Get signal strength */ 1956 rc = mb86a20s_read_signal_strength(fe); 1957 if (rc < 0) { 1958 dev_err(&state->i2c->dev, 1959 "%s: Can't reset VBER registers.\n", __func__); 1960 mb86a20s_stats_not_ready(fe); 1961 mb86a20s_reset_frontend_cache(fe); 1962 1963 rc = 0; /* Status is OK */ 1964 goto error; 1965 } 1966 1967 if (status_nr >= 7) { 1968 /* Get TMCC info*/ 1969 rc = mb86a20s_get_frontend(fe); 1970 if (rc < 0) { 1971 dev_err(&state->i2c->dev, 1972 "%s: Can't get FE TMCC data.\n", __func__); 1973 rc = 0; /* Status is OK */ 1974 goto error; 1975 } 1976 1977 /* Get statistics */ 1978 rc = mb86a20s_get_stats(fe, status_nr); 1979 if (rc < 0 && rc != -EBUSY) { 1980 dev_err(&state->i2c->dev, 1981 "%s: Can't get FE statistics.\n", __func__); 1982 rc = 0; 1983 goto error; 1984 } 1985 rc = 0; /* Don't return EBUSY to userspace */ 1986 } 1987 goto ok; 1988 1989 error: 1990 mb86a20s_stats_not_ready(fe); 1991 1992 ok: 1993 if (fe->ops.i2c_gate_ctrl) 1994 fe->ops.i2c_gate_ctrl(fe, 1); 1995 1996 return rc; 1997 } 1998 1999 static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe, 2000 u16 *strength) 2001 { 2002 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 2003 2004 2005 *strength = c->strength.stat[0].uvalue; 2006 2007 return 0; 2008 } 2009 2010 static int mb86a20s_tune(struct dvb_frontend *fe, 2011 bool re_tune, 2012 unsigned int mode_flags, 2013 unsigned int *delay, 2014 enum fe_status *status) 2015 { 2016 struct mb86a20s_state *state = fe->demodulator_priv; 2017 int rc = 0; 2018 2019 dev_dbg(&state->i2c->dev, "%s called.\n", __func__); 2020 2021 if (re_tune) 2022 rc = mb86a20s_set_frontend(fe); 2023 2024 if (!(mode_flags & FE_TUNE_MODE_ONESHOT)) 2025 mb86a20s_read_status_and_stats(fe, status); 2026 2027 return rc; 2028 } 2029 2030 static void mb86a20s_release(struct dvb_frontend *fe) 2031 { 2032 struct mb86a20s_state *state = fe->demodulator_priv; 2033 2034 dev_dbg(&state->i2c->dev, "%s called.\n", __func__); 2035 2036 kfree(state); 2037 } 2038 2039 static enum dvbfe_algo mb86a20s_get_frontend_algo(struct dvb_frontend *fe) 2040 { 2041 return DVBFE_ALGO_HW; 2042 } 2043 2044 static const struct dvb_frontend_ops mb86a20s_ops; 2045 2046 struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config, 2047 struct i2c_adapter *i2c) 2048 { 2049 struct mb86a20s_state *state; 2050 u8 rev; 2051 2052 dev_dbg(&i2c->dev, "%s called.\n", __func__); 2053 2054 /* allocate memory for the internal state */ 2055 state = kzalloc(sizeof(*state), GFP_KERNEL); 2056 if (!state) 2057 return NULL; 2058 2059 /* setup the state */ 2060 state->config = config; 2061 state->i2c = i2c; 2062 2063 /* create dvb_frontend */ 2064 memcpy(&state->frontend.ops, &mb86a20s_ops, 2065 sizeof(struct dvb_frontend_ops)); 2066 state->frontend.demodulator_priv = state; 2067 2068 /* Check if it is a mb86a20s frontend */ 2069 rev = mb86a20s_readreg(state, 0); 2070 if (rev != 0x13) { 2071 kfree(state); 2072 dev_dbg(&i2c->dev, 2073 "Frontend revision %d is unknown - aborting.\n", 2074 rev); 2075 return NULL; 2076 } 2077 2078 dev_info(&i2c->dev, "Detected a Fujitsu mb86a20s frontend\n"); 2079 return &state->frontend; 2080 } 2081 EXPORT_SYMBOL_GPL(mb86a20s_attach); 2082 2083 static const struct dvb_frontend_ops mb86a20s_ops = { 2084 .delsys = { SYS_ISDBT }, 2085 /* Use dib8000 values per default */ 2086 .info = { 2087 .name = "Fujitsu mb86A20s", 2088 .caps = FE_CAN_RECOVER | 2089 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | 2090 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | 2091 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | 2092 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO | 2093 FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO, 2094 /* Actually, those values depend on the used tuner */ 2095 .frequency_min_hz = 45 * MHz, 2096 .frequency_max_hz = 864 * MHz, 2097 .frequency_stepsize_hz = 62500, 2098 }, 2099 2100 .release = mb86a20s_release, 2101 2102 .init = mb86a20s_initfe, 2103 .set_frontend = mb86a20s_set_frontend, 2104 .read_status = mb86a20s_read_status_and_stats, 2105 .read_signal_strength = mb86a20s_read_signal_strength_from_cache, 2106 .tune = mb86a20s_tune, 2107 .get_frontend_algo = mb86a20s_get_frontend_algo, 2108 }; 2109 2110 MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware"); 2111 MODULE_AUTHOR("Mauro Carvalho Chehab"); 2112 MODULE_LICENSE("GPL"); 2113