1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *   Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
4  *
5  *   Copyright (C) 2010-2013 Mauro Carvalho Chehab
6  *   Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
7  */
8 
9 #include <linux/kernel.h>
10 #include <asm/div64.h>
11 
12 #include <media/dvb_frontend.h>
13 #include "mb86a20s.h"
14 
15 #define NUM_LAYERS 3
16 
17 enum mb86a20s_bandwidth {
18 	MB86A20S_13SEG = 0,
19 	MB86A20S_13SEG_PARTIAL = 1,
20 	MB86A20S_1SEG = 2,
21 	MB86A20S_3SEG = 3,
22 };
23 
24 static u8 mb86a20s_subchannel[] = {
25 	0xb0, 0xc0, 0xd0, 0xe0,
26 	0xf0, 0x00, 0x10, 0x20,
27 };
28 
29 struct mb86a20s_state {
30 	struct i2c_adapter *i2c;
31 	const struct mb86a20s_config *config;
32 	u32 last_frequency;
33 
34 	struct dvb_frontend frontend;
35 
36 	u32 if_freq;
37 	enum mb86a20s_bandwidth bw;
38 	bool inversion;
39 	u32 subchannel;
40 
41 	u32 estimated_rate[NUM_LAYERS];
42 	unsigned long get_strength_time;
43 
44 	bool need_init;
45 };
46 
47 struct regdata {
48 	u8 reg;
49 	u8 data;
50 };
51 
52 #define BER_SAMPLING_RATE	1	/* Seconds */
53 
54 /*
55  * Initialization sequence: Use whatevere default values that PV SBTVD
56  * does on its initialisation, obtained via USB snoop
57  */
58 static struct regdata mb86a20s_init1[] = {
59 	{ 0x70, 0x0f },
60 	{ 0x70, 0xff },
61 	{ 0x08, 0x01 },
62 	{ 0x50, 0xd1 }, { 0x51, 0x20 },
63 };
64 
65 static struct regdata mb86a20s_init2[] = {
66 	{ 0x50, 0xd1 }, { 0x51, 0x22 },
67 	{ 0x39, 0x01 },
68 	{ 0x71, 0x00 },
69 	{ 0x3b, 0x21 },
70 	{ 0x3c, 0x3a },
71 	{ 0x01, 0x0d },
72 	{ 0x04, 0x08 }, { 0x05, 0x05 },
73 	{ 0x04, 0x0e }, { 0x05, 0x00 },
74 	{ 0x04, 0x0f }, { 0x05, 0x14 },
75 	{ 0x04, 0x0b }, { 0x05, 0x8c },
76 	{ 0x04, 0x00 }, { 0x05, 0x00 },
77 	{ 0x04, 0x01 }, { 0x05, 0x07 },
78 	{ 0x04, 0x02 }, { 0x05, 0x0f },
79 	{ 0x04, 0x03 }, { 0x05, 0xa0 },
80 	{ 0x04, 0x09 }, { 0x05, 0x00 },
81 	{ 0x04, 0x0a }, { 0x05, 0xff },
82 	{ 0x04, 0x27 }, { 0x05, 0x64 },
83 	{ 0x04, 0x28 }, { 0x05, 0x00 },
84 	{ 0x04, 0x1e }, { 0x05, 0xff },
85 	{ 0x04, 0x29 }, { 0x05, 0x0a },
86 	{ 0x04, 0x32 }, { 0x05, 0x0a },
87 	{ 0x04, 0x14 }, { 0x05, 0x02 },
88 	{ 0x04, 0x04 }, { 0x05, 0x00 },
89 	{ 0x04, 0x05 }, { 0x05, 0x22 },
90 	{ 0x04, 0x06 }, { 0x05, 0x0e },
91 	{ 0x04, 0x07 }, { 0x05, 0xd8 },
92 	{ 0x04, 0x12 }, { 0x05, 0x00 },
93 	{ 0x04, 0x13 }, { 0x05, 0xff },
94 
95 	/*
96 	 * On this demod, when the bit count reaches the count below,
97 	 * it collects the bit error count. The bit counters are initialized
98 	 * to 65535 here. This warrants that all of them will be quickly
99 	 * calculated when device gets locked. As TMCC is parsed, the values
100 	 * will be adjusted later in the driver's code.
101 	 */
102 	{ 0x52, 0x01 },				/* Turn on BER before Viterbi */
103 	{ 0x50, 0xa7 }, { 0x51, 0x00 },
104 	{ 0x50, 0xa8 }, { 0x51, 0xff },
105 	{ 0x50, 0xa9 }, { 0x51, 0xff },
106 	{ 0x50, 0xaa }, { 0x51, 0x00 },
107 	{ 0x50, 0xab }, { 0x51, 0xff },
108 	{ 0x50, 0xac }, { 0x51, 0xff },
109 	{ 0x50, 0xad }, { 0x51, 0x00 },
110 	{ 0x50, 0xae }, { 0x51, 0xff },
111 	{ 0x50, 0xaf }, { 0x51, 0xff },
112 
113 	/*
114 	 * On this demod, post BER counts blocks. When the count reaches the
115 	 * value below, it collects the block error count. The block counters
116 	 * are initialized to 127 here. This warrants that all of them will be
117 	 * quickly calculated when device gets locked. As TMCC is parsed, the
118 	 * values will be adjusted later in the driver's code.
119 	 */
120 	{ 0x5e, 0x07 },				/* Turn on BER after Viterbi */
121 	{ 0x50, 0xdc }, { 0x51, 0x00 },
122 	{ 0x50, 0xdd }, { 0x51, 0x7f },
123 	{ 0x50, 0xde }, { 0x51, 0x00 },
124 	{ 0x50, 0xdf }, { 0x51, 0x7f },
125 	{ 0x50, 0xe0 }, { 0x51, 0x00 },
126 	{ 0x50, 0xe1 }, { 0x51, 0x7f },
127 
128 	/*
129 	 * On this demod, when the block count reaches the count below,
130 	 * it collects the block error count. The block counters are initialized
131 	 * to 127 here. This warrants that all of them will be quickly
132 	 * calculated when device gets locked. As TMCC is parsed, the values
133 	 * will be adjusted later in the driver's code.
134 	 */
135 	{ 0x50, 0xb0 }, { 0x51, 0x07 },		/* Enable PER */
136 	{ 0x50, 0xb2 }, { 0x51, 0x00 },
137 	{ 0x50, 0xb3 }, { 0x51, 0x7f },
138 	{ 0x50, 0xb4 }, { 0x51, 0x00 },
139 	{ 0x50, 0xb5 }, { 0x51, 0x7f },
140 	{ 0x50, 0xb6 }, { 0x51, 0x00 },
141 	{ 0x50, 0xb7 }, { 0x51, 0x7f },
142 
143 	{ 0x50, 0x50 }, { 0x51, 0x02 },		/* MER manual mode */
144 	{ 0x50, 0x51 }, { 0x51, 0x04 },		/* MER symbol 4 */
145 	{ 0x45, 0x04 },				/* CN symbol 4 */
146 	{ 0x48, 0x04 },				/* CN manual mode */
147 	{ 0x50, 0xd5 }, { 0x51, 0x01 },
148 	{ 0x50, 0xd6 }, { 0x51, 0x1f },
149 	{ 0x50, 0xd2 }, { 0x51, 0x03 },
150 	{ 0x50, 0xd7 }, { 0x51, 0x3f },
151 	{ 0x1c, 0x01 },
152 	{ 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x03 },
153 	{ 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0d },
154 	{ 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
155 	{ 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x01 },
156 	{ 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x21 },
157 	{ 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x29 },
158 	{ 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
159 	{ 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x31 },
160 	{ 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0e },
161 	{ 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x4e },
162 	{ 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x46 },
163 	{ 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
164 	{ 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x56 },
165 	{ 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x35 },
166 	{ 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbe },
167 	{ 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0x84 },
168 	{ 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x03 }, { 0x2b, 0xee },
169 	{ 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x98 },
170 	{ 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x9f },
171 	{ 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xb2 },
172 	{ 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0xc2 },
173 	{ 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0x4a },
174 	{ 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbc },
175 	{ 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x04 }, { 0x2b, 0xba },
176 	{ 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0x14 },
177 	{ 0x50, 0x1e }, { 0x51, 0x5d },
178 	{ 0x50, 0x22 }, { 0x51, 0x00 },
179 	{ 0x50, 0x23 }, { 0x51, 0xc8 },
180 	{ 0x50, 0x24 }, { 0x51, 0x00 },
181 	{ 0x50, 0x25 }, { 0x51, 0xf0 },
182 	{ 0x50, 0x26 }, { 0x51, 0x00 },
183 	{ 0x50, 0x27 }, { 0x51, 0xc3 },
184 	{ 0x50, 0x39 }, { 0x51, 0x02 },
185 	{ 0x50, 0xd5 }, { 0x51, 0x01 },
186 	{ 0xd0, 0x00 },
187 };
188 
189 static struct regdata mb86a20s_reset_reception[] = {
190 	{ 0x70, 0xf0 },
191 	{ 0x70, 0xff },
192 	{ 0x08, 0x01 },
193 	{ 0x08, 0x00 },
194 };
195 
196 static struct regdata mb86a20s_per_ber_reset[] = {
197 	{ 0x53, 0x00 },	/* pre BER Counter reset */
198 	{ 0x53, 0x07 },
199 
200 	{ 0x5f, 0x00 },	/* post BER Counter reset */
201 	{ 0x5f, 0x07 },
202 
203 	{ 0x50, 0xb1 },	/* PER Counter reset */
204 	{ 0x51, 0x07 },
205 	{ 0x51, 0x00 },
206 };
207 
208 /*
209  * I2C read/write functions and macros
210  */
211 
mb86a20s_i2c_writereg(struct mb86a20s_state * state,u8 i2c_addr,u8 reg,u8 data)212 static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
213 			     u8 i2c_addr, u8 reg, u8 data)
214 {
215 	u8 buf[] = { reg, data };
216 	struct i2c_msg msg = {
217 		.addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
218 	};
219 	int rc;
220 
221 	rc = i2c_transfer(state->i2c, &msg, 1);
222 	if (rc != 1) {
223 		dev_err(&state->i2c->dev,
224 			"%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
225 			__func__, rc, reg, data);
226 		return rc;
227 	}
228 
229 	return 0;
230 }
231 
mb86a20s_i2c_writeregdata(struct mb86a20s_state * state,u8 i2c_addr,struct regdata * rd,int size)232 static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
233 				     u8 i2c_addr, struct regdata *rd, int size)
234 {
235 	int i, rc;
236 
237 	for (i = 0; i < size; i++) {
238 		rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
239 					   rd[i].data);
240 		if (rc < 0)
241 			return rc;
242 	}
243 	return 0;
244 }
245 
mb86a20s_i2c_readreg(struct mb86a20s_state * state,u8 i2c_addr,u8 reg)246 static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
247 				u8 i2c_addr, u8 reg)
248 {
249 	u8 val;
250 	int rc;
251 	struct i2c_msg msg[] = {
252 		{ .addr = i2c_addr, .flags = 0, .buf = &reg, .len = 1 },
253 		{ .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
254 	};
255 
256 	rc = i2c_transfer(state->i2c, msg, 2);
257 
258 	if (rc != 2) {
259 		dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
260 			__func__, reg, rc);
261 		return (rc < 0) ? rc : -EIO;
262 	}
263 
264 	return val;
265 }
266 
267 #define mb86a20s_readreg(state, reg) \
268 	mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
269 #define mb86a20s_writereg(state, reg, val) \
270 	mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
271 #define mb86a20s_writeregdata(state, regdata) \
272 	mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
273 	regdata, ARRAY_SIZE(regdata))
274 
275 /*
276  * Ancillary internal routines (likely compiled inlined)
277  *
278  * The functions below assume that gateway lock has already obtained
279  */
280 
mb86a20s_read_status(struct dvb_frontend * fe,enum fe_status * status)281 static int mb86a20s_read_status(struct dvb_frontend *fe, enum fe_status *status)
282 {
283 	struct mb86a20s_state *state = fe->demodulator_priv;
284 	int val;
285 
286 	*status = 0;
287 
288 	val = mb86a20s_readreg(state, 0x0a);
289 	if (val < 0)
290 		return val;
291 
292 	val &= 0xf;
293 	if (val >= 2)
294 		*status |= FE_HAS_SIGNAL;
295 
296 	if (val >= 4)
297 		*status |= FE_HAS_CARRIER;
298 
299 	if (val >= 5)
300 		*status |= FE_HAS_VITERBI;
301 
302 	if (val >= 7)
303 		*status |= FE_HAS_SYNC;
304 
305 	/*
306 	 * Actually, on state S8, it starts receiving TS, but the TS
307 	 * output is only on normal state after the transition to S9.
308 	 */
309 	if (val >= 9)
310 		*status |= FE_HAS_LOCK;
311 
312 	dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
313 		 __func__, *status, val);
314 
315 	return val;
316 }
317 
mb86a20s_read_signal_strength(struct dvb_frontend * fe)318 static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
319 {
320 	struct mb86a20s_state *state = fe->demodulator_priv;
321 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
322 	int rc;
323 	unsigned rf_max, rf_min, rf;
324 
325 	if (state->get_strength_time &&
326 	   (!time_after(jiffies, state->get_strength_time)))
327 		return c->strength.stat[0].uvalue;
328 
329 	/* Reset its value if an error happen */
330 	c->strength.stat[0].uvalue = 0;
331 
332 	/* Does a binary search to get RF strength */
333 	rf_max = 0xfff;
334 	rf_min = 0;
335 	do {
336 		rf = (rf_max + rf_min) / 2;
337 		rc = mb86a20s_writereg(state, 0x04, 0x1f);
338 		if (rc < 0)
339 			return rc;
340 		rc = mb86a20s_writereg(state, 0x05, rf >> 8);
341 		if (rc < 0)
342 			return rc;
343 		rc = mb86a20s_writereg(state, 0x04, 0x20);
344 		if (rc < 0)
345 			return rc;
346 		rc = mb86a20s_writereg(state, 0x05, rf);
347 		if (rc < 0)
348 			return rc;
349 
350 		rc = mb86a20s_readreg(state, 0x02);
351 		if (rc < 0)
352 			return rc;
353 		if (rc & 0x08)
354 			rf_min = (rf_max + rf_min) / 2;
355 		else
356 			rf_max = (rf_max + rf_min) / 2;
357 		if (rf_max - rf_min < 4) {
358 			rf = (rf_max + rf_min) / 2;
359 
360 			/* Rescale it from 2^12 (4096) to 2^16 */
361 			rf = rf << (16 - 12);
362 			if (rf)
363 				rf |= (1 << 12) - 1;
364 
365 			dev_dbg(&state->i2c->dev,
366 				"%s: signal strength = %d (%d < RF=%d < %d)\n",
367 				__func__, rf, rf_min, rf >> 4, rf_max);
368 			c->strength.stat[0].uvalue = rf;
369 			state->get_strength_time = jiffies +
370 						   msecs_to_jiffies(1000);
371 			return 0;
372 		}
373 	} while (1);
374 }
375 
mb86a20s_get_modulation(struct mb86a20s_state * state,unsigned layer)376 static int mb86a20s_get_modulation(struct mb86a20s_state *state,
377 				   unsigned layer)
378 {
379 	int rc;
380 	static unsigned char reg[] = {
381 		[0] = 0x86,	/* Layer A */
382 		[1] = 0x8a,	/* Layer B */
383 		[2] = 0x8e,	/* Layer C */
384 	};
385 
386 	if (layer >= ARRAY_SIZE(reg))
387 		return -EINVAL;
388 	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
389 	if (rc < 0)
390 		return rc;
391 	rc = mb86a20s_readreg(state, 0x6e);
392 	if (rc < 0)
393 		return rc;
394 	switch ((rc >> 4) & 0x07) {
395 	case 0:
396 		return DQPSK;
397 	case 1:
398 		return QPSK;
399 	case 2:
400 		return QAM_16;
401 	case 3:
402 		return QAM_64;
403 	default:
404 		return QAM_AUTO;
405 	}
406 }
407 
mb86a20s_get_fec(struct mb86a20s_state * state,unsigned layer)408 static int mb86a20s_get_fec(struct mb86a20s_state *state,
409 			    unsigned layer)
410 {
411 	int rc;
412 
413 	static unsigned char reg[] = {
414 		[0] = 0x87,	/* Layer A */
415 		[1] = 0x8b,	/* Layer B */
416 		[2] = 0x8f,	/* Layer C */
417 	};
418 
419 	if (layer >= ARRAY_SIZE(reg))
420 		return -EINVAL;
421 	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
422 	if (rc < 0)
423 		return rc;
424 	rc = mb86a20s_readreg(state, 0x6e);
425 	if (rc < 0)
426 		return rc;
427 	switch ((rc >> 4) & 0x07) {
428 	case 0:
429 		return FEC_1_2;
430 	case 1:
431 		return FEC_2_3;
432 	case 2:
433 		return FEC_3_4;
434 	case 3:
435 		return FEC_5_6;
436 	case 4:
437 		return FEC_7_8;
438 	default:
439 		return FEC_AUTO;
440 	}
441 }
442 
mb86a20s_get_interleaving(struct mb86a20s_state * state,unsigned layer)443 static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
444 				     unsigned layer)
445 {
446 	int rc;
447 	static const int interleaving[] = {
448 		0, 1, 2, 4, 8
449 	};
450 
451 	static const unsigned char reg[] = {
452 		[0] = 0x88,	/* Layer A */
453 		[1] = 0x8c,	/* Layer B */
454 		[2] = 0x90,	/* Layer C */
455 	};
456 
457 	if (layer >= ARRAY_SIZE(reg))
458 		return -EINVAL;
459 	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
460 	if (rc < 0)
461 		return rc;
462 	rc = mb86a20s_readreg(state, 0x6e);
463 	if (rc < 0)
464 		return rc;
465 
466 	return interleaving[(rc >> 4) & 0x07];
467 }
468 
mb86a20s_get_segment_count(struct mb86a20s_state * state,unsigned layer)469 static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
470 				      unsigned layer)
471 {
472 	int rc, count;
473 	static unsigned char reg[] = {
474 		[0] = 0x89,	/* Layer A */
475 		[1] = 0x8d,	/* Layer B */
476 		[2] = 0x91,	/* Layer C */
477 	};
478 
479 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
480 
481 	if (layer >= ARRAY_SIZE(reg))
482 		return -EINVAL;
483 
484 	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
485 	if (rc < 0)
486 		return rc;
487 	rc = mb86a20s_readreg(state, 0x6e);
488 	if (rc < 0)
489 		return rc;
490 	count = (rc >> 4) & 0x0f;
491 
492 	dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);
493 
494 	return count;
495 }
496 
mb86a20s_reset_frontend_cache(struct dvb_frontend * fe)497 static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
498 {
499 	struct mb86a20s_state *state = fe->demodulator_priv;
500 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
501 
502 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
503 
504 	/* Fixed parameters */
505 	c->delivery_system = SYS_ISDBT;
506 	c->bandwidth_hz = 6000000;
507 
508 	/* Initialize values that will be later autodetected */
509 	c->isdbt_layer_enabled = 0;
510 	c->transmission_mode = TRANSMISSION_MODE_AUTO;
511 	c->guard_interval = GUARD_INTERVAL_AUTO;
512 	c->isdbt_sb_mode = 0;
513 	c->isdbt_sb_segment_count = 0;
514 }
515 
516 /*
517  * Estimates the bit rate using the per-segment bit rate given by
518  * ABNT/NBR 15601 spec (table 4).
519  */
520 static const u32 isdbt_rate[3][5][4] = {
521 	{	/* DQPSK/QPSK */
522 		{  280850,  312060,  330420,  340430 },	/* 1/2 */
523 		{  374470,  416080,  440560,  453910 },	/* 2/3 */
524 		{  421280,  468090,  495630,  510650 },	/* 3/4 */
525 		{  468090,  520100,  550700,  567390 },	/* 5/6 */
526 		{  491500,  546110,  578230,  595760 },	/* 7/8 */
527 	}, {	/* QAM16 */
528 		{  561710,  624130,  660840,  680870 },	/* 1/2 */
529 		{  748950,  832170,  881120,  907820 },	/* 2/3 */
530 		{  842570,  936190,  991260, 1021300 },	/* 3/4 */
531 		{  936190, 1040210, 1101400, 1134780 },	/* 5/6 */
532 		{  983000, 1092220, 1156470, 1191520 },	/* 7/8 */
533 	}, {	/* QAM64 */
534 		{  842570,  936190,  991260, 1021300 },	/* 1/2 */
535 		{ 1123430, 1248260, 1321680, 1361740 },	/* 2/3 */
536 		{ 1263860, 1404290, 1486900, 1531950 },	/* 3/4 */
537 		{ 1404290, 1560320, 1652110, 1702170 },	/* 5/6 */
538 		{ 1474500, 1638340, 1734710, 1787280 },	/* 7/8 */
539 	}
540 };
541 
isdbt_layer_min_bitrate(struct dtv_frontend_properties * c,u32 layer)542 static u32 isdbt_layer_min_bitrate(struct dtv_frontend_properties *c,
543 				   u32 layer)
544 {
545 	int mod, fec, guard;
546 
547 	/*
548 	 * If modulation/fec/guard is not detected, the default is
549 	 * to consider the lowest bit rate, to avoid taking too long time
550 	 * to get BER.
551 	 */
552 	switch (c->layer[layer].modulation) {
553 	case DQPSK:
554 	case QPSK:
555 	default:
556 		mod = 0;
557 		break;
558 	case QAM_16:
559 		mod = 1;
560 		break;
561 	case QAM_64:
562 		mod = 2;
563 		break;
564 	}
565 
566 	switch (c->layer[layer].fec) {
567 	default:
568 	case FEC_1_2:
569 	case FEC_AUTO:
570 		fec = 0;
571 		break;
572 	case FEC_2_3:
573 		fec = 1;
574 		break;
575 	case FEC_3_4:
576 		fec = 2;
577 		break;
578 	case FEC_5_6:
579 		fec = 3;
580 		break;
581 	case FEC_7_8:
582 		fec = 4;
583 		break;
584 	}
585 
586 	switch (c->guard_interval) {
587 	default:
588 	case GUARD_INTERVAL_1_4:
589 		guard = 0;
590 		break;
591 	case GUARD_INTERVAL_1_8:
592 		guard = 1;
593 		break;
594 	case GUARD_INTERVAL_1_16:
595 		guard = 2;
596 		break;
597 	case GUARD_INTERVAL_1_32:
598 		guard = 3;
599 		break;
600 	}
601 
602 	return isdbt_rate[mod][fec][guard] * c->layer[layer].segment_count;
603 }
604 
mb86a20s_get_frontend(struct dvb_frontend * fe)605 static int mb86a20s_get_frontend(struct dvb_frontend *fe)
606 {
607 	struct mb86a20s_state *state = fe->demodulator_priv;
608 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
609 	int layer, rc, rate, counter;
610 
611 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
612 
613 	/* Reset frontend cache to default values */
614 	mb86a20s_reset_frontend_cache(fe);
615 
616 	/* Check for partial reception */
617 	rc = mb86a20s_writereg(state, 0x6d, 0x85);
618 	if (rc < 0)
619 		return rc;
620 	rc = mb86a20s_readreg(state, 0x6e);
621 	if (rc < 0)
622 		return rc;
623 	c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
624 
625 	/* Get per-layer data */
626 
627 	for (layer = 0; layer < NUM_LAYERS; layer++) {
628 		dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
629 			__func__, 'A' + layer);
630 
631 		rc = mb86a20s_get_segment_count(state, layer);
632 		if (rc < 0)
633 			goto noperlayer_error;
634 		if (rc >= 0 && rc < 14) {
635 			c->layer[layer].segment_count = rc;
636 		} else {
637 			c->layer[layer].segment_count = 0;
638 			state->estimated_rate[layer] = 0;
639 			continue;
640 		}
641 		c->isdbt_layer_enabled |= 1 << layer;
642 		rc = mb86a20s_get_modulation(state, layer);
643 		if (rc < 0)
644 			goto noperlayer_error;
645 		dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
646 			__func__, rc);
647 		c->layer[layer].modulation = rc;
648 		rc = mb86a20s_get_fec(state, layer);
649 		if (rc < 0)
650 			goto noperlayer_error;
651 		dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
652 			__func__, rc);
653 		c->layer[layer].fec = rc;
654 		rc = mb86a20s_get_interleaving(state, layer);
655 		if (rc < 0)
656 			goto noperlayer_error;
657 		dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
658 			__func__, rc);
659 		c->layer[layer].interleaving = rc;
660 
661 		rate = isdbt_layer_min_bitrate(c, layer);
662 		counter = rate * BER_SAMPLING_RATE;
663 
664 		/* Avoids sampling too quickly or to overflow the register */
665 		if (counter < 256)
666 			counter = 256;
667 		else if (counter > (1 << 24) - 1)
668 			counter = (1 << 24) - 1;
669 
670 		dev_dbg(&state->i2c->dev,
671 			"%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
672 			__func__, 'A' + layer, rate / 1000, counter, counter);
673 
674 		state->estimated_rate[layer] = counter;
675 	}
676 
677 	rc = mb86a20s_writereg(state, 0x6d, 0x84);
678 	if (rc < 0)
679 		return rc;
680 	if ((rc & 0x60) == 0x20) {
681 		c->isdbt_sb_mode = 1;
682 		/* At least, one segment should exist */
683 		if (!c->isdbt_sb_segment_count)
684 			c->isdbt_sb_segment_count = 1;
685 	}
686 
687 	/* Get transmission mode and guard interval */
688 	rc = mb86a20s_readreg(state, 0x07);
689 	if (rc < 0)
690 		return rc;
691 	c->transmission_mode = TRANSMISSION_MODE_AUTO;
692 	if ((rc & 0x60) == 0x20) {
693 		/* Only modes 2 and 3 are supported */
694 		switch ((rc >> 2) & 0x03) {
695 		case 1:
696 			c->transmission_mode = TRANSMISSION_MODE_4K;
697 			break;
698 		case 2:
699 			c->transmission_mode = TRANSMISSION_MODE_8K;
700 			break;
701 		}
702 	}
703 	c->guard_interval = GUARD_INTERVAL_AUTO;
704 	if (!(rc & 0x10)) {
705 		/* Guard interval 1/32 is not supported */
706 		switch (rc & 0x3) {
707 		case 0:
708 			c->guard_interval = GUARD_INTERVAL_1_4;
709 			break;
710 		case 1:
711 			c->guard_interval = GUARD_INTERVAL_1_8;
712 			break;
713 		case 2:
714 			c->guard_interval = GUARD_INTERVAL_1_16;
715 			break;
716 		}
717 	}
718 	return 0;
719 
720 noperlayer_error:
721 
722 	/* per-layer info is incomplete; discard all per-layer */
723 	c->isdbt_layer_enabled = 0;
724 
725 	return rc;
726 }
727 
mb86a20s_reset_counters(struct dvb_frontend * fe)728 static int mb86a20s_reset_counters(struct dvb_frontend *fe)
729 {
730 	struct mb86a20s_state *state = fe->demodulator_priv;
731 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
732 	int rc, val;
733 
734 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
735 
736 	/* Reset the counters, if the channel changed */
737 	if (state->last_frequency != c->frequency) {
738 		memset(&c->cnr, 0, sizeof(c->cnr));
739 		memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
740 		memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
741 		memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
742 		memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
743 		memset(&c->block_error, 0, sizeof(c->block_error));
744 		memset(&c->block_count, 0, sizeof(c->block_count));
745 
746 		state->last_frequency = c->frequency;
747 	}
748 
749 	/* Clear status for most stats */
750 
751 	/* BER/PER counter reset */
752 	rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
753 	if (rc < 0)
754 		goto err;
755 
756 	/* CNR counter reset */
757 	rc = mb86a20s_readreg(state, 0x45);
758 	if (rc < 0)
759 		goto err;
760 	val = rc;
761 	rc = mb86a20s_writereg(state, 0x45, val | 0x10);
762 	if (rc < 0)
763 		goto err;
764 	rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
765 	if (rc < 0)
766 		goto err;
767 
768 	/* MER counter reset */
769 	rc = mb86a20s_writereg(state, 0x50, 0x50);
770 	if (rc < 0)
771 		goto err;
772 	rc = mb86a20s_readreg(state, 0x51);
773 	if (rc < 0)
774 		goto err;
775 	val = rc;
776 	rc = mb86a20s_writereg(state, 0x51, val | 0x01);
777 	if (rc < 0)
778 		goto err;
779 	rc = mb86a20s_writereg(state, 0x51, val & 0x06);
780 	if (rc < 0)
781 		goto err;
782 
783 	goto ok;
784 err:
785 	dev_err(&state->i2c->dev,
786 		"%s: Can't reset FE statistics (error %d).\n",
787 		__func__, rc);
788 ok:
789 	return rc;
790 }
791 
mb86a20s_get_pre_ber(struct dvb_frontend * fe,unsigned layer,u32 * error,u32 * count)792 static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
793 				unsigned layer,
794 				u32 *error, u32 *count)
795 {
796 	struct mb86a20s_state *state = fe->demodulator_priv;
797 	int rc, val;
798 
799 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
800 
801 	if (layer >= NUM_LAYERS)
802 		return -EINVAL;
803 
804 	/* Check if the BER measures are already available */
805 	rc = mb86a20s_readreg(state, 0x54);
806 	if (rc < 0)
807 		return rc;
808 
809 	/* Check if data is available for that layer */
810 	if (!(rc & (1 << layer))) {
811 		dev_dbg(&state->i2c->dev,
812 			"%s: preBER for layer %c is not available yet.\n",
813 			__func__, 'A' + layer);
814 		return -EBUSY;
815 	}
816 
817 	/* Read Bit Error Count */
818 	rc = mb86a20s_readreg(state, 0x55 + layer * 3);
819 	if (rc < 0)
820 		return rc;
821 	*error = rc << 16;
822 	rc = mb86a20s_readreg(state, 0x56 + layer * 3);
823 	if (rc < 0)
824 		return rc;
825 	*error |= rc << 8;
826 	rc = mb86a20s_readreg(state, 0x57 + layer * 3);
827 	if (rc < 0)
828 		return rc;
829 	*error |= rc;
830 
831 	dev_dbg(&state->i2c->dev,
832 		"%s: bit error before Viterbi for layer %c: %d.\n",
833 		__func__, 'A' + layer, *error);
834 
835 	/* Read Bit Count */
836 	rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
837 	if (rc < 0)
838 		return rc;
839 	rc = mb86a20s_readreg(state, 0x51);
840 	if (rc < 0)
841 		return rc;
842 	*count = rc << 16;
843 	rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
844 	if (rc < 0)
845 		return rc;
846 	rc = mb86a20s_readreg(state, 0x51);
847 	if (rc < 0)
848 		return rc;
849 	*count |= rc << 8;
850 	rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
851 	if (rc < 0)
852 		return rc;
853 	rc = mb86a20s_readreg(state, 0x51);
854 	if (rc < 0)
855 		return rc;
856 	*count |= rc;
857 
858 	dev_dbg(&state->i2c->dev,
859 		"%s: bit count before Viterbi for layer %c: %d.\n",
860 		__func__, 'A' + layer, *count);
861 
862 
863 	/*
864 	 * As we get TMCC data from the frontend, we can better estimate the
865 	 * BER bit counters, in order to do the BER measure during a longer
866 	 * time. Use those data, if available, to update the bit count
867 	 * measure.
868 	 */
869 
870 	if (state->estimated_rate[layer]
871 	    && state->estimated_rate[layer] != *count) {
872 		dev_dbg(&state->i2c->dev,
873 			"%s: updating layer %c preBER counter to %d.\n",
874 			__func__, 'A' + layer, state->estimated_rate[layer]);
875 
876 		/* Turn off BER before Viterbi */
877 		rc = mb86a20s_writereg(state, 0x52, 0x00);
878 
879 		/* Update counter for this layer */
880 		rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
881 		if (rc < 0)
882 			return rc;
883 		rc = mb86a20s_writereg(state, 0x51,
884 				       state->estimated_rate[layer] >> 16);
885 		if (rc < 0)
886 			return rc;
887 		rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
888 		if (rc < 0)
889 			return rc;
890 		rc = mb86a20s_writereg(state, 0x51,
891 				       state->estimated_rate[layer] >> 8);
892 		if (rc < 0)
893 			return rc;
894 		rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
895 		if (rc < 0)
896 			return rc;
897 		rc = mb86a20s_writereg(state, 0x51,
898 				       state->estimated_rate[layer]);
899 		if (rc < 0)
900 			return rc;
901 
902 		/* Turn on BER before Viterbi */
903 		rc = mb86a20s_writereg(state, 0x52, 0x01);
904 
905 		/* Reset all preBER counters */
906 		rc = mb86a20s_writereg(state, 0x53, 0x00);
907 		if (rc < 0)
908 			return rc;
909 		rc = mb86a20s_writereg(state, 0x53, 0x07);
910 	} else {
911 		/* Reset counter to collect new data */
912 		rc = mb86a20s_readreg(state, 0x53);
913 		if (rc < 0)
914 			return rc;
915 		val = rc;
916 		rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
917 		if (rc < 0)
918 			return rc;
919 		rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
920 	}
921 
922 	return rc;
923 }
924 
mb86a20s_get_post_ber(struct dvb_frontend * fe,unsigned layer,u32 * error,u32 * count)925 static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
926 				 unsigned layer,
927 				  u32 *error, u32 *count)
928 {
929 	struct mb86a20s_state *state = fe->demodulator_priv;
930 	u32 counter, collect_rate;
931 	int rc, val;
932 
933 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
934 
935 	if (layer >= NUM_LAYERS)
936 		return -EINVAL;
937 
938 	/* Check if the BER measures are already available */
939 	rc = mb86a20s_readreg(state, 0x60);
940 	if (rc < 0)
941 		return rc;
942 
943 	/* Check if data is available for that layer */
944 	if (!(rc & (1 << layer))) {
945 		dev_dbg(&state->i2c->dev,
946 			"%s: post BER for layer %c is not available yet.\n",
947 			__func__, 'A' + layer);
948 		return -EBUSY;
949 	}
950 
951 	/* Read Bit Error Count */
952 	rc = mb86a20s_readreg(state, 0x64 + layer * 3);
953 	if (rc < 0)
954 		return rc;
955 	*error = rc << 16;
956 	rc = mb86a20s_readreg(state, 0x65 + layer * 3);
957 	if (rc < 0)
958 		return rc;
959 	*error |= rc << 8;
960 	rc = mb86a20s_readreg(state, 0x66 + layer * 3);
961 	if (rc < 0)
962 		return rc;
963 	*error |= rc;
964 
965 	dev_dbg(&state->i2c->dev,
966 		"%s: post bit error for layer %c: %d.\n",
967 		__func__, 'A' + layer, *error);
968 
969 	/* Read Bit Count */
970 	rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
971 	if (rc < 0)
972 		return rc;
973 	rc = mb86a20s_readreg(state, 0x51);
974 	if (rc < 0)
975 		return rc;
976 	counter = rc << 8;
977 	rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
978 	if (rc < 0)
979 		return rc;
980 	rc = mb86a20s_readreg(state, 0x51);
981 	if (rc < 0)
982 		return rc;
983 	counter |= rc;
984 	*count = counter * 204 * 8;
985 
986 	dev_dbg(&state->i2c->dev,
987 		"%s: post bit count for layer %c: %d.\n",
988 		__func__, 'A' + layer, *count);
989 
990 	/*
991 	 * As we get TMCC data from the frontend, we can better estimate the
992 	 * BER bit counters, in order to do the BER measure during a longer
993 	 * time. Use those data, if available, to update the bit count
994 	 * measure.
995 	 */
996 
997 	if (!state->estimated_rate[layer])
998 		goto reset_measurement;
999 
1000 	collect_rate = state->estimated_rate[layer] / 204 / 8;
1001 	if (collect_rate < 32)
1002 		collect_rate = 32;
1003 	if (collect_rate > 65535)
1004 		collect_rate = 65535;
1005 	if (collect_rate != counter) {
1006 		dev_dbg(&state->i2c->dev,
1007 			"%s: updating postBER counter on layer %c to %d.\n",
1008 			__func__, 'A' + layer, collect_rate);
1009 
1010 		/* Turn off BER after Viterbi */
1011 		rc = mb86a20s_writereg(state, 0x5e, 0x00);
1012 
1013 		/* Update counter for this layer */
1014 		rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
1015 		if (rc < 0)
1016 			return rc;
1017 		rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1018 		if (rc < 0)
1019 			return rc;
1020 		rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
1021 		if (rc < 0)
1022 			return rc;
1023 		rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1024 		if (rc < 0)
1025 			return rc;
1026 
1027 		/* Turn on BER after Viterbi */
1028 		rc = mb86a20s_writereg(state, 0x5e, 0x07);
1029 
1030 		/* Reset all preBER counters */
1031 		rc = mb86a20s_writereg(state, 0x5f, 0x00);
1032 		if (rc < 0)
1033 			return rc;
1034 		rc = mb86a20s_writereg(state, 0x5f, 0x07);
1035 
1036 		return rc;
1037 	}
1038 
1039 reset_measurement:
1040 	/* Reset counter to collect new data */
1041 	rc = mb86a20s_readreg(state, 0x5f);
1042 	if (rc < 0)
1043 		return rc;
1044 	val = rc;
1045 	rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
1046 	if (rc < 0)
1047 		return rc;
1048 	rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
1049 
1050 	return rc;
1051 }
1052 
mb86a20s_get_blk_error(struct dvb_frontend * fe,unsigned layer,u32 * error,u32 * count)1053 static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
1054 			    unsigned layer,
1055 			    u32 *error, u32 *count)
1056 {
1057 	struct mb86a20s_state *state = fe->demodulator_priv;
1058 	int rc, val;
1059 	u32 collect_rate;
1060 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1061 
1062 	if (layer >= NUM_LAYERS)
1063 		return -EINVAL;
1064 
1065 	/* Check if the PER measures are already available */
1066 	rc = mb86a20s_writereg(state, 0x50, 0xb8);
1067 	if (rc < 0)
1068 		return rc;
1069 	rc = mb86a20s_readreg(state, 0x51);
1070 	if (rc < 0)
1071 		return rc;
1072 
1073 	/* Check if data is available for that layer */
1074 
1075 	if (!(rc & (1 << layer))) {
1076 		dev_dbg(&state->i2c->dev,
1077 			"%s: block counts for layer %c aren't available yet.\n",
1078 			__func__, 'A' + layer);
1079 		return -EBUSY;
1080 	}
1081 
1082 	/* Read Packet error Count */
1083 	rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
1084 	if (rc < 0)
1085 		return rc;
1086 	rc = mb86a20s_readreg(state, 0x51);
1087 	if (rc < 0)
1088 		return rc;
1089 	*error = rc << 8;
1090 	rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
1091 	if (rc < 0)
1092 		return rc;
1093 	rc = mb86a20s_readreg(state, 0x51);
1094 	if (rc < 0)
1095 		return rc;
1096 	*error |= rc;
1097 	dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
1098 		__func__, 'A' + layer, *error);
1099 
1100 	/* Read Bit Count */
1101 	rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1102 	if (rc < 0)
1103 		return rc;
1104 	rc = mb86a20s_readreg(state, 0x51);
1105 	if (rc < 0)
1106 		return rc;
1107 	*count = rc << 8;
1108 	rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1109 	if (rc < 0)
1110 		return rc;
1111 	rc = mb86a20s_readreg(state, 0x51);
1112 	if (rc < 0)
1113 		return rc;
1114 	*count |= rc;
1115 
1116 	dev_dbg(&state->i2c->dev,
1117 		"%s: block count for layer %c: %d.\n",
1118 		__func__, 'A' + layer, *count);
1119 
1120 	/*
1121 	 * As we get TMCC data from the frontend, we can better estimate the
1122 	 * BER bit counters, in order to do the BER measure during a longer
1123 	 * time. Use those data, if available, to update the bit count
1124 	 * measure.
1125 	 */
1126 
1127 	if (!state->estimated_rate[layer])
1128 		goto reset_measurement;
1129 
1130 	collect_rate = state->estimated_rate[layer] / 204 / 8;
1131 	if (collect_rate < 32)
1132 		collect_rate = 32;
1133 	if (collect_rate > 65535)
1134 		collect_rate = 65535;
1135 
1136 	if (collect_rate != *count) {
1137 		dev_dbg(&state->i2c->dev,
1138 			"%s: updating PER counter on layer %c to %d.\n",
1139 			__func__, 'A' + layer, collect_rate);
1140 
1141 		/* Stop PER measurement */
1142 		rc = mb86a20s_writereg(state, 0x50, 0xb0);
1143 		if (rc < 0)
1144 			return rc;
1145 		rc = mb86a20s_writereg(state, 0x51, 0x00);
1146 		if (rc < 0)
1147 			return rc;
1148 
1149 		/* Update this layer's counter */
1150 		rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1151 		if (rc < 0)
1152 			return rc;
1153 		rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1154 		if (rc < 0)
1155 			return rc;
1156 		rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1157 		if (rc < 0)
1158 			return rc;
1159 		rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1160 		if (rc < 0)
1161 			return rc;
1162 
1163 		/* start PER measurement */
1164 		rc = mb86a20s_writereg(state, 0x50, 0xb0);
1165 		if (rc < 0)
1166 			return rc;
1167 		rc = mb86a20s_writereg(state, 0x51, 0x07);
1168 		if (rc < 0)
1169 			return rc;
1170 
1171 		/* Reset all counters to collect new data */
1172 		rc = mb86a20s_writereg(state, 0x50, 0xb1);
1173 		if (rc < 0)
1174 			return rc;
1175 		rc = mb86a20s_writereg(state, 0x51, 0x07);
1176 		if (rc < 0)
1177 			return rc;
1178 		rc = mb86a20s_writereg(state, 0x51, 0x00);
1179 
1180 		return rc;
1181 	}
1182 
1183 reset_measurement:
1184 	/* Reset counter to collect new data */
1185 	rc = mb86a20s_writereg(state, 0x50, 0xb1);
1186 	if (rc < 0)
1187 		return rc;
1188 	rc = mb86a20s_readreg(state, 0x51);
1189 	if (rc < 0)
1190 		return rc;
1191 	val = rc;
1192 	rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
1193 	if (rc < 0)
1194 		return rc;
1195 	rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
1196 
1197 	return rc;
1198 }
1199 
1200 struct linear_segments {
1201 	unsigned x, y;
1202 };
1203 
1204 /*
1205  * All tables below return a dB/1000 measurement
1206  */
1207 
1208 static const struct linear_segments cnr_to_db_table[] = {
1209 	{ 19648,     0},
1210 	{ 18187,  1000},
1211 	{ 16534,  2000},
1212 	{ 14823,  3000},
1213 	{ 13161,  4000},
1214 	{ 11622,  5000},
1215 	{ 10279,  6000},
1216 	{  9089,  7000},
1217 	{  8042,  8000},
1218 	{  7137,  9000},
1219 	{  6342, 10000},
1220 	{  5641, 11000},
1221 	{  5030, 12000},
1222 	{  4474, 13000},
1223 	{  3988, 14000},
1224 	{  3556, 15000},
1225 	{  3180, 16000},
1226 	{  2841, 17000},
1227 	{  2541, 18000},
1228 	{  2276, 19000},
1229 	{  2038, 20000},
1230 	{  1800, 21000},
1231 	{  1625, 22000},
1232 	{  1462, 23000},
1233 	{  1324, 24000},
1234 	{  1175, 25000},
1235 	{  1063, 26000},
1236 	{   980, 27000},
1237 	{   907, 28000},
1238 	{   840, 29000},
1239 	{   788, 30000},
1240 };
1241 
1242 static const struct linear_segments cnr_64qam_table[] = {
1243 	{ 3922688,     0},
1244 	{ 3920384,  1000},
1245 	{ 3902720,  2000},
1246 	{ 3894784,  3000},
1247 	{ 3882496,  4000},
1248 	{ 3872768,  5000},
1249 	{ 3858944,  6000},
1250 	{ 3851520,  7000},
1251 	{ 3838976,  8000},
1252 	{ 3829248,  9000},
1253 	{ 3818240, 10000},
1254 	{ 3806976, 11000},
1255 	{ 3791872, 12000},
1256 	{ 3767040, 13000},
1257 	{ 3720960, 14000},
1258 	{ 3637504, 15000},
1259 	{ 3498496, 16000},
1260 	{ 3296000, 17000},
1261 	{ 3031040, 18000},
1262 	{ 2715392, 19000},
1263 	{ 2362624, 20000},
1264 	{ 1963264, 21000},
1265 	{ 1649664, 22000},
1266 	{ 1366784, 23000},
1267 	{ 1120768, 24000},
1268 	{  890880, 25000},
1269 	{  723456, 26000},
1270 	{  612096, 27000},
1271 	{  518912, 28000},
1272 	{  448256, 29000},
1273 	{  388864, 30000},
1274 };
1275 
1276 static const struct linear_segments cnr_16qam_table[] = {
1277 	{ 5314816,     0},
1278 	{ 5219072,  1000},
1279 	{ 5118720,  2000},
1280 	{ 4998912,  3000},
1281 	{ 4875520,  4000},
1282 	{ 4736000,  5000},
1283 	{ 4604160,  6000},
1284 	{ 4458752,  7000},
1285 	{ 4300288,  8000},
1286 	{ 4092928,  9000},
1287 	{ 3836160, 10000},
1288 	{ 3521024, 11000},
1289 	{ 3155968, 12000},
1290 	{ 2756864, 13000},
1291 	{ 2347008, 14000},
1292 	{ 1955072, 15000},
1293 	{ 1593600, 16000},
1294 	{ 1297920, 17000},
1295 	{ 1043968, 18000},
1296 	{  839680, 19000},
1297 	{  672256, 20000},
1298 	{  523008, 21000},
1299 	{  424704, 22000},
1300 	{  345088, 23000},
1301 	{  280064, 24000},
1302 	{  221440, 25000},
1303 	{  179712, 26000},
1304 	{  151040, 27000},
1305 	{  128512, 28000},
1306 	{  110080, 29000},
1307 	{   95744, 30000},
1308 };
1309 
1310 static const struct linear_segments cnr_qpsk_table[] = {
1311 	{ 2834176,     0},
1312 	{ 2683648,  1000},
1313 	{ 2536960,  2000},
1314 	{ 2391808,  3000},
1315 	{ 2133248,  4000},
1316 	{ 1906176,  5000},
1317 	{ 1666560,  6000},
1318 	{ 1422080,  7000},
1319 	{ 1189632,  8000},
1320 	{  976384,  9000},
1321 	{  790272, 10000},
1322 	{  633344, 11000},
1323 	{  505600, 12000},
1324 	{  402944, 13000},
1325 	{  320768, 14000},
1326 	{  255488, 15000},
1327 	{  204032, 16000},
1328 	{  163072, 17000},
1329 	{  130304, 18000},
1330 	{  105216, 19000},
1331 	{   83456, 20000},
1332 	{   65024, 21000},
1333 	{   52480, 22000},
1334 	{   42752, 23000},
1335 	{   34560, 24000},
1336 	{   27136, 25000},
1337 	{   22016, 26000},
1338 	{   18432, 27000},
1339 	{   15616, 28000},
1340 	{   13312, 29000},
1341 	{   11520, 30000},
1342 };
1343 
interpolate_value(u32 value,const struct linear_segments * segments,unsigned len)1344 static u32 interpolate_value(u32 value, const struct linear_segments *segments,
1345 			     unsigned len)
1346 {
1347 	u64 tmp64;
1348 	u32 dx, dy;
1349 	int i, ret;
1350 
1351 	if (value >= segments[0].x)
1352 		return segments[0].y;
1353 	if (value < segments[len-1].x)
1354 		return segments[len-1].y;
1355 
1356 	for (i = 1; i < len - 1; i++) {
1357 		/* If value is identical, no need to interpolate */
1358 		if (value == segments[i].x)
1359 			return segments[i].y;
1360 		if (value > segments[i].x)
1361 			break;
1362 	}
1363 
1364 	/* Linear interpolation between the two (x,y) points */
1365 	dy = segments[i].y - segments[i - 1].y;
1366 	dx = segments[i - 1].x - segments[i].x;
1367 	tmp64 = value - segments[i].x;
1368 	tmp64 *= dy;
1369 	do_div(tmp64, dx);
1370 	ret = segments[i].y - tmp64;
1371 
1372 	return ret;
1373 }
1374 
mb86a20s_get_main_CNR(struct dvb_frontend * fe)1375 static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
1376 {
1377 	struct mb86a20s_state *state = fe->demodulator_priv;
1378 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1379 	u32 cnr_linear, cnr;
1380 	int rc, val;
1381 
1382 	/* Check if CNR is available */
1383 	rc = mb86a20s_readreg(state, 0x45);
1384 	if (rc < 0)
1385 		return rc;
1386 
1387 	if (!(rc & 0x40)) {
1388 		dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n",
1389 			 __func__);
1390 		return -EBUSY;
1391 	}
1392 	val = rc;
1393 
1394 	rc = mb86a20s_readreg(state, 0x46);
1395 	if (rc < 0)
1396 		return rc;
1397 	cnr_linear = rc << 8;
1398 
1399 	rc = mb86a20s_readreg(state, 0x46);
1400 	if (rc < 0)
1401 		return rc;
1402 	cnr_linear |= rc;
1403 
1404 	cnr = interpolate_value(cnr_linear,
1405 				cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));
1406 
1407 	c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1408 	c->cnr.stat[0].svalue = cnr;
1409 
1410 	dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
1411 		__func__, cnr / 1000, cnr % 1000, cnr_linear);
1412 
1413 	/* CNR counter reset */
1414 	rc = mb86a20s_writereg(state, 0x45, val | 0x10);
1415 	if (rc < 0)
1416 		return rc;
1417 	rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
1418 
1419 	return rc;
1420 }
1421 
mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend * fe)1422 static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
1423 {
1424 	struct mb86a20s_state *state = fe->demodulator_priv;
1425 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1426 	u32 mer, cnr;
1427 	int rc, val, layer;
1428 	const struct linear_segments *segs;
1429 	unsigned segs_len;
1430 
1431 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1432 
1433 	/* Check if the measures are already available */
1434 	rc = mb86a20s_writereg(state, 0x50, 0x5b);
1435 	if (rc < 0)
1436 		return rc;
1437 	rc = mb86a20s_readreg(state, 0x51);
1438 	if (rc < 0)
1439 		return rc;
1440 
1441 	/* Check if data is available */
1442 	if (!(rc & 0x01)) {
1443 		dev_dbg(&state->i2c->dev,
1444 			"%s: MER measures aren't available yet.\n", __func__);
1445 		return -EBUSY;
1446 	}
1447 
1448 	/* Read all layers */
1449 	for (layer = 0; layer < NUM_LAYERS; layer++) {
1450 		if (!(c->isdbt_layer_enabled & (1 << layer))) {
1451 			c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1452 			continue;
1453 		}
1454 
1455 		rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3);
1456 		if (rc < 0)
1457 			return rc;
1458 		rc = mb86a20s_readreg(state, 0x51);
1459 		if (rc < 0)
1460 			return rc;
1461 		mer = rc << 16;
1462 		rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3);
1463 		if (rc < 0)
1464 			return rc;
1465 		rc = mb86a20s_readreg(state, 0x51);
1466 		if (rc < 0)
1467 			return rc;
1468 		mer |= rc << 8;
1469 		rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3);
1470 		if (rc < 0)
1471 			return rc;
1472 		rc = mb86a20s_readreg(state, 0x51);
1473 		if (rc < 0)
1474 			return rc;
1475 		mer |= rc;
1476 
1477 		switch (c->layer[layer].modulation) {
1478 		case DQPSK:
1479 		case QPSK:
1480 			segs = cnr_qpsk_table;
1481 			segs_len = ARRAY_SIZE(cnr_qpsk_table);
1482 			break;
1483 		case QAM_16:
1484 			segs = cnr_16qam_table;
1485 			segs_len = ARRAY_SIZE(cnr_16qam_table);
1486 			break;
1487 		default:
1488 		case QAM_64:
1489 			segs = cnr_64qam_table;
1490 			segs_len = ARRAY_SIZE(cnr_64qam_table);
1491 			break;
1492 		}
1493 		cnr = interpolate_value(mer, segs, segs_len);
1494 
1495 		c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL;
1496 		c->cnr.stat[1 + layer].svalue = cnr;
1497 
1498 		dev_dbg(&state->i2c->dev,
1499 			"%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
1500 			__func__, 'A' + layer, cnr / 1000, cnr % 1000, mer);
1501 
1502 	}
1503 
1504 	/* Start a new MER measurement */
1505 	/* MER counter reset */
1506 	rc = mb86a20s_writereg(state, 0x50, 0x50);
1507 	if (rc < 0)
1508 		return rc;
1509 	rc = mb86a20s_readreg(state, 0x51);
1510 	if (rc < 0)
1511 		return rc;
1512 	val = rc;
1513 
1514 	rc = mb86a20s_writereg(state, 0x51, val | 0x01);
1515 	if (rc < 0)
1516 		return rc;
1517 	rc = mb86a20s_writereg(state, 0x51, val & 0x06);
1518 	if (rc < 0)
1519 		return rc;
1520 
1521 	return 0;
1522 }
1523 
mb86a20s_stats_not_ready(struct dvb_frontend * fe)1524 static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
1525 {
1526 	struct mb86a20s_state *state = fe->demodulator_priv;
1527 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1528 	int layer;
1529 
1530 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1531 
1532 	/* Fill the length of each status counter */
1533 
1534 	/* Only global stats */
1535 	c->strength.len = 1;
1536 
1537 	/* Per-layer stats - 3 layers + global */
1538 	c->cnr.len = NUM_LAYERS + 1;
1539 	c->pre_bit_error.len = NUM_LAYERS + 1;
1540 	c->pre_bit_count.len = NUM_LAYERS + 1;
1541 	c->post_bit_error.len = NUM_LAYERS + 1;
1542 	c->post_bit_count.len = NUM_LAYERS + 1;
1543 	c->block_error.len = NUM_LAYERS + 1;
1544 	c->block_count.len = NUM_LAYERS + 1;
1545 
1546 	/* Signal is always available */
1547 	c->strength.stat[0].scale = FE_SCALE_RELATIVE;
1548 	c->strength.stat[0].uvalue = 0;
1549 
1550 	/* Put all of them at FE_SCALE_NOT_AVAILABLE */
1551 	for (layer = 0; layer < NUM_LAYERS + 1; layer++) {
1552 		c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1553 		c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1554 		c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1555 		c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1556 		c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1557 		c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1558 		c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1559 	}
1560 }
1561 
mb86a20s_get_stats(struct dvb_frontend * fe,int status_nr)1562 static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr)
1563 {
1564 	struct mb86a20s_state *state = fe->demodulator_priv;
1565 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1566 	int rc = 0, layer;
1567 	u32 bit_error = 0, bit_count = 0;
1568 	u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
1569 	u32 t_post_bit_error = 0, t_post_bit_count = 0;
1570 	u32 block_error = 0, block_count = 0;
1571 	u32 t_block_error = 0, t_block_count = 0;
1572 	int pre_ber_layers = 0, post_ber_layers = 0;
1573 	int per_layers = 0;
1574 
1575 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1576 
1577 	mb86a20s_get_main_CNR(fe);
1578 
1579 	/* Get per-layer stats */
1580 	mb86a20s_get_blk_error_layer_CNR(fe);
1581 
1582 	/*
1583 	 * At state 7, only CNR is available
1584 	 * For BER measures, state=9 is required
1585 	 * FIXME: we may get MER measures with state=8
1586 	 */
1587 	if (status_nr < 9)
1588 		return 0;
1589 
1590 	for (layer = 0; layer < NUM_LAYERS; layer++) {
1591 		if (c->isdbt_layer_enabled & (1 << layer)) {
1592 			/* Handle BER before vterbi */
1593 			rc = mb86a20s_get_pre_ber(fe, layer,
1594 						  &bit_error, &bit_count);
1595 			if (rc >= 0) {
1596 				c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1597 				c->pre_bit_error.stat[1 + layer].uvalue += bit_error;
1598 				c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1599 				c->pre_bit_count.stat[1 + layer].uvalue += bit_count;
1600 			} else if (rc != -EBUSY) {
1601 				/*
1602 					* If an I/O error happened,
1603 					* measures are now unavailable
1604 					*/
1605 				c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1606 				c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1607 				dev_err(&state->i2c->dev,
1608 					"%s: Can't get BER for layer %c (error %d).\n",
1609 					__func__, 'A' + layer, rc);
1610 			}
1611 			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1612 				pre_ber_layers++;
1613 
1614 			/* Handle BER post vterbi */
1615 			rc = mb86a20s_get_post_ber(fe, layer,
1616 						   &bit_error, &bit_count);
1617 			if (rc >= 0) {
1618 				c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1619 				c->post_bit_error.stat[1 + layer].uvalue += bit_error;
1620 				c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1621 				c->post_bit_count.stat[1 + layer].uvalue += bit_count;
1622 			} else if (rc != -EBUSY) {
1623 				/*
1624 					* If an I/O error happened,
1625 					* measures are now unavailable
1626 					*/
1627 				c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1628 				c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1629 				dev_err(&state->i2c->dev,
1630 					"%s: Can't get BER for layer %c (error %d).\n",
1631 					__func__, 'A' + layer, rc);
1632 			}
1633 			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1634 				post_ber_layers++;
1635 
1636 			/* Handle Block errors for PER/UCB reports */
1637 			rc = mb86a20s_get_blk_error(fe, layer,
1638 						&block_error,
1639 						&block_count);
1640 			if (rc >= 0) {
1641 				c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1642 				c->block_error.stat[1 + layer].uvalue += block_error;
1643 				c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1644 				c->block_count.stat[1 + layer].uvalue += block_count;
1645 			} else if (rc != -EBUSY) {
1646 				/*
1647 					* If an I/O error happened,
1648 					* measures are now unavailable
1649 					*/
1650 				c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1651 				c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1652 				dev_err(&state->i2c->dev,
1653 					"%s: Can't get PER for layer %c (error %d).\n",
1654 					__func__, 'A' + layer, rc);
1655 
1656 			}
1657 			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1658 				per_layers++;
1659 
1660 			/* Update total preBER */
1661 			t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue;
1662 			t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue;
1663 
1664 			/* Update total postBER */
1665 			t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue;
1666 			t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue;
1667 
1668 			/* Update total PER */
1669 			t_block_error += c->block_error.stat[1 + layer].uvalue;
1670 			t_block_count += c->block_count.stat[1 + layer].uvalue;
1671 		}
1672 	}
1673 
1674 	/*
1675 	 * Start showing global count if at least one error count is
1676 	 * available.
1677 	 */
1678 	if (pre_ber_layers) {
1679 		/*
1680 		 * At least one per-layer BER measure was read. We can now
1681 		 * calculate the total BER
1682 		 *
1683 		 * Total Bit Error/Count is calculated as the sum of the
1684 		 * bit errors on all active layers.
1685 		 */
1686 		c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1687 		c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
1688 		c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1689 		c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
1690 	} else {
1691 		c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1692 		c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1693 	}
1694 
1695 	/*
1696 	 * Start showing global count if at least one error count is
1697 	 * available.
1698 	 */
1699 	if (post_ber_layers) {
1700 		/*
1701 		 * At least one per-layer BER measure was read. We can now
1702 		 * calculate the total BER
1703 		 *
1704 		 * Total Bit Error/Count is calculated as the sum of the
1705 		 * bit errors on all active layers.
1706 		 */
1707 		c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1708 		c->post_bit_error.stat[0].uvalue = t_post_bit_error;
1709 		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1710 		c->post_bit_count.stat[0].uvalue = t_post_bit_count;
1711 	} else {
1712 		c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1713 		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1714 	}
1715 
1716 	if (per_layers) {
1717 		/*
1718 		 * At least one per-layer UCB measure was read. We can now
1719 		 * calculate the total UCB
1720 		 *
1721 		 * Total block Error/Count is calculated as the sum of the
1722 		 * block errors on all active layers.
1723 		 */
1724 		c->block_error.stat[0].scale = FE_SCALE_COUNTER;
1725 		c->block_error.stat[0].uvalue = t_block_error;
1726 		c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1727 		c->block_count.stat[0].uvalue = t_block_count;
1728 	} else {
1729 		c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1730 		c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1731 	}
1732 
1733 	return rc;
1734 }
1735 
1736 /*
1737  * The functions below are called via DVB callbacks, so they need to
1738  * properly use the I2C gate control
1739  */
1740 
mb86a20s_initfe(struct dvb_frontend * fe)1741 static int mb86a20s_initfe(struct dvb_frontend *fe)
1742 {
1743 	struct mb86a20s_state *state = fe->demodulator_priv;
1744 	u64 pll;
1745 	u32 fclk;
1746 	int rc;
1747 	u8  regD5 = 1, reg71, reg09 = 0x3a;
1748 
1749 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1750 
1751 	if (fe->ops.i2c_gate_ctrl)
1752 		fe->ops.i2c_gate_ctrl(fe, 0);
1753 
1754 	/* Initialize the frontend */
1755 	rc = mb86a20s_writeregdata(state, mb86a20s_init1);
1756 	if (rc < 0)
1757 		goto err;
1758 
1759 	if (!state->inversion)
1760 		reg09 |= 0x04;
1761 	rc = mb86a20s_writereg(state, 0x09, reg09);
1762 	if (rc < 0)
1763 		goto err;
1764 	if (!state->bw)
1765 		reg71 = 1;
1766 	else
1767 		reg71 = 0;
1768 	rc = mb86a20s_writereg(state, 0x39, reg71);
1769 	if (rc < 0)
1770 		goto err;
1771 	rc = mb86a20s_writereg(state, 0x71, state->bw);
1772 	if (rc < 0)
1773 		goto err;
1774 	if (state->subchannel) {
1775 		rc = mb86a20s_writereg(state, 0x44, state->subchannel);
1776 		if (rc < 0)
1777 			goto err;
1778 	}
1779 
1780 	fclk = state->config->fclk;
1781 	if (!fclk)
1782 		fclk = 32571428;
1783 
1784 	/* Adjust IF frequency to match tuner */
1785 	if (fe->ops.tuner_ops.get_if_frequency)
1786 		fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq);
1787 
1788 	if (!state->if_freq)
1789 		state->if_freq = 3300000;
1790 
1791 	pll = (((u64)1) << 34) * state->if_freq;
1792 	do_div(pll, 63 * fclk);
1793 	pll = (1 << 25) - pll;
1794 	rc = mb86a20s_writereg(state, 0x28, 0x2a);
1795 	if (rc < 0)
1796 		goto err;
1797 	rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1798 	if (rc < 0)
1799 		goto err;
1800 	rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1801 	if (rc < 0)
1802 		goto err;
1803 	rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1804 	if (rc < 0)
1805 		goto err;
1806 	dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n",
1807 		__func__, fclk, state->if_freq, (long long)pll);
1808 
1809 	/* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */
1810 	pll = state->if_freq * 1677721600L;
1811 	do_div(pll, 1628571429L);
1812 	rc = mb86a20s_writereg(state, 0x28, 0x20);
1813 	if (rc < 0)
1814 		goto err;
1815 	rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1816 	if (rc < 0)
1817 		goto err;
1818 	rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1819 	if (rc < 0)
1820 		goto err;
1821 	rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1822 	if (rc < 0)
1823 		goto err;
1824 	dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n",
1825 		__func__, state->if_freq, (long long)pll);
1826 
1827 	if (!state->config->is_serial)
1828 		regD5 &= ~1;
1829 
1830 	rc = mb86a20s_writereg(state, 0x50, 0xd5);
1831 	if (rc < 0)
1832 		goto err;
1833 	rc = mb86a20s_writereg(state, 0x51, regD5);
1834 	if (rc < 0)
1835 		goto err;
1836 
1837 	rc = mb86a20s_writeregdata(state, mb86a20s_init2);
1838 	if (rc < 0)
1839 		goto err;
1840 
1841 
1842 err:
1843 	if (fe->ops.i2c_gate_ctrl)
1844 		fe->ops.i2c_gate_ctrl(fe, 1);
1845 
1846 	if (rc < 0) {
1847 		state->need_init = true;
1848 		dev_info(&state->i2c->dev,
1849 			 "mb86a20s: Init failed. Will try again later\n");
1850 	} else {
1851 		state->need_init = false;
1852 		dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
1853 	}
1854 	return rc;
1855 }
1856 
mb86a20s_set_frontend(struct dvb_frontend * fe)1857 static int mb86a20s_set_frontend(struct dvb_frontend *fe)
1858 {
1859 	struct mb86a20s_state *state = fe->demodulator_priv;
1860 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1861 	int rc, if_freq;
1862 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1863 
1864 	if (!c->isdbt_layer_enabled)
1865 		c->isdbt_layer_enabled = 7;
1866 
1867 	if (c->isdbt_layer_enabled == 1)
1868 		state->bw = MB86A20S_1SEG;
1869 	else if (c->isdbt_partial_reception)
1870 		state->bw = MB86A20S_13SEG_PARTIAL;
1871 	else
1872 		state->bw = MB86A20S_13SEG;
1873 
1874 	if (c->inversion == INVERSION_ON)
1875 		state->inversion = true;
1876 	else
1877 		state->inversion = false;
1878 
1879 	if (!c->isdbt_sb_mode) {
1880 		state->subchannel = 0;
1881 	} else {
1882 		if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel))
1883 			c->isdbt_sb_subchannel = 0;
1884 
1885 		state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel];
1886 	}
1887 
1888 	/*
1889 	 * Gate should already be opened, but it doesn't hurt to
1890 	 * double-check
1891 	 */
1892 	if (fe->ops.i2c_gate_ctrl)
1893 		fe->ops.i2c_gate_ctrl(fe, 1);
1894 	fe->ops.tuner_ops.set_params(fe);
1895 
1896 	if (fe->ops.tuner_ops.get_if_frequency)
1897 		fe->ops.tuner_ops.get_if_frequency(fe, &if_freq);
1898 
1899 	/*
1900 	 * Make it more reliable: if, for some reason, the initial
1901 	 * device initialization doesn't happen, initialize it when
1902 	 * a SBTVD parameters are adjusted.
1903 	 *
1904 	 * Unfortunately, due to a hard to track bug at tda829x/tda18271,
1905 	 * the agc callback logic is not called during DVB attach time,
1906 	 * causing mb86a20s to not be initialized with Kworld SBTVD.
1907 	 * So, this hack is needed, in order to make Kworld SBTVD to work.
1908 	 *
1909 	 * It is also needed to change the IF after the initial init.
1910 	 *
1911 	 * HACK: Always init the frontend when set_frontend is called:
1912 	 * it was noticed that, on some devices, it fails to lock on a
1913 	 * different channel. So, it is better to reset everything, even
1914 	 * wasting some time, than to loose channel lock.
1915 	 */
1916 	mb86a20s_initfe(fe);
1917 
1918 	if (fe->ops.i2c_gate_ctrl)
1919 		fe->ops.i2c_gate_ctrl(fe, 0);
1920 
1921 	rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
1922 	mb86a20s_reset_counters(fe);
1923 	mb86a20s_stats_not_ready(fe);
1924 
1925 	if (fe->ops.i2c_gate_ctrl)
1926 		fe->ops.i2c_gate_ctrl(fe, 1);
1927 
1928 	return rc;
1929 }
1930 
mb86a20s_read_status_and_stats(struct dvb_frontend * fe,enum fe_status * status)1931 static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
1932 					  enum fe_status *status)
1933 {
1934 	struct mb86a20s_state *state = fe->demodulator_priv;
1935 	int rc, status_nr;
1936 
1937 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1938 
1939 	if (fe->ops.i2c_gate_ctrl)
1940 		fe->ops.i2c_gate_ctrl(fe, 0);
1941 
1942 	/* Get lock */
1943 	status_nr = mb86a20s_read_status(fe, status);
1944 	if (status_nr < 7) {
1945 		mb86a20s_stats_not_ready(fe);
1946 		mb86a20s_reset_frontend_cache(fe);
1947 	}
1948 	if (status_nr < 0) {
1949 		dev_err(&state->i2c->dev,
1950 			"%s: Can't read frontend lock status\n", __func__);
1951 		rc = status_nr;
1952 		goto error;
1953 	}
1954 
1955 	/* Get signal strength */
1956 	rc = mb86a20s_read_signal_strength(fe);
1957 	if (rc < 0) {
1958 		dev_err(&state->i2c->dev,
1959 			"%s: Can't reset VBER registers.\n", __func__);
1960 		mb86a20s_stats_not_ready(fe);
1961 		mb86a20s_reset_frontend_cache(fe);
1962 
1963 		rc = 0;		/* Status is OK */
1964 		goto error;
1965 	}
1966 
1967 	if (status_nr >= 7) {
1968 		/* Get TMCC info*/
1969 		rc = mb86a20s_get_frontend(fe);
1970 		if (rc < 0) {
1971 			dev_err(&state->i2c->dev,
1972 				"%s: Can't get FE TMCC data.\n", __func__);
1973 			rc = 0;		/* Status is OK */
1974 			goto error;
1975 		}
1976 
1977 		/* Get statistics */
1978 		rc = mb86a20s_get_stats(fe, status_nr);
1979 		if (rc < 0 && rc != -EBUSY) {
1980 			dev_err(&state->i2c->dev,
1981 				"%s: Can't get FE statistics.\n", __func__);
1982 			rc = 0;
1983 			goto error;
1984 		}
1985 		rc = 0;	/* Don't return EBUSY to userspace */
1986 	}
1987 	goto ok;
1988 
1989 error:
1990 	mb86a20s_stats_not_ready(fe);
1991 
1992 ok:
1993 	if (fe->ops.i2c_gate_ctrl)
1994 		fe->ops.i2c_gate_ctrl(fe, 1);
1995 
1996 	return rc;
1997 }
1998 
mb86a20s_read_signal_strength_from_cache(struct dvb_frontend * fe,u16 * strength)1999 static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
2000 						    u16 *strength)
2001 {
2002 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2003 
2004 
2005 	*strength = c->strength.stat[0].uvalue;
2006 
2007 	return 0;
2008 }
2009 
mb86a20s_tune(struct dvb_frontend * fe,bool re_tune,unsigned int mode_flags,unsigned int * delay,enum fe_status * status)2010 static int mb86a20s_tune(struct dvb_frontend *fe,
2011 			bool re_tune,
2012 			unsigned int mode_flags,
2013 			unsigned int *delay,
2014 			enum fe_status *status)
2015 {
2016 	struct mb86a20s_state *state = fe->demodulator_priv;
2017 	int rc = 0;
2018 
2019 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2020 
2021 	if (re_tune)
2022 		rc = mb86a20s_set_frontend(fe);
2023 
2024 	if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
2025 		mb86a20s_read_status_and_stats(fe, status);
2026 
2027 	return rc;
2028 }
2029 
mb86a20s_release(struct dvb_frontend * fe)2030 static void mb86a20s_release(struct dvb_frontend *fe)
2031 {
2032 	struct mb86a20s_state *state = fe->demodulator_priv;
2033 
2034 	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2035 
2036 	kfree(state);
2037 }
2038 
mb86a20s_get_frontend_algo(struct dvb_frontend * fe)2039 static enum dvbfe_algo mb86a20s_get_frontend_algo(struct dvb_frontend *fe)
2040 {
2041 	return DVBFE_ALGO_HW;
2042 }
2043 
2044 static const struct dvb_frontend_ops mb86a20s_ops;
2045 
mb86a20s_attach(const struct mb86a20s_config * config,struct i2c_adapter * i2c)2046 struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
2047 				    struct i2c_adapter *i2c)
2048 {
2049 	struct mb86a20s_state *state;
2050 	u8	rev;
2051 
2052 	dev_dbg(&i2c->dev, "%s called.\n", __func__);
2053 
2054 	/* allocate memory for the internal state */
2055 	state = kzalloc(sizeof(*state), GFP_KERNEL);
2056 	if (!state)
2057 		return NULL;
2058 
2059 	/* setup the state */
2060 	state->config = config;
2061 	state->i2c = i2c;
2062 
2063 	/* create dvb_frontend */
2064 	memcpy(&state->frontend.ops, &mb86a20s_ops,
2065 		sizeof(struct dvb_frontend_ops));
2066 	state->frontend.demodulator_priv = state;
2067 
2068 	/* Check if it is a mb86a20s frontend */
2069 	rev = mb86a20s_readreg(state, 0);
2070 	if (rev != 0x13) {
2071 		kfree(state);
2072 		dev_dbg(&i2c->dev,
2073 			"Frontend revision %d is unknown - aborting.\n",
2074 		       rev);
2075 		return NULL;
2076 	}
2077 
2078 	dev_info(&i2c->dev, "Detected a Fujitsu mb86a20s frontend\n");
2079 	return &state->frontend;
2080 }
2081 EXPORT_SYMBOL_GPL(mb86a20s_attach);
2082 
2083 static const struct dvb_frontend_ops mb86a20s_ops = {
2084 	.delsys = { SYS_ISDBT },
2085 	/* Use dib8000 values per default */
2086 	.info = {
2087 		.name = "Fujitsu mb86A20s",
2088 		.caps = FE_CAN_RECOVER  |
2089 			FE_CAN_FEC_1_2  | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
2090 			FE_CAN_FEC_5_6  | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
2091 			FE_CAN_QPSK     | FE_CAN_QAM_16  | FE_CAN_QAM_64 |
2092 			FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
2093 			FE_CAN_GUARD_INTERVAL_AUTO    | FE_CAN_HIERARCHY_AUTO,
2094 		/* Actually, those values depend on the used tuner */
2095 		.frequency_min_hz =  45 * MHz,
2096 		.frequency_max_hz = 864 * MHz,
2097 		.frequency_stepsize_hz = 62500,
2098 	},
2099 
2100 	.release = mb86a20s_release,
2101 
2102 	.init = mb86a20s_initfe,
2103 	.set_frontend = mb86a20s_set_frontend,
2104 	.read_status = mb86a20s_read_status_and_stats,
2105 	.read_signal_strength = mb86a20s_read_signal_strength_from_cache,
2106 	.tune = mb86a20s_tune,
2107 	.get_frontend_algo = mb86a20s_get_frontend_algo,
2108 };
2109 
2110 MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
2111 MODULE_AUTHOR("Mauro Carvalho Chehab");
2112 MODULE_LICENSE("GPL");
2113