1 /*
2 	Fujitsu MB86A16 DVB-S/DSS DC Receiver driver
3 
4 	Copyright (C) Manu Abraham (abraham.manu@gmail.com)
5 
6 	This program is free software; you can redistribute it and/or modify
7 	it under the terms of the GNU General Public License as published by
8 	the Free Software Foundation; either version 2 of the License, or
9 	(at your option) any later version.
10 
11 	This program is distributed in the hope that it will be useful,
12 	but WITHOUT ANY WARRANTY; without even the implied warranty of
13 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 	GNU General Public License for more details.
15 
16 	You should have received a copy of the GNU General Public License
17 	along with this program; if not, write to the Free Software
18 	Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/slab.h>
26 
27 #include <media/dvb_frontend.h>
28 #include "mb86a16.h"
29 #include "mb86a16_priv.h"
30 
31 static unsigned int verbose = 5;
32 module_param(verbose, int, 0644);
33 
34 struct mb86a16_state {
35 	struct i2c_adapter		*i2c_adap;
36 	const struct mb86a16_config	*config;
37 	struct dvb_frontend		frontend;
38 
39 	/* tuning parameters */
40 	int				frequency;
41 	int				srate;
42 
43 	/* Internal stuff */
44 	int				master_clk;
45 	int				deci;
46 	int				csel;
47 	int				rsel;
48 };
49 
50 #define MB86A16_ERROR		0
51 #define MB86A16_NOTICE		1
52 #define MB86A16_INFO		2
53 #define MB86A16_DEBUG		3
54 
55 #define dprintk(x, y, z, format, arg...) do {						\
56 	if (z) {									\
57 		if	((x > MB86A16_ERROR) && (x > y))				\
58 			printk(KERN_ERR "%s: " format "\n", __func__, ##arg);		\
59 		else if ((x > MB86A16_NOTICE) && (x > y))				\
60 			printk(KERN_NOTICE "%s: " format "\n", __func__, ##arg);	\
61 		else if ((x > MB86A16_INFO) && (x > y))					\
62 			printk(KERN_INFO "%s: " format "\n", __func__, ##arg);		\
63 		else if ((x > MB86A16_DEBUG) && (x > y))				\
64 			printk(KERN_DEBUG "%s: " format "\n", __func__, ##arg);		\
65 	} else {									\
66 		if (x > y)								\
67 			printk(format, ##arg);						\
68 	}										\
69 } while (0)
70 
71 #define TRACE_IN	dprintk(verbose, MB86A16_DEBUG, 1, "-->()")
72 #define TRACE_OUT	dprintk(verbose, MB86A16_DEBUG, 1, "()-->")
73 
74 static int mb86a16_write(struct mb86a16_state *state, u8 reg, u8 val)
75 {
76 	int ret;
77 	u8 buf[] = { reg, val };
78 
79 	struct i2c_msg msg = {
80 		.addr = state->config->demod_address,
81 		.flags = 0,
82 		.buf = buf,
83 		.len = 2
84 	};
85 
86 	dprintk(verbose, MB86A16_DEBUG, 1,
87 		"writing to [0x%02x],Reg[0x%02x],Data[0x%02x]",
88 		state->config->demod_address, buf[0], buf[1]);
89 
90 	ret = i2c_transfer(state->i2c_adap, &msg, 1);
91 
92 	return (ret != 1) ? -EREMOTEIO : 0;
93 }
94 
95 static int mb86a16_read(struct mb86a16_state *state, u8 reg, u8 *val)
96 {
97 	int ret;
98 	u8 b0[] = { reg };
99 	u8 b1[] = { 0 };
100 
101 	struct i2c_msg msg[] = {
102 		{
103 			.addr = state->config->demod_address,
104 			.flags = 0,
105 			.buf = b0,
106 			.len = 1
107 		}, {
108 			.addr = state->config->demod_address,
109 			.flags = I2C_M_RD,
110 			.buf = b1,
111 			.len = 1
112 		}
113 	};
114 	ret = i2c_transfer(state->i2c_adap, msg, 2);
115 	if (ret != 2) {
116 		dprintk(verbose, MB86A16_ERROR, 1, "read error(reg=0x%02x, ret=%i)",
117 			reg, ret);
118 
119 		if (ret < 0)
120 			return ret;
121 		return -EREMOTEIO;
122 	}
123 	*val = b1[0];
124 
125 	return ret;
126 }
127 
128 static int CNTM_set(struct mb86a16_state *state,
129 		    unsigned char timint1,
130 		    unsigned char timint2,
131 		    unsigned char cnext)
132 {
133 	unsigned char val;
134 
135 	val = (timint1 << 4) | (timint2 << 2) | cnext;
136 	if (mb86a16_write(state, MB86A16_CNTMR, val) < 0)
137 		goto err;
138 
139 	return 0;
140 
141 err:
142 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
143 	return -EREMOTEIO;
144 }
145 
146 static int smrt_set(struct mb86a16_state *state, int rate)
147 {
148 	int tmp ;
149 	int m ;
150 	unsigned char STOFS0, STOFS1;
151 
152 	m = 1 << state->deci;
153 	tmp = (8192 * state->master_clk - 2 * m * rate * 8192 + state->master_clk / 2) / state->master_clk;
154 
155 	STOFS0 = tmp & 0x0ff;
156 	STOFS1 = (tmp & 0xf00) >> 8;
157 
158 	if (mb86a16_write(state, MB86A16_SRATE1, (state->deci << 2) |
159 				       (state->csel << 1) |
160 					state->rsel) < 0)
161 		goto err;
162 	if (mb86a16_write(state, MB86A16_SRATE2, STOFS0) < 0)
163 		goto err;
164 	if (mb86a16_write(state, MB86A16_SRATE3, STOFS1) < 0)
165 		goto err;
166 
167 	return 0;
168 err:
169 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
170 	return -1;
171 }
172 
173 static int srst(struct mb86a16_state *state)
174 {
175 	if (mb86a16_write(state, MB86A16_RESET, 0x04) < 0)
176 		goto err;
177 
178 	return 0;
179 err:
180 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
181 	return -EREMOTEIO;
182 
183 }
184 
185 static int afcex_data_set(struct mb86a16_state *state,
186 			  unsigned char AFCEX_L,
187 			  unsigned char AFCEX_H)
188 {
189 	if (mb86a16_write(state, MB86A16_AFCEXL, AFCEX_L) < 0)
190 		goto err;
191 	if (mb86a16_write(state, MB86A16_AFCEXH, AFCEX_H) < 0)
192 		goto err;
193 
194 	return 0;
195 err:
196 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
197 
198 	return -1;
199 }
200 
201 static int afcofs_data_set(struct mb86a16_state *state,
202 			   unsigned char AFCEX_L,
203 			   unsigned char AFCEX_H)
204 {
205 	if (mb86a16_write(state, 0x58, AFCEX_L) < 0)
206 		goto err;
207 	if (mb86a16_write(state, 0x59, AFCEX_H) < 0)
208 		goto err;
209 
210 	return 0;
211 err:
212 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
213 	return -EREMOTEIO;
214 }
215 
216 static int stlp_set(struct mb86a16_state *state,
217 		    unsigned char STRAS,
218 		    unsigned char STRBS)
219 {
220 	if (mb86a16_write(state, MB86A16_STRFILTCOEF1, (STRBS << 3) | (STRAS)) < 0)
221 		goto err;
222 
223 	return 0;
224 err:
225 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
226 	return -EREMOTEIO;
227 }
228 
229 static int Vi_set(struct mb86a16_state *state, unsigned char ETH, unsigned char VIA)
230 {
231 	if (mb86a16_write(state, MB86A16_VISET2, 0x04) < 0)
232 		goto err;
233 	if (mb86a16_write(state, MB86A16_VISET3, 0xf5) < 0)
234 		goto err;
235 
236 	return 0;
237 err:
238 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
239 	return -EREMOTEIO;
240 }
241 
242 static int initial_set(struct mb86a16_state *state)
243 {
244 	if (stlp_set(state, 5, 7))
245 		goto err;
246 
247 	udelay(100);
248 	if (afcex_data_set(state, 0, 0))
249 		goto err;
250 
251 	udelay(100);
252 	if (afcofs_data_set(state, 0, 0))
253 		goto err;
254 
255 	udelay(100);
256 	if (mb86a16_write(state, MB86A16_CRLFILTCOEF1, 0x16) < 0)
257 		goto err;
258 	if (mb86a16_write(state, 0x2f, 0x21) < 0)
259 		goto err;
260 	if (mb86a16_write(state, MB86A16_VIMAG, 0x38) < 0)
261 		goto err;
262 	if (mb86a16_write(state, MB86A16_FAGCS1, 0x00) < 0)
263 		goto err;
264 	if (mb86a16_write(state, MB86A16_FAGCS2, 0x1c) < 0)
265 		goto err;
266 	if (mb86a16_write(state, MB86A16_FAGCS3, 0x20) < 0)
267 		goto err;
268 	if (mb86a16_write(state, MB86A16_FAGCS4, 0x1e) < 0)
269 		goto err;
270 	if (mb86a16_write(state, MB86A16_FAGCS5, 0x23) < 0)
271 		goto err;
272 	if (mb86a16_write(state, 0x54, 0xff) < 0)
273 		goto err;
274 	if (mb86a16_write(state, MB86A16_TSOUT, 0x00) < 0)
275 		goto err;
276 
277 	return 0;
278 
279 err:
280 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
281 	return -EREMOTEIO;
282 }
283 
284 static int S01T_set(struct mb86a16_state *state,
285 		    unsigned char s1t,
286 		    unsigned s0t)
287 {
288 	if (mb86a16_write(state, 0x33, (s1t << 3) | s0t) < 0)
289 		goto err;
290 
291 	return 0;
292 err:
293 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
294 	return -EREMOTEIO;
295 }
296 
297 
298 static int EN_set(struct mb86a16_state *state,
299 		  int cren,
300 		  int afcen)
301 {
302 	unsigned char val;
303 
304 	val = 0x7a | (cren << 7) | (afcen << 2);
305 	if (mb86a16_write(state, 0x49, val) < 0)
306 		goto err;
307 
308 	return 0;
309 err:
310 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
311 	return -EREMOTEIO;
312 }
313 
314 static int AFCEXEN_set(struct mb86a16_state *state,
315 		       int afcexen,
316 		       int smrt)
317 {
318 	unsigned char AFCA ;
319 
320 	if (smrt > 18875)
321 		AFCA = 4;
322 	else if (smrt > 9375)
323 		AFCA = 3;
324 	else if (smrt > 2250)
325 		AFCA = 2;
326 	else
327 		AFCA = 1;
328 
329 	if (mb86a16_write(state, 0x2a, 0x02 | (afcexen << 5) | (AFCA << 2)) < 0)
330 		goto err;
331 
332 	return 0;
333 
334 err:
335 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
336 	return -EREMOTEIO;
337 }
338 
339 static int DAGC_data_set(struct mb86a16_state *state,
340 			 unsigned char DAGCA,
341 			 unsigned char DAGCW)
342 {
343 	if (mb86a16_write(state, 0x2d, (DAGCA << 3) | DAGCW) < 0)
344 		goto err;
345 
346 	return 0;
347 
348 err:
349 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
350 	return -EREMOTEIO;
351 }
352 
353 static void smrt_info_get(struct mb86a16_state *state, int rate)
354 {
355 	if (rate >= 37501) {
356 		state->deci = 0; state->csel = 0; state->rsel = 0;
357 	} else if (rate >= 30001) {
358 		state->deci = 0; state->csel = 0; state->rsel = 1;
359 	} else if (rate >= 26251) {
360 		state->deci = 0; state->csel = 1; state->rsel = 0;
361 	} else if (rate >= 22501) {
362 		state->deci = 0; state->csel = 1; state->rsel = 1;
363 	} else if (rate >= 18751) {
364 		state->deci = 1; state->csel = 0; state->rsel = 0;
365 	} else if (rate >= 15001) {
366 		state->deci = 1; state->csel = 0; state->rsel = 1;
367 	} else if (rate >= 13126) {
368 		state->deci = 1; state->csel = 1; state->rsel = 0;
369 	} else if (rate >= 11251) {
370 		state->deci = 1; state->csel = 1; state->rsel = 1;
371 	} else if (rate >= 9376) {
372 		state->deci = 2; state->csel = 0; state->rsel = 0;
373 	} else if (rate >= 7501) {
374 		state->deci = 2; state->csel = 0; state->rsel = 1;
375 	} else if (rate >= 6563) {
376 		state->deci = 2; state->csel = 1; state->rsel = 0;
377 	} else if (rate >= 5626) {
378 		state->deci = 2; state->csel = 1; state->rsel = 1;
379 	} else if (rate >= 4688) {
380 		state->deci = 3; state->csel = 0; state->rsel = 0;
381 	} else if (rate >= 3751) {
382 		state->deci = 3; state->csel = 0; state->rsel = 1;
383 	} else if (rate >= 3282) {
384 		state->deci = 3; state->csel = 1; state->rsel = 0;
385 	} else if (rate >= 2814) {
386 		state->deci = 3; state->csel = 1; state->rsel = 1;
387 	} else if (rate >= 2344) {
388 		state->deci = 4; state->csel = 0; state->rsel = 0;
389 	} else if (rate >= 1876) {
390 		state->deci = 4; state->csel = 0; state->rsel = 1;
391 	} else if (rate >= 1641) {
392 		state->deci = 4; state->csel = 1; state->rsel = 0;
393 	} else if (rate >= 1407) {
394 		state->deci = 4; state->csel = 1; state->rsel = 1;
395 	} else if (rate >= 1172) {
396 		state->deci = 5; state->csel = 0; state->rsel = 0;
397 	} else if (rate >=  939) {
398 		state->deci = 5; state->csel = 0; state->rsel = 1;
399 	} else if (rate >=  821) {
400 		state->deci = 5; state->csel = 1; state->rsel = 0;
401 	} else {
402 		state->deci = 5; state->csel = 1; state->rsel = 1;
403 	}
404 
405 	if (state->csel == 0)
406 		state->master_clk = 92000;
407 	else
408 		state->master_clk = 61333;
409 
410 }
411 
412 static int signal_det(struct mb86a16_state *state,
413 		      int smrt,
414 		      unsigned char *SIG)
415 {
416 	int ret;
417 	int smrtd;
418 	unsigned char S[3];
419 	int i;
420 
421 	if (*SIG > 45) {
422 		if (CNTM_set(state, 2, 1, 2) < 0) {
423 			dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
424 			return -1;
425 		}
426 	} else {
427 		if (CNTM_set(state, 3, 1, 2) < 0) {
428 			dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
429 			return -1;
430 		}
431 	}
432 	for (i = 0; i < 3; i++) {
433 		if (i == 0)
434 			smrtd = smrt * 98 / 100;
435 		else if (i == 1)
436 			smrtd = smrt;
437 		else
438 			smrtd = smrt * 102 / 100;
439 		smrt_info_get(state, smrtd);
440 		smrt_set(state, smrtd);
441 		srst(state);
442 		msleep_interruptible(10);
443 		if (mb86a16_read(state, 0x37, &(S[i])) != 2) {
444 			dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
445 			return -EREMOTEIO;
446 		}
447 	}
448 	if ((S[1] > S[0] * 112 / 100) && (S[1] > S[2] * 112 / 100))
449 		ret = 1;
450 	else
451 		ret = 0;
452 
453 	*SIG = S[1];
454 
455 	if (CNTM_set(state, 0, 1, 2) < 0) {
456 		dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
457 		return -1;
458 	}
459 
460 	return ret;
461 }
462 
463 static int rf_val_set(struct mb86a16_state *state,
464 		      int f,
465 		      int smrt,
466 		      unsigned char R)
467 {
468 	unsigned char C, F, B;
469 	int M;
470 	unsigned char rf_val[5];
471 	int ack = -1;
472 
473 	if (smrt > 37750)
474 		C = 1;
475 	else if (smrt > 18875)
476 		C = 2;
477 	else if (smrt > 5500)
478 		C = 3;
479 	else
480 		C = 4;
481 
482 	if (smrt > 30500)
483 		F = 3;
484 	else if (smrt > 9375)
485 		F = 1;
486 	else if (smrt > 4625)
487 		F = 0;
488 	else
489 		F = 2;
490 
491 	if (f < 1060)
492 		B = 0;
493 	else if (f < 1175)
494 		B = 1;
495 	else if (f < 1305)
496 		B = 2;
497 	else if (f < 1435)
498 		B = 3;
499 	else if (f < 1570)
500 		B = 4;
501 	else if (f < 1715)
502 		B = 5;
503 	else if (f < 1845)
504 		B = 6;
505 	else if (f < 1980)
506 		B = 7;
507 	else if (f < 2080)
508 		B = 8;
509 	else
510 		B = 9;
511 
512 	M = f * (1 << R) / 2;
513 
514 	rf_val[0] = 0x01 | (C << 3) | (F << 1);
515 	rf_val[1] = (R << 5) | ((M & 0x1f000) >> 12);
516 	rf_val[2] = (M & 0x00ff0) >> 4;
517 	rf_val[3] = ((M & 0x0000f) << 4) | B;
518 
519 	/* Frequency Set */
520 	if (mb86a16_write(state, 0x21, rf_val[0]) < 0)
521 		ack = 0;
522 	if (mb86a16_write(state, 0x22, rf_val[1]) < 0)
523 		ack = 0;
524 	if (mb86a16_write(state, 0x23, rf_val[2]) < 0)
525 		ack = 0;
526 	if (mb86a16_write(state, 0x24, rf_val[3]) < 0)
527 		ack = 0;
528 	if (mb86a16_write(state, 0x25, 0x01) < 0)
529 		ack = 0;
530 	if (ack == 0) {
531 		dprintk(verbose, MB86A16_ERROR, 1, "RF Setup - I2C transfer error");
532 		return -EREMOTEIO;
533 	}
534 
535 	return 0;
536 }
537 
538 static int afcerr_chk(struct mb86a16_state *state)
539 {
540 	unsigned char AFCM_L, AFCM_H ;
541 	int AFCM ;
542 	int afcm, afcerr ;
543 
544 	if (mb86a16_read(state, 0x0e, &AFCM_L) != 2)
545 		goto err;
546 	if (mb86a16_read(state, 0x0f, &AFCM_H) != 2)
547 		goto err;
548 
549 	AFCM = (AFCM_H << 8) + AFCM_L;
550 
551 	if (AFCM > 2048)
552 		afcm = AFCM - 4096;
553 	else
554 		afcm = AFCM;
555 	afcerr = afcm * state->master_clk / 8192;
556 
557 	return afcerr;
558 
559 err:
560 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
561 	return -EREMOTEIO;
562 }
563 
564 static int dagcm_val_get(struct mb86a16_state *state)
565 {
566 	int DAGCM;
567 	unsigned char DAGCM_H, DAGCM_L;
568 
569 	if (mb86a16_read(state, 0x45, &DAGCM_L) != 2)
570 		goto err;
571 	if (mb86a16_read(state, 0x46, &DAGCM_H) != 2)
572 		goto err;
573 
574 	DAGCM = (DAGCM_H << 8) + DAGCM_L;
575 
576 	return DAGCM;
577 
578 err:
579 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
580 	return -EREMOTEIO;
581 }
582 
583 static int mb86a16_read_status(struct dvb_frontend *fe, enum fe_status *status)
584 {
585 	u8 stat, stat2;
586 	struct mb86a16_state *state = fe->demodulator_priv;
587 
588 	*status = 0;
589 
590 	if (mb86a16_read(state, MB86A16_SIG1, &stat) != 2)
591 		goto err;
592 	if (mb86a16_read(state, MB86A16_SIG2, &stat2) != 2)
593 		goto err;
594 	if ((stat > 25) && (stat2 > 25))
595 		*status |= FE_HAS_SIGNAL;
596 	if ((stat > 45) && (stat2 > 45))
597 		*status |= FE_HAS_CARRIER;
598 
599 	if (mb86a16_read(state, MB86A16_STATUS, &stat) != 2)
600 		goto err;
601 
602 	if (stat & 0x01)
603 		*status |= FE_HAS_SYNC;
604 	if (stat & 0x01)
605 		*status |= FE_HAS_VITERBI;
606 
607 	if (mb86a16_read(state, MB86A16_FRAMESYNC, &stat) != 2)
608 		goto err;
609 
610 	if ((stat & 0x0f) && (*status & FE_HAS_VITERBI))
611 		*status |= FE_HAS_LOCK;
612 
613 	return 0;
614 
615 err:
616 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
617 	return -EREMOTEIO;
618 }
619 
620 static int sync_chk(struct mb86a16_state *state,
621 		    unsigned char *VIRM)
622 {
623 	unsigned char val;
624 	int sync;
625 
626 	if (mb86a16_read(state, 0x0d, &val) != 2)
627 		goto err;
628 
629 	dprintk(verbose, MB86A16_INFO, 1, "Status = %02x,", val);
630 	sync = val & 0x01;
631 	*VIRM = (val & 0x1c) >> 2;
632 
633 	return sync;
634 err:
635 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
636 	*VIRM = 0;
637 	return -EREMOTEIO;
638 
639 }
640 
641 static int freqerr_chk(struct mb86a16_state *state,
642 		       int fTP,
643 		       int smrt,
644 		       int unit)
645 {
646 	unsigned char CRM, AFCML, AFCMH;
647 	unsigned char temp1, temp2, temp3;
648 	int crm, afcm, AFCM;
649 	int crrerr, afcerr;		/* kHz */
650 	int frqerr;			/* MHz */
651 	int afcen, afcexen = 0;
652 	int R, M, fOSC, fOSC_OFS;
653 
654 	if (mb86a16_read(state, 0x43, &CRM) != 2)
655 		goto err;
656 
657 	if (CRM > 127)
658 		crm = CRM - 256;
659 	else
660 		crm = CRM;
661 
662 	crrerr = smrt * crm / 256;
663 	if (mb86a16_read(state, 0x49, &temp1) != 2)
664 		goto err;
665 
666 	afcen = (temp1 & 0x04) >> 2;
667 	if (afcen == 0) {
668 		if (mb86a16_read(state, 0x2a, &temp1) != 2)
669 			goto err;
670 		afcexen = (temp1 & 0x20) >> 5;
671 	}
672 
673 	if (afcen == 1) {
674 		if (mb86a16_read(state, 0x0e, &AFCML) != 2)
675 			goto err;
676 		if (mb86a16_read(state, 0x0f, &AFCMH) != 2)
677 			goto err;
678 	} else if (afcexen == 1) {
679 		if (mb86a16_read(state, 0x2b, &AFCML) != 2)
680 			goto err;
681 		if (mb86a16_read(state, 0x2c, &AFCMH) != 2)
682 			goto err;
683 	}
684 	if ((afcen == 1) || (afcexen == 1)) {
685 		smrt_info_get(state, smrt);
686 		AFCM = ((AFCMH & 0x01) << 8) + AFCML;
687 		if (AFCM > 255)
688 			afcm = AFCM - 512;
689 		else
690 			afcm = AFCM;
691 
692 		afcerr = afcm * state->master_clk / 8192;
693 	} else
694 		afcerr = 0;
695 
696 	if (mb86a16_read(state, 0x22, &temp1) != 2)
697 		goto err;
698 	if (mb86a16_read(state, 0x23, &temp2) != 2)
699 		goto err;
700 	if (mb86a16_read(state, 0x24, &temp3) != 2)
701 		goto err;
702 
703 	R = (temp1 & 0xe0) >> 5;
704 	M = ((temp1 & 0x1f) << 12) + (temp2 << 4) + (temp3 >> 4);
705 	if (R == 0)
706 		fOSC = 2 * M;
707 	else
708 		fOSC = M;
709 
710 	fOSC_OFS = fOSC - fTP;
711 
712 	if (unit == 0) {	/* MHz */
713 		if (crrerr + afcerr + fOSC_OFS * 1000 >= 0)
714 			frqerr = (crrerr + afcerr + fOSC_OFS * 1000 + 500) / 1000;
715 		else
716 			frqerr = (crrerr + afcerr + fOSC_OFS * 1000 - 500) / 1000;
717 	} else {	/* kHz */
718 		frqerr = crrerr + afcerr + fOSC_OFS * 1000;
719 	}
720 
721 	return frqerr;
722 err:
723 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
724 	return -EREMOTEIO;
725 }
726 
727 static unsigned char vco_dev_get(struct mb86a16_state *state, int smrt)
728 {
729 	unsigned char R;
730 
731 	if (smrt > 9375)
732 		R = 0;
733 	else
734 		R = 1;
735 
736 	return R;
737 }
738 
739 static void swp_info_get(struct mb86a16_state *state,
740 			 int fOSC_start,
741 			 int smrt,
742 			 int v, int R,
743 			 int swp_ofs,
744 			 int *fOSC,
745 			 int *afcex_freq,
746 			 unsigned char *AFCEX_L,
747 			 unsigned char *AFCEX_H)
748 {
749 	int AFCEX ;
750 	int crnt_swp_freq ;
751 
752 	crnt_swp_freq = fOSC_start * 1000 + v * swp_ofs;
753 
754 	if (R == 0)
755 		*fOSC = (crnt_swp_freq + 1000) / 2000 * 2;
756 	else
757 		*fOSC = (crnt_swp_freq + 500) / 1000;
758 
759 	if (*fOSC >= crnt_swp_freq)
760 		*afcex_freq = *fOSC * 1000 - crnt_swp_freq;
761 	else
762 		*afcex_freq = crnt_swp_freq - *fOSC * 1000;
763 
764 	AFCEX = *afcex_freq * 8192 / state->master_clk;
765 	*AFCEX_L =  AFCEX & 0x00ff;
766 	*AFCEX_H = (AFCEX & 0x0f00) >> 8;
767 }
768 
769 
770 static int swp_freq_calcuation(struct mb86a16_state *state, int i, int v, int *V,  int vmax, int vmin,
771 			       int SIGMIN, int fOSC, int afcex_freq, int swp_ofs, unsigned char *SIG1)
772 {
773 	int swp_freq ;
774 
775 	if ((i % 2 == 1) && (v <= vmax)) {
776 		/* positive v (case 1) */
777 		if ((v - 1 == vmin)				&&
778 		    (*(V + 30 + v) >= 0)			&&
779 		    (*(V + 30 + v - 1) >= 0)			&&
780 		    (*(V + 30 + v - 1) > *(V + 30 + v))		&&
781 		    (*(V + 30 + v - 1) > SIGMIN)) {
782 
783 			swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
784 			*SIG1 = *(V + 30 + v - 1);
785 		} else if ((v == vmax)				&&
786 			   (*(V + 30 + v) >= 0)			&&
787 			   (*(V + 30 + v - 1) >= 0)		&&
788 			   (*(V + 30 + v) > *(V + 30 + v - 1))	&&
789 			   (*(V + 30 + v) > SIGMIN)) {
790 			/* (case 2) */
791 			swp_freq = fOSC * 1000 + afcex_freq;
792 			*SIG1 = *(V + 30 + v);
793 		} else if ((*(V + 30 + v) > 0)			&&
794 			   (*(V + 30 + v - 1) > 0)		&&
795 			   (*(V + 30 + v - 2) > 0)		&&
796 			   (*(V + 30 + v - 3) > 0)		&&
797 			   (*(V + 30 + v - 1) > *(V + 30 + v))	&&
798 			   (*(V + 30 + v - 2) > *(V + 30 + v - 3)) &&
799 			   ((*(V + 30 + v - 1) > SIGMIN)	||
800 			   (*(V + 30 + v - 2) > SIGMIN))) {
801 			/* (case 3) */
802 			if (*(V + 30 + v - 1) >= *(V + 30 + v - 2)) {
803 				swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
804 				*SIG1 = *(V + 30 + v - 1);
805 			} else {
806 				swp_freq = fOSC * 1000 + afcex_freq - swp_ofs * 2;
807 				*SIG1 = *(V + 30 + v - 2);
808 			}
809 		} else if ((v == vmax)				&&
810 			   (*(V + 30 + v) >= 0)			&&
811 			   (*(V + 30 + v - 1) >= 0)		&&
812 			   (*(V + 30 + v - 2) >= 0)		&&
813 			   (*(V + 30 + v) > *(V + 30 + v - 2))	&&
814 			   (*(V + 30 + v - 1) > *(V + 30 + v - 2)) &&
815 			   ((*(V + 30 + v) > SIGMIN)		||
816 			   (*(V + 30 + v - 1) > SIGMIN))) {
817 			/* (case 4) */
818 			if (*(V + 30 + v) >= *(V + 30 + v - 1)) {
819 				swp_freq = fOSC * 1000 + afcex_freq;
820 				*SIG1 = *(V + 30 + v);
821 			} else {
822 				swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
823 				*SIG1 = *(V + 30 + v - 1);
824 			}
825 		} else  {
826 			swp_freq = -1 ;
827 		}
828 	} else if ((i % 2 == 0) && (v >= vmin)) {
829 		/* Negative v (case 1) */
830 		if ((*(V + 30 + v) > 0)				&&
831 		    (*(V + 30 + v + 1) > 0)			&&
832 		    (*(V + 30 + v + 2) > 0)			&&
833 		    (*(V + 30 + v + 1) > *(V + 30 + v))		&&
834 		    (*(V + 30 + v + 1) > *(V + 30 + v + 2))	&&
835 		    (*(V + 30 + v + 1) > SIGMIN)) {
836 
837 			swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
838 			*SIG1 = *(V + 30 + v + 1);
839 		} else if ((v + 1 == vmax)			&&
840 			   (*(V + 30 + v) >= 0)			&&
841 			   (*(V + 30 + v + 1) >= 0)		&&
842 			   (*(V + 30 + v + 1) > *(V + 30 + v))	&&
843 			   (*(V + 30 + v + 1) > SIGMIN)) {
844 			/* (case 2) */
845 			swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
846 			*SIG1 = *(V + 30 + v);
847 		} else if ((v == vmin)				&&
848 			   (*(V + 30 + v) > 0)			&&
849 			   (*(V + 30 + v + 1) > 0)		&&
850 			   (*(V + 30 + v + 2) > 0)		&&
851 			   (*(V + 30 + v) > *(V + 30 + v + 1))	&&
852 			   (*(V + 30 + v) > *(V + 30 + v + 2))	&&
853 			   (*(V + 30 + v) > SIGMIN)) {
854 			/* (case 3) */
855 			swp_freq = fOSC * 1000 + afcex_freq;
856 			*SIG1 = *(V + 30 + v);
857 		} else if ((*(V + 30 + v) >= 0)			&&
858 			   (*(V + 30 + v + 1) >= 0)		&&
859 			   (*(V + 30 + v + 2) >= 0)		&&
860 			   (*(V + 30 + v + 3) >= 0)		&&
861 			   (*(V + 30 + v + 1) > *(V + 30 + v))	&&
862 			   (*(V + 30 + v + 2) > *(V + 30 + v + 3)) &&
863 			   ((*(V + 30 + v + 1) > SIGMIN)	||
864 			    (*(V + 30 + v + 2) > SIGMIN))) {
865 			/* (case 4) */
866 			if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
867 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
868 				*SIG1 = *(V + 30 + v + 1);
869 			} else {
870 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
871 				*SIG1 = *(V + 30 + v + 2);
872 			}
873 		} else if ((*(V + 30 + v) >= 0)			&&
874 			   (*(V + 30 + v + 1) >= 0)		&&
875 			   (*(V + 30 + v + 2) >= 0)		&&
876 			   (*(V + 30 + v + 3) >= 0)		&&
877 			   (*(V + 30 + v) > *(V + 30 + v + 2))	&&
878 			   (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
879 			   (*(V + 30 + v) > *(V + 30 + v + 3))	&&
880 			   (*(V + 30 + v + 1) > *(V + 30 + v + 3)) &&
881 			   ((*(V + 30 + v) > SIGMIN)		||
882 			    (*(V + 30 + v + 1) > SIGMIN))) {
883 			/* (case 5) */
884 			if (*(V + 30 + v) >= *(V + 30 + v + 1)) {
885 				swp_freq = fOSC * 1000 + afcex_freq;
886 				*SIG1 = *(V + 30 + v);
887 			} else {
888 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
889 				*SIG1 = *(V + 30 + v + 1);
890 			}
891 		} else if ((v + 2 == vmin)			&&
892 			   (*(V + 30 + v) >= 0)			&&
893 			   (*(V + 30 + v + 1) >= 0)		&&
894 			   (*(V + 30 + v + 2) >= 0)		&&
895 			   (*(V + 30 + v + 1) > *(V + 30 + v))	&&
896 			   (*(V + 30 + v + 2) > *(V + 30 + v))	&&
897 			   ((*(V + 30 + v + 1) > SIGMIN)	||
898 			    (*(V + 30 + v + 2) > SIGMIN))) {
899 			/* (case 6) */
900 			if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
901 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
902 				*SIG1 = *(V + 30 + v + 1);
903 			} else {
904 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
905 				*SIG1 = *(V + 30 + v + 2);
906 			}
907 		} else if ((vmax == 0) && (vmin == 0) && (*(V + 30 + v) > SIGMIN)) {
908 			swp_freq = fOSC * 1000;
909 			*SIG1 = *(V + 30 + v);
910 		} else
911 			swp_freq = -1;
912 	} else
913 		swp_freq = -1;
914 
915 	return swp_freq;
916 }
917 
918 static void swp_info_get2(struct mb86a16_state *state,
919 			  int smrt,
920 			  int R,
921 			  int swp_freq,
922 			  int *afcex_freq,
923 			  int *fOSC,
924 			  unsigned char *AFCEX_L,
925 			  unsigned char *AFCEX_H)
926 {
927 	int AFCEX ;
928 
929 	if (R == 0)
930 		*fOSC = (swp_freq + 1000) / 2000 * 2;
931 	else
932 		*fOSC = (swp_freq + 500) / 1000;
933 
934 	if (*fOSC >= swp_freq)
935 		*afcex_freq = *fOSC * 1000 - swp_freq;
936 	else
937 		*afcex_freq = swp_freq - *fOSC * 1000;
938 
939 	AFCEX = *afcex_freq * 8192 / state->master_clk;
940 	*AFCEX_L =  AFCEX & 0x00ff;
941 	*AFCEX_H = (AFCEX & 0x0f00) >> 8;
942 }
943 
944 static void afcex_info_get(struct mb86a16_state *state,
945 			   int afcex_freq,
946 			   unsigned char *AFCEX_L,
947 			   unsigned char *AFCEX_H)
948 {
949 	int AFCEX ;
950 
951 	AFCEX = afcex_freq * 8192 / state->master_clk;
952 	*AFCEX_L =  AFCEX & 0x00ff;
953 	*AFCEX_H = (AFCEX & 0x0f00) >> 8;
954 }
955 
956 static int SEQ_set(struct mb86a16_state *state, unsigned char loop)
957 {
958 	/* SLOCK0 = 0 */
959 	if (mb86a16_write(state, 0x32, 0x02 | (loop << 2)) < 0) {
960 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
961 		return -EREMOTEIO;
962 	}
963 
964 	return 0;
965 }
966 
967 static int iq_vt_set(struct mb86a16_state *state, unsigned char IQINV)
968 {
969 	/* Viterbi Rate, IQ Settings */
970 	if (mb86a16_write(state, 0x06, 0xdf | (IQINV << 5)) < 0) {
971 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
972 		return -EREMOTEIO;
973 	}
974 
975 	return 0;
976 }
977 
978 static int FEC_srst(struct mb86a16_state *state)
979 {
980 	if (mb86a16_write(state, MB86A16_RESET, 0x02) < 0) {
981 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
982 		return -EREMOTEIO;
983 	}
984 
985 	return 0;
986 }
987 
988 static int S2T_set(struct mb86a16_state *state, unsigned char S2T)
989 {
990 	if (mb86a16_write(state, 0x34, 0x70 | S2T) < 0) {
991 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
992 		return -EREMOTEIO;
993 	}
994 
995 	return 0;
996 }
997 
998 static int S45T_set(struct mb86a16_state *state, unsigned char S4T, unsigned char S5T)
999 {
1000 	if (mb86a16_write(state, 0x35, 0x00 | (S5T << 4) | S4T) < 0) {
1001 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1002 		return -EREMOTEIO;
1003 	}
1004 
1005 	return 0;
1006 }
1007 
1008 
1009 static int mb86a16_set_fe(struct mb86a16_state *state)
1010 {
1011 	u8 agcval, cnmval;
1012 
1013 	int i, j;
1014 	int fOSC = 0;
1015 	int fOSC_start = 0;
1016 	int wait_t;
1017 	int fcp;
1018 	int swp_ofs;
1019 	int V[60];
1020 	u8 SIG1MIN;
1021 
1022 	unsigned char CREN, AFCEN, AFCEXEN;
1023 	unsigned char SIG1;
1024 	unsigned char TIMINT1, TIMINT2, TIMEXT;
1025 	unsigned char S0T, S1T;
1026 	unsigned char S2T;
1027 /*	unsigned char S2T, S3T; */
1028 	unsigned char S4T, S5T;
1029 	unsigned char AFCEX_L, AFCEX_H;
1030 	unsigned char R;
1031 	unsigned char VIRM;
1032 	unsigned char ETH, VIA;
1033 	unsigned char junk;
1034 
1035 	int loop;
1036 	int ftemp;
1037 	int v, vmax, vmin;
1038 	int vmax_his, vmin_his;
1039 	int swp_freq, prev_swp_freq[20];
1040 	int prev_freq_num;
1041 	int signal_dupl;
1042 	int afcex_freq;
1043 	int signal;
1044 	int afcerr;
1045 	int temp_freq, delta_freq;
1046 	int dagcm[4];
1047 	int smrt_d;
1048 /*	int freq_err; */
1049 	int n;
1050 	int ret = -1;
1051 	int sync;
1052 
1053 	dprintk(verbose, MB86A16_INFO, 1, "freq=%d Mhz, symbrt=%d Ksps", state->frequency, state->srate);
1054 
1055 	fcp = 3000;
1056 	swp_ofs = state->srate / 4;
1057 
1058 	for (i = 0; i < 60; i++)
1059 		V[i] = -1;
1060 
1061 	for (i = 0; i < 20; i++)
1062 		prev_swp_freq[i] = 0;
1063 
1064 	SIG1MIN = 25;
1065 
1066 	for (n = 0; ((n < 3) && (ret == -1)); n++) {
1067 		SEQ_set(state, 0);
1068 		iq_vt_set(state, 0);
1069 
1070 		CREN = 0;
1071 		AFCEN = 0;
1072 		AFCEXEN = 1;
1073 		TIMINT1 = 0;
1074 		TIMINT2 = 1;
1075 		TIMEXT = 2;
1076 		S1T = 0;
1077 		S0T = 0;
1078 
1079 		if (initial_set(state) < 0) {
1080 			dprintk(verbose, MB86A16_ERROR, 1, "initial set failed");
1081 			return -1;
1082 		}
1083 		if (DAGC_data_set(state, 3, 2) < 0) {
1084 			dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1085 			return -1;
1086 		}
1087 		if (EN_set(state, CREN, AFCEN) < 0) {
1088 			dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1089 			return -1; /* (0, 0) */
1090 		}
1091 		if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1092 			dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1093 			return -1; /* (1, smrt) = (1, symbolrate) */
1094 		}
1095 		if (CNTM_set(state, TIMINT1, TIMINT2, TIMEXT) < 0) {
1096 			dprintk(verbose, MB86A16_ERROR, 1, "CNTM set error");
1097 			return -1; /* (0, 1, 2) */
1098 		}
1099 		if (S01T_set(state, S1T, S0T) < 0) {
1100 			dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1101 			return -1; /* (0, 0) */
1102 		}
1103 		smrt_info_get(state, state->srate);
1104 		if (smrt_set(state, state->srate) < 0) {
1105 			dprintk(verbose, MB86A16_ERROR, 1, "smrt info get error");
1106 			return -1;
1107 		}
1108 
1109 		R = vco_dev_get(state, state->srate);
1110 		if (R == 1)
1111 			fOSC_start = state->frequency;
1112 
1113 		else if (R == 0) {
1114 			if (state->frequency % 2 == 0) {
1115 				fOSC_start = state->frequency;
1116 			} else {
1117 				fOSC_start = state->frequency + 1;
1118 				if (fOSC_start > 2150)
1119 					fOSC_start = state->frequency - 1;
1120 			}
1121 		}
1122 		loop = 1;
1123 		ftemp = fOSC_start * 1000;
1124 		vmax = 0 ;
1125 		while (loop == 1) {
1126 			ftemp = ftemp + swp_ofs;
1127 			vmax++;
1128 
1129 			/* Upper bound */
1130 			if (ftemp > 2150000) {
1131 				loop = 0;
1132 				vmax--;
1133 			} else {
1134 				if ((ftemp == 2150000) ||
1135 				    (ftemp - state->frequency * 1000 >= fcp + state->srate / 4))
1136 					loop = 0;
1137 			}
1138 		}
1139 
1140 		loop = 1;
1141 		ftemp = fOSC_start * 1000;
1142 		vmin = 0 ;
1143 		while (loop == 1) {
1144 			ftemp = ftemp - swp_ofs;
1145 			vmin--;
1146 
1147 			/* Lower bound */
1148 			if (ftemp < 950000) {
1149 				loop = 0;
1150 				vmin++;
1151 			} else {
1152 				if ((ftemp == 950000) ||
1153 				    (state->frequency * 1000 - ftemp >= fcp + state->srate / 4))
1154 					loop = 0;
1155 			}
1156 		}
1157 
1158 		wait_t = (8000 + state->srate / 2) / state->srate;
1159 		if (wait_t == 0)
1160 			wait_t = 1;
1161 
1162 		i = 0;
1163 		j = 0;
1164 		prev_freq_num = 0;
1165 		loop = 1;
1166 		signal = 0;
1167 		vmax_his = 0;
1168 		vmin_his = 0;
1169 		v = 0;
1170 
1171 		while (loop == 1) {
1172 			swp_info_get(state, fOSC_start, state->srate,
1173 				     v, R, swp_ofs, &fOSC,
1174 				     &afcex_freq, &AFCEX_L, &AFCEX_H);
1175 
1176 			udelay(100);
1177 			if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1178 				dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1179 				return -1;
1180 			}
1181 			udelay(100);
1182 			if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1183 				dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1184 				return -1;
1185 			}
1186 			if (srst(state) < 0) {
1187 				dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1188 				return -1;
1189 			}
1190 			msleep_interruptible(wait_t);
1191 
1192 			if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1193 				dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1194 				return -1;
1195 			}
1196 			V[30 + v] = SIG1 ;
1197 			swp_freq = swp_freq_calcuation(state, i, v, V, vmax, vmin,
1198 						      SIG1MIN, fOSC, afcex_freq,
1199 						      swp_ofs, &SIG1);	/* changed */
1200 
1201 			signal_dupl = 0;
1202 			for (j = 0; j < prev_freq_num; j++) {
1203 				if ((abs(prev_swp_freq[j] - swp_freq)) < (swp_ofs * 3 / 2)) {
1204 					signal_dupl = 1;
1205 					dprintk(verbose, MB86A16_INFO, 1, "Probably Duplicate Signal, j = %d", j);
1206 				}
1207 			}
1208 			if ((signal_dupl == 0) && (swp_freq > 0) && (abs(swp_freq - state->frequency * 1000) < fcp + state->srate / 6)) {
1209 				dprintk(verbose, MB86A16_DEBUG, 1, "------ Signal detect ------ [swp_freq=[%07d, srate=%05d]]", swp_freq, state->srate);
1210 				prev_swp_freq[prev_freq_num] = swp_freq;
1211 				prev_freq_num++;
1212 				swp_info_get2(state, state->srate, R, swp_freq,
1213 					      &afcex_freq, &fOSC,
1214 					      &AFCEX_L, &AFCEX_H);
1215 
1216 				if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1217 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1218 					return -1;
1219 				}
1220 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1221 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1222 					return -1;
1223 				}
1224 				signal = signal_det(state, state->srate, &SIG1);
1225 				if (signal == 1) {
1226 					dprintk(verbose, MB86A16_ERROR, 1, "***** Signal Found *****");
1227 					loop = 0;
1228 				} else {
1229 					dprintk(verbose, MB86A16_ERROR, 1, "!!!!! No signal !!!!!, try again...");
1230 					smrt_info_get(state, state->srate);
1231 					if (smrt_set(state, state->srate) < 0) {
1232 						dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1233 						return -1;
1234 					}
1235 				}
1236 			}
1237 			if (v > vmax)
1238 				vmax_his = 1 ;
1239 			if (v < vmin)
1240 				vmin_his = 1 ;
1241 			i++;
1242 
1243 			if ((i % 2 == 1) && (vmax_his == 1))
1244 				i++;
1245 			if ((i % 2 == 0) && (vmin_his == 1))
1246 				i++;
1247 
1248 			if (i % 2 == 1)
1249 				v = (i + 1) / 2;
1250 			else
1251 				v = -i / 2;
1252 
1253 			if ((vmax_his == 1) && (vmin_his == 1))
1254 				loop = 0 ;
1255 		}
1256 
1257 		if (signal == 1) {
1258 			dprintk(verbose, MB86A16_INFO, 1, " Start Freq Error Check");
1259 			S1T = 7 ;
1260 			S0T = 1 ;
1261 			CREN = 0 ;
1262 			AFCEN = 1 ;
1263 			AFCEXEN = 0 ;
1264 
1265 			if (S01T_set(state, S1T, S0T) < 0) {
1266 				dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1267 				return -1;
1268 			}
1269 			smrt_info_get(state, state->srate);
1270 			if (smrt_set(state, state->srate) < 0) {
1271 				dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1272 				return -1;
1273 			}
1274 			if (EN_set(state, CREN, AFCEN) < 0) {
1275 				dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1276 				return -1;
1277 			}
1278 			if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1279 				dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1280 				return -1;
1281 			}
1282 			afcex_info_get(state, afcex_freq, &AFCEX_L, &AFCEX_H);
1283 			if (afcofs_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1284 				dprintk(verbose, MB86A16_ERROR, 1, "AFCOFS data set error");
1285 				return -1;
1286 			}
1287 			if (srst(state) < 0) {
1288 				dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1289 				return -1;
1290 			}
1291 			/* delay 4~200 */
1292 			wait_t = 200000 / state->master_clk + 200000 / state->srate;
1293 			msleep(wait_t);
1294 			afcerr = afcerr_chk(state);
1295 			if (afcerr == -1)
1296 				return -1;
1297 
1298 			swp_freq = fOSC * 1000 + afcerr ;
1299 			AFCEXEN = 1 ;
1300 			if (state->srate >= 1500)
1301 				smrt_d = state->srate / 3;
1302 			else
1303 				smrt_d = state->srate / 2;
1304 			smrt_info_get(state, smrt_d);
1305 			if (smrt_set(state, smrt_d) < 0) {
1306 				dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1307 				return -1;
1308 			}
1309 			if (AFCEXEN_set(state, AFCEXEN, smrt_d) < 0) {
1310 				dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1311 				return -1;
1312 			}
1313 			R = vco_dev_get(state, smrt_d);
1314 			if (DAGC_data_set(state, 2, 0) < 0) {
1315 				dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1316 				return -1;
1317 			}
1318 			for (i = 0; i < 3; i++) {
1319 				temp_freq = swp_freq + (i - 1) * state->srate / 8;
1320 				swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1321 				if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1322 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1323 					return -1;
1324 				}
1325 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1326 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1327 					return -1;
1328 				}
1329 				wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1330 				msleep(wait_t);
1331 				dagcm[i] = dagcm_val_get(state);
1332 			}
1333 			if ((dagcm[0] > dagcm[1]) &&
1334 			    (dagcm[0] > dagcm[2]) &&
1335 			    (dagcm[0] - dagcm[1] > 2 * (dagcm[2] - dagcm[1]))) {
1336 
1337 				temp_freq = swp_freq - 2 * state->srate / 8;
1338 				swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1339 				if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1340 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1341 					return -1;
1342 				}
1343 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1344 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1345 					return -1;
1346 				}
1347 				wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1348 				msleep(wait_t);
1349 				dagcm[3] = dagcm_val_get(state);
1350 				if (dagcm[3] > dagcm[1])
1351 					delta_freq = (dagcm[2] - dagcm[0] + dagcm[1] - dagcm[3]) * state->srate / 300;
1352 				else
1353 					delta_freq = 0;
1354 			} else if ((dagcm[2] > dagcm[1]) &&
1355 				   (dagcm[2] > dagcm[0]) &&
1356 				   (dagcm[2] - dagcm[1] > 2 * (dagcm[0] - dagcm[1]))) {
1357 
1358 				temp_freq = swp_freq + 2 * state->srate / 8;
1359 				swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1360 				if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1361 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set");
1362 					return -1;
1363 				}
1364 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1365 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1366 					return -1;
1367 				}
1368 				wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1369 				msleep(wait_t);
1370 				dagcm[3] = dagcm_val_get(state);
1371 				if (dagcm[3] > dagcm[1])
1372 					delta_freq = (dagcm[2] - dagcm[0] + dagcm[3] - dagcm[1]) * state->srate / 300;
1373 				else
1374 					delta_freq = 0 ;
1375 
1376 			} else {
1377 				delta_freq = 0 ;
1378 			}
1379 			dprintk(verbose, MB86A16_INFO, 1, "SWEEP Frequency = %d", swp_freq);
1380 			swp_freq += delta_freq;
1381 			dprintk(verbose, MB86A16_INFO, 1, "Adjusting .., DELTA Freq = %d, SWEEP Freq=%d", delta_freq, swp_freq);
1382 			if (abs(state->frequency * 1000 - swp_freq) > 3800) {
1383 				dprintk(verbose, MB86A16_INFO, 1, "NO  --  SIGNAL !");
1384 			} else {
1385 
1386 				S1T = 0;
1387 				S0T = 3;
1388 				CREN = 1;
1389 				AFCEN = 0;
1390 				AFCEXEN = 1;
1391 
1392 				if (S01T_set(state, S1T, S0T) < 0) {
1393 					dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1394 					return -1;
1395 				}
1396 				if (DAGC_data_set(state, 0, 0) < 0) {
1397 					dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1398 					return -1;
1399 				}
1400 				R = vco_dev_get(state, state->srate);
1401 				smrt_info_get(state, state->srate);
1402 				if (smrt_set(state, state->srate) < 0) {
1403 					dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1404 					return -1;
1405 				}
1406 				if (EN_set(state, CREN, AFCEN) < 0) {
1407 					dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1408 					return -1;
1409 				}
1410 				if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1411 					dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1412 					return -1;
1413 				}
1414 				swp_info_get2(state, state->srate, R, swp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1415 				if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1416 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1417 					return -1;
1418 				}
1419 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1420 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1421 					return -1;
1422 				}
1423 				if (srst(state) < 0) {
1424 					dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1425 					return -1;
1426 				}
1427 				wait_t = 7 + (10000 + state->srate / 2) / state->srate;
1428 				if (wait_t == 0)
1429 					wait_t = 1;
1430 				msleep_interruptible(wait_t);
1431 				if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1432 					dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1433 					return -EREMOTEIO;
1434 				}
1435 
1436 				if (SIG1 > 110) {
1437 					S2T = 4; S4T = 1; S5T = 6; ETH = 4; VIA = 6;
1438 					wait_t = 7 + (917504 + state->srate / 2) / state->srate;
1439 				} else if (SIG1 > 105) {
1440 					S2T = 4; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1441 					wait_t = 7 + (1048576 + state->srate / 2) / state->srate;
1442 				} else if (SIG1 > 85) {
1443 					S2T = 5; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1444 					wait_t = 7 + (1310720 + state->srate / 2) / state->srate;
1445 				} else if (SIG1 > 65) {
1446 					S2T = 6; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1447 					wait_t = 7 + (1572864 + state->srate / 2) / state->srate;
1448 				} else {
1449 					S2T = 7; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1450 					wait_t = 7 + (2097152 + state->srate / 2) / state->srate;
1451 				}
1452 				wait_t *= 2; /* FOS */
1453 				S2T_set(state, S2T);
1454 				S45T_set(state, S4T, S5T);
1455 				Vi_set(state, ETH, VIA);
1456 				srst(state);
1457 				msleep_interruptible(wait_t);
1458 				sync = sync_chk(state, &VIRM);
1459 				dprintk(verbose, MB86A16_INFO, 1, "-------- Viterbi=[%d] SYNC=[%d] ---------", VIRM, sync);
1460 				if (VIRM) {
1461 					if (VIRM == 4) {
1462 						/* 5/6 */
1463 						if (SIG1 > 110)
1464 							wait_t = (786432 + state->srate / 2) / state->srate;
1465 						else
1466 							wait_t = (1572864 + state->srate / 2) / state->srate;
1467 						if (state->srate < 5000)
1468 							/* FIXME ! , should be a long wait ! */
1469 							msleep_interruptible(wait_t);
1470 						else
1471 							msleep_interruptible(wait_t);
1472 
1473 						if (sync_chk(state, &junk) == 0) {
1474 							iq_vt_set(state, 1);
1475 							FEC_srst(state);
1476 						}
1477 					}
1478 					/* 1/2, 2/3, 3/4, 7/8 */
1479 					if (SIG1 > 110)
1480 						wait_t = (786432 + state->srate / 2) / state->srate;
1481 					else
1482 						wait_t = (1572864 + state->srate / 2) / state->srate;
1483 					msleep_interruptible(wait_t);
1484 					SEQ_set(state, 1);
1485 				} else {
1486 					dprintk(verbose, MB86A16_INFO, 1, "NO  -- SYNC");
1487 					SEQ_set(state, 1);
1488 					ret = -1;
1489 				}
1490 			}
1491 		} else {
1492 			dprintk(verbose, MB86A16_INFO, 1, "NO  -- SIGNAL");
1493 			ret = -1;
1494 		}
1495 
1496 		sync = sync_chk(state, &junk);
1497 		if (sync) {
1498 			dprintk(verbose, MB86A16_INFO, 1, "******* SYNC *******");
1499 			freqerr_chk(state, state->frequency, state->srate, 1);
1500 			ret = 0;
1501 			break;
1502 		}
1503 	}
1504 
1505 	mb86a16_read(state, 0x15, &agcval);
1506 	mb86a16_read(state, 0x26, &cnmval);
1507 	dprintk(verbose, MB86A16_INFO, 1, "AGC = %02x CNM = %02x", agcval, cnmval);
1508 
1509 	return ret;
1510 }
1511 
1512 static int mb86a16_send_diseqc_msg(struct dvb_frontend *fe,
1513 				   struct dvb_diseqc_master_cmd *cmd)
1514 {
1515 	struct mb86a16_state *state = fe->demodulator_priv;
1516 	int i;
1517 	u8 regs;
1518 
1519 	if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1520 		goto err;
1521 	if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1522 		goto err;
1523 	if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1524 		goto err;
1525 
1526 	regs = 0x18;
1527 
1528 	if (cmd->msg_len > 5 || cmd->msg_len < 4)
1529 		return -EINVAL;
1530 
1531 	for (i = 0; i < cmd->msg_len; i++) {
1532 		if (mb86a16_write(state, regs, cmd->msg[i]) < 0)
1533 			goto err;
1534 
1535 		regs++;
1536 	}
1537 	i += 0x90;
1538 
1539 	msleep_interruptible(10);
1540 
1541 	if (mb86a16_write(state, MB86A16_DCC1, i) < 0)
1542 		goto err;
1543 	if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1544 		goto err;
1545 
1546 	return 0;
1547 
1548 err:
1549 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1550 	return -EREMOTEIO;
1551 }
1552 
1553 static int mb86a16_send_diseqc_burst(struct dvb_frontend *fe,
1554 				     enum fe_sec_mini_cmd burst)
1555 {
1556 	struct mb86a16_state *state = fe->demodulator_priv;
1557 
1558 	switch (burst) {
1559 	case SEC_MINI_A:
1560 		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1561 						       MB86A16_DCC1_TBEN  |
1562 						       MB86A16_DCC1_TBO) < 0)
1563 			goto err;
1564 		if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1565 			goto err;
1566 		break;
1567 	case SEC_MINI_B:
1568 		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1569 						       MB86A16_DCC1_TBEN) < 0)
1570 			goto err;
1571 		if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1572 			goto err;
1573 		break;
1574 	}
1575 
1576 	return 0;
1577 err:
1578 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1579 	return -EREMOTEIO;
1580 }
1581 
1582 static int mb86a16_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
1583 {
1584 	struct mb86a16_state *state = fe->demodulator_priv;
1585 
1586 	switch (tone) {
1587 	case SEC_TONE_ON:
1588 		if (mb86a16_write(state, MB86A16_TONEOUT2, 0x00) < 0)
1589 			goto err;
1590 		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1591 						       MB86A16_DCC1_CTOE) < 0)
1592 
1593 			goto err;
1594 		if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1595 			goto err;
1596 		break;
1597 	case SEC_TONE_OFF:
1598 		if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1599 			goto err;
1600 		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1601 			goto err;
1602 		if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1603 			goto err;
1604 		break;
1605 	default:
1606 		return -EINVAL;
1607 	}
1608 	return 0;
1609 
1610 err:
1611 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1612 	return -EREMOTEIO;
1613 }
1614 
1615 static enum dvbfe_search mb86a16_search(struct dvb_frontend *fe)
1616 {
1617 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1618 	struct mb86a16_state *state = fe->demodulator_priv;
1619 
1620 	state->frequency = p->frequency / 1000;
1621 	state->srate = p->symbol_rate / 1000;
1622 
1623 	if (!mb86a16_set_fe(state)) {
1624 		dprintk(verbose, MB86A16_ERROR, 1, "Successfully acquired LOCK");
1625 		return DVBFE_ALGO_SEARCH_SUCCESS;
1626 	}
1627 
1628 	dprintk(verbose, MB86A16_ERROR, 1, "Lock acquisition failed!");
1629 	return DVBFE_ALGO_SEARCH_FAILED;
1630 }
1631 
1632 static void mb86a16_release(struct dvb_frontend *fe)
1633 {
1634 	struct mb86a16_state *state = fe->demodulator_priv;
1635 	kfree(state);
1636 }
1637 
1638 static int mb86a16_init(struct dvb_frontend *fe)
1639 {
1640 	return 0;
1641 }
1642 
1643 static int mb86a16_sleep(struct dvb_frontend *fe)
1644 {
1645 	return 0;
1646 }
1647 
1648 static int mb86a16_read_ber(struct dvb_frontend *fe, u32 *ber)
1649 {
1650 	u8 ber_mon, ber_tab, ber_lsb, ber_mid, ber_msb, ber_tim, ber_rst;
1651 	u32 timer;
1652 
1653 	struct mb86a16_state *state = fe->demodulator_priv;
1654 
1655 	*ber = 0;
1656 	if (mb86a16_read(state, MB86A16_BERMON, &ber_mon) != 2)
1657 		goto err;
1658 	if (mb86a16_read(state, MB86A16_BERTAB, &ber_tab) != 2)
1659 		goto err;
1660 	if (mb86a16_read(state, MB86A16_BERLSB, &ber_lsb) != 2)
1661 		goto err;
1662 	if (mb86a16_read(state, MB86A16_BERMID, &ber_mid) != 2)
1663 		goto err;
1664 	if (mb86a16_read(state, MB86A16_BERMSB, &ber_msb) != 2)
1665 		goto err;
1666 	/* BER monitor invalid when BER_EN = 0	*/
1667 	if (ber_mon & 0x04) {
1668 		/* coarse, fast calculation	*/
1669 		*ber = ber_tab & 0x1f;
1670 		dprintk(verbose, MB86A16_DEBUG, 1, "BER coarse=[0x%02x]", *ber);
1671 		if (ber_mon & 0x01) {
1672 			/*
1673 			 * BER_SEL = 1, The monitored BER is the estimated
1674 			 * value with a Reed-Solomon decoder error amount at
1675 			 * the deinterleaver output.
1676 			 * monitored BER is expressed as a 20 bit output in total
1677 			 */
1678 			ber_rst = (ber_mon >> 3) & 0x03;
1679 			*ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1680 			if (ber_rst == 0)
1681 				timer =  12500000;
1682 			else if (ber_rst == 1)
1683 				timer =  25000000;
1684 			else if (ber_rst == 2)
1685 				timer =  50000000;
1686 			else /* ber_rst == 3 */
1687 				timer = 100000000;
1688 
1689 			*ber /= timer;
1690 			dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1691 		} else {
1692 			/*
1693 			 * BER_SEL = 0, The monitored BER is the estimated
1694 			 * value with a Viterbi decoder error amount at the
1695 			 * QPSK demodulator output.
1696 			 * monitored BER is expressed as a 24 bit output in total
1697 			 */
1698 			ber_tim = (ber_mon >> 1) & 0x01;
1699 			*ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1700 			if (ber_tim == 0)
1701 				timer = 16;
1702 			else /* ber_tim == 1 */
1703 				timer = 24;
1704 
1705 			*ber /= 2 ^ timer;
1706 			dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1707 		}
1708 	}
1709 	return 0;
1710 err:
1711 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1712 	return -EREMOTEIO;
1713 }
1714 
1715 static int mb86a16_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1716 {
1717 	u8 agcm = 0;
1718 	struct mb86a16_state *state = fe->demodulator_priv;
1719 
1720 	*strength = 0;
1721 	if (mb86a16_read(state, MB86A16_AGCM, &agcm) != 2) {
1722 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1723 		return -EREMOTEIO;
1724 	}
1725 
1726 	*strength = ((0xff - agcm) * 100) / 256;
1727 	dprintk(verbose, MB86A16_DEBUG, 1, "Signal strength=[%d %%]", (u8) *strength);
1728 	*strength = (0xffff - 0xff) + agcm;
1729 
1730 	return 0;
1731 }
1732 
1733 struct cnr {
1734 	u8 cn_reg;
1735 	u8 cn_val;
1736 };
1737 
1738 static const struct cnr cnr_tab[] = {
1739 	{  35,  2 },
1740 	{  40,  3 },
1741 	{  50,  4 },
1742 	{  60,  5 },
1743 	{  70,  6 },
1744 	{  80,  7 },
1745 	{  92,  8 },
1746 	{ 103,  9 },
1747 	{ 115, 10 },
1748 	{ 138, 12 },
1749 	{ 162, 15 },
1750 	{ 180, 18 },
1751 	{ 185, 19 },
1752 	{ 189, 20 },
1753 	{ 195, 22 },
1754 	{ 199, 24 },
1755 	{ 201, 25 },
1756 	{ 202, 26 },
1757 	{ 203, 27 },
1758 	{ 205, 28 },
1759 	{ 208, 30 }
1760 };
1761 
1762 static int mb86a16_read_snr(struct dvb_frontend *fe, u16 *snr)
1763 {
1764 	struct mb86a16_state *state = fe->demodulator_priv;
1765 	int i = 0;
1766 	int low_tide = 2, high_tide = 30, q_level;
1767 	u8  cn;
1768 
1769 	*snr = 0;
1770 	if (mb86a16_read(state, 0x26, &cn) != 2) {
1771 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1772 		return -EREMOTEIO;
1773 	}
1774 
1775 	for (i = 0; i < ARRAY_SIZE(cnr_tab); i++) {
1776 		if (cn < cnr_tab[i].cn_reg) {
1777 			*snr = cnr_tab[i].cn_val;
1778 			break;
1779 		}
1780 	}
1781 	q_level = (*snr * 100) / (high_tide - low_tide);
1782 	dprintk(verbose, MB86A16_ERROR, 1, "SNR (Quality) = [%d dB], Level=%d %%", *snr, q_level);
1783 	*snr = (0xffff - 0xff) + *snr;
1784 
1785 	return 0;
1786 }
1787 
1788 static int mb86a16_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1789 {
1790 	u8 dist;
1791 	struct mb86a16_state *state = fe->demodulator_priv;
1792 
1793 	if (mb86a16_read(state, MB86A16_DISTMON, &dist) != 2) {
1794 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1795 		return -EREMOTEIO;
1796 	}
1797 	*ucblocks = dist;
1798 
1799 	return 0;
1800 }
1801 
1802 static enum dvbfe_algo mb86a16_frontend_algo(struct dvb_frontend *fe)
1803 {
1804 	return DVBFE_ALGO_CUSTOM;
1805 }
1806 
1807 static const struct dvb_frontend_ops mb86a16_ops = {
1808 	.delsys = { SYS_DVBS },
1809 	.info = {
1810 		.name			= "Fujitsu MB86A16 DVB-S",
1811 		.frequency_min_hz	=  950 * MHz,
1812 		.frequency_max_hz	= 2150 * MHz,
1813 		.frequency_stepsize_hz	=    3 * MHz,
1814 		.symbol_rate_min	= 1000000,
1815 		.symbol_rate_max	= 45000000,
1816 		.symbol_rate_tolerance	= 500,
1817 		.caps			= FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
1818 					  FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
1819 					  FE_CAN_FEC_7_8 | FE_CAN_QPSK    |
1820 					  FE_CAN_FEC_AUTO
1821 	},
1822 	.release			= mb86a16_release,
1823 
1824 	.get_frontend_algo		= mb86a16_frontend_algo,
1825 	.search				= mb86a16_search,
1826 	.init				= mb86a16_init,
1827 	.sleep				= mb86a16_sleep,
1828 	.read_status			= mb86a16_read_status,
1829 
1830 	.read_ber			= mb86a16_read_ber,
1831 	.read_signal_strength		= mb86a16_read_signal_strength,
1832 	.read_snr			= mb86a16_read_snr,
1833 	.read_ucblocks			= mb86a16_read_ucblocks,
1834 
1835 	.diseqc_send_master_cmd		= mb86a16_send_diseqc_msg,
1836 	.diseqc_send_burst		= mb86a16_send_diseqc_burst,
1837 	.set_tone			= mb86a16_set_tone,
1838 };
1839 
1840 struct dvb_frontend *mb86a16_attach(const struct mb86a16_config *config,
1841 				    struct i2c_adapter *i2c_adap)
1842 {
1843 	u8 dev_id = 0;
1844 	struct mb86a16_state *state = NULL;
1845 
1846 	state = kmalloc(sizeof(struct mb86a16_state), GFP_KERNEL);
1847 	if (state == NULL)
1848 		goto error;
1849 
1850 	state->config = config;
1851 	state->i2c_adap = i2c_adap;
1852 
1853 	mb86a16_read(state, 0x7f, &dev_id);
1854 	if (dev_id != 0xfe)
1855 		goto error;
1856 
1857 	memcpy(&state->frontend.ops, &mb86a16_ops, sizeof(struct dvb_frontend_ops));
1858 	state->frontend.demodulator_priv = state;
1859 	state->frontend.ops.set_voltage = state->config->set_voltage;
1860 
1861 	return &state->frontend;
1862 error:
1863 	kfree(state);
1864 	return NULL;
1865 }
1866 EXPORT_SYMBOL(mb86a16_attach);
1867 MODULE_LICENSE("GPL");
1868 MODULE_AUTHOR("Manu Abraham");
1869