1 /*
2 	Fujitsu MB86A16 DVB-S/DSS DC Receiver driver
3 
4 	Copyright (C) Manu Abraham (abraham.manu@gmail.com)
5 
6 	This program is free software; you can redistribute it and/or modify
7 	it under the terms of the GNU General Public License as published by
8 	the Free Software Foundation; either version 2 of the License, or
9 	(at your option) any later version.
10 
11 	This program is distributed in the hope that it will be useful,
12 	but WITHOUT ANY WARRANTY; without even the implied warranty of
13 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 	GNU General Public License for more details.
15 
16 	You should have received a copy of the GNU General Public License
17 	along with this program; if not, write to the Free Software
18 	Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/slab.h>
26 
27 #include "dvb_frontend.h"
28 #include "mb86a16.h"
29 #include "mb86a16_priv.h"
30 
31 unsigned int verbose = 5;
32 module_param(verbose, int, 0644);
33 
34 #define ABS(x)		((x) < 0 ? (-x) : (x))
35 
36 struct mb86a16_state {
37 	struct i2c_adapter		*i2c_adap;
38 	const struct mb86a16_config	*config;
39 	struct dvb_frontend		frontend;
40 
41 	/* tuning parameters */
42 	int				frequency;
43 	int				srate;
44 
45 	/* Internal stuff */
46 	int				master_clk;
47 	int				deci;
48 	int				csel;
49 	int				rsel;
50 };
51 
52 #define MB86A16_ERROR		0
53 #define MB86A16_NOTICE		1
54 #define MB86A16_INFO		2
55 #define MB86A16_DEBUG		3
56 
57 #define dprintk(x, y, z, format, arg...) do {						\
58 	if (z) {									\
59 		if	((x > MB86A16_ERROR) && (x > y))				\
60 			printk(KERN_ERR "%s: " format "\n", __func__, ##arg);		\
61 		else if ((x > MB86A16_NOTICE) && (x > y))				\
62 			printk(KERN_NOTICE "%s: " format "\n", __func__, ##arg);	\
63 		else if ((x > MB86A16_INFO) && (x > y))					\
64 			printk(KERN_INFO "%s: " format "\n", __func__, ##arg);		\
65 		else if ((x > MB86A16_DEBUG) && (x > y))				\
66 			printk(KERN_DEBUG "%s: " format "\n", __func__, ##arg);		\
67 	} else {									\
68 		if (x > y)								\
69 			printk(format, ##arg);						\
70 	}										\
71 } while (0)
72 
73 #define TRACE_IN	dprintk(verbose, MB86A16_DEBUG, 1, "-->()")
74 #define TRACE_OUT	dprintk(verbose, MB86A16_DEBUG, 1, "()-->")
75 
76 static int mb86a16_write(struct mb86a16_state *state, u8 reg, u8 val)
77 {
78 	int ret;
79 	u8 buf[] = { reg, val };
80 
81 	struct i2c_msg msg = {
82 		.addr = state->config->demod_address,
83 		.flags = 0,
84 		.buf = buf,
85 		.len = 2
86 	};
87 
88 	dprintk(verbose, MB86A16_DEBUG, 1,
89 		"writing to [0x%02x],Reg[0x%02x],Data[0x%02x]",
90 		state->config->demod_address, buf[0], buf[1]);
91 
92 	ret = i2c_transfer(state->i2c_adap, &msg, 1);
93 
94 	return (ret != 1) ? -EREMOTEIO : 0;
95 }
96 
97 static int mb86a16_read(struct mb86a16_state *state, u8 reg, u8 *val)
98 {
99 	int ret;
100 	u8 b0[] = { reg };
101 	u8 b1[] = { 0 };
102 
103 	struct i2c_msg msg[] = {
104 		{
105 			.addr = state->config->demod_address,
106 			.flags = 0,
107 			.buf = b0,
108 			.len = 1
109 		}, {
110 			.addr = state->config->demod_address,
111 			.flags = I2C_M_RD,
112 			.buf = b1,
113 			.len = 1
114 		}
115 	};
116 	ret = i2c_transfer(state->i2c_adap, msg, 2);
117 	if (ret != 2) {
118 		dprintk(verbose, MB86A16_ERROR, 1, "read error(reg=0x%02x, ret=0x%i)",
119 			reg, ret);
120 
121 		return -EREMOTEIO;
122 	}
123 	*val = b1[0];
124 
125 	return ret;
126 }
127 
128 static int CNTM_set(struct mb86a16_state *state,
129 		    unsigned char timint1,
130 		    unsigned char timint2,
131 		    unsigned char cnext)
132 {
133 	unsigned char val;
134 
135 	val = (timint1 << 4) | (timint2 << 2) | cnext;
136 	if (mb86a16_write(state, MB86A16_CNTMR, val) < 0)
137 		goto err;
138 
139 	return 0;
140 
141 err:
142 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
143 	return -EREMOTEIO;
144 }
145 
146 static int smrt_set(struct mb86a16_state *state, int rate)
147 {
148 	int tmp ;
149 	int m ;
150 	unsigned char STOFS0, STOFS1;
151 
152 	m = 1 << state->deci;
153 	tmp = (8192 * state->master_clk - 2 * m * rate * 8192 + state->master_clk / 2) / state->master_clk;
154 
155 	STOFS0 = tmp & 0x0ff;
156 	STOFS1 = (tmp & 0xf00) >> 8;
157 
158 	if (mb86a16_write(state, MB86A16_SRATE1, (state->deci << 2) |
159 				       (state->csel << 1) |
160 					state->rsel) < 0)
161 		goto err;
162 	if (mb86a16_write(state, MB86A16_SRATE2, STOFS0) < 0)
163 		goto err;
164 	if (mb86a16_write(state, MB86A16_SRATE3, STOFS1) < 0)
165 		goto err;
166 
167 	return 0;
168 err:
169 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
170 	return -1;
171 }
172 
173 static int srst(struct mb86a16_state *state)
174 {
175 	if (mb86a16_write(state, MB86A16_RESET, 0x04) < 0)
176 		goto err;
177 
178 	return 0;
179 err:
180 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
181 	return -EREMOTEIO;
182 
183 }
184 
185 static int afcex_data_set(struct mb86a16_state *state,
186 			  unsigned char AFCEX_L,
187 			  unsigned char AFCEX_H)
188 {
189 	if (mb86a16_write(state, MB86A16_AFCEXL, AFCEX_L) < 0)
190 		goto err;
191 	if (mb86a16_write(state, MB86A16_AFCEXH, AFCEX_H) < 0)
192 		goto err;
193 
194 	return 0;
195 err:
196 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
197 
198 	return -1;
199 }
200 
201 static int afcofs_data_set(struct mb86a16_state *state,
202 			   unsigned char AFCEX_L,
203 			   unsigned char AFCEX_H)
204 {
205 	if (mb86a16_write(state, 0x58, AFCEX_L) < 0)
206 		goto err;
207 	if (mb86a16_write(state, 0x59, AFCEX_H) < 0)
208 		goto err;
209 
210 	return 0;
211 err:
212 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
213 	return -EREMOTEIO;
214 }
215 
216 static int stlp_set(struct mb86a16_state *state,
217 		    unsigned char STRAS,
218 		    unsigned char STRBS)
219 {
220 	if (mb86a16_write(state, MB86A16_STRFILTCOEF1, (STRBS << 3) | (STRAS)) < 0)
221 		goto err;
222 
223 	return 0;
224 err:
225 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
226 	return -EREMOTEIO;
227 }
228 
229 static int Vi_set(struct mb86a16_state *state, unsigned char ETH, unsigned char VIA)
230 {
231 	if (mb86a16_write(state, MB86A16_VISET2, 0x04) < 0)
232 		goto err;
233 	if (mb86a16_write(state, MB86A16_VISET3, 0xf5) < 0)
234 		goto err;
235 
236 	return 0;
237 err:
238 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
239 	return -EREMOTEIO;
240 }
241 
242 static int initial_set(struct mb86a16_state *state)
243 {
244 	if (stlp_set(state, 5, 7))
245 		goto err;
246 
247 	udelay(100);
248 	if (afcex_data_set(state, 0, 0))
249 		goto err;
250 
251 	udelay(100);
252 	if (afcofs_data_set(state, 0, 0))
253 		goto err;
254 
255 	udelay(100);
256 	if (mb86a16_write(state, MB86A16_CRLFILTCOEF1, 0x16) < 0)
257 		goto err;
258 	if (mb86a16_write(state, 0x2f, 0x21) < 0)
259 		goto err;
260 	if (mb86a16_write(state, MB86A16_VIMAG, 0x38) < 0)
261 		goto err;
262 	if (mb86a16_write(state, MB86A16_FAGCS1, 0x00) < 0)
263 		goto err;
264 	if (mb86a16_write(state, MB86A16_FAGCS2, 0x1c) < 0)
265 		goto err;
266 	if (mb86a16_write(state, MB86A16_FAGCS3, 0x20) < 0)
267 		goto err;
268 	if (mb86a16_write(state, MB86A16_FAGCS4, 0x1e) < 0)
269 		goto err;
270 	if (mb86a16_write(state, MB86A16_FAGCS5, 0x23) < 0)
271 		goto err;
272 	if (mb86a16_write(state, 0x54, 0xff) < 0)
273 		goto err;
274 	if (mb86a16_write(state, MB86A16_TSOUT, 0x00) < 0)
275 		goto err;
276 
277 	return 0;
278 
279 err:
280 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
281 	return -EREMOTEIO;
282 }
283 
284 static int S01T_set(struct mb86a16_state *state,
285 		    unsigned char s1t,
286 		    unsigned s0t)
287 {
288 	if (mb86a16_write(state, 0x33, (s1t << 3) | s0t) < 0)
289 		goto err;
290 
291 	return 0;
292 err:
293 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
294 	return -EREMOTEIO;
295 }
296 
297 
298 static int EN_set(struct mb86a16_state *state,
299 		  int cren,
300 		  int afcen)
301 {
302 	unsigned char val;
303 
304 	val = 0x7a | (cren << 7) | (afcen << 2);
305 	if (mb86a16_write(state, 0x49, val) < 0)
306 		goto err;
307 
308 	return 0;
309 err:
310 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
311 	return -EREMOTEIO;
312 }
313 
314 static int AFCEXEN_set(struct mb86a16_state *state,
315 		       int afcexen,
316 		       int smrt)
317 {
318 	unsigned char AFCA ;
319 
320 	if (smrt > 18875)
321 		AFCA = 4;
322 	else if (smrt > 9375)
323 		AFCA = 3;
324 	else if (smrt > 2250)
325 		AFCA = 2;
326 	else
327 		AFCA = 1;
328 
329 	if (mb86a16_write(state, 0x2a, 0x02 | (afcexen << 5) | (AFCA << 2)) < 0)
330 		goto err;
331 
332 	return 0;
333 
334 err:
335 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
336 	return -EREMOTEIO;
337 }
338 
339 static int DAGC_data_set(struct mb86a16_state *state,
340 			 unsigned char DAGCA,
341 			 unsigned char DAGCW)
342 {
343 	if (mb86a16_write(state, 0x2d, (DAGCA << 3) | DAGCW) < 0)
344 		goto err;
345 
346 	return 0;
347 
348 err:
349 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
350 	return -EREMOTEIO;
351 }
352 
353 static void smrt_info_get(struct mb86a16_state *state, int rate)
354 {
355 	if (rate >= 37501) {
356 		state->deci = 0; state->csel = 0; state->rsel = 0;
357 	} else if (rate >= 30001) {
358 		state->deci = 0; state->csel = 0; state->rsel = 1;
359 	} else if (rate >= 26251) {
360 		state->deci = 0; state->csel = 1; state->rsel = 0;
361 	} else if (rate >= 22501) {
362 		state->deci = 0; state->csel = 1; state->rsel = 1;
363 	} else if (rate >= 18751) {
364 		state->deci = 1; state->csel = 0; state->rsel = 0;
365 	} else if (rate >= 15001) {
366 		state->deci = 1; state->csel = 0; state->rsel = 1;
367 	} else if (rate >= 13126) {
368 		state->deci = 1; state->csel = 1; state->rsel = 0;
369 	} else if (rate >= 11251) {
370 		state->deci = 1; state->csel = 1; state->rsel = 1;
371 	} else if (rate >= 9376) {
372 		state->deci = 2; state->csel = 0; state->rsel = 0;
373 	} else if (rate >= 7501) {
374 		state->deci = 2; state->csel = 0; state->rsel = 1;
375 	} else if (rate >= 6563) {
376 		state->deci = 2; state->csel = 1; state->rsel = 0;
377 	} else if (rate >= 5626) {
378 		state->deci = 2; state->csel = 1; state->rsel = 1;
379 	} else if (rate >= 4688) {
380 		state->deci = 3; state->csel = 0; state->rsel = 0;
381 	} else if (rate >= 3751) {
382 		state->deci = 3; state->csel = 0; state->rsel = 1;
383 	} else if (rate >= 3282) {
384 		state->deci = 3; state->csel = 1; state->rsel = 0;
385 	} else if (rate >= 2814) {
386 		state->deci = 3; state->csel = 1; state->rsel = 1;
387 	} else if (rate >= 2344) {
388 		state->deci = 4; state->csel = 0; state->rsel = 0;
389 	} else if (rate >= 1876) {
390 		state->deci = 4; state->csel = 0; state->rsel = 1;
391 	} else if (rate >= 1641) {
392 		state->deci = 4; state->csel = 1; state->rsel = 0;
393 	} else if (rate >= 1407) {
394 		state->deci = 4; state->csel = 1; state->rsel = 1;
395 	} else if (rate >= 1172) {
396 		state->deci = 5; state->csel = 0; state->rsel = 0;
397 	} else if (rate >=  939) {
398 		state->deci = 5; state->csel = 0; state->rsel = 1;
399 	} else if (rate >=  821) {
400 		state->deci = 5; state->csel = 1; state->rsel = 0;
401 	} else {
402 		state->deci = 5; state->csel = 1; state->rsel = 1;
403 	}
404 
405 	if (state->csel == 0)
406 		state->master_clk = 92000;
407 	else
408 		state->master_clk = 61333;
409 
410 }
411 
412 static int signal_det(struct mb86a16_state *state,
413 		      int smrt,
414 		      unsigned char *SIG)
415 {
416 
417 	int ret ;
418 	int smrtd ;
419 	int wait_sym ;
420 
421 	u32 wait_t;
422 	unsigned char S[3] ;
423 	int i ;
424 
425 	if (*SIG > 45) {
426 		if (CNTM_set(state, 2, 1, 2) < 0) {
427 			dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
428 			return -1;
429 		}
430 		wait_sym = 40000;
431 	} else {
432 		if (CNTM_set(state, 3, 1, 2) < 0) {
433 			dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
434 			return -1;
435 		}
436 		wait_sym = 80000;
437 	}
438 	for (i = 0; i < 3; i++) {
439 		if (i == 0)
440 			smrtd = smrt * 98 / 100;
441 		else if (i == 1)
442 			smrtd = smrt;
443 		else
444 			smrtd = smrt * 102 / 100;
445 		smrt_info_get(state, smrtd);
446 		smrt_set(state, smrtd);
447 		srst(state);
448 		wait_t = (wait_sym + 99 * smrtd / 100) / smrtd;
449 		if (wait_t == 0)
450 			wait_t = 1;
451 		msleep_interruptible(10);
452 		if (mb86a16_read(state, 0x37, &(S[i])) != 2) {
453 			dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
454 			return -EREMOTEIO;
455 		}
456 	}
457 	if ((S[1] > S[0] * 112 / 100) &&
458 	    (S[1] > S[2] * 112 / 100)) {
459 
460 		ret = 1;
461 	} else {
462 		ret = 0;
463 	}
464 	*SIG = S[1];
465 
466 	if (CNTM_set(state, 0, 1, 2) < 0) {
467 		dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
468 		return -1;
469 	}
470 
471 	return ret;
472 }
473 
474 static int rf_val_set(struct mb86a16_state *state,
475 		      int f,
476 		      int smrt,
477 		      unsigned char R)
478 {
479 	unsigned char C, F, B;
480 	int M;
481 	unsigned char rf_val[5];
482 	int ack = -1;
483 
484 	if (smrt > 37750)
485 		C = 1;
486 	else if (smrt > 18875)
487 		C = 2;
488 	else if (smrt > 5500)
489 		C = 3;
490 	else
491 		C = 4;
492 
493 	if (smrt > 30500)
494 		F = 3;
495 	else if (smrt > 9375)
496 		F = 1;
497 	else if (smrt > 4625)
498 		F = 0;
499 	else
500 		F = 2;
501 
502 	if (f < 1060)
503 		B = 0;
504 	else if (f < 1175)
505 		B = 1;
506 	else if (f < 1305)
507 		B = 2;
508 	else if (f < 1435)
509 		B = 3;
510 	else if (f < 1570)
511 		B = 4;
512 	else if (f < 1715)
513 		B = 5;
514 	else if (f < 1845)
515 		B = 6;
516 	else if (f < 1980)
517 		B = 7;
518 	else if (f < 2080)
519 		B = 8;
520 	else
521 		B = 9;
522 
523 	M = f * (1 << R) / 2;
524 
525 	rf_val[0] = 0x01 | (C << 3) | (F << 1);
526 	rf_val[1] = (R << 5) | ((M & 0x1f000) >> 12);
527 	rf_val[2] = (M & 0x00ff0) >> 4;
528 	rf_val[3] = ((M & 0x0000f) << 4) | B;
529 
530 	/* Frequency Set */
531 	if (mb86a16_write(state, 0x21, rf_val[0]) < 0)
532 		ack = 0;
533 	if (mb86a16_write(state, 0x22, rf_val[1]) < 0)
534 		ack = 0;
535 	if (mb86a16_write(state, 0x23, rf_val[2]) < 0)
536 		ack = 0;
537 	if (mb86a16_write(state, 0x24, rf_val[3]) < 0)
538 		ack = 0;
539 	if (mb86a16_write(state, 0x25, 0x01) < 0)
540 		ack = 0;
541 	if (ack == 0) {
542 		dprintk(verbose, MB86A16_ERROR, 1, "RF Setup - I2C transfer error");
543 		return -EREMOTEIO;
544 	}
545 
546 	return 0;
547 }
548 
549 static int afcerr_chk(struct mb86a16_state *state)
550 {
551 	unsigned char AFCM_L, AFCM_H ;
552 	int AFCM ;
553 	int afcm, afcerr ;
554 
555 	if (mb86a16_read(state, 0x0e, &AFCM_L) != 2)
556 		goto err;
557 	if (mb86a16_read(state, 0x0f, &AFCM_H) != 2)
558 		goto err;
559 
560 	AFCM = (AFCM_H << 8) + AFCM_L;
561 
562 	if (AFCM > 2048)
563 		afcm = AFCM - 4096;
564 	else
565 		afcm = AFCM;
566 	afcerr = afcm * state->master_clk / 8192;
567 
568 	return afcerr;
569 
570 err:
571 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
572 	return -EREMOTEIO;
573 }
574 
575 static int dagcm_val_get(struct mb86a16_state *state)
576 {
577 	int DAGCM;
578 	unsigned char DAGCM_H, DAGCM_L;
579 
580 	if (mb86a16_read(state, 0x45, &DAGCM_L) != 2)
581 		goto err;
582 	if (mb86a16_read(state, 0x46, &DAGCM_H) != 2)
583 		goto err;
584 
585 	DAGCM = (DAGCM_H << 8) + DAGCM_L;
586 
587 	return DAGCM;
588 
589 err:
590 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
591 	return -EREMOTEIO;
592 }
593 
594 static int mb86a16_read_status(struct dvb_frontend *fe, fe_status_t *status)
595 {
596 	u8 stat, stat2;
597 	struct mb86a16_state *state = fe->demodulator_priv;
598 
599 	*status = 0;
600 
601 	if (mb86a16_read(state, MB86A16_SIG1, &stat) != 2)
602 		goto err;
603 	if (mb86a16_read(state, MB86A16_SIG2, &stat2) != 2)
604 		goto err;
605 	if ((stat > 25) && (stat2 > 25))
606 		*status |= FE_HAS_SIGNAL;
607 	if ((stat > 45) && (stat2 > 45))
608 		*status |= FE_HAS_CARRIER;
609 
610 	if (mb86a16_read(state, MB86A16_STATUS, &stat) != 2)
611 		goto err;
612 
613 	if (stat & 0x01)
614 		*status |= FE_HAS_SYNC;
615 	if (stat & 0x01)
616 		*status |= FE_HAS_VITERBI;
617 
618 	if (mb86a16_read(state, MB86A16_FRAMESYNC, &stat) != 2)
619 		goto err;
620 
621 	if ((stat & 0x0f) && (*status & FE_HAS_VITERBI))
622 		*status |= FE_HAS_LOCK;
623 
624 	return 0;
625 
626 err:
627 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
628 	return -EREMOTEIO;
629 }
630 
631 static int sync_chk(struct mb86a16_state *state,
632 		    unsigned char *VIRM)
633 {
634 	unsigned char val;
635 	int sync;
636 
637 	if (mb86a16_read(state, 0x0d, &val) != 2)
638 		goto err;
639 
640 	dprintk(verbose, MB86A16_INFO, 1, "Status = %02x,", val);
641 	sync = val & 0x01;
642 	*VIRM = (val & 0x1c) >> 2;
643 
644 	return sync;
645 err:
646 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
647 	return -EREMOTEIO;
648 
649 }
650 
651 static int freqerr_chk(struct mb86a16_state *state,
652 		       int fTP,
653 		       int smrt,
654 		       int unit)
655 {
656 	unsigned char CRM, AFCML, AFCMH;
657 	unsigned char temp1, temp2, temp3;
658 	int crm, afcm, AFCM;
659 	int crrerr, afcerr;		/* kHz */
660 	int frqerr;			/* MHz */
661 	int afcen, afcexen = 0;
662 	int R, M, fOSC, fOSC_OFS;
663 
664 	if (mb86a16_read(state, 0x43, &CRM) != 2)
665 		goto err;
666 
667 	if (CRM > 127)
668 		crm = CRM - 256;
669 	else
670 		crm = CRM;
671 
672 	crrerr = smrt * crm / 256;
673 	if (mb86a16_read(state, 0x49, &temp1) != 2)
674 		goto err;
675 
676 	afcen = (temp1 & 0x04) >> 2;
677 	if (afcen == 0) {
678 		if (mb86a16_read(state, 0x2a, &temp1) != 2)
679 			goto err;
680 		afcexen = (temp1 & 0x20) >> 5;
681 	}
682 
683 	if (afcen == 1) {
684 		if (mb86a16_read(state, 0x0e, &AFCML) != 2)
685 			goto err;
686 		if (mb86a16_read(state, 0x0f, &AFCMH) != 2)
687 			goto err;
688 	} else if (afcexen == 1) {
689 		if (mb86a16_read(state, 0x2b, &AFCML) != 2)
690 			goto err;
691 		if (mb86a16_read(state, 0x2c, &AFCMH) != 2)
692 			goto err;
693 	}
694 	if ((afcen == 1) || (afcexen == 1)) {
695 		smrt_info_get(state, smrt);
696 		AFCM = ((AFCMH & 0x01) << 8) + AFCML;
697 		if (AFCM > 255)
698 			afcm = AFCM - 512;
699 		else
700 			afcm = AFCM;
701 
702 		afcerr = afcm * state->master_clk / 8192;
703 	} else
704 		afcerr = 0;
705 
706 	if (mb86a16_read(state, 0x22, &temp1) != 2)
707 		goto err;
708 	if (mb86a16_read(state, 0x23, &temp2) != 2)
709 		goto err;
710 	if (mb86a16_read(state, 0x24, &temp3) != 2)
711 		goto err;
712 
713 	R = (temp1 & 0xe0) >> 5;
714 	M = ((temp1 & 0x1f) << 12) + (temp2 << 4) + (temp3 >> 4);
715 	if (R == 0)
716 		fOSC = 2 * M;
717 	else
718 		fOSC = M;
719 
720 	fOSC_OFS = fOSC - fTP;
721 
722 	if (unit == 0) {	/* MHz */
723 		if (crrerr + afcerr + fOSC_OFS * 1000 >= 0)
724 			frqerr = (crrerr + afcerr + fOSC_OFS * 1000 + 500) / 1000;
725 		else
726 			frqerr = (crrerr + afcerr + fOSC_OFS * 1000 - 500) / 1000;
727 	} else {	/* kHz */
728 		frqerr = crrerr + afcerr + fOSC_OFS * 1000;
729 	}
730 
731 	return frqerr;
732 err:
733 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
734 	return -EREMOTEIO;
735 }
736 
737 static unsigned char vco_dev_get(struct mb86a16_state *state, int smrt)
738 {
739 	unsigned char R;
740 
741 	if (smrt > 9375)
742 		R = 0;
743 	else
744 		R = 1;
745 
746 	return R;
747 }
748 
749 static void swp_info_get(struct mb86a16_state *state,
750 			 int fOSC_start,
751 			 int smrt,
752 			 int v, int R,
753 			 int swp_ofs,
754 			 int *fOSC,
755 			 int *afcex_freq,
756 			 unsigned char *AFCEX_L,
757 			 unsigned char *AFCEX_H)
758 {
759 	int AFCEX ;
760 	int crnt_swp_freq ;
761 
762 	crnt_swp_freq = fOSC_start * 1000 + v * swp_ofs;
763 
764 	if (R == 0)
765 		*fOSC = (crnt_swp_freq + 1000) / 2000 * 2;
766 	else
767 		*fOSC = (crnt_swp_freq + 500) / 1000;
768 
769 	if (*fOSC >= crnt_swp_freq)
770 		*afcex_freq = *fOSC * 1000 - crnt_swp_freq;
771 	else
772 		*afcex_freq = crnt_swp_freq - *fOSC * 1000;
773 
774 	AFCEX = *afcex_freq * 8192 / state->master_clk;
775 	*AFCEX_L =  AFCEX & 0x00ff;
776 	*AFCEX_H = (AFCEX & 0x0f00) >> 8;
777 }
778 
779 
780 static int swp_freq_calcuation(struct mb86a16_state *state, int i, int v, int *V,  int vmax, int vmin,
781 			       int SIGMIN, int fOSC, int afcex_freq, int swp_ofs, unsigned char *SIG1)
782 {
783 	int swp_freq ;
784 
785 	if ((i % 2 == 1) && (v <= vmax)) {
786 		/* positive v (case 1) */
787 		if ((v - 1 == vmin)				&&
788 		    (*(V + 30 + v) >= 0)			&&
789 		    (*(V + 30 + v - 1) >= 0)			&&
790 		    (*(V + 30 + v - 1) > *(V + 30 + v))		&&
791 		    (*(V + 30 + v - 1) > SIGMIN)) {
792 
793 			swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
794 			*SIG1 = *(V + 30 + v - 1);
795 		} else if ((v == vmax)				&&
796 			   (*(V + 30 + v) >= 0)			&&
797 			   (*(V + 30 + v - 1) >= 0)		&&
798 			   (*(V + 30 + v) > *(V + 30 + v - 1))	&&
799 			   (*(V + 30 + v) > SIGMIN)) {
800 			/* (case 2) */
801 			swp_freq = fOSC * 1000 + afcex_freq;
802 			*SIG1 = *(V + 30 + v);
803 		} else if ((*(V + 30 + v) > 0)			&&
804 			   (*(V + 30 + v - 1) > 0)		&&
805 			   (*(V + 30 + v - 2) > 0)		&&
806 			   (*(V + 30 + v - 3) > 0)		&&
807 			   (*(V + 30 + v - 1) > *(V + 30 + v))	&&
808 			   (*(V + 30 + v - 2) > *(V + 30 + v - 3)) &&
809 			   ((*(V + 30 + v - 1) > SIGMIN)	||
810 			   (*(V + 30 + v - 2) > SIGMIN))) {
811 			/* (case 3) */
812 			if (*(V + 30 + v - 1) >= *(V + 30 + v - 2)) {
813 				swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
814 				*SIG1 = *(V + 30 + v - 1);
815 			} else {
816 				swp_freq = fOSC * 1000 + afcex_freq - swp_ofs * 2;
817 				*SIG1 = *(V + 30 + v - 2);
818 			}
819 		} else if ((v == vmax)				&&
820 			   (*(V + 30 + v) >= 0)			&&
821 			   (*(V + 30 + v - 1) >= 0)		&&
822 			   (*(V + 30 + v - 2) >= 0)		&&
823 			   (*(V + 30 + v) > *(V + 30 + v - 2))	&&
824 			   (*(V + 30 + v - 1) > *(V + 30 + v - 2)) &&
825 			   ((*(V + 30 + v) > SIGMIN)		||
826 			   (*(V + 30 + v - 1) > SIGMIN))) {
827 			/* (case 4) */
828 			if (*(V + 30 + v) >= *(V + 30 + v - 1)) {
829 				swp_freq = fOSC * 1000 + afcex_freq;
830 				*SIG1 = *(V + 30 + v);
831 			} else {
832 				swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
833 				*SIG1 = *(V + 30 + v - 1);
834 			}
835 		} else  {
836 			swp_freq = -1 ;
837 		}
838 	} else if ((i % 2 == 0) && (v >= vmin)) {
839 		/* Negative v (case 1) */
840 		if ((*(V + 30 + v) > 0)				&&
841 		    (*(V + 30 + v + 1) > 0)			&&
842 		    (*(V + 30 + v + 2) > 0)			&&
843 		    (*(V + 30 + v + 1) > *(V + 30 + v))		&&
844 		    (*(V + 30 + v + 1) > *(V + 30 + v + 2))	&&
845 		    (*(V + 30 + v + 1) > SIGMIN)) {
846 
847 			swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
848 			*SIG1 = *(V + 30 + v + 1);
849 		} else if ((v + 1 == vmax)			&&
850 			   (*(V + 30 + v) >= 0)			&&
851 			   (*(V + 30 + v + 1) >= 0)		&&
852 			   (*(V + 30 + v + 1) > *(V + 30 + v))	&&
853 			   (*(V + 30 + v + 1) > SIGMIN)) {
854 			/* (case 2) */
855 			swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
856 			*SIG1 = *(V + 30 + v);
857 		} else if ((v == vmin)				&&
858 			   (*(V + 30 + v) > 0)			&&
859 			   (*(V + 30 + v + 1) > 0)		&&
860 			   (*(V + 30 + v + 2) > 0)		&&
861 			   (*(V + 30 + v) > *(V + 30 + v + 1))	&&
862 			   (*(V + 30 + v) > *(V + 30 + v + 2))	&&
863 			   (*(V + 30 + v) > SIGMIN)) {
864 			/* (case 3) */
865 			swp_freq = fOSC * 1000 + afcex_freq;
866 			*SIG1 = *(V + 30 + v);
867 		} else if ((*(V + 30 + v) >= 0)			&&
868 			   (*(V + 30 + v + 1) >= 0)		&&
869 			   (*(V + 30 + v + 2) >= 0)		&&
870 			   (*(V + 30 + v + 3) >= 0)		&&
871 			   (*(V + 30 + v + 1) > *(V + 30 + v))	&&
872 			   (*(V + 30 + v + 2) > *(V + 30 + v + 3)) &&
873 			   ((*(V + 30 + v + 1) > SIGMIN)	||
874 			    (*(V + 30 + v + 2) > SIGMIN))) {
875 			/* (case 4) */
876 			if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
877 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
878 				*SIG1 = *(V + 30 + v + 1);
879 			} else {
880 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
881 				*SIG1 = *(V + 30 + v + 2);
882 			}
883 		} else if ((*(V + 30 + v) >= 0)			&&
884 			   (*(V + 30 + v + 1) >= 0)		&&
885 			   (*(V + 30 + v + 2) >= 0)		&&
886 			   (*(V + 30 + v + 3) >= 0)		&&
887 			   (*(V + 30 + v) > *(V + 30 + v + 2))	&&
888 			   (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
889 			   (*(V + 30 + v) > *(V + 30 + v + 3))	&&
890 			   (*(V + 30 + v + 1) > *(V + 30 + v + 3)) &&
891 			   ((*(V + 30 + v) > SIGMIN)		||
892 			    (*(V + 30 + v + 1) > SIGMIN))) {
893 			/* (case 5) */
894 			if (*(V + 30 + v) >= *(V + 30 + v + 1)) {
895 				swp_freq = fOSC * 1000 + afcex_freq;
896 				*SIG1 = *(V + 30 + v);
897 			} else {
898 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
899 				*SIG1 = *(V + 30 + v + 1);
900 			}
901 		} else if ((v + 2 == vmin)			&&
902 			   (*(V + 30 + v) >= 0)			&&
903 			   (*(V + 30 + v + 1) >= 0)		&&
904 			   (*(V + 30 + v + 2) >= 0)		&&
905 			   (*(V + 30 + v + 1) > *(V + 30 + v))	&&
906 			   (*(V + 30 + v + 2) > *(V + 30 + v))	&&
907 			   ((*(V + 30 + v + 1) > SIGMIN)	||
908 			    (*(V + 30 + v + 2) > SIGMIN))) {
909 			/* (case 6) */
910 			if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
911 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
912 				*SIG1 = *(V + 30 + v + 1);
913 			} else {
914 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
915 				*SIG1 = *(V + 30 + v + 2);
916 			}
917 		} else if ((vmax == 0) && (vmin == 0) && (*(V + 30 + v) > SIGMIN)) {
918 			swp_freq = fOSC * 1000;
919 			*SIG1 = *(V + 30 + v);
920 		} else
921 			swp_freq = -1;
922 	} else
923 		swp_freq = -1;
924 
925 	return swp_freq;
926 }
927 
928 static void swp_info_get2(struct mb86a16_state *state,
929 			  int smrt,
930 			  int R,
931 			  int swp_freq,
932 			  int *afcex_freq,
933 			  int *fOSC,
934 			  unsigned char *AFCEX_L,
935 			  unsigned char *AFCEX_H)
936 {
937 	int AFCEX ;
938 
939 	if (R == 0)
940 		*fOSC = (swp_freq + 1000) / 2000 * 2;
941 	else
942 		*fOSC = (swp_freq + 500) / 1000;
943 
944 	if (*fOSC >= swp_freq)
945 		*afcex_freq = *fOSC * 1000 - swp_freq;
946 	else
947 		*afcex_freq = swp_freq - *fOSC * 1000;
948 
949 	AFCEX = *afcex_freq * 8192 / state->master_clk;
950 	*AFCEX_L =  AFCEX & 0x00ff;
951 	*AFCEX_H = (AFCEX & 0x0f00) >> 8;
952 }
953 
954 static void afcex_info_get(struct mb86a16_state *state,
955 			   int afcex_freq,
956 			   unsigned char *AFCEX_L,
957 			   unsigned char *AFCEX_H)
958 {
959 	int AFCEX ;
960 
961 	AFCEX = afcex_freq * 8192 / state->master_clk;
962 	*AFCEX_L =  AFCEX & 0x00ff;
963 	*AFCEX_H = (AFCEX & 0x0f00) >> 8;
964 }
965 
966 static int SEQ_set(struct mb86a16_state *state, unsigned char loop)
967 {
968 	/* SLOCK0 = 0 */
969 	if (mb86a16_write(state, 0x32, 0x02 | (loop << 2)) < 0) {
970 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
971 		return -EREMOTEIO;
972 	}
973 
974 	return 0;
975 }
976 
977 static int iq_vt_set(struct mb86a16_state *state, unsigned char IQINV)
978 {
979 	/* Viterbi Rate, IQ Settings */
980 	if (mb86a16_write(state, 0x06, 0xdf | (IQINV << 5)) < 0) {
981 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
982 		return -EREMOTEIO;
983 	}
984 
985 	return 0;
986 }
987 
988 static int FEC_srst(struct mb86a16_state *state)
989 {
990 	if (mb86a16_write(state, MB86A16_RESET, 0x02) < 0) {
991 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
992 		return -EREMOTEIO;
993 	}
994 
995 	return 0;
996 }
997 
998 static int S2T_set(struct mb86a16_state *state, unsigned char S2T)
999 {
1000 	if (mb86a16_write(state, 0x34, 0x70 | S2T) < 0) {
1001 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1002 		return -EREMOTEIO;
1003 	}
1004 
1005 	return 0;
1006 }
1007 
1008 static int S45T_set(struct mb86a16_state *state, unsigned char S4T, unsigned char S5T)
1009 {
1010 	if (mb86a16_write(state, 0x35, 0x00 | (S5T << 4) | S4T) < 0) {
1011 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1012 		return -EREMOTEIO;
1013 	}
1014 
1015 	return 0;
1016 }
1017 
1018 
1019 static int mb86a16_set_fe(struct mb86a16_state *state)
1020 {
1021 	u8 agcval, cnmval;
1022 
1023 	int i, j;
1024 	int fOSC = 0;
1025 	int fOSC_start = 0;
1026 	int wait_t;
1027 	int fcp;
1028 	int swp_ofs;
1029 	int V[60];
1030 	u8 SIG1MIN;
1031 
1032 	unsigned char CREN, AFCEN, AFCEXEN;
1033 	unsigned char SIG1;
1034 	unsigned char TIMINT1, TIMINT2, TIMEXT;
1035 	unsigned char S0T, S1T;
1036 	unsigned char S2T;
1037 /*	unsigned char S2T, S3T; */
1038 	unsigned char S4T, S5T;
1039 	unsigned char AFCEX_L, AFCEX_H;
1040 	unsigned char R;
1041 	unsigned char VIRM;
1042 	unsigned char ETH, VIA;
1043 	unsigned char junk;
1044 
1045 	int loop;
1046 	int ftemp;
1047 	int v, vmax, vmin;
1048 	int vmax_his, vmin_his;
1049 	int swp_freq, prev_swp_freq[20];
1050 	int prev_freq_num;
1051 	int signal_dupl;
1052 	int afcex_freq;
1053 	int signal;
1054 	int afcerr;
1055 	int temp_freq, delta_freq;
1056 	int dagcm[4];
1057 	int smrt_d;
1058 /*	int freq_err; */
1059 	int n;
1060 	int ret = -1;
1061 	int sync;
1062 
1063 	dprintk(verbose, MB86A16_INFO, 1, "freq=%d Mhz, symbrt=%d Ksps", state->frequency, state->srate);
1064 
1065 	fcp = 3000;
1066 	swp_ofs = state->srate / 4;
1067 
1068 	for (i = 0; i < 60; i++)
1069 		V[i] = -1;
1070 
1071 	for (i = 0; i < 20; i++)
1072 		prev_swp_freq[i] = 0;
1073 
1074 	SIG1MIN = 25;
1075 
1076 	for (n = 0; ((n < 3) && (ret == -1)); n++) {
1077 		SEQ_set(state, 0);
1078 		iq_vt_set(state, 0);
1079 
1080 		CREN = 0;
1081 		AFCEN = 0;
1082 		AFCEXEN = 1;
1083 		TIMINT1 = 0;
1084 		TIMINT2 = 1;
1085 		TIMEXT = 2;
1086 		S1T = 0;
1087 		S0T = 0;
1088 
1089 		if (initial_set(state) < 0) {
1090 			dprintk(verbose, MB86A16_ERROR, 1, "initial set failed");
1091 			return -1;
1092 		}
1093 		if (DAGC_data_set(state, 3, 2) < 0) {
1094 			dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1095 			return -1;
1096 		}
1097 		if (EN_set(state, CREN, AFCEN) < 0) {
1098 			dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1099 			return -1; /* (0, 0) */
1100 		}
1101 		if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1102 			dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1103 			return -1; /* (1, smrt) = (1, symbolrate) */
1104 		}
1105 		if (CNTM_set(state, TIMINT1, TIMINT2, TIMEXT) < 0) {
1106 			dprintk(verbose, MB86A16_ERROR, 1, "CNTM set error");
1107 			return -1; /* (0, 1, 2) */
1108 		}
1109 		if (S01T_set(state, S1T, S0T) < 0) {
1110 			dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1111 			return -1; /* (0, 0) */
1112 		}
1113 		smrt_info_get(state, state->srate);
1114 		if (smrt_set(state, state->srate) < 0) {
1115 			dprintk(verbose, MB86A16_ERROR, 1, "smrt info get error");
1116 			return -1;
1117 		}
1118 
1119 		R = vco_dev_get(state, state->srate);
1120 		if (R == 1)
1121 			fOSC_start = state->frequency;
1122 
1123 		else if (R == 0) {
1124 			if (state->frequency % 2 == 0) {
1125 				fOSC_start = state->frequency;
1126 			} else {
1127 				fOSC_start = state->frequency + 1;
1128 				if (fOSC_start > 2150)
1129 					fOSC_start = state->frequency - 1;
1130 			}
1131 		}
1132 		loop = 1;
1133 		ftemp = fOSC_start * 1000;
1134 		vmax = 0 ;
1135 		while (loop == 1) {
1136 			ftemp = ftemp + swp_ofs;
1137 			vmax++;
1138 
1139 			/* Upper bound */
1140 			if (ftemp > 2150000) {
1141 				loop = 0;
1142 				vmax--;
1143 			} else {
1144 				if ((ftemp == 2150000) ||
1145 				    (ftemp - state->frequency * 1000 >= fcp + state->srate / 4))
1146 					loop = 0;
1147 			}
1148 		}
1149 
1150 		loop = 1;
1151 		ftemp = fOSC_start * 1000;
1152 		vmin = 0 ;
1153 		while (loop == 1) {
1154 			ftemp = ftemp - swp_ofs;
1155 			vmin--;
1156 
1157 			/* Lower bound */
1158 			if (ftemp < 950000) {
1159 				loop = 0;
1160 				vmin++;
1161 			} else {
1162 				if ((ftemp == 950000) ||
1163 				    (state->frequency * 1000 - ftemp >= fcp + state->srate / 4))
1164 					loop = 0;
1165 			}
1166 		}
1167 
1168 		wait_t = (8000 + state->srate / 2) / state->srate;
1169 		if (wait_t == 0)
1170 			wait_t = 1;
1171 
1172 		i = 0;
1173 		j = 0;
1174 		prev_freq_num = 0;
1175 		loop = 1;
1176 		signal = 0;
1177 		vmax_his = 0;
1178 		vmin_his = 0;
1179 		v = 0;
1180 
1181 		while (loop == 1) {
1182 			swp_info_get(state, fOSC_start, state->srate,
1183 				     v, R, swp_ofs, &fOSC,
1184 				     &afcex_freq, &AFCEX_L, &AFCEX_H);
1185 
1186 			udelay(100);
1187 			if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1188 				dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1189 				return -1;
1190 			}
1191 			udelay(100);
1192 			if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1193 				dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1194 				return -1;
1195 			}
1196 			if (srst(state) < 0) {
1197 				dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1198 				return -1;
1199 			}
1200 			msleep_interruptible(wait_t);
1201 
1202 			if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1203 				dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1204 				return -1;
1205 			}
1206 			V[30 + v] = SIG1 ;
1207 			swp_freq = swp_freq_calcuation(state, i, v, V, vmax, vmin,
1208 						      SIG1MIN, fOSC, afcex_freq,
1209 						      swp_ofs, &SIG1);	/* changed */
1210 
1211 			signal_dupl = 0;
1212 			for (j = 0; j < prev_freq_num; j++) {
1213 				if ((ABS(prev_swp_freq[j] - swp_freq)) < (swp_ofs * 3 / 2)) {
1214 					signal_dupl = 1;
1215 					dprintk(verbose, MB86A16_INFO, 1, "Probably Duplicate Signal, j = %d", j);
1216 				}
1217 			}
1218 			if ((signal_dupl == 0) && (swp_freq > 0) && (ABS(swp_freq - state->frequency * 1000) < fcp + state->srate / 6)) {
1219 				dprintk(verbose, MB86A16_DEBUG, 1, "------ Signal detect ------ [swp_freq=[%07d, srate=%05d]]", swp_freq, state->srate);
1220 				prev_swp_freq[prev_freq_num] = swp_freq;
1221 				prev_freq_num++;
1222 				swp_info_get2(state, state->srate, R, swp_freq,
1223 					      &afcex_freq, &fOSC,
1224 					      &AFCEX_L, &AFCEX_H);
1225 
1226 				if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1227 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1228 					return -1;
1229 				}
1230 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1231 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1232 					return -1;
1233 				}
1234 				signal = signal_det(state, state->srate, &SIG1);
1235 				if (signal == 1) {
1236 					dprintk(verbose, MB86A16_ERROR, 1, "***** Signal Found *****");
1237 					loop = 0;
1238 				} else {
1239 					dprintk(verbose, MB86A16_ERROR, 1, "!!!!! No signal !!!!!, try again...");
1240 					smrt_info_get(state, state->srate);
1241 					if (smrt_set(state, state->srate) < 0) {
1242 						dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1243 						return -1;
1244 					}
1245 				}
1246 			}
1247 			if (v > vmax)
1248 				vmax_his = 1 ;
1249 			if (v < vmin)
1250 				vmin_his = 1 ;
1251 			i++;
1252 
1253 			if ((i % 2 == 1) && (vmax_his == 1))
1254 				i++;
1255 			if ((i % 2 == 0) && (vmin_his == 1))
1256 				i++;
1257 
1258 			if (i % 2 == 1)
1259 				v = (i + 1) / 2;
1260 			else
1261 				v = -i / 2;
1262 
1263 			if ((vmax_his == 1) && (vmin_his == 1))
1264 				loop = 0 ;
1265 		}
1266 
1267 		if (signal == 1) {
1268 			dprintk(verbose, MB86A16_INFO, 1, " Start Freq Error Check");
1269 			S1T = 7 ;
1270 			S0T = 1 ;
1271 			CREN = 0 ;
1272 			AFCEN = 1 ;
1273 			AFCEXEN = 0 ;
1274 
1275 			if (S01T_set(state, S1T, S0T) < 0) {
1276 				dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1277 				return -1;
1278 			}
1279 			smrt_info_get(state, state->srate);
1280 			if (smrt_set(state, state->srate) < 0) {
1281 				dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1282 				return -1;
1283 			}
1284 			if (EN_set(state, CREN, AFCEN) < 0) {
1285 				dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1286 				return -1;
1287 			}
1288 			if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1289 				dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1290 				return -1;
1291 			}
1292 			afcex_info_get(state, afcex_freq, &AFCEX_L, &AFCEX_H);
1293 			if (afcofs_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1294 				dprintk(verbose, MB86A16_ERROR, 1, "AFCOFS data set error");
1295 				return -1;
1296 			}
1297 			if (srst(state) < 0) {
1298 				dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1299 				return -1;
1300 			}
1301 			/* delay 4~200 */
1302 			wait_t = 200000 / state->master_clk + 200000 / state->srate;
1303 			msleep(wait_t);
1304 			afcerr = afcerr_chk(state);
1305 			if (afcerr == -1)
1306 				return -1;
1307 
1308 			swp_freq = fOSC * 1000 + afcerr ;
1309 			AFCEXEN = 1 ;
1310 			if (state->srate >= 1500)
1311 				smrt_d = state->srate / 3;
1312 			else
1313 				smrt_d = state->srate / 2;
1314 			smrt_info_get(state, smrt_d);
1315 			if (smrt_set(state, smrt_d) < 0) {
1316 				dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1317 				return -1;
1318 			}
1319 			if (AFCEXEN_set(state, AFCEXEN, smrt_d) < 0) {
1320 				dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1321 				return -1;
1322 			}
1323 			R = vco_dev_get(state, smrt_d);
1324 			if (DAGC_data_set(state, 2, 0) < 0) {
1325 				dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1326 				return -1;
1327 			}
1328 			for (i = 0; i < 3; i++) {
1329 				temp_freq = swp_freq + (i - 1) * state->srate / 8;
1330 				swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1331 				if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1332 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1333 					return -1;
1334 				}
1335 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1336 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1337 					return -1;
1338 				}
1339 				wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1340 				msleep(wait_t);
1341 				dagcm[i] = dagcm_val_get(state);
1342 			}
1343 			if ((dagcm[0] > dagcm[1]) &&
1344 			    (dagcm[0] > dagcm[2]) &&
1345 			    (dagcm[0] - dagcm[1] > 2 * (dagcm[2] - dagcm[1]))) {
1346 
1347 				temp_freq = swp_freq - 2 * state->srate / 8;
1348 				swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1349 				if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1350 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1351 					return -1;
1352 				}
1353 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1354 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1355 					return -1;
1356 				}
1357 				wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1358 				msleep(wait_t);
1359 				dagcm[3] = dagcm_val_get(state);
1360 				if (dagcm[3] > dagcm[1])
1361 					delta_freq = (dagcm[2] - dagcm[0] + dagcm[1] - dagcm[3]) * state->srate / 300;
1362 				else
1363 					delta_freq = 0;
1364 			} else if ((dagcm[2] > dagcm[1]) &&
1365 				   (dagcm[2] > dagcm[0]) &&
1366 				   (dagcm[2] - dagcm[1] > 2 * (dagcm[0] - dagcm[1]))) {
1367 
1368 				temp_freq = swp_freq + 2 * state->srate / 8;
1369 				swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1370 				if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1371 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set");
1372 					return -1;
1373 				}
1374 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1375 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1376 					return -1;
1377 				}
1378 				wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1379 				msleep(wait_t);
1380 				dagcm[3] = dagcm_val_get(state);
1381 				if (dagcm[3] > dagcm[1])
1382 					delta_freq = (dagcm[2] - dagcm[0] + dagcm[3] - dagcm[1]) * state->srate / 300;
1383 				else
1384 					delta_freq = 0 ;
1385 
1386 			} else {
1387 				delta_freq = 0 ;
1388 			}
1389 			dprintk(verbose, MB86A16_INFO, 1, "SWEEP Frequency = %d", swp_freq);
1390 			swp_freq += delta_freq;
1391 			dprintk(verbose, MB86A16_INFO, 1, "Adjusting .., DELTA Freq = %d, SWEEP Freq=%d", delta_freq, swp_freq);
1392 			if (ABS(state->frequency * 1000 - swp_freq) > 3800) {
1393 				dprintk(verbose, MB86A16_INFO, 1, "NO  --  SIGNAL !");
1394 			} else {
1395 
1396 				S1T = 0;
1397 				S0T = 3;
1398 				CREN = 1;
1399 				AFCEN = 0;
1400 				AFCEXEN = 1;
1401 
1402 				if (S01T_set(state, S1T, S0T) < 0) {
1403 					dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1404 					return -1;
1405 				}
1406 				if (DAGC_data_set(state, 0, 0) < 0) {
1407 					dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1408 					return -1;
1409 				}
1410 				R = vco_dev_get(state, state->srate);
1411 				smrt_info_get(state, state->srate);
1412 				if (smrt_set(state, state->srate) < 0) {
1413 					dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1414 					return -1;
1415 				}
1416 				if (EN_set(state, CREN, AFCEN) < 0) {
1417 					dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1418 					return -1;
1419 				}
1420 				if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1421 					dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1422 					return -1;
1423 				}
1424 				swp_info_get2(state, state->srate, R, swp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1425 				if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1426 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1427 					return -1;
1428 				}
1429 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1430 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1431 					return -1;
1432 				}
1433 				if (srst(state) < 0) {
1434 					dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1435 					return -1;
1436 				}
1437 				wait_t = 7 + (10000 + state->srate / 2) / state->srate;
1438 				if (wait_t == 0)
1439 					wait_t = 1;
1440 				msleep_interruptible(wait_t);
1441 				if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1442 					dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1443 					return -EREMOTEIO;
1444 				}
1445 
1446 				if (SIG1 > 110) {
1447 					S2T = 4; S4T = 1; S5T = 6; ETH = 4; VIA = 6;
1448 					wait_t = 7 + (917504 + state->srate / 2) / state->srate;
1449 				} else if (SIG1 > 105) {
1450 					S2T = 4; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1451 					wait_t = 7 + (1048576 + state->srate / 2) / state->srate;
1452 				} else if (SIG1 > 85) {
1453 					S2T = 5; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1454 					wait_t = 7 + (1310720 + state->srate / 2) / state->srate;
1455 				} else if (SIG1 > 65) {
1456 					S2T = 6; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1457 					wait_t = 7 + (1572864 + state->srate / 2) / state->srate;
1458 				} else {
1459 					S2T = 7; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1460 					wait_t = 7 + (2097152 + state->srate / 2) / state->srate;
1461 				}
1462 				wait_t *= 2; /* FOS */
1463 				S2T_set(state, S2T);
1464 				S45T_set(state, S4T, S5T);
1465 				Vi_set(state, ETH, VIA);
1466 				srst(state);
1467 				msleep_interruptible(wait_t);
1468 				sync = sync_chk(state, &VIRM);
1469 				dprintk(verbose, MB86A16_INFO, 1, "-------- Viterbi=[%d] SYNC=[%d] ---------", VIRM, sync);
1470 				if (VIRM) {
1471 					if (VIRM == 4) {
1472 						/* 5/6 */
1473 						if (SIG1 > 110)
1474 							wait_t = (786432 + state->srate / 2) / state->srate;
1475 						else
1476 							wait_t = (1572864 + state->srate / 2) / state->srate;
1477 						if (state->srate < 5000)
1478 							/* FIXME ! , should be a long wait ! */
1479 							msleep_interruptible(wait_t);
1480 						else
1481 							msleep_interruptible(wait_t);
1482 
1483 						if (sync_chk(state, &junk) == 0) {
1484 							iq_vt_set(state, 1);
1485 							FEC_srst(state);
1486 						}
1487 					}
1488 					/* 1/2, 2/3, 3/4, 7/8 */
1489 					if (SIG1 > 110)
1490 						wait_t = (786432 + state->srate / 2) / state->srate;
1491 					else
1492 						wait_t = (1572864 + state->srate / 2) / state->srate;
1493 					msleep_interruptible(wait_t);
1494 					SEQ_set(state, 1);
1495 				} else {
1496 					dprintk(verbose, MB86A16_INFO, 1, "NO  -- SYNC");
1497 					SEQ_set(state, 1);
1498 					ret = -1;
1499 				}
1500 			}
1501 		} else {
1502 			dprintk(verbose, MB86A16_INFO, 1, "NO  -- SIGNAL");
1503 			ret = -1;
1504 		}
1505 
1506 		sync = sync_chk(state, &junk);
1507 		if (sync) {
1508 			dprintk(verbose, MB86A16_INFO, 1, "******* SYNC *******");
1509 			freqerr_chk(state, state->frequency, state->srate, 1);
1510 			ret = 0;
1511 			break;
1512 		}
1513 	}
1514 
1515 	mb86a16_read(state, 0x15, &agcval);
1516 	mb86a16_read(state, 0x26, &cnmval);
1517 	dprintk(verbose, MB86A16_INFO, 1, "AGC = %02x CNM = %02x", agcval, cnmval);
1518 
1519 	return ret;
1520 }
1521 
1522 static int mb86a16_send_diseqc_msg(struct dvb_frontend *fe,
1523 				   struct dvb_diseqc_master_cmd *cmd)
1524 {
1525 	struct mb86a16_state *state = fe->demodulator_priv;
1526 	int i;
1527 	u8 regs;
1528 
1529 	if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1530 		goto err;
1531 	if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1532 		goto err;
1533 	if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1534 		goto err;
1535 
1536 	regs = 0x18;
1537 
1538 	if (cmd->msg_len > 5 || cmd->msg_len < 4)
1539 		return -EINVAL;
1540 
1541 	for (i = 0; i < cmd->msg_len; i++) {
1542 		if (mb86a16_write(state, regs, cmd->msg[i]) < 0)
1543 			goto err;
1544 
1545 		regs++;
1546 	}
1547 	i += 0x90;
1548 
1549 	msleep_interruptible(10);
1550 
1551 	if (mb86a16_write(state, MB86A16_DCC1, i) < 0)
1552 		goto err;
1553 	if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1554 		goto err;
1555 
1556 	return 0;
1557 
1558 err:
1559 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1560 	return -EREMOTEIO;
1561 }
1562 
1563 static int mb86a16_send_diseqc_burst(struct dvb_frontend *fe, fe_sec_mini_cmd_t burst)
1564 {
1565 	struct mb86a16_state *state = fe->demodulator_priv;
1566 
1567 	switch (burst) {
1568 	case SEC_MINI_A:
1569 		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1570 						       MB86A16_DCC1_TBEN  |
1571 						       MB86A16_DCC1_TBO) < 0)
1572 			goto err;
1573 		if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1574 			goto err;
1575 		break;
1576 	case SEC_MINI_B:
1577 		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1578 						       MB86A16_DCC1_TBEN) < 0)
1579 			goto err;
1580 		if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1581 			goto err;
1582 		break;
1583 	}
1584 
1585 	return 0;
1586 err:
1587 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1588 	return -EREMOTEIO;
1589 }
1590 
1591 static int mb86a16_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone)
1592 {
1593 	struct mb86a16_state *state = fe->demodulator_priv;
1594 
1595 	switch (tone) {
1596 	case SEC_TONE_ON:
1597 		if (mb86a16_write(state, MB86A16_TONEOUT2, 0x00) < 0)
1598 			goto err;
1599 		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1600 						       MB86A16_DCC1_CTOE) < 0)
1601 
1602 			goto err;
1603 		if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1604 			goto err;
1605 		break;
1606 	case SEC_TONE_OFF:
1607 		if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1608 			goto err;
1609 		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1610 			goto err;
1611 		if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1612 			goto err;
1613 		break;
1614 	default:
1615 		return -EINVAL;
1616 	}
1617 	return 0;
1618 
1619 err:
1620 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1621 	return -EREMOTEIO;
1622 }
1623 
1624 static enum dvbfe_search mb86a16_search(struct dvb_frontend *fe)
1625 {
1626 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1627 	struct mb86a16_state *state = fe->demodulator_priv;
1628 
1629 	state->frequency = p->frequency / 1000;
1630 	state->srate = p->symbol_rate / 1000;
1631 
1632 	if (!mb86a16_set_fe(state)) {
1633 		dprintk(verbose, MB86A16_ERROR, 1, "Successfully acquired LOCK");
1634 		return DVBFE_ALGO_SEARCH_SUCCESS;
1635 	}
1636 
1637 	dprintk(verbose, MB86A16_ERROR, 1, "Lock acquisition failed!");
1638 	return DVBFE_ALGO_SEARCH_FAILED;
1639 }
1640 
1641 static void mb86a16_release(struct dvb_frontend *fe)
1642 {
1643 	struct mb86a16_state *state = fe->demodulator_priv;
1644 	kfree(state);
1645 }
1646 
1647 static int mb86a16_init(struct dvb_frontend *fe)
1648 {
1649 	return 0;
1650 }
1651 
1652 static int mb86a16_sleep(struct dvb_frontend *fe)
1653 {
1654 	return 0;
1655 }
1656 
1657 static int mb86a16_read_ber(struct dvb_frontend *fe, u32 *ber)
1658 {
1659 	u8 ber_mon, ber_tab, ber_lsb, ber_mid, ber_msb, ber_tim, ber_rst;
1660 	u32 timer;
1661 
1662 	struct mb86a16_state *state = fe->demodulator_priv;
1663 
1664 	*ber = 0;
1665 	if (mb86a16_read(state, MB86A16_BERMON, &ber_mon) != 2)
1666 		goto err;
1667 	if (mb86a16_read(state, MB86A16_BERTAB, &ber_tab) != 2)
1668 		goto err;
1669 	if (mb86a16_read(state, MB86A16_BERLSB, &ber_lsb) != 2)
1670 		goto err;
1671 	if (mb86a16_read(state, MB86A16_BERMID, &ber_mid) != 2)
1672 		goto err;
1673 	if (mb86a16_read(state, MB86A16_BERMSB, &ber_msb) != 2)
1674 		goto err;
1675 	/* BER monitor invalid when BER_EN = 0	*/
1676 	if (ber_mon & 0x04) {
1677 		/* coarse, fast calculation	*/
1678 		*ber = ber_tab & 0x1f;
1679 		dprintk(verbose, MB86A16_DEBUG, 1, "BER coarse=[0x%02x]", *ber);
1680 		if (ber_mon & 0x01) {
1681 			/*
1682 			 * BER_SEL = 1, The monitored BER is the estimated
1683 			 * value with a Reed-Solomon decoder error amount at
1684 			 * the deinterleaver output.
1685 			 * monitored BER is expressed as a 20 bit output in total
1686 			 */
1687 			ber_rst = ber_mon >> 3;
1688 			*ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1689 			if (ber_rst == 0)
1690 				timer =  12500000;
1691 			if (ber_rst == 1)
1692 				timer =  25000000;
1693 			if (ber_rst == 2)
1694 				timer =  50000000;
1695 			if (ber_rst == 3)
1696 				timer = 100000000;
1697 
1698 			*ber /= timer;
1699 			dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1700 		} else {
1701 			/*
1702 			 * BER_SEL = 0, The monitored BER is the estimated
1703 			 * value with a Viterbi decoder error amount at the
1704 			 * QPSK demodulator output.
1705 			 * monitored BER is expressed as a 24 bit output in total
1706 			 */
1707 			ber_tim = ber_mon >> 1;
1708 			*ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1709 			if (ber_tim == 0)
1710 				timer = 16;
1711 			if (ber_tim == 1)
1712 				timer = 24;
1713 
1714 			*ber /= 2 ^ timer;
1715 			dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1716 		}
1717 	}
1718 	return 0;
1719 err:
1720 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1721 	return -EREMOTEIO;
1722 }
1723 
1724 static int mb86a16_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1725 {
1726 	u8 agcm = 0;
1727 	struct mb86a16_state *state = fe->demodulator_priv;
1728 
1729 	*strength = 0;
1730 	if (mb86a16_read(state, MB86A16_AGCM, &agcm) != 2) {
1731 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1732 		return -EREMOTEIO;
1733 	}
1734 
1735 	*strength = ((0xff - agcm) * 100) / 256;
1736 	dprintk(verbose, MB86A16_DEBUG, 1, "Signal strength=[%d %%]", (u8) *strength);
1737 	*strength = (0xffff - 0xff) + agcm;
1738 
1739 	return 0;
1740 }
1741 
1742 struct cnr {
1743 	u8 cn_reg;
1744 	u8 cn_val;
1745 };
1746 
1747 static const struct cnr cnr_tab[] = {
1748 	{  35,  2 },
1749 	{  40,  3 },
1750 	{  50,  4 },
1751 	{  60,  5 },
1752 	{  70,  6 },
1753 	{  80,  7 },
1754 	{  92,  8 },
1755 	{ 103,  9 },
1756 	{ 115, 10 },
1757 	{ 138, 12 },
1758 	{ 162, 15 },
1759 	{ 180, 18 },
1760 	{ 185, 19 },
1761 	{ 189, 20 },
1762 	{ 195, 22 },
1763 	{ 199, 24 },
1764 	{ 201, 25 },
1765 	{ 202, 26 },
1766 	{ 203, 27 },
1767 	{ 205, 28 },
1768 	{ 208, 30 }
1769 };
1770 
1771 static int mb86a16_read_snr(struct dvb_frontend *fe, u16 *snr)
1772 {
1773 	struct mb86a16_state *state = fe->demodulator_priv;
1774 	int i = 0;
1775 	int low_tide = 2, high_tide = 30, q_level;
1776 	u8  cn;
1777 
1778 	*snr = 0;
1779 	if (mb86a16_read(state, 0x26, &cn) != 2) {
1780 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1781 		return -EREMOTEIO;
1782 	}
1783 
1784 	for (i = 0; i < ARRAY_SIZE(cnr_tab); i++) {
1785 		if (cn < cnr_tab[i].cn_reg) {
1786 			*snr = cnr_tab[i].cn_val;
1787 			break;
1788 		}
1789 	}
1790 	q_level = (*snr * 100) / (high_tide - low_tide);
1791 	dprintk(verbose, MB86A16_ERROR, 1, "SNR (Quality) = [%d dB], Level=%d %%", *snr, q_level);
1792 	*snr = (0xffff - 0xff) + *snr;
1793 
1794 	return 0;
1795 }
1796 
1797 static int mb86a16_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1798 {
1799 	u8 dist;
1800 	struct mb86a16_state *state = fe->demodulator_priv;
1801 
1802 	if (mb86a16_read(state, MB86A16_DISTMON, &dist) != 2) {
1803 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1804 		return -EREMOTEIO;
1805 	}
1806 	*ucblocks = dist;
1807 
1808 	return 0;
1809 }
1810 
1811 static enum dvbfe_algo mb86a16_frontend_algo(struct dvb_frontend *fe)
1812 {
1813 	return DVBFE_ALGO_CUSTOM;
1814 }
1815 
1816 static struct dvb_frontend_ops mb86a16_ops = {
1817 	.delsys = { SYS_DVBS },
1818 	.info = {
1819 		.name			= "Fujitsu MB86A16 DVB-S",
1820 		.frequency_min		= 950000,
1821 		.frequency_max		= 2150000,
1822 		.frequency_stepsize	= 3000,
1823 		.frequency_tolerance	= 0,
1824 		.symbol_rate_min	= 1000000,
1825 		.symbol_rate_max	= 45000000,
1826 		.symbol_rate_tolerance	= 500,
1827 		.caps			= FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
1828 					  FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
1829 					  FE_CAN_FEC_7_8 | FE_CAN_QPSK    |
1830 					  FE_CAN_FEC_AUTO
1831 	},
1832 	.release			= mb86a16_release,
1833 
1834 	.get_frontend_algo		= mb86a16_frontend_algo,
1835 	.search				= mb86a16_search,
1836 	.init				= mb86a16_init,
1837 	.sleep				= mb86a16_sleep,
1838 	.read_status			= mb86a16_read_status,
1839 
1840 	.read_ber			= mb86a16_read_ber,
1841 	.read_signal_strength		= mb86a16_read_signal_strength,
1842 	.read_snr			= mb86a16_read_snr,
1843 	.read_ucblocks			= mb86a16_read_ucblocks,
1844 
1845 	.diseqc_send_master_cmd		= mb86a16_send_diseqc_msg,
1846 	.diseqc_send_burst		= mb86a16_send_diseqc_burst,
1847 	.set_tone			= mb86a16_set_tone,
1848 };
1849 
1850 struct dvb_frontend *mb86a16_attach(const struct mb86a16_config *config,
1851 				    struct i2c_adapter *i2c_adap)
1852 {
1853 	u8 dev_id = 0;
1854 	struct mb86a16_state *state = NULL;
1855 
1856 	state = kmalloc(sizeof(struct mb86a16_state), GFP_KERNEL);
1857 	if (state == NULL)
1858 		goto error;
1859 
1860 	state->config = config;
1861 	state->i2c_adap = i2c_adap;
1862 
1863 	mb86a16_read(state, 0x7f, &dev_id);
1864 	if (dev_id != 0xfe)
1865 		goto error;
1866 
1867 	memcpy(&state->frontend.ops, &mb86a16_ops, sizeof(struct dvb_frontend_ops));
1868 	state->frontend.demodulator_priv = state;
1869 	state->frontend.ops.set_voltage = state->config->set_voltage;
1870 
1871 	return &state->frontend;
1872 error:
1873 	kfree(state);
1874 	return NULL;
1875 }
1876 EXPORT_SYMBOL(mb86a16_attach);
1877 MODULE_LICENSE("GPL");
1878 MODULE_AUTHOR("Manu Abraham");
1879