1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 Fujitsu MB86A16 DVB-S/DSS DC Receiver driver 4 5 Copyright (C) Manu Abraham (abraham.manu@gmail.com) 6 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/module.h> 12 #include <linux/moduleparam.h> 13 #include <linux/slab.h> 14 15 #include <media/dvb_frontend.h> 16 #include "mb86a16.h" 17 #include "mb86a16_priv.h" 18 19 static unsigned int verbose = 5; 20 module_param(verbose, int, 0644); 21 22 struct mb86a16_state { 23 struct i2c_adapter *i2c_adap; 24 const struct mb86a16_config *config; 25 struct dvb_frontend frontend; 26 27 /* tuning parameters */ 28 int frequency; 29 int srate; 30 31 /* Internal stuff */ 32 int master_clk; 33 int deci; 34 int csel; 35 int rsel; 36 }; 37 38 #define MB86A16_ERROR 0 39 #define MB86A16_NOTICE 1 40 #define MB86A16_INFO 2 41 #define MB86A16_DEBUG 3 42 43 #define dprintk(x, y, z, format, arg...) do { \ 44 if (z) { \ 45 if ((x > MB86A16_ERROR) && (x > y)) \ 46 printk(KERN_ERR "%s: " format "\n", __func__, ##arg); \ 47 else if ((x > MB86A16_NOTICE) && (x > y)) \ 48 printk(KERN_NOTICE "%s: " format "\n", __func__, ##arg); \ 49 else if ((x > MB86A16_INFO) && (x > y)) \ 50 printk(KERN_INFO "%s: " format "\n", __func__, ##arg); \ 51 else if ((x > MB86A16_DEBUG) && (x > y)) \ 52 printk(KERN_DEBUG "%s: " format "\n", __func__, ##arg); \ 53 } else { \ 54 if (x > y) \ 55 printk(format, ##arg); \ 56 } \ 57 } while (0) 58 59 #define TRACE_IN dprintk(verbose, MB86A16_DEBUG, 1, "-->()") 60 #define TRACE_OUT dprintk(verbose, MB86A16_DEBUG, 1, "()-->") 61 62 static int mb86a16_write(struct mb86a16_state *state, u8 reg, u8 val) 63 { 64 int ret; 65 u8 buf[] = { reg, val }; 66 67 struct i2c_msg msg = { 68 .addr = state->config->demod_address, 69 .flags = 0, 70 .buf = buf, 71 .len = 2 72 }; 73 74 dprintk(verbose, MB86A16_DEBUG, 1, 75 "writing to [0x%02x],Reg[0x%02x],Data[0x%02x]", 76 state->config->demod_address, buf[0], buf[1]); 77 78 ret = i2c_transfer(state->i2c_adap, &msg, 1); 79 80 return (ret != 1) ? -EREMOTEIO : 0; 81 } 82 83 static int mb86a16_read(struct mb86a16_state *state, u8 reg, u8 *val) 84 { 85 int ret; 86 u8 b0[] = { reg }; 87 u8 b1[] = { 0 }; 88 89 struct i2c_msg msg[] = { 90 { 91 .addr = state->config->demod_address, 92 .flags = 0, 93 .buf = b0, 94 .len = 1 95 }, { 96 .addr = state->config->demod_address, 97 .flags = I2C_M_RD, 98 .buf = b1, 99 .len = 1 100 } 101 }; 102 ret = i2c_transfer(state->i2c_adap, msg, 2); 103 if (ret != 2) { 104 dprintk(verbose, MB86A16_ERROR, 1, "read error(reg=0x%02x, ret=%i)", 105 reg, ret); 106 107 if (ret < 0) 108 return ret; 109 return -EREMOTEIO; 110 } 111 *val = b1[0]; 112 113 return ret; 114 } 115 116 static int CNTM_set(struct mb86a16_state *state, 117 unsigned char timint1, 118 unsigned char timint2, 119 unsigned char cnext) 120 { 121 unsigned char val; 122 123 val = (timint1 << 4) | (timint2 << 2) | cnext; 124 if (mb86a16_write(state, MB86A16_CNTMR, val) < 0) 125 goto err; 126 127 return 0; 128 129 err: 130 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 131 return -EREMOTEIO; 132 } 133 134 static int smrt_set(struct mb86a16_state *state, int rate) 135 { 136 int tmp ; 137 int m ; 138 unsigned char STOFS0, STOFS1; 139 140 m = 1 << state->deci; 141 tmp = (8192 * state->master_clk - 2 * m * rate * 8192 + state->master_clk / 2) / state->master_clk; 142 143 STOFS0 = tmp & 0x0ff; 144 STOFS1 = (tmp & 0xf00) >> 8; 145 146 if (mb86a16_write(state, MB86A16_SRATE1, (state->deci << 2) | 147 (state->csel << 1) | 148 state->rsel) < 0) 149 goto err; 150 if (mb86a16_write(state, MB86A16_SRATE2, STOFS0) < 0) 151 goto err; 152 if (mb86a16_write(state, MB86A16_SRATE3, STOFS1) < 0) 153 goto err; 154 155 return 0; 156 err: 157 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 158 return -1; 159 } 160 161 static int srst(struct mb86a16_state *state) 162 { 163 if (mb86a16_write(state, MB86A16_RESET, 0x04) < 0) 164 goto err; 165 166 return 0; 167 err: 168 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 169 return -EREMOTEIO; 170 171 } 172 173 static int afcex_data_set(struct mb86a16_state *state, 174 unsigned char AFCEX_L, 175 unsigned char AFCEX_H) 176 { 177 if (mb86a16_write(state, MB86A16_AFCEXL, AFCEX_L) < 0) 178 goto err; 179 if (mb86a16_write(state, MB86A16_AFCEXH, AFCEX_H) < 0) 180 goto err; 181 182 return 0; 183 err: 184 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 185 186 return -1; 187 } 188 189 static int afcofs_data_set(struct mb86a16_state *state, 190 unsigned char AFCEX_L, 191 unsigned char AFCEX_H) 192 { 193 if (mb86a16_write(state, 0x58, AFCEX_L) < 0) 194 goto err; 195 if (mb86a16_write(state, 0x59, AFCEX_H) < 0) 196 goto err; 197 198 return 0; 199 err: 200 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 201 return -EREMOTEIO; 202 } 203 204 static int stlp_set(struct mb86a16_state *state, 205 unsigned char STRAS, 206 unsigned char STRBS) 207 { 208 if (mb86a16_write(state, MB86A16_STRFILTCOEF1, (STRBS << 3) | (STRAS)) < 0) 209 goto err; 210 211 return 0; 212 err: 213 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 214 return -EREMOTEIO; 215 } 216 217 static int Vi_set(struct mb86a16_state *state, unsigned char ETH, unsigned char VIA) 218 { 219 if (mb86a16_write(state, MB86A16_VISET2, 0x04) < 0) 220 goto err; 221 if (mb86a16_write(state, MB86A16_VISET3, 0xf5) < 0) 222 goto err; 223 224 return 0; 225 err: 226 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 227 return -EREMOTEIO; 228 } 229 230 static int initial_set(struct mb86a16_state *state) 231 { 232 if (stlp_set(state, 5, 7)) 233 goto err; 234 235 udelay(100); 236 if (afcex_data_set(state, 0, 0)) 237 goto err; 238 239 udelay(100); 240 if (afcofs_data_set(state, 0, 0)) 241 goto err; 242 243 udelay(100); 244 if (mb86a16_write(state, MB86A16_CRLFILTCOEF1, 0x16) < 0) 245 goto err; 246 if (mb86a16_write(state, 0x2f, 0x21) < 0) 247 goto err; 248 if (mb86a16_write(state, MB86A16_VIMAG, 0x38) < 0) 249 goto err; 250 if (mb86a16_write(state, MB86A16_FAGCS1, 0x00) < 0) 251 goto err; 252 if (mb86a16_write(state, MB86A16_FAGCS2, 0x1c) < 0) 253 goto err; 254 if (mb86a16_write(state, MB86A16_FAGCS3, 0x20) < 0) 255 goto err; 256 if (mb86a16_write(state, MB86A16_FAGCS4, 0x1e) < 0) 257 goto err; 258 if (mb86a16_write(state, MB86A16_FAGCS5, 0x23) < 0) 259 goto err; 260 if (mb86a16_write(state, 0x54, 0xff) < 0) 261 goto err; 262 if (mb86a16_write(state, MB86A16_TSOUT, 0x00) < 0) 263 goto err; 264 265 return 0; 266 267 err: 268 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 269 return -EREMOTEIO; 270 } 271 272 static int S01T_set(struct mb86a16_state *state, 273 unsigned char s1t, 274 unsigned s0t) 275 { 276 if (mb86a16_write(state, 0x33, (s1t << 3) | s0t) < 0) 277 goto err; 278 279 return 0; 280 err: 281 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 282 return -EREMOTEIO; 283 } 284 285 286 static int EN_set(struct mb86a16_state *state, 287 int cren, 288 int afcen) 289 { 290 unsigned char val; 291 292 val = 0x7a | (cren << 7) | (afcen << 2); 293 if (mb86a16_write(state, 0x49, val) < 0) 294 goto err; 295 296 return 0; 297 err: 298 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 299 return -EREMOTEIO; 300 } 301 302 static int AFCEXEN_set(struct mb86a16_state *state, 303 int afcexen, 304 int smrt) 305 { 306 unsigned char AFCA ; 307 308 if (smrt > 18875) 309 AFCA = 4; 310 else if (smrt > 9375) 311 AFCA = 3; 312 else if (smrt > 2250) 313 AFCA = 2; 314 else 315 AFCA = 1; 316 317 if (mb86a16_write(state, 0x2a, 0x02 | (afcexen << 5) | (AFCA << 2)) < 0) 318 goto err; 319 320 return 0; 321 322 err: 323 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 324 return -EREMOTEIO; 325 } 326 327 static int DAGC_data_set(struct mb86a16_state *state, 328 unsigned char DAGCA, 329 unsigned char DAGCW) 330 { 331 if (mb86a16_write(state, 0x2d, (DAGCA << 3) | DAGCW) < 0) 332 goto err; 333 334 return 0; 335 336 err: 337 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 338 return -EREMOTEIO; 339 } 340 341 static void smrt_info_get(struct mb86a16_state *state, int rate) 342 { 343 if (rate >= 37501) { 344 state->deci = 0; state->csel = 0; state->rsel = 0; 345 } else if (rate >= 30001) { 346 state->deci = 0; state->csel = 0; state->rsel = 1; 347 } else if (rate >= 26251) { 348 state->deci = 0; state->csel = 1; state->rsel = 0; 349 } else if (rate >= 22501) { 350 state->deci = 0; state->csel = 1; state->rsel = 1; 351 } else if (rate >= 18751) { 352 state->deci = 1; state->csel = 0; state->rsel = 0; 353 } else if (rate >= 15001) { 354 state->deci = 1; state->csel = 0; state->rsel = 1; 355 } else if (rate >= 13126) { 356 state->deci = 1; state->csel = 1; state->rsel = 0; 357 } else if (rate >= 11251) { 358 state->deci = 1; state->csel = 1; state->rsel = 1; 359 } else if (rate >= 9376) { 360 state->deci = 2; state->csel = 0; state->rsel = 0; 361 } else if (rate >= 7501) { 362 state->deci = 2; state->csel = 0; state->rsel = 1; 363 } else if (rate >= 6563) { 364 state->deci = 2; state->csel = 1; state->rsel = 0; 365 } else if (rate >= 5626) { 366 state->deci = 2; state->csel = 1; state->rsel = 1; 367 } else if (rate >= 4688) { 368 state->deci = 3; state->csel = 0; state->rsel = 0; 369 } else if (rate >= 3751) { 370 state->deci = 3; state->csel = 0; state->rsel = 1; 371 } else if (rate >= 3282) { 372 state->deci = 3; state->csel = 1; state->rsel = 0; 373 } else if (rate >= 2814) { 374 state->deci = 3; state->csel = 1; state->rsel = 1; 375 } else if (rate >= 2344) { 376 state->deci = 4; state->csel = 0; state->rsel = 0; 377 } else if (rate >= 1876) { 378 state->deci = 4; state->csel = 0; state->rsel = 1; 379 } else if (rate >= 1641) { 380 state->deci = 4; state->csel = 1; state->rsel = 0; 381 } else if (rate >= 1407) { 382 state->deci = 4; state->csel = 1; state->rsel = 1; 383 } else if (rate >= 1172) { 384 state->deci = 5; state->csel = 0; state->rsel = 0; 385 } else if (rate >= 939) { 386 state->deci = 5; state->csel = 0; state->rsel = 1; 387 } else if (rate >= 821) { 388 state->deci = 5; state->csel = 1; state->rsel = 0; 389 } else { 390 state->deci = 5; state->csel = 1; state->rsel = 1; 391 } 392 393 if (state->csel == 0) 394 state->master_clk = 92000; 395 else 396 state->master_clk = 61333; 397 398 } 399 400 static int signal_det(struct mb86a16_state *state, 401 int smrt, 402 unsigned char *SIG) 403 { 404 int ret; 405 int smrtd; 406 unsigned char S[3]; 407 int i; 408 409 if (*SIG > 45) { 410 if (CNTM_set(state, 2, 1, 2) < 0) { 411 dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error"); 412 return -1; 413 } 414 } else { 415 if (CNTM_set(state, 3, 1, 2) < 0) { 416 dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error"); 417 return -1; 418 } 419 } 420 for (i = 0; i < 3; i++) { 421 if (i == 0) 422 smrtd = smrt * 98 / 100; 423 else if (i == 1) 424 smrtd = smrt; 425 else 426 smrtd = smrt * 102 / 100; 427 smrt_info_get(state, smrtd); 428 smrt_set(state, smrtd); 429 srst(state); 430 msleep_interruptible(10); 431 if (mb86a16_read(state, 0x37, &(S[i])) != 2) { 432 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 433 return -EREMOTEIO; 434 } 435 } 436 if ((S[1] > S[0] * 112 / 100) && (S[1] > S[2] * 112 / 100)) 437 ret = 1; 438 else 439 ret = 0; 440 441 *SIG = S[1]; 442 443 if (CNTM_set(state, 0, 1, 2) < 0) { 444 dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error"); 445 return -1; 446 } 447 448 return ret; 449 } 450 451 static int rf_val_set(struct mb86a16_state *state, 452 int f, 453 int smrt, 454 unsigned char R) 455 { 456 unsigned char C, F, B; 457 int M; 458 unsigned char rf_val[5]; 459 int ack = -1; 460 461 if (smrt > 37750) 462 C = 1; 463 else if (smrt > 18875) 464 C = 2; 465 else if (smrt > 5500) 466 C = 3; 467 else 468 C = 4; 469 470 if (smrt > 30500) 471 F = 3; 472 else if (smrt > 9375) 473 F = 1; 474 else if (smrt > 4625) 475 F = 0; 476 else 477 F = 2; 478 479 if (f < 1060) 480 B = 0; 481 else if (f < 1175) 482 B = 1; 483 else if (f < 1305) 484 B = 2; 485 else if (f < 1435) 486 B = 3; 487 else if (f < 1570) 488 B = 4; 489 else if (f < 1715) 490 B = 5; 491 else if (f < 1845) 492 B = 6; 493 else if (f < 1980) 494 B = 7; 495 else if (f < 2080) 496 B = 8; 497 else 498 B = 9; 499 500 M = f * (1 << R) / 2; 501 502 rf_val[0] = 0x01 | (C << 3) | (F << 1); 503 rf_val[1] = (R << 5) | ((M & 0x1f000) >> 12); 504 rf_val[2] = (M & 0x00ff0) >> 4; 505 rf_val[3] = ((M & 0x0000f) << 4) | B; 506 507 /* Frequency Set */ 508 if (mb86a16_write(state, 0x21, rf_val[0]) < 0) 509 ack = 0; 510 if (mb86a16_write(state, 0x22, rf_val[1]) < 0) 511 ack = 0; 512 if (mb86a16_write(state, 0x23, rf_val[2]) < 0) 513 ack = 0; 514 if (mb86a16_write(state, 0x24, rf_val[3]) < 0) 515 ack = 0; 516 if (mb86a16_write(state, 0x25, 0x01) < 0) 517 ack = 0; 518 if (ack == 0) { 519 dprintk(verbose, MB86A16_ERROR, 1, "RF Setup - I2C transfer error"); 520 return -EREMOTEIO; 521 } 522 523 return 0; 524 } 525 526 static int afcerr_chk(struct mb86a16_state *state) 527 { 528 unsigned char AFCM_L, AFCM_H ; 529 int AFCM ; 530 int afcm, afcerr ; 531 532 if (mb86a16_read(state, 0x0e, &AFCM_L) != 2) 533 goto err; 534 if (mb86a16_read(state, 0x0f, &AFCM_H) != 2) 535 goto err; 536 537 AFCM = (AFCM_H << 8) + AFCM_L; 538 539 if (AFCM > 2048) 540 afcm = AFCM - 4096; 541 else 542 afcm = AFCM; 543 afcerr = afcm * state->master_clk / 8192; 544 545 return afcerr; 546 547 err: 548 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 549 return -EREMOTEIO; 550 } 551 552 static int dagcm_val_get(struct mb86a16_state *state) 553 { 554 int DAGCM; 555 unsigned char DAGCM_H, DAGCM_L; 556 557 if (mb86a16_read(state, 0x45, &DAGCM_L) != 2) 558 goto err; 559 if (mb86a16_read(state, 0x46, &DAGCM_H) != 2) 560 goto err; 561 562 DAGCM = (DAGCM_H << 8) + DAGCM_L; 563 564 return DAGCM; 565 566 err: 567 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 568 return -EREMOTEIO; 569 } 570 571 static int mb86a16_read_status(struct dvb_frontend *fe, enum fe_status *status) 572 { 573 u8 stat, stat2; 574 struct mb86a16_state *state = fe->demodulator_priv; 575 576 *status = 0; 577 578 if (mb86a16_read(state, MB86A16_SIG1, &stat) != 2) 579 goto err; 580 if (mb86a16_read(state, MB86A16_SIG2, &stat2) != 2) 581 goto err; 582 if ((stat > 25) && (stat2 > 25)) 583 *status |= FE_HAS_SIGNAL; 584 if ((stat > 45) && (stat2 > 45)) 585 *status |= FE_HAS_CARRIER; 586 587 if (mb86a16_read(state, MB86A16_STATUS, &stat) != 2) 588 goto err; 589 590 if (stat & 0x01) 591 *status |= FE_HAS_SYNC; 592 if (stat & 0x01) 593 *status |= FE_HAS_VITERBI; 594 595 if (mb86a16_read(state, MB86A16_FRAMESYNC, &stat) != 2) 596 goto err; 597 598 if ((stat & 0x0f) && (*status & FE_HAS_VITERBI)) 599 *status |= FE_HAS_LOCK; 600 601 return 0; 602 603 err: 604 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 605 return -EREMOTEIO; 606 } 607 608 static int sync_chk(struct mb86a16_state *state, 609 unsigned char *VIRM) 610 { 611 unsigned char val; 612 int sync; 613 614 if (mb86a16_read(state, 0x0d, &val) != 2) 615 goto err; 616 617 dprintk(verbose, MB86A16_INFO, 1, "Status = %02x,", val); 618 sync = val & 0x01; 619 *VIRM = (val & 0x1c) >> 2; 620 621 return sync; 622 err: 623 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 624 *VIRM = 0; 625 return -EREMOTEIO; 626 627 } 628 629 static int freqerr_chk(struct mb86a16_state *state, 630 int fTP, 631 int smrt, 632 int unit) 633 { 634 unsigned char CRM, AFCML, AFCMH; 635 unsigned char temp1, temp2, temp3; 636 int crm, afcm, AFCM; 637 int crrerr, afcerr; /* kHz */ 638 int frqerr; /* MHz */ 639 int afcen, afcexen = 0; 640 int R, M, fOSC, fOSC_OFS; 641 642 if (mb86a16_read(state, 0x43, &CRM) != 2) 643 goto err; 644 645 if (CRM > 127) 646 crm = CRM - 256; 647 else 648 crm = CRM; 649 650 crrerr = smrt * crm / 256; 651 if (mb86a16_read(state, 0x49, &temp1) != 2) 652 goto err; 653 654 afcen = (temp1 & 0x04) >> 2; 655 if (afcen == 0) { 656 if (mb86a16_read(state, 0x2a, &temp1) != 2) 657 goto err; 658 afcexen = (temp1 & 0x20) >> 5; 659 } 660 661 if (afcen == 1) { 662 if (mb86a16_read(state, 0x0e, &AFCML) != 2) 663 goto err; 664 if (mb86a16_read(state, 0x0f, &AFCMH) != 2) 665 goto err; 666 } else if (afcexen == 1) { 667 if (mb86a16_read(state, 0x2b, &AFCML) != 2) 668 goto err; 669 if (mb86a16_read(state, 0x2c, &AFCMH) != 2) 670 goto err; 671 } 672 if ((afcen == 1) || (afcexen == 1)) { 673 smrt_info_get(state, smrt); 674 AFCM = ((AFCMH & 0x01) << 8) + AFCML; 675 if (AFCM > 255) 676 afcm = AFCM - 512; 677 else 678 afcm = AFCM; 679 680 afcerr = afcm * state->master_clk / 8192; 681 } else 682 afcerr = 0; 683 684 if (mb86a16_read(state, 0x22, &temp1) != 2) 685 goto err; 686 if (mb86a16_read(state, 0x23, &temp2) != 2) 687 goto err; 688 if (mb86a16_read(state, 0x24, &temp3) != 2) 689 goto err; 690 691 R = (temp1 & 0xe0) >> 5; 692 M = ((temp1 & 0x1f) << 12) + (temp2 << 4) + (temp3 >> 4); 693 if (R == 0) 694 fOSC = 2 * M; 695 else 696 fOSC = M; 697 698 fOSC_OFS = fOSC - fTP; 699 700 if (unit == 0) { /* MHz */ 701 if (crrerr + afcerr + fOSC_OFS * 1000 >= 0) 702 frqerr = (crrerr + afcerr + fOSC_OFS * 1000 + 500) / 1000; 703 else 704 frqerr = (crrerr + afcerr + fOSC_OFS * 1000 - 500) / 1000; 705 } else { /* kHz */ 706 frqerr = crrerr + afcerr + fOSC_OFS * 1000; 707 } 708 709 return frqerr; 710 err: 711 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 712 return -EREMOTEIO; 713 } 714 715 static unsigned char vco_dev_get(struct mb86a16_state *state, int smrt) 716 { 717 unsigned char R; 718 719 if (smrt > 9375) 720 R = 0; 721 else 722 R = 1; 723 724 return R; 725 } 726 727 static void swp_info_get(struct mb86a16_state *state, 728 int fOSC_start, 729 int smrt, 730 int v, int R, 731 int swp_ofs, 732 int *fOSC, 733 int *afcex_freq, 734 unsigned char *AFCEX_L, 735 unsigned char *AFCEX_H) 736 { 737 int AFCEX ; 738 int crnt_swp_freq ; 739 740 crnt_swp_freq = fOSC_start * 1000 + v * swp_ofs; 741 742 if (R == 0) 743 *fOSC = (crnt_swp_freq + 1000) / 2000 * 2; 744 else 745 *fOSC = (crnt_swp_freq + 500) / 1000; 746 747 if (*fOSC >= crnt_swp_freq) 748 *afcex_freq = *fOSC * 1000 - crnt_swp_freq; 749 else 750 *afcex_freq = crnt_swp_freq - *fOSC * 1000; 751 752 AFCEX = *afcex_freq * 8192 / state->master_clk; 753 *AFCEX_L = AFCEX & 0x00ff; 754 *AFCEX_H = (AFCEX & 0x0f00) >> 8; 755 } 756 757 758 static int swp_freq_calcuation(struct mb86a16_state *state, int i, int v, int *V, int vmax, int vmin, 759 int SIGMIN, int fOSC, int afcex_freq, int swp_ofs, unsigned char *SIG1) 760 { 761 int swp_freq ; 762 763 if ((i % 2 == 1) && (v <= vmax)) { 764 /* positive v (case 1) */ 765 if ((v - 1 == vmin) && 766 (*(V + 30 + v) >= 0) && 767 (*(V + 30 + v - 1) >= 0) && 768 (*(V + 30 + v - 1) > *(V + 30 + v)) && 769 (*(V + 30 + v - 1) > SIGMIN)) { 770 771 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs; 772 *SIG1 = *(V + 30 + v - 1); 773 } else if ((v == vmax) && 774 (*(V + 30 + v) >= 0) && 775 (*(V + 30 + v - 1) >= 0) && 776 (*(V + 30 + v) > *(V + 30 + v - 1)) && 777 (*(V + 30 + v) > SIGMIN)) { 778 /* (case 2) */ 779 swp_freq = fOSC * 1000 + afcex_freq; 780 *SIG1 = *(V + 30 + v); 781 } else if ((*(V + 30 + v) > 0) && 782 (*(V + 30 + v - 1) > 0) && 783 (*(V + 30 + v - 2) > 0) && 784 (*(V + 30 + v - 3) > 0) && 785 (*(V + 30 + v - 1) > *(V + 30 + v)) && 786 (*(V + 30 + v - 2) > *(V + 30 + v - 3)) && 787 ((*(V + 30 + v - 1) > SIGMIN) || 788 (*(V + 30 + v - 2) > SIGMIN))) { 789 /* (case 3) */ 790 if (*(V + 30 + v - 1) >= *(V + 30 + v - 2)) { 791 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs; 792 *SIG1 = *(V + 30 + v - 1); 793 } else { 794 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs * 2; 795 *SIG1 = *(V + 30 + v - 2); 796 } 797 } else if ((v == vmax) && 798 (*(V + 30 + v) >= 0) && 799 (*(V + 30 + v - 1) >= 0) && 800 (*(V + 30 + v - 2) >= 0) && 801 (*(V + 30 + v) > *(V + 30 + v - 2)) && 802 (*(V + 30 + v - 1) > *(V + 30 + v - 2)) && 803 ((*(V + 30 + v) > SIGMIN) || 804 (*(V + 30 + v - 1) > SIGMIN))) { 805 /* (case 4) */ 806 if (*(V + 30 + v) >= *(V + 30 + v - 1)) { 807 swp_freq = fOSC * 1000 + afcex_freq; 808 *SIG1 = *(V + 30 + v); 809 } else { 810 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs; 811 *SIG1 = *(V + 30 + v - 1); 812 } 813 } else { 814 swp_freq = -1 ; 815 } 816 } else if ((i % 2 == 0) && (v >= vmin)) { 817 /* Negative v (case 1) */ 818 if ((*(V + 30 + v) > 0) && 819 (*(V + 30 + v + 1) > 0) && 820 (*(V + 30 + v + 2) > 0) && 821 (*(V + 30 + v + 1) > *(V + 30 + v)) && 822 (*(V + 30 + v + 1) > *(V + 30 + v + 2)) && 823 (*(V + 30 + v + 1) > SIGMIN)) { 824 825 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs; 826 *SIG1 = *(V + 30 + v + 1); 827 } else if ((v + 1 == vmax) && 828 (*(V + 30 + v) >= 0) && 829 (*(V + 30 + v + 1) >= 0) && 830 (*(V + 30 + v + 1) > *(V + 30 + v)) && 831 (*(V + 30 + v + 1) > SIGMIN)) { 832 /* (case 2) */ 833 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs; 834 *SIG1 = *(V + 30 + v); 835 } else if ((v == vmin) && 836 (*(V + 30 + v) > 0) && 837 (*(V + 30 + v + 1) > 0) && 838 (*(V + 30 + v + 2) > 0) && 839 (*(V + 30 + v) > *(V + 30 + v + 1)) && 840 (*(V + 30 + v) > *(V + 30 + v + 2)) && 841 (*(V + 30 + v) > SIGMIN)) { 842 /* (case 3) */ 843 swp_freq = fOSC * 1000 + afcex_freq; 844 *SIG1 = *(V + 30 + v); 845 } else if ((*(V + 30 + v) >= 0) && 846 (*(V + 30 + v + 1) >= 0) && 847 (*(V + 30 + v + 2) >= 0) && 848 (*(V + 30 + v + 3) >= 0) && 849 (*(V + 30 + v + 1) > *(V + 30 + v)) && 850 (*(V + 30 + v + 2) > *(V + 30 + v + 3)) && 851 ((*(V + 30 + v + 1) > SIGMIN) || 852 (*(V + 30 + v + 2) > SIGMIN))) { 853 /* (case 4) */ 854 if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) { 855 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs; 856 *SIG1 = *(V + 30 + v + 1); 857 } else { 858 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2; 859 *SIG1 = *(V + 30 + v + 2); 860 } 861 } else if ((*(V + 30 + v) >= 0) && 862 (*(V + 30 + v + 1) >= 0) && 863 (*(V + 30 + v + 2) >= 0) && 864 (*(V + 30 + v + 3) >= 0) && 865 (*(V + 30 + v) > *(V + 30 + v + 2)) && 866 (*(V + 30 + v + 1) > *(V + 30 + v + 2)) && 867 (*(V + 30 + v) > *(V + 30 + v + 3)) && 868 (*(V + 30 + v + 1) > *(V + 30 + v + 3)) && 869 ((*(V + 30 + v) > SIGMIN) || 870 (*(V + 30 + v + 1) > SIGMIN))) { 871 /* (case 5) */ 872 if (*(V + 30 + v) >= *(V + 30 + v + 1)) { 873 swp_freq = fOSC * 1000 + afcex_freq; 874 *SIG1 = *(V + 30 + v); 875 } else { 876 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs; 877 *SIG1 = *(V + 30 + v + 1); 878 } 879 } else if ((v + 2 == vmin) && 880 (*(V + 30 + v) >= 0) && 881 (*(V + 30 + v + 1) >= 0) && 882 (*(V + 30 + v + 2) >= 0) && 883 (*(V + 30 + v + 1) > *(V + 30 + v)) && 884 (*(V + 30 + v + 2) > *(V + 30 + v)) && 885 ((*(V + 30 + v + 1) > SIGMIN) || 886 (*(V + 30 + v + 2) > SIGMIN))) { 887 /* (case 6) */ 888 if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) { 889 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs; 890 *SIG1 = *(V + 30 + v + 1); 891 } else { 892 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2; 893 *SIG1 = *(V + 30 + v + 2); 894 } 895 } else if ((vmax == 0) && (vmin == 0) && (*(V + 30 + v) > SIGMIN)) { 896 swp_freq = fOSC * 1000; 897 *SIG1 = *(V + 30 + v); 898 } else 899 swp_freq = -1; 900 } else 901 swp_freq = -1; 902 903 return swp_freq; 904 } 905 906 static void swp_info_get2(struct mb86a16_state *state, 907 int smrt, 908 int R, 909 int swp_freq, 910 int *afcex_freq, 911 int *fOSC, 912 unsigned char *AFCEX_L, 913 unsigned char *AFCEX_H) 914 { 915 int AFCEX ; 916 917 if (R == 0) 918 *fOSC = (swp_freq + 1000) / 2000 * 2; 919 else 920 *fOSC = (swp_freq + 500) / 1000; 921 922 if (*fOSC >= swp_freq) 923 *afcex_freq = *fOSC * 1000 - swp_freq; 924 else 925 *afcex_freq = swp_freq - *fOSC * 1000; 926 927 AFCEX = *afcex_freq * 8192 / state->master_clk; 928 *AFCEX_L = AFCEX & 0x00ff; 929 *AFCEX_H = (AFCEX & 0x0f00) >> 8; 930 } 931 932 static void afcex_info_get(struct mb86a16_state *state, 933 int afcex_freq, 934 unsigned char *AFCEX_L, 935 unsigned char *AFCEX_H) 936 { 937 int AFCEX ; 938 939 AFCEX = afcex_freq * 8192 / state->master_clk; 940 *AFCEX_L = AFCEX & 0x00ff; 941 *AFCEX_H = (AFCEX & 0x0f00) >> 8; 942 } 943 944 static int SEQ_set(struct mb86a16_state *state, unsigned char loop) 945 { 946 /* SLOCK0 = 0 */ 947 if (mb86a16_write(state, 0x32, 0x02 | (loop << 2)) < 0) { 948 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 949 return -EREMOTEIO; 950 } 951 952 return 0; 953 } 954 955 static int iq_vt_set(struct mb86a16_state *state, unsigned char IQINV) 956 { 957 /* Viterbi Rate, IQ Settings */ 958 if (mb86a16_write(state, 0x06, 0xdf | (IQINV << 5)) < 0) { 959 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 960 return -EREMOTEIO; 961 } 962 963 return 0; 964 } 965 966 static int FEC_srst(struct mb86a16_state *state) 967 { 968 if (mb86a16_write(state, MB86A16_RESET, 0x02) < 0) { 969 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 970 return -EREMOTEIO; 971 } 972 973 return 0; 974 } 975 976 static int S2T_set(struct mb86a16_state *state, unsigned char S2T) 977 { 978 if (mb86a16_write(state, 0x34, 0x70 | S2T) < 0) { 979 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 980 return -EREMOTEIO; 981 } 982 983 return 0; 984 } 985 986 static int S45T_set(struct mb86a16_state *state, unsigned char S4T, unsigned char S5T) 987 { 988 if (mb86a16_write(state, 0x35, 0x00 | (S5T << 4) | S4T) < 0) { 989 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 990 return -EREMOTEIO; 991 } 992 993 return 0; 994 } 995 996 997 static int mb86a16_set_fe(struct mb86a16_state *state) 998 { 999 u8 agcval, cnmval; 1000 1001 int i, j; 1002 int fOSC = 0; 1003 int fOSC_start = 0; 1004 int wait_t; 1005 int fcp; 1006 int swp_ofs; 1007 int V[60]; 1008 u8 SIG1MIN; 1009 1010 unsigned char CREN, AFCEN, AFCEXEN; 1011 unsigned char SIG1; 1012 unsigned char TIMINT1, TIMINT2, TIMEXT; 1013 unsigned char S0T, S1T; 1014 unsigned char S2T; 1015 /* unsigned char S2T, S3T; */ 1016 unsigned char S4T, S5T; 1017 unsigned char AFCEX_L, AFCEX_H; 1018 unsigned char R; 1019 unsigned char VIRM; 1020 unsigned char ETH, VIA; 1021 unsigned char junk; 1022 1023 int loop; 1024 int ftemp; 1025 int v, vmax, vmin; 1026 int vmax_his, vmin_his; 1027 int swp_freq, prev_swp_freq[20]; 1028 int prev_freq_num; 1029 int signal_dupl; 1030 int afcex_freq; 1031 int signal; 1032 int afcerr; 1033 int temp_freq, delta_freq; 1034 int dagcm[4]; 1035 int smrt_d; 1036 /* int freq_err; */ 1037 int n; 1038 int ret = -1; 1039 int sync; 1040 1041 dprintk(verbose, MB86A16_INFO, 1, "freq=%d Mhz, symbrt=%d Ksps", state->frequency, state->srate); 1042 1043 fcp = 3000; 1044 swp_ofs = state->srate / 4; 1045 1046 for (i = 0; i < 60; i++) 1047 V[i] = -1; 1048 1049 for (i = 0; i < 20; i++) 1050 prev_swp_freq[i] = 0; 1051 1052 SIG1MIN = 25; 1053 1054 for (n = 0; ((n < 3) && (ret == -1)); n++) { 1055 SEQ_set(state, 0); 1056 iq_vt_set(state, 0); 1057 1058 CREN = 0; 1059 AFCEN = 0; 1060 AFCEXEN = 1; 1061 TIMINT1 = 0; 1062 TIMINT2 = 1; 1063 TIMEXT = 2; 1064 S1T = 0; 1065 S0T = 0; 1066 1067 if (initial_set(state) < 0) { 1068 dprintk(verbose, MB86A16_ERROR, 1, "initial set failed"); 1069 return -1; 1070 } 1071 if (DAGC_data_set(state, 3, 2) < 0) { 1072 dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error"); 1073 return -1; 1074 } 1075 if (EN_set(state, CREN, AFCEN) < 0) { 1076 dprintk(verbose, MB86A16_ERROR, 1, "EN set error"); 1077 return -1; /* (0, 0) */ 1078 } 1079 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) { 1080 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error"); 1081 return -1; /* (1, smrt) = (1, symbolrate) */ 1082 } 1083 if (CNTM_set(state, TIMINT1, TIMINT2, TIMEXT) < 0) { 1084 dprintk(verbose, MB86A16_ERROR, 1, "CNTM set error"); 1085 return -1; /* (0, 1, 2) */ 1086 } 1087 if (S01T_set(state, S1T, S0T) < 0) { 1088 dprintk(verbose, MB86A16_ERROR, 1, "S01T set error"); 1089 return -1; /* (0, 0) */ 1090 } 1091 smrt_info_get(state, state->srate); 1092 if (smrt_set(state, state->srate) < 0) { 1093 dprintk(verbose, MB86A16_ERROR, 1, "smrt info get error"); 1094 return -1; 1095 } 1096 1097 R = vco_dev_get(state, state->srate); 1098 if (R == 1) 1099 fOSC_start = state->frequency; 1100 1101 else if (R == 0) { 1102 if (state->frequency % 2 == 0) { 1103 fOSC_start = state->frequency; 1104 } else { 1105 fOSC_start = state->frequency + 1; 1106 if (fOSC_start > 2150) 1107 fOSC_start = state->frequency - 1; 1108 } 1109 } 1110 loop = 1; 1111 ftemp = fOSC_start * 1000; 1112 vmax = 0 ; 1113 while (loop == 1) { 1114 ftemp = ftemp + swp_ofs; 1115 vmax++; 1116 1117 /* Upper bound */ 1118 if (ftemp > 2150000) { 1119 loop = 0; 1120 vmax--; 1121 } else { 1122 if ((ftemp == 2150000) || 1123 (ftemp - state->frequency * 1000 >= fcp + state->srate / 4)) 1124 loop = 0; 1125 } 1126 } 1127 1128 loop = 1; 1129 ftemp = fOSC_start * 1000; 1130 vmin = 0 ; 1131 while (loop == 1) { 1132 ftemp = ftemp - swp_ofs; 1133 vmin--; 1134 1135 /* Lower bound */ 1136 if (ftemp < 950000) { 1137 loop = 0; 1138 vmin++; 1139 } else { 1140 if ((ftemp == 950000) || 1141 (state->frequency * 1000 - ftemp >= fcp + state->srate / 4)) 1142 loop = 0; 1143 } 1144 } 1145 1146 wait_t = (8000 + state->srate / 2) / state->srate; 1147 if (wait_t == 0) 1148 wait_t = 1; 1149 1150 i = 0; 1151 j = 0; 1152 prev_freq_num = 0; 1153 loop = 1; 1154 signal = 0; 1155 vmax_his = 0; 1156 vmin_his = 0; 1157 v = 0; 1158 1159 while (loop == 1) { 1160 swp_info_get(state, fOSC_start, state->srate, 1161 v, R, swp_ofs, &fOSC, 1162 &afcex_freq, &AFCEX_L, &AFCEX_H); 1163 1164 udelay(100); 1165 if (rf_val_set(state, fOSC, state->srate, R) < 0) { 1166 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error"); 1167 return -1; 1168 } 1169 udelay(100); 1170 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) { 1171 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error"); 1172 return -1; 1173 } 1174 if (srst(state) < 0) { 1175 dprintk(verbose, MB86A16_ERROR, 1, "srst error"); 1176 return -1; 1177 } 1178 msleep_interruptible(wait_t); 1179 1180 if (mb86a16_read(state, 0x37, &SIG1) != 2) { 1181 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 1182 return -1; 1183 } 1184 V[30 + v] = SIG1 ; 1185 swp_freq = swp_freq_calcuation(state, i, v, V, vmax, vmin, 1186 SIG1MIN, fOSC, afcex_freq, 1187 swp_ofs, &SIG1); /* changed */ 1188 1189 signal_dupl = 0; 1190 for (j = 0; j < prev_freq_num; j++) { 1191 if ((abs(prev_swp_freq[j] - swp_freq)) < (swp_ofs * 3 / 2)) { 1192 signal_dupl = 1; 1193 dprintk(verbose, MB86A16_INFO, 1, "Probably Duplicate Signal, j = %d", j); 1194 } 1195 } 1196 if ((signal_dupl == 0) && (swp_freq > 0) && (abs(swp_freq - state->frequency * 1000) < fcp + state->srate / 6)) { 1197 dprintk(verbose, MB86A16_DEBUG, 1, "------ Signal detect ------ [swp_freq=[%07d, srate=%05d]]", swp_freq, state->srate); 1198 prev_swp_freq[prev_freq_num] = swp_freq; 1199 prev_freq_num++; 1200 swp_info_get2(state, state->srate, R, swp_freq, 1201 &afcex_freq, &fOSC, 1202 &AFCEX_L, &AFCEX_H); 1203 1204 if (rf_val_set(state, fOSC, state->srate, R) < 0) { 1205 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error"); 1206 return -1; 1207 } 1208 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) { 1209 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error"); 1210 return -1; 1211 } 1212 signal = signal_det(state, state->srate, &SIG1); 1213 if (signal == 1) { 1214 dprintk(verbose, MB86A16_ERROR, 1, "***** Signal Found *****"); 1215 loop = 0; 1216 } else { 1217 dprintk(verbose, MB86A16_ERROR, 1, "!!!!! No signal !!!!!, try again..."); 1218 smrt_info_get(state, state->srate); 1219 if (smrt_set(state, state->srate) < 0) { 1220 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error"); 1221 return -1; 1222 } 1223 } 1224 } 1225 if (v > vmax) 1226 vmax_his = 1 ; 1227 if (v < vmin) 1228 vmin_his = 1 ; 1229 i++; 1230 1231 if ((i % 2 == 1) && (vmax_his == 1)) 1232 i++; 1233 if ((i % 2 == 0) && (vmin_his == 1)) 1234 i++; 1235 1236 if (i % 2 == 1) 1237 v = (i + 1) / 2; 1238 else 1239 v = -i / 2; 1240 1241 if ((vmax_his == 1) && (vmin_his == 1)) 1242 loop = 0 ; 1243 } 1244 1245 if (signal == 1) { 1246 dprintk(verbose, MB86A16_INFO, 1, " Start Freq Error Check"); 1247 S1T = 7 ; 1248 S0T = 1 ; 1249 CREN = 0 ; 1250 AFCEN = 1 ; 1251 AFCEXEN = 0 ; 1252 1253 if (S01T_set(state, S1T, S0T) < 0) { 1254 dprintk(verbose, MB86A16_ERROR, 1, "S01T set error"); 1255 return -1; 1256 } 1257 smrt_info_get(state, state->srate); 1258 if (smrt_set(state, state->srate) < 0) { 1259 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error"); 1260 return -1; 1261 } 1262 if (EN_set(state, CREN, AFCEN) < 0) { 1263 dprintk(verbose, MB86A16_ERROR, 1, "EN set error"); 1264 return -1; 1265 } 1266 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) { 1267 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error"); 1268 return -1; 1269 } 1270 afcex_info_get(state, afcex_freq, &AFCEX_L, &AFCEX_H); 1271 if (afcofs_data_set(state, AFCEX_L, AFCEX_H) < 0) { 1272 dprintk(verbose, MB86A16_ERROR, 1, "AFCOFS data set error"); 1273 return -1; 1274 } 1275 if (srst(state) < 0) { 1276 dprintk(verbose, MB86A16_ERROR, 1, "srst error"); 1277 return -1; 1278 } 1279 /* delay 4~200 */ 1280 wait_t = 200000 / state->master_clk + 200000 / state->srate; 1281 msleep(wait_t); 1282 afcerr = afcerr_chk(state); 1283 if (afcerr == -1) 1284 return -1; 1285 1286 swp_freq = fOSC * 1000 + afcerr ; 1287 AFCEXEN = 1 ; 1288 if (state->srate >= 1500) 1289 smrt_d = state->srate / 3; 1290 else 1291 smrt_d = state->srate / 2; 1292 smrt_info_get(state, smrt_d); 1293 if (smrt_set(state, smrt_d) < 0) { 1294 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error"); 1295 return -1; 1296 } 1297 if (AFCEXEN_set(state, AFCEXEN, smrt_d) < 0) { 1298 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error"); 1299 return -1; 1300 } 1301 R = vco_dev_get(state, smrt_d); 1302 if (DAGC_data_set(state, 2, 0) < 0) { 1303 dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error"); 1304 return -1; 1305 } 1306 for (i = 0; i < 3; i++) { 1307 temp_freq = swp_freq + (i - 1) * state->srate / 8; 1308 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H); 1309 if (rf_val_set(state, fOSC, smrt_d, R) < 0) { 1310 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error"); 1311 return -1; 1312 } 1313 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) { 1314 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error"); 1315 return -1; 1316 } 1317 wait_t = 200000 / state->master_clk + 40000 / smrt_d; 1318 msleep(wait_t); 1319 dagcm[i] = dagcm_val_get(state); 1320 } 1321 if ((dagcm[0] > dagcm[1]) && 1322 (dagcm[0] > dagcm[2]) && 1323 (dagcm[0] - dagcm[1] > 2 * (dagcm[2] - dagcm[1]))) { 1324 1325 temp_freq = swp_freq - 2 * state->srate / 8; 1326 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H); 1327 if (rf_val_set(state, fOSC, smrt_d, R) < 0) { 1328 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error"); 1329 return -1; 1330 } 1331 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) { 1332 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set"); 1333 return -1; 1334 } 1335 wait_t = 200000 / state->master_clk + 40000 / smrt_d; 1336 msleep(wait_t); 1337 dagcm[3] = dagcm_val_get(state); 1338 if (dagcm[3] > dagcm[1]) 1339 delta_freq = (dagcm[2] - dagcm[0] + dagcm[1] - dagcm[3]) * state->srate / 300; 1340 else 1341 delta_freq = 0; 1342 } else if ((dagcm[2] > dagcm[1]) && 1343 (dagcm[2] > dagcm[0]) && 1344 (dagcm[2] - dagcm[1] > 2 * (dagcm[0] - dagcm[1]))) { 1345 1346 temp_freq = swp_freq + 2 * state->srate / 8; 1347 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H); 1348 if (rf_val_set(state, fOSC, smrt_d, R) < 0) { 1349 dprintk(verbose, MB86A16_ERROR, 1, "rf val set"); 1350 return -1; 1351 } 1352 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) { 1353 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set"); 1354 return -1; 1355 } 1356 wait_t = 200000 / state->master_clk + 40000 / smrt_d; 1357 msleep(wait_t); 1358 dagcm[3] = dagcm_val_get(state); 1359 if (dagcm[3] > dagcm[1]) 1360 delta_freq = (dagcm[2] - dagcm[0] + dagcm[3] - dagcm[1]) * state->srate / 300; 1361 else 1362 delta_freq = 0 ; 1363 1364 } else { 1365 delta_freq = 0 ; 1366 } 1367 dprintk(verbose, MB86A16_INFO, 1, "SWEEP Frequency = %d", swp_freq); 1368 swp_freq += delta_freq; 1369 dprintk(verbose, MB86A16_INFO, 1, "Adjusting .., DELTA Freq = %d, SWEEP Freq=%d", delta_freq, swp_freq); 1370 if (abs(state->frequency * 1000 - swp_freq) > 3800) { 1371 dprintk(verbose, MB86A16_INFO, 1, "NO -- SIGNAL !"); 1372 } else { 1373 1374 S1T = 0; 1375 S0T = 3; 1376 CREN = 1; 1377 AFCEN = 0; 1378 AFCEXEN = 1; 1379 1380 if (S01T_set(state, S1T, S0T) < 0) { 1381 dprintk(verbose, MB86A16_ERROR, 1, "S01T set error"); 1382 return -1; 1383 } 1384 if (DAGC_data_set(state, 0, 0) < 0) { 1385 dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error"); 1386 return -1; 1387 } 1388 R = vco_dev_get(state, state->srate); 1389 smrt_info_get(state, state->srate); 1390 if (smrt_set(state, state->srate) < 0) { 1391 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error"); 1392 return -1; 1393 } 1394 if (EN_set(state, CREN, AFCEN) < 0) { 1395 dprintk(verbose, MB86A16_ERROR, 1, "EN set error"); 1396 return -1; 1397 } 1398 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) { 1399 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error"); 1400 return -1; 1401 } 1402 swp_info_get2(state, state->srate, R, swp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H); 1403 if (rf_val_set(state, fOSC, state->srate, R) < 0) { 1404 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error"); 1405 return -1; 1406 } 1407 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) { 1408 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error"); 1409 return -1; 1410 } 1411 if (srst(state) < 0) { 1412 dprintk(verbose, MB86A16_ERROR, 1, "srst error"); 1413 return -1; 1414 } 1415 wait_t = 7 + (10000 + state->srate / 2) / state->srate; 1416 if (wait_t == 0) 1417 wait_t = 1; 1418 msleep_interruptible(wait_t); 1419 if (mb86a16_read(state, 0x37, &SIG1) != 2) { 1420 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 1421 return -EREMOTEIO; 1422 } 1423 1424 if (SIG1 > 110) { 1425 S2T = 4; S4T = 1; S5T = 6; ETH = 4; VIA = 6; 1426 wait_t = 7 + (917504 + state->srate / 2) / state->srate; 1427 } else if (SIG1 > 105) { 1428 S2T = 4; S4T = 2; S5T = 8; ETH = 7; VIA = 2; 1429 wait_t = 7 + (1048576 + state->srate / 2) / state->srate; 1430 } else if (SIG1 > 85) { 1431 S2T = 5; S4T = 2; S5T = 8; ETH = 7; VIA = 2; 1432 wait_t = 7 + (1310720 + state->srate / 2) / state->srate; 1433 } else if (SIG1 > 65) { 1434 S2T = 6; S4T = 2; S5T = 8; ETH = 7; VIA = 2; 1435 wait_t = 7 + (1572864 + state->srate / 2) / state->srate; 1436 } else { 1437 S2T = 7; S4T = 2; S5T = 8; ETH = 7; VIA = 2; 1438 wait_t = 7 + (2097152 + state->srate / 2) / state->srate; 1439 } 1440 wait_t *= 2; /* FOS */ 1441 S2T_set(state, S2T); 1442 S45T_set(state, S4T, S5T); 1443 Vi_set(state, ETH, VIA); 1444 srst(state); 1445 msleep_interruptible(wait_t); 1446 sync = sync_chk(state, &VIRM); 1447 dprintk(verbose, MB86A16_INFO, 1, "-------- Viterbi=[%d] SYNC=[%d] ---------", VIRM, sync); 1448 if (VIRM) { 1449 if (VIRM == 4) { 1450 /* 5/6 */ 1451 if (SIG1 > 110) 1452 wait_t = (786432 + state->srate / 2) / state->srate; 1453 else 1454 wait_t = (1572864 + state->srate / 2) / state->srate; 1455 1456 msleep_interruptible(wait_t); 1457 1458 if (sync_chk(state, &junk) == 0) { 1459 iq_vt_set(state, 1); 1460 FEC_srst(state); 1461 } 1462 } 1463 /* 1/2, 2/3, 3/4, 7/8 */ 1464 if (SIG1 > 110) 1465 wait_t = (786432 + state->srate / 2) / state->srate; 1466 else 1467 wait_t = (1572864 + state->srate / 2) / state->srate; 1468 msleep_interruptible(wait_t); 1469 SEQ_set(state, 1); 1470 } else { 1471 dprintk(verbose, MB86A16_INFO, 1, "NO -- SYNC"); 1472 SEQ_set(state, 1); 1473 ret = -1; 1474 } 1475 } 1476 } else { 1477 dprintk(verbose, MB86A16_INFO, 1, "NO -- SIGNAL"); 1478 ret = -1; 1479 } 1480 1481 sync = sync_chk(state, &junk); 1482 if (sync) { 1483 dprintk(verbose, MB86A16_INFO, 1, "******* SYNC *******"); 1484 freqerr_chk(state, state->frequency, state->srate, 1); 1485 ret = 0; 1486 break; 1487 } 1488 } 1489 1490 mb86a16_read(state, 0x15, &agcval); 1491 mb86a16_read(state, 0x26, &cnmval); 1492 dprintk(verbose, MB86A16_INFO, 1, "AGC = %02x CNM = %02x", agcval, cnmval); 1493 1494 return ret; 1495 } 1496 1497 static int mb86a16_send_diseqc_msg(struct dvb_frontend *fe, 1498 struct dvb_diseqc_master_cmd *cmd) 1499 { 1500 struct mb86a16_state *state = fe->demodulator_priv; 1501 int i; 1502 u8 regs; 1503 1504 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0) 1505 goto err; 1506 if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0) 1507 goto err; 1508 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0) 1509 goto err; 1510 1511 regs = 0x18; 1512 1513 if (cmd->msg_len > 5 || cmd->msg_len < 4) 1514 return -EINVAL; 1515 1516 for (i = 0; i < cmd->msg_len; i++) { 1517 if (mb86a16_write(state, regs, cmd->msg[i]) < 0) 1518 goto err; 1519 1520 regs++; 1521 } 1522 i += 0x90; 1523 1524 msleep_interruptible(10); 1525 1526 if (mb86a16_write(state, MB86A16_DCC1, i) < 0) 1527 goto err; 1528 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0) 1529 goto err; 1530 1531 return 0; 1532 1533 err: 1534 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 1535 return -EREMOTEIO; 1536 } 1537 1538 static int mb86a16_send_diseqc_burst(struct dvb_frontend *fe, 1539 enum fe_sec_mini_cmd burst) 1540 { 1541 struct mb86a16_state *state = fe->demodulator_priv; 1542 1543 switch (burst) { 1544 case SEC_MINI_A: 1545 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA | 1546 MB86A16_DCC1_TBEN | 1547 MB86A16_DCC1_TBO) < 0) 1548 goto err; 1549 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0) 1550 goto err; 1551 break; 1552 case SEC_MINI_B: 1553 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA | 1554 MB86A16_DCC1_TBEN) < 0) 1555 goto err; 1556 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0) 1557 goto err; 1558 break; 1559 } 1560 1561 return 0; 1562 err: 1563 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 1564 return -EREMOTEIO; 1565 } 1566 1567 static int mb86a16_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone) 1568 { 1569 struct mb86a16_state *state = fe->demodulator_priv; 1570 1571 switch (tone) { 1572 case SEC_TONE_ON: 1573 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x00) < 0) 1574 goto err; 1575 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA | 1576 MB86A16_DCC1_CTOE) < 0) 1577 1578 goto err; 1579 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0) 1580 goto err; 1581 break; 1582 case SEC_TONE_OFF: 1583 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0) 1584 goto err; 1585 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0) 1586 goto err; 1587 if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0) 1588 goto err; 1589 break; 1590 default: 1591 return -EINVAL; 1592 } 1593 return 0; 1594 1595 err: 1596 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 1597 return -EREMOTEIO; 1598 } 1599 1600 static enum dvbfe_search mb86a16_search(struct dvb_frontend *fe) 1601 { 1602 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 1603 struct mb86a16_state *state = fe->demodulator_priv; 1604 1605 state->frequency = p->frequency / 1000; 1606 state->srate = p->symbol_rate / 1000; 1607 1608 if (!mb86a16_set_fe(state)) { 1609 dprintk(verbose, MB86A16_ERROR, 1, "Successfully acquired LOCK"); 1610 return DVBFE_ALGO_SEARCH_SUCCESS; 1611 } 1612 1613 dprintk(verbose, MB86A16_ERROR, 1, "Lock acquisition failed!"); 1614 return DVBFE_ALGO_SEARCH_FAILED; 1615 } 1616 1617 static void mb86a16_release(struct dvb_frontend *fe) 1618 { 1619 struct mb86a16_state *state = fe->demodulator_priv; 1620 kfree(state); 1621 } 1622 1623 static int mb86a16_init(struct dvb_frontend *fe) 1624 { 1625 return 0; 1626 } 1627 1628 static int mb86a16_sleep(struct dvb_frontend *fe) 1629 { 1630 return 0; 1631 } 1632 1633 static int mb86a16_read_ber(struct dvb_frontend *fe, u32 *ber) 1634 { 1635 u8 ber_mon, ber_tab, ber_lsb, ber_mid, ber_msb, ber_tim, ber_rst; 1636 u32 timer; 1637 1638 struct mb86a16_state *state = fe->demodulator_priv; 1639 1640 *ber = 0; 1641 if (mb86a16_read(state, MB86A16_BERMON, &ber_mon) != 2) 1642 goto err; 1643 if (mb86a16_read(state, MB86A16_BERTAB, &ber_tab) != 2) 1644 goto err; 1645 if (mb86a16_read(state, MB86A16_BERLSB, &ber_lsb) != 2) 1646 goto err; 1647 if (mb86a16_read(state, MB86A16_BERMID, &ber_mid) != 2) 1648 goto err; 1649 if (mb86a16_read(state, MB86A16_BERMSB, &ber_msb) != 2) 1650 goto err; 1651 /* BER monitor invalid when BER_EN = 0 */ 1652 if (ber_mon & 0x04) { 1653 /* coarse, fast calculation */ 1654 *ber = ber_tab & 0x1f; 1655 dprintk(verbose, MB86A16_DEBUG, 1, "BER coarse=[0x%02x]", *ber); 1656 if (ber_mon & 0x01) { 1657 /* 1658 * BER_SEL = 1, The monitored BER is the estimated 1659 * value with a Reed-Solomon decoder error amount at 1660 * the deinterleaver output. 1661 * monitored BER is expressed as a 20 bit output in total 1662 */ 1663 ber_rst = (ber_mon >> 3) & 0x03; 1664 *ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb; 1665 if (ber_rst == 0) 1666 timer = 12500000; 1667 else if (ber_rst == 1) 1668 timer = 25000000; 1669 else if (ber_rst == 2) 1670 timer = 50000000; 1671 else /* ber_rst == 3 */ 1672 timer = 100000000; 1673 1674 *ber /= timer; 1675 dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber); 1676 } else { 1677 /* 1678 * BER_SEL = 0, The monitored BER is the estimated 1679 * value with a Viterbi decoder error amount at the 1680 * QPSK demodulator output. 1681 * monitored BER is expressed as a 24 bit output in total 1682 */ 1683 ber_tim = (ber_mon >> 1) & 0x01; 1684 *ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb; 1685 if (ber_tim == 0) 1686 timer = 16; 1687 else /* ber_tim == 1 */ 1688 timer = 24; 1689 1690 *ber /= 2 ^ timer; 1691 dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber); 1692 } 1693 } 1694 return 0; 1695 err: 1696 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 1697 return -EREMOTEIO; 1698 } 1699 1700 static int mb86a16_read_signal_strength(struct dvb_frontend *fe, u16 *strength) 1701 { 1702 u8 agcm = 0; 1703 struct mb86a16_state *state = fe->demodulator_priv; 1704 1705 *strength = 0; 1706 if (mb86a16_read(state, MB86A16_AGCM, &agcm) != 2) { 1707 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 1708 return -EREMOTEIO; 1709 } 1710 1711 *strength = ((0xff - agcm) * 100) / 256; 1712 dprintk(verbose, MB86A16_DEBUG, 1, "Signal strength=[%d %%]", (u8) *strength); 1713 *strength = (0xffff - 0xff) + agcm; 1714 1715 return 0; 1716 } 1717 1718 struct cnr { 1719 u8 cn_reg; 1720 u8 cn_val; 1721 }; 1722 1723 static const struct cnr cnr_tab[] = { 1724 { 35, 2 }, 1725 { 40, 3 }, 1726 { 50, 4 }, 1727 { 60, 5 }, 1728 { 70, 6 }, 1729 { 80, 7 }, 1730 { 92, 8 }, 1731 { 103, 9 }, 1732 { 115, 10 }, 1733 { 138, 12 }, 1734 { 162, 15 }, 1735 { 180, 18 }, 1736 { 185, 19 }, 1737 { 189, 20 }, 1738 { 195, 22 }, 1739 { 199, 24 }, 1740 { 201, 25 }, 1741 { 202, 26 }, 1742 { 203, 27 }, 1743 { 205, 28 }, 1744 { 208, 30 } 1745 }; 1746 1747 static int mb86a16_read_snr(struct dvb_frontend *fe, u16 *snr) 1748 { 1749 struct mb86a16_state *state = fe->demodulator_priv; 1750 int i = 0; 1751 int low_tide = 2, high_tide = 30, q_level; 1752 u8 cn; 1753 1754 *snr = 0; 1755 if (mb86a16_read(state, 0x26, &cn) != 2) { 1756 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 1757 return -EREMOTEIO; 1758 } 1759 1760 for (i = 0; i < ARRAY_SIZE(cnr_tab); i++) { 1761 if (cn < cnr_tab[i].cn_reg) { 1762 *snr = cnr_tab[i].cn_val; 1763 break; 1764 } 1765 } 1766 q_level = (*snr * 100) / (high_tide - low_tide); 1767 dprintk(verbose, MB86A16_ERROR, 1, "SNR (Quality) = [%d dB], Level=%d %%", *snr, q_level); 1768 *snr = (0xffff - 0xff) + *snr; 1769 1770 return 0; 1771 } 1772 1773 static int mb86a16_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) 1774 { 1775 u8 dist; 1776 struct mb86a16_state *state = fe->demodulator_priv; 1777 1778 if (mb86a16_read(state, MB86A16_DISTMON, &dist) != 2) { 1779 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error"); 1780 return -EREMOTEIO; 1781 } 1782 *ucblocks = dist; 1783 1784 return 0; 1785 } 1786 1787 static enum dvbfe_algo mb86a16_frontend_algo(struct dvb_frontend *fe) 1788 { 1789 return DVBFE_ALGO_CUSTOM; 1790 } 1791 1792 static const struct dvb_frontend_ops mb86a16_ops = { 1793 .delsys = { SYS_DVBS }, 1794 .info = { 1795 .name = "Fujitsu MB86A16 DVB-S", 1796 .frequency_min_hz = 950 * MHz, 1797 .frequency_max_hz = 2150 * MHz, 1798 .frequency_stepsize_hz = 3 * MHz, 1799 .symbol_rate_min = 1000000, 1800 .symbol_rate_max = 45000000, 1801 .symbol_rate_tolerance = 500, 1802 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | 1803 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | 1804 FE_CAN_FEC_7_8 | FE_CAN_QPSK | 1805 FE_CAN_FEC_AUTO 1806 }, 1807 .release = mb86a16_release, 1808 1809 .get_frontend_algo = mb86a16_frontend_algo, 1810 .search = mb86a16_search, 1811 .init = mb86a16_init, 1812 .sleep = mb86a16_sleep, 1813 .read_status = mb86a16_read_status, 1814 1815 .read_ber = mb86a16_read_ber, 1816 .read_signal_strength = mb86a16_read_signal_strength, 1817 .read_snr = mb86a16_read_snr, 1818 .read_ucblocks = mb86a16_read_ucblocks, 1819 1820 .diseqc_send_master_cmd = mb86a16_send_diseqc_msg, 1821 .diseqc_send_burst = mb86a16_send_diseqc_burst, 1822 .set_tone = mb86a16_set_tone, 1823 }; 1824 1825 struct dvb_frontend *mb86a16_attach(const struct mb86a16_config *config, 1826 struct i2c_adapter *i2c_adap) 1827 { 1828 u8 dev_id = 0; 1829 struct mb86a16_state *state = NULL; 1830 1831 state = kmalloc(sizeof(struct mb86a16_state), GFP_KERNEL); 1832 if (state == NULL) 1833 goto error; 1834 1835 state->config = config; 1836 state->i2c_adap = i2c_adap; 1837 1838 mb86a16_read(state, 0x7f, &dev_id); 1839 if (dev_id != 0xfe) 1840 goto error; 1841 1842 memcpy(&state->frontend.ops, &mb86a16_ops, sizeof(struct dvb_frontend_ops)); 1843 state->frontend.demodulator_priv = state; 1844 state->frontend.ops.set_voltage = state->config->set_voltage; 1845 1846 return &state->frontend; 1847 error: 1848 kfree(state); 1849 return NULL; 1850 } 1851 EXPORT_SYMBOL(mb86a16_attach); 1852 MODULE_LICENSE("GPL"); 1853 MODULE_AUTHOR("Manu Abraham"); 1854