1 /*
2 	Fujitsu MB86A16 DVB-S/DSS DC Receiver driver
3 
4 	Copyright (C) Manu Abraham (abraham.manu@gmail.com)
5 
6 	This program is free software; you can redistribute it and/or modify
7 	it under the terms of the GNU General Public License as published by
8 	the Free Software Foundation; either version 2 of the License, or
9 	(at your option) any later version.
10 
11 	This program is distributed in the hope that it will be useful,
12 	but WITHOUT ANY WARRANTY; without even the implied warranty of
13 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 	GNU General Public License for more details.
15 
16 	You should have received a copy of the GNU General Public License
17 	along with this program; if not, write to the Free Software
18 	Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/slab.h>
26 
27 #include <media/dvb_frontend.h>
28 #include "mb86a16.h"
29 #include "mb86a16_priv.h"
30 
31 static unsigned int verbose = 5;
32 module_param(verbose, int, 0644);
33 
34 #define ABS(x)		((x) < 0 ? (-x) : (x))
35 
36 struct mb86a16_state {
37 	struct i2c_adapter		*i2c_adap;
38 	const struct mb86a16_config	*config;
39 	struct dvb_frontend		frontend;
40 
41 	/* tuning parameters */
42 	int				frequency;
43 	int				srate;
44 
45 	/* Internal stuff */
46 	int				master_clk;
47 	int				deci;
48 	int				csel;
49 	int				rsel;
50 };
51 
52 #define MB86A16_ERROR		0
53 #define MB86A16_NOTICE		1
54 #define MB86A16_INFO		2
55 #define MB86A16_DEBUG		3
56 
57 #define dprintk(x, y, z, format, arg...) do {						\
58 	if (z) {									\
59 		if	((x > MB86A16_ERROR) && (x > y))				\
60 			printk(KERN_ERR "%s: " format "\n", __func__, ##arg);		\
61 		else if ((x > MB86A16_NOTICE) && (x > y))				\
62 			printk(KERN_NOTICE "%s: " format "\n", __func__, ##arg);	\
63 		else if ((x > MB86A16_INFO) && (x > y))					\
64 			printk(KERN_INFO "%s: " format "\n", __func__, ##arg);		\
65 		else if ((x > MB86A16_DEBUG) && (x > y))				\
66 			printk(KERN_DEBUG "%s: " format "\n", __func__, ##arg);		\
67 	} else {									\
68 		if (x > y)								\
69 			printk(format, ##arg);						\
70 	}										\
71 } while (0)
72 
73 #define TRACE_IN	dprintk(verbose, MB86A16_DEBUG, 1, "-->()")
74 #define TRACE_OUT	dprintk(verbose, MB86A16_DEBUG, 1, "()-->")
75 
76 static int mb86a16_write(struct mb86a16_state *state, u8 reg, u8 val)
77 {
78 	int ret;
79 	u8 buf[] = { reg, val };
80 
81 	struct i2c_msg msg = {
82 		.addr = state->config->demod_address,
83 		.flags = 0,
84 		.buf = buf,
85 		.len = 2
86 	};
87 
88 	dprintk(verbose, MB86A16_DEBUG, 1,
89 		"writing to [0x%02x],Reg[0x%02x],Data[0x%02x]",
90 		state->config->demod_address, buf[0], buf[1]);
91 
92 	ret = i2c_transfer(state->i2c_adap, &msg, 1);
93 
94 	return (ret != 1) ? -EREMOTEIO : 0;
95 }
96 
97 static int mb86a16_read(struct mb86a16_state *state, u8 reg, u8 *val)
98 {
99 	int ret;
100 	u8 b0[] = { reg };
101 	u8 b1[] = { 0 };
102 
103 	struct i2c_msg msg[] = {
104 		{
105 			.addr = state->config->demod_address,
106 			.flags = 0,
107 			.buf = b0,
108 			.len = 1
109 		}, {
110 			.addr = state->config->demod_address,
111 			.flags = I2C_M_RD,
112 			.buf = b1,
113 			.len = 1
114 		}
115 	};
116 	ret = i2c_transfer(state->i2c_adap, msg, 2);
117 	if (ret != 2) {
118 		dprintk(verbose, MB86A16_ERROR, 1, "read error(reg=0x%02x, ret=%i)",
119 			reg, ret);
120 
121 		if (ret < 0)
122 			return ret;
123 		return -EREMOTEIO;
124 	}
125 	*val = b1[0];
126 
127 	return ret;
128 }
129 
130 static int CNTM_set(struct mb86a16_state *state,
131 		    unsigned char timint1,
132 		    unsigned char timint2,
133 		    unsigned char cnext)
134 {
135 	unsigned char val;
136 
137 	val = (timint1 << 4) | (timint2 << 2) | cnext;
138 	if (mb86a16_write(state, MB86A16_CNTMR, val) < 0)
139 		goto err;
140 
141 	return 0;
142 
143 err:
144 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
145 	return -EREMOTEIO;
146 }
147 
148 static int smrt_set(struct mb86a16_state *state, int rate)
149 {
150 	int tmp ;
151 	int m ;
152 	unsigned char STOFS0, STOFS1;
153 
154 	m = 1 << state->deci;
155 	tmp = (8192 * state->master_clk - 2 * m * rate * 8192 + state->master_clk / 2) / state->master_clk;
156 
157 	STOFS0 = tmp & 0x0ff;
158 	STOFS1 = (tmp & 0xf00) >> 8;
159 
160 	if (mb86a16_write(state, MB86A16_SRATE1, (state->deci << 2) |
161 				       (state->csel << 1) |
162 					state->rsel) < 0)
163 		goto err;
164 	if (mb86a16_write(state, MB86A16_SRATE2, STOFS0) < 0)
165 		goto err;
166 	if (mb86a16_write(state, MB86A16_SRATE3, STOFS1) < 0)
167 		goto err;
168 
169 	return 0;
170 err:
171 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
172 	return -1;
173 }
174 
175 static int srst(struct mb86a16_state *state)
176 {
177 	if (mb86a16_write(state, MB86A16_RESET, 0x04) < 0)
178 		goto err;
179 
180 	return 0;
181 err:
182 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
183 	return -EREMOTEIO;
184 
185 }
186 
187 static int afcex_data_set(struct mb86a16_state *state,
188 			  unsigned char AFCEX_L,
189 			  unsigned char AFCEX_H)
190 {
191 	if (mb86a16_write(state, MB86A16_AFCEXL, AFCEX_L) < 0)
192 		goto err;
193 	if (mb86a16_write(state, MB86A16_AFCEXH, AFCEX_H) < 0)
194 		goto err;
195 
196 	return 0;
197 err:
198 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
199 
200 	return -1;
201 }
202 
203 static int afcofs_data_set(struct mb86a16_state *state,
204 			   unsigned char AFCEX_L,
205 			   unsigned char AFCEX_H)
206 {
207 	if (mb86a16_write(state, 0x58, AFCEX_L) < 0)
208 		goto err;
209 	if (mb86a16_write(state, 0x59, AFCEX_H) < 0)
210 		goto err;
211 
212 	return 0;
213 err:
214 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
215 	return -EREMOTEIO;
216 }
217 
218 static int stlp_set(struct mb86a16_state *state,
219 		    unsigned char STRAS,
220 		    unsigned char STRBS)
221 {
222 	if (mb86a16_write(state, MB86A16_STRFILTCOEF1, (STRBS << 3) | (STRAS)) < 0)
223 		goto err;
224 
225 	return 0;
226 err:
227 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
228 	return -EREMOTEIO;
229 }
230 
231 static int Vi_set(struct mb86a16_state *state, unsigned char ETH, unsigned char VIA)
232 {
233 	if (mb86a16_write(state, MB86A16_VISET2, 0x04) < 0)
234 		goto err;
235 	if (mb86a16_write(state, MB86A16_VISET3, 0xf5) < 0)
236 		goto err;
237 
238 	return 0;
239 err:
240 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
241 	return -EREMOTEIO;
242 }
243 
244 static int initial_set(struct mb86a16_state *state)
245 {
246 	if (stlp_set(state, 5, 7))
247 		goto err;
248 
249 	udelay(100);
250 	if (afcex_data_set(state, 0, 0))
251 		goto err;
252 
253 	udelay(100);
254 	if (afcofs_data_set(state, 0, 0))
255 		goto err;
256 
257 	udelay(100);
258 	if (mb86a16_write(state, MB86A16_CRLFILTCOEF1, 0x16) < 0)
259 		goto err;
260 	if (mb86a16_write(state, 0x2f, 0x21) < 0)
261 		goto err;
262 	if (mb86a16_write(state, MB86A16_VIMAG, 0x38) < 0)
263 		goto err;
264 	if (mb86a16_write(state, MB86A16_FAGCS1, 0x00) < 0)
265 		goto err;
266 	if (mb86a16_write(state, MB86A16_FAGCS2, 0x1c) < 0)
267 		goto err;
268 	if (mb86a16_write(state, MB86A16_FAGCS3, 0x20) < 0)
269 		goto err;
270 	if (mb86a16_write(state, MB86A16_FAGCS4, 0x1e) < 0)
271 		goto err;
272 	if (mb86a16_write(state, MB86A16_FAGCS5, 0x23) < 0)
273 		goto err;
274 	if (mb86a16_write(state, 0x54, 0xff) < 0)
275 		goto err;
276 	if (mb86a16_write(state, MB86A16_TSOUT, 0x00) < 0)
277 		goto err;
278 
279 	return 0;
280 
281 err:
282 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
283 	return -EREMOTEIO;
284 }
285 
286 static int S01T_set(struct mb86a16_state *state,
287 		    unsigned char s1t,
288 		    unsigned s0t)
289 {
290 	if (mb86a16_write(state, 0x33, (s1t << 3) | s0t) < 0)
291 		goto err;
292 
293 	return 0;
294 err:
295 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
296 	return -EREMOTEIO;
297 }
298 
299 
300 static int EN_set(struct mb86a16_state *state,
301 		  int cren,
302 		  int afcen)
303 {
304 	unsigned char val;
305 
306 	val = 0x7a | (cren << 7) | (afcen << 2);
307 	if (mb86a16_write(state, 0x49, val) < 0)
308 		goto err;
309 
310 	return 0;
311 err:
312 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
313 	return -EREMOTEIO;
314 }
315 
316 static int AFCEXEN_set(struct mb86a16_state *state,
317 		       int afcexen,
318 		       int smrt)
319 {
320 	unsigned char AFCA ;
321 
322 	if (smrt > 18875)
323 		AFCA = 4;
324 	else if (smrt > 9375)
325 		AFCA = 3;
326 	else if (smrt > 2250)
327 		AFCA = 2;
328 	else
329 		AFCA = 1;
330 
331 	if (mb86a16_write(state, 0x2a, 0x02 | (afcexen << 5) | (AFCA << 2)) < 0)
332 		goto err;
333 
334 	return 0;
335 
336 err:
337 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
338 	return -EREMOTEIO;
339 }
340 
341 static int DAGC_data_set(struct mb86a16_state *state,
342 			 unsigned char DAGCA,
343 			 unsigned char DAGCW)
344 {
345 	if (mb86a16_write(state, 0x2d, (DAGCA << 3) | DAGCW) < 0)
346 		goto err;
347 
348 	return 0;
349 
350 err:
351 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
352 	return -EREMOTEIO;
353 }
354 
355 static void smrt_info_get(struct mb86a16_state *state, int rate)
356 {
357 	if (rate >= 37501) {
358 		state->deci = 0; state->csel = 0; state->rsel = 0;
359 	} else if (rate >= 30001) {
360 		state->deci = 0; state->csel = 0; state->rsel = 1;
361 	} else if (rate >= 26251) {
362 		state->deci = 0; state->csel = 1; state->rsel = 0;
363 	} else if (rate >= 22501) {
364 		state->deci = 0; state->csel = 1; state->rsel = 1;
365 	} else if (rate >= 18751) {
366 		state->deci = 1; state->csel = 0; state->rsel = 0;
367 	} else if (rate >= 15001) {
368 		state->deci = 1; state->csel = 0; state->rsel = 1;
369 	} else if (rate >= 13126) {
370 		state->deci = 1; state->csel = 1; state->rsel = 0;
371 	} else if (rate >= 11251) {
372 		state->deci = 1; state->csel = 1; state->rsel = 1;
373 	} else if (rate >= 9376) {
374 		state->deci = 2; state->csel = 0; state->rsel = 0;
375 	} else if (rate >= 7501) {
376 		state->deci = 2; state->csel = 0; state->rsel = 1;
377 	} else if (rate >= 6563) {
378 		state->deci = 2; state->csel = 1; state->rsel = 0;
379 	} else if (rate >= 5626) {
380 		state->deci = 2; state->csel = 1; state->rsel = 1;
381 	} else if (rate >= 4688) {
382 		state->deci = 3; state->csel = 0; state->rsel = 0;
383 	} else if (rate >= 3751) {
384 		state->deci = 3; state->csel = 0; state->rsel = 1;
385 	} else if (rate >= 3282) {
386 		state->deci = 3; state->csel = 1; state->rsel = 0;
387 	} else if (rate >= 2814) {
388 		state->deci = 3; state->csel = 1; state->rsel = 1;
389 	} else if (rate >= 2344) {
390 		state->deci = 4; state->csel = 0; state->rsel = 0;
391 	} else if (rate >= 1876) {
392 		state->deci = 4; state->csel = 0; state->rsel = 1;
393 	} else if (rate >= 1641) {
394 		state->deci = 4; state->csel = 1; state->rsel = 0;
395 	} else if (rate >= 1407) {
396 		state->deci = 4; state->csel = 1; state->rsel = 1;
397 	} else if (rate >= 1172) {
398 		state->deci = 5; state->csel = 0; state->rsel = 0;
399 	} else if (rate >=  939) {
400 		state->deci = 5; state->csel = 0; state->rsel = 1;
401 	} else if (rate >=  821) {
402 		state->deci = 5; state->csel = 1; state->rsel = 0;
403 	} else {
404 		state->deci = 5; state->csel = 1; state->rsel = 1;
405 	}
406 
407 	if (state->csel == 0)
408 		state->master_clk = 92000;
409 	else
410 		state->master_clk = 61333;
411 
412 }
413 
414 static int signal_det(struct mb86a16_state *state,
415 		      int smrt,
416 		      unsigned char *SIG)
417 {
418 	int ret;
419 	int smrtd;
420 	unsigned char S[3];
421 	int i;
422 
423 	if (*SIG > 45) {
424 		if (CNTM_set(state, 2, 1, 2) < 0) {
425 			dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
426 			return -1;
427 		}
428 	} else {
429 		if (CNTM_set(state, 3, 1, 2) < 0) {
430 			dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
431 			return -1;
432 		}
433 	}
434 	for (i = 0; i < 3; i++) {
435 		if (i == 0)
436 			smrtd = smrt * 98 / 100;
437 		else if (i == 1)
438 			smrtd = smrt;
439 		else
440 			smrtd = smrt * 102 / 100;
441 		smrt_info_get(state, smrtd);
442 		smrt_set(state, smrtd);
443 		srst(state);
444 		msleep_interruptible(10);
445 		if (mb86a16_read(state, 0x37, &(S[i])) != 2) {
446 			dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
447 			return -EREMOTEIO;
448 		}
449 	}
450 	if ((S[1] > S[0] * 112 / 100) && (S[1] > S[2] * 112 / 100))
451 		ret = 1;
452 	else
453 		ret = 0;
454 
455 	*SIG = S[1];
456 
457 	if (CNTM_set(state, 0, 1, 2) < 0) {
458 		dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
459 		return -1;
460 	}
461 
462 	return ret;
463 }
464 
465 static int rf_val_set(struct mb86a16_state *state,
466 		      int f,
467 		      int smrt,
468 		      unsigned char R)
469 {
470 	unsigned char C, F, B;
471 	int M;
472 	unsigned char rf_val[5];
473 	int ack = -1;
474 
475 	if (smrt > 37750)
476 		C = 1;
477 	else if (smrt > 18875)
478 		C = 2;
479 	else if (smrt > 5500)
480 		C = 3;
481 	else
482 		C = 4;
483 
484 	if (smrt > 30500)
485 		F = 3;
486 	else if (smrt > 9375)
487 		F = 1;
488 	else if (smrt > 4625)
489 		F = 0;
490 	else
491 		F = 2;
492 
493 	if (f < 1060)
494 		B = 0;
495 	else if (f < 1175)
496 		B = 1;
497 	else if (f < 1305)
498 		B = 2;
499 	else if (f < 1435)
500 		B = 3;
501 	else if (f < 1570)
502 		B = 4;
503 	else if (f < 1715)
504 		B = 5;
505 	else if (f < 1845)
506 		B = 6;
507 	else if (f < 1980)
508 		B = 7;
509 	else if (f < 2080)
510 		B = 8;
511 	else
512 		B = 9;
513 
514 	M = f * (1 << R) / 2;
515 
516 	rf_val[0] = 0x01 | (C << 3) | (F << 1);
517 	rf_val[1] = (R << 5) | ((M & 0x1f000) >> 12);
518 	rf_val[2] = (M & 0x00ff0) >> 4;
519 	rf_val[3] = ((M & 0x0000f) << 4) | B;
520 
521 	/* Frequency Set */
522 	if (mb86a16_write(state, 0x21, rf_val[0]) < 0)
523 		ack = 0;
524 	if (mb86a16_write(state, 0x22, rf_val[1]) < 0)
525 		ack = 0;
526 	if (mb86a16_write(state, 0x23, rf_val[2]) < 0)
527 		ack = 0;
528 	if (mb86a16_write(state, 0x24, rf_val[3]) < 0)
529 		ack = 0;
530 	if (mb86a16_write(state, 0x25, 0x01) < 0)
531 		ack = 0;
532 	if (ack == 0) {
533 		dprintk(verbose, MB86A16_ERROR, 1, "RF Setup - I2C transfer error");
534 		return -EREMOTEIO;
535 	}
536 
537 	return 0;
538 }
539 
540 static int afcerr_chk(struct mb86a16_state *state)
541 {
542 	unsigned char AFCM_L, AFCM_H ;
543 	int AFCM ;
544 	int afcm, afcerr ;
545 
546 	if (mb86a16_read(state, 0x0e, &AFCM_L) != 2)
547 		goto err;
548 	if (mb86a16_read(state, 0x0f, &AFCM_H) != 2)
549 		goto err;
550 
551 	AFCM = (AFCM_H << 8) + AFCM_L;
552 
553 	if (AFCM > 2048)
554 		afcm = AFCM - 4096;
555 	else
556 		afcm = AFCM;
557 	afcerr = afcm * state->master_clk / 8192;
558 
559 	return afcerr;
560 
561 err:
562 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
563 	return -EREMOTEIO;
564 }
565 
566 static int dagcm_val_get(struct mb86a16_state *state)
567 {
568 	int DAGCM;
569 	unsigned char DAGCM_H, DAGCM_L;
570 
571 	if (mb86a16_read(state, 0x45, &DAGCM_L) != 2)
572 		goto err;
573 	if (mb86a16_read(state, 0x46, &DAGCM_H) != 2)
574 		goto err;
575 
576 	DAGCM = (DAGCM_H << 8) + DAGCM_L;
577 
578 	return DAGCM;
579 
580 err:
581 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
582 	return -EREMOTEIO;
583 }
584 
585 static int mb86a16_read_status(struct dvb_frontend *fe, enum fe_status *status)
586 {
587 	u8 stat, stat2;
588 	struct mb86a16_state *state = fe->demodulator_priv;
589 
590 	*status = 0;
591 
592 	if (mb86a16_read(state, MB86A16_SIG1, &stat) != 2)
593 		goto err;
594 	if (mb86a16_read(state, MB86A16_SIG2, &stat2) != 2)
595 		goto err;
596 	if ((stat > 25) && (stat2 > 25))
597 		*status |= FE_HAS_SIGNAL;
598 	if ((stat > 45) && (stat2 > 45))
599 		*status |= FE_HAS_CARRIER;
600 
601 	if (mb86a16_read(state, MB86A16_STATUS, &stat) != 2)
602 		goto err;
603 
604 	if (stat & 0x01)
605 		*status |= FE_HAS_SYNC;
606 	if (stat & 0x01)
607 		*status |= FE_HAS_VITERBI;
608 
609 	if (mb86a16_read(state, MB86A16_FRAMESYNC, &stat) != 2)
610 		goto err;
611 
612 	if ((stat & 0x0f) && (*status & FE_HAS_VITERBI))
613 		*status |= FE_HAS_LOCK;
614 
615 	return 0;
616 
617 err:
618 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
619 	return -EREMOTEIO;
620 }
621 
622 static int sync_chk(struct mb86a16_state *state,
623 		    unsigned char *VIRM)
624 {
625 	unsigned char val;
626 	int sync;
627 
628 	if (mb86a16_read(state, 0x0d, &val) != 2)
629 		goto err;
630 
631 	dprintk(verbose, MB86A16_INFO, 1, "Status = %02x,", val);
632 	sync = val & 0x01;
633 	*VIRM = (val & 0x1c) >> 2;
634 
635 	return sync;
636 err:
637 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
638 	*VIRM = 0;
639 	return -EREMOTEIO;
640 
641 }
642 
643 static int freqerr_chk(struct mb86a16_state *state,
644 		       int fTP,
645 		       int smrt,
646 		       int unit)
647 {
648 	unsigned char CRM, AFCML, AFCMH;
649 	unsigned char temp1, temp2, temp3;
650 	int crm, afcm, AFCM;
651 	int crrerr, afcerr;		/* kHz */
652 	int frqerr;			/* MHz */
653 	int afcen, afcexen = 0;
654 	int R, M, fOSC, fOSC_OFS;
655 
656 	if (mb86a16_read(state, 0x43, &CRM) != 2)
657 		goto err;
658 
659 	if (CRM > 127)
660 		crm = CRM - 256;
661 	else
662 		crm = CRM;
663 
664 	crrerr = smrt * crm / 256;
665 	if (mb86a16_read(state, 0x49, &temp1) != 2)
666 		goto err;
667 
668 	afcen = (temp1 & 0x04) >> 2;
669 	if (afcen == 0) {
670 		if (mb86a16_read(state, 0x2a, &temp1) != 2)
671 			goto err;
672 		afcexen = (temp1 & 0x20) >> 5;
673 	}
674 
675 	if (afcen == 1) {
676 		if (mb86a16_read(state, 0x0e, &AFCML) != 2)
677 			goto err;
678 		if (mb86a16_read(state, 0x0f, &AFCMH) != 2)
679 			goto err;
680 	} else if (afcexen == 1) {
681 		if (mb86a16_read(state, 0x2b, &AFCML) != 2)
682 			goto err;
683 		if (mb86a16_read(state, 0x2c, &AFCMH) != 2)
684 			goto err;
685 	}
686 	if ((afcen == 1) || (afcexen == 1)) {
687 		smrt_info_get(state, smrt);
688 		AFCM = ((AFCMH & 0x01) << 8) + AFCML;
689 		if (AFCM > 255)
690 			afcm = AFCM - 512;
691 		else
692 			afcm = AFCM;
693 
694 		afcerr = afcm * state->master_clk / 8192;
695 	} else
696 		afcerr = 0;
697 
698 	if (mb86a16_read(state, 0x22, &temp1) != 2)
699 		goto err;
700 	if (mb86a16_read(state, 0x23, &temp2) != 2)
701 		goto err;
702 	if (mb86a16_read(state, 0x24, &temp3) != 2)
703 		goto err;
704 
705 	R = (temp1 & 0xe0) >> 5;
706 	M = ((temp1 & 0x1f) << 12) + (temp2 << 4) + (temp3 >> 4);
707 	if (R == 0)
708 		fOSC = 2 * M;
709 	else
710 		fOSC = M;
711 
712 	fOSC_OFS = fOSC - fTP;
713 
714 	if (unit == 0) {	/* MHz */
715 		if (crrerr + afcerr + fOSC_OFS * 1000 >= 0)
716 			frqerr = (crrerr + afcerr + fOSC_OFS * 1000 + 500) / 1000;
717 		else
718 			frqerr = (crrerr + afcerr + fOSC_OFS * 1000 - 500) / 1000;
719 	} else {	/* kHz */
720 		frqerr = crrerr + afcerr + fOSC_OFS * 1000;
721 	}
722 
723 	return frqerr;
724 err:
725 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
726 	return -EREMOTEIO;
727 }
728 
729 static unsigned char vco_dev_get(struct mb86a16_state *state, int smrt)
730 {
731 	unsigned char R;
732 
733 	if (smrt > 9375)
734 		R = 0;
735 	else
736 		R = 1;
737 
738 	return R;
739 }
740 
741 static void swp_info_get(struct mb86a16_state *state,
742 			 int fOSC_start,
743 			 int smrt,
744 			 int v, int R,
745 			 int swp_ofs,
746 			 int *fOSC,
747 			 int *afcex_freq,
748 			 unsigned char *AFCEX_L,
749 			 unsigned char *AFCEX_H)
750 {
751 	int AFCEX ;
752 	int crnt_swp_freq ;
753 
754 	crnt_swp_freq = fOSC_start * 1000 + v * swp_ofs;
755 
756 	if (R == 0)
757 		*fOSC = (crnt_swp_freq + 1000) / 2000 * 2;
758 	else
759 		*fOSC = (crnt_swp_freq + 500) / 1000;
760 
761 	if (*fOSC >= crnt_swp_freq)
762 		*afcex_freq = *fOSC * 1000 - crnt_swp_freq;
763 	else
764 		*afcex_freq = crnt_swp_freq - *fOSC * 1000;
765 
766 	AFCEX = *afcex_freq * 8192 / state->master_clk;
767 	*AFCEX_L =  AFCEX & 0x00ff;
768 	*AFCEX_H = (AFCEX & 0x0f00) >> 8;
769 }
770 
771 
772 static int swp_freq_calcuation(struct mb86a16_state *state, int i, int v, int *V,  int vmax, int vmin,
773 			       int SIGMIN, int fOSC, int afcex_freq, int swp_ofs, unsigned char *SIG1)
774 {
775 	int swp_freq ;
776 
777 	if ((i % 2 == 1) && (v <= vmax)) {
778 		/* positive v (case 1) */
779 		if ((v - 1 == vmin)				&&
780 		    (*(V + 30 + v) >= 0)			&&
781 		    (*(V + 30 + v - 1) >= 0)			&&
782 		    (*(V + 30 + v - 1) > *(V + 30 + v))		&&
783 		    (*(V + 30 + v - 1) > SIGMIN)) {
784 
785 			swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
786 			*SIG1 = *(V + 30 + v - 1);
787 		} else if ((v == vmax)				&&
788 			   (*(V + 30 + v) >= 0)			&&
789 			   (*(V + 30 + v - 1) >= 0)		&&
790 			   (*(V + 30 + v) > *(V + 30 + v - 1))	&&
791 			   (*(V + 30 + v) > SIGMIN)) {
792 			/* (case 2) */
793 			swp_freq = fOSC * 1000 + afcex_freq;
794 			*SIG1 = *(V + 30 + v);
795 		} else if ((*(V + 30 + v) > 0)			&&
796 			   (*(V + 30 + v - 1) > 0)		&&
797 			   (*(V + 30 + v - 2) > 0)		&&
798 			   (*(V + 30 + v - 3) > 0)		&&
799 			   (*(V + 30 + v - 1) > *(V + 30 + v))	&&
800 			   (*(V + 30 + v - 2) > *(V + 30 + v - 3)) &&
801 			   ((*(V + 30 + v - 1) > SIGMIN)	||
802 			   (*(V + 30 + v - 2) > SIGMIN))) {
803 			/* (case 3) */
804 			if (*(V + 30 + v - 1) >= *(V + 30 + v - 2)) {
805 				swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
806 				*SIG1 = *(V + 30 + v - 1);
807 			} else {
808 				swp_freq = fOSC * 1000 + afcex_freq - swp_ofs * 2;
809 				*SIG1 = *(V + 30 + v - 2);
810 			}
811 		} else if ((v == vmax)				&&
812 			   (*(V + 30 + v) >= 0)			&&
813 			   (*(V + 30 + v - 1) >= 0)		&&
814 			   (*(V + 30 + v - 2) >= 0)		&&
815 			   (*(V + 30 + v) > *(V + 30 + v - 2))	&&
816 			   (*(V + 30 + v - 1) > *(V + 30 + v - 2)) &&
817 			   ((*(V + 30 + v) > SIGMIN)		||
818 			   (*(V + 30 + v - 1) > SIGMIN))) {
819 			/* (case 4) */
820 			if (*(V + 30 + v) >= *(V + 30 + v - 1)) {
821 				swp_freq = fOSC * 1000 + afcex_freq;
822 				*SIG1 = *(V + 30 + v);
823 			} else {
824 				swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
825 				*SIG1 = *(V + 30 + v - 1);
826 			}
827 		} else  {
828 			swp_freq = -1 ;
829 		}
830 	} else if ((i % 2 == 0) && (v >= vmin)) {
831 		/* Negative v (case 1) */
832 		if ((*(V + 30 + v) > 0)				&&
833 		    (*(V + 30 + v + 1) > 0)			&&
834 		    (*(V + 30 + v + 2) > 0)			&&
835 		    (*(V + 30 + v + 1) > *(V + 30 + v))		&&
836 		    (*(V + 30 + v + 1) > *(V + 30 + v + 2))	&&
837 		    (*(V + 30 + v + 1) > SIGMIN)) {
838 
839 			swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
840 			*SIG1 = *(V + 30 + v + 1);
841 		} else if ((v + 1 == vmax)			&&
842 			   (*(V + 30 + v) >= 0)			&&
843 			   (*(V + 30 + v + 1) >= 0)		&&
844 			   (*(V + 30 + v + 1) > *(V + 30 + v))	&&
845 			   (*(V + 30 + v + 1) > SIGMIN)) {
846 			/* (case 2) */
847 			swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
848 			*SIG1 = *(V + 30 + v);
849 		} else if ((v == vmin)				&&
850 			   (*(V + 30 + v) > 0)			&&
851 			   (*(V + 30 + v + 1) > 0)		&&
852 			   (*(V + 30 + v + 2) > 0)		&&
853 			   (*(V + 30 + v) > *(V + 30 + v + 1))	&&
854 			   (*(V + 30 + v) > *(V + 30 + v + 2))	&&
855 			   (*(V + 30 + v) > SIGMIN)) {
856 			/* (case 3) */
857 			swp_freq = fOSC * 1000 + afcex_freq;
858 			*SIG1 = *(V + 30 + v);
859 		} else if ((*(V + 30 + v) >= 0)			&&
860 			   (*(V + 30 + v + 1) >= 0)		&&
861 			   (*(V + 30 + v + 2) >= 0)		&&
862 			   (*(V + 30 + v + 3) >= 0)		&&
863 			   (*(V + 30 + v + 1) > *(V + 30 + v))	&&
864 			   (*(V + 30 + v + 2) > *(V + 30 + v + 3)) &&
865 			   ((*(V + 30 + v + 1) > SIGMIN)	||
866 			    (*(V + 30 + v + 2) > SIGMIN))) {
867 			/* (case 4) */
868 			if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
869 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
870 				*SIG1 = *(V + 30 + v + 1);
871 			} else {
872 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
873 				*SIG1 = *(V + 30 + v + 2);
874 			}
875 		} else if ((*(V + 30 + v) >= 0)			&&
876 			   (*(V + 30 + v + 1) >= 0)		&&
877 			   (*(V + 30 + v + 2) >= 0)		&&
878 			   (*(V + 30 + v + 3) >= 0)		&&
879 			   (*(V + 30 + v) > *(V + 30 + v + 2))	&&
880 			   (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
881 			   (*(V + 30 + v) > *(V + 30 + v + 3))	&&
882 			   (*(V + 30 + v + 1) > *(V + 30 + v + 3)) &&
883 			   ((*(V + 30 + v) > SIGMIN)		||
884 			    (*(V + 30 + v + 1) > SIGMIN))) {
885 			/* (case 5) */
886 			if (*(V + 30 + v) >= *(V + 30 + v + 1)) {
887 				swp_freq = fOSC * 1000 + afcex_freq;
888 				*SIG1 = *(V + 30 + v);
889 			} else {
890 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
891 				*SIG1 = *(V + 30 + v + 1);
892 			}
893 		} else if ((v + 2 == vmin)			&&
894 			   (*(V + 30 + v) >= 0)			&&
895 			   (*(V + 30 + v + 1) >= 0)		&&
896 			   (*(V + 30 + v + 2) >= 0)		&&
897 			   (*(V + 30 + v + 1) > *(V + 30 + v))	&&
898 			   (*(V + 30 + v + 2) > *(V + 30 + v))	&&
899 			   ((*(V + 30 + v + 1) > SIGMIN)	||
900 			    (*(V + 30 + v + 2) > SIGMIN))) {
901 			/* (case 6) */
902 			if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
903 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
904 				*SIG1 = *(V + 30 + v + 1);
905 			} else {
906 				swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
907 				*SIG1 = *(V + 30 + v + 2);
908 			}
909 		} else if ((vmax == 0) && (vmin == 0) && (*(V + 30 + v) > SIGMIN)) {
910 			swp_freq = fOSC * 1000;
911 			*SIG1 = *(V + 30 + v);
912 		} else
913 			swp_freq = -1;
914 	} else
915 		swp_freq = -1;
916 
917 	return swp_freq;
918 }
919 
920 static void swp_info_get2(struct mb86a16_state *state,
921 			  int smrt,
922 			  int R,
923 			  int swp_freq,
924 			  int *afcex_freq,
925 			  int *fOSC,
926 			  unsigned char *AFCEX_L,
927 			  unsigned char *AFCEX_H)
928 {
929 	int AFCEX ;
930 
931 	if (R == 0)
932 		*fOSC = (swp_freq + 1000) / 2000 * 2;
933 	else
934 		*fOSC = (swp_freq + 500) / 1000;
935 
936 	if (*fOSC >= swp_freq)
937 		*afcex_freq = *fOSC * 1000 - swp_freq;
938 	else
939 		*afcex_freq = swp_freq - *fOSC * 1000;
940 
941 	AFCEX = *afcex_freq * 8192 / state->master_clk;
942 	*AFCEX_L =  AFCEX & 0x00ff;
943 	*AFCEX_H = (AFCEX & 0x0f00) >> 8;
944 }
945 
946 static void afcex_info_get(struct mb86a16_state *state,
947 			   int afcex_freq,
948 			   unsigned char *AFCEX_L,
949 			   unsigned char *AFCEX_H)
950 {
951 	int AFCEX ;
952 
953 	AFCEX = afcex_freq * 8192 / state->master_clk;
954 	*AFCEX_L =  AFCEX & 0x00ff;
955 	*AFCEX_H = (AFCEX & 0x0f00) >> 8;
956 }
957 
958 static int SEQ_set(struct mb86a16_state *state, unsigned char loop)
959 {
960 	/* SLOCK0 = 0 */
961 	if (mb86a16_write(state, 0x32, 0x02 | (loop << 2)) < 0) {
962 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
963 		return -EREMOTEIO;
964 	}
965 
966 	return 0;
967 }
968 
969 static int iq_vt_set(struct mb86a16_state *state, unsigned char IQINV)
970 {
971 	/* Viterbi Rate, IQ Settings */
972 	if (mb86a16_write(state, 0x06, 0xdf | (IQINV << 5)) < 0) {
973 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
974 		return -EREMOTEIO;
975 	}
976 
977 	return 0;
978 }
979 
980 static int FEC_srst(struct mb86a16_state *state)
981 {
982 	if (mb86a16_write(state, MB86A16_RESET, 0x02) < 0) {
983 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
984 		return -EREMOTEIO;
985 	}
986 
987 	return 0;
988 }
989 
990 static int S2T_set(struct mb86a16_state *state, unsigned char S2T)
991 {
992 	if (mb86a16_write(state, 0x34, 0x70 | S2T) < 0) {
993 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
994 		return -EREMOTEIO;
995 	}
996 
997 	return 0;
998 }
999 
1000 static int S45T_set(struct mb86a16_state *state, unsigned char S4T, unsigned char S5T)
1001 {
1002 	if (mb86a16_write(state, 0x35, 0x00 | (S5T << 4) | S4T) < 0) {
1003 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1004 		return -EREMOTEIO;
1005 	}
1006 
1007 	return 0;
1008 }
1009 
1010 
1011 static int mb86a16_set_fe(struct mb86a16_state *state)
1012 {
1013 	u8 agcval, cnmval;
1014 
1015 	int i, j;
1016 	int fOSC = 0;
1017 	int fOSC_start = 0;
1018 	int wait_t;
1019 	int fcp;
1020 	int swp_ofs;
1021 	int V[60];
1022 	u8 SIG1MIN;
1023 
1024 	unsigned char CREN, AFCEN, AFCEXEN;
1025 	unsigned char SIG1;
1026 	unsigned char TIMINT1, TIMINT2, TIMEXT;
1027 	unsigned char S0T, S1T;
1028 	unsigned char S2T;
1029 /*	unsigned char S2T, S3T; */
1030 	unsigned char S4T, S5T;
1031 	unsigned char AFCEX_L, AFCEX_H;
1032 	unsigned char R;
1033 	unsigned char VIRM;
1034 	unsigned char ETH, VIA;
1035 	unsigned char junk;
1036 
1037 	int loop;
1038 	int ftemp;
1039 	int v, vmax, vmin;
1040 	int vmax_his, vmin_his;
1041 	int swp_freq, prev_swp_freq[20];
1042 	int prev_freq_num;
1043 	int signal_dupl;
1044 	int afcex_freq;
1045 	int signal;
1046 	int afcerr;
1047 	int temp_freq, delta_freq;
1048 	int dagcm[4];
1049 	int smrt_d;
1050 /*	int freq_err; */
1051 	int n;
1052 	int ret = -1;
1053 	int sync;
1054 
1055 	dprintk(verbose, MB86A16_INFO, 1, "freq=%d Mhz, symbrt=%d Ksps", state->frequency, state->srate);
1056 
1057 	fcp = 3000;
1058 	swp_ofs = state->srate / 4;
1059 
1060 	for (i = 0; i < 60; i++)
1061 		V[i] = -1;
1062 
1063 	for (i = 0; i < 20; i++)
1064 		prev_swp_freq[i] = 0;
1065 
1066 	SIG1MIN = 25;
1067 
1068 	for (n = 0; ((n < 3) && (ret == -1)); n++) {
1069 		SEQ_set(state, 0);
1070 		iq_vt_set(state, 0);
1071 
1072 		CREN = 0;
1073 		AFCEN = 0;
1074 		AFCEXEN = 1;
1075 		TIMINT1 = 0;
1076 		TIMINT2 = 1;
1077 		TIMEXT = 2;
1078 		S1T = 0;
1079 		S0T = 0;
1080 
1081 		if (initial_set(state) < 0) {
1082 			dprintk(verbose, MB86A16_ERROR, 1, "initial set failed");
1083 			return -1;
1084 		}
1085 		if (DAGC_data_set(state, 3, 2) < 0) {
1086 			dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1087 			return -1;
1088 		}
1089 		if (EN_set(state, CREN, AFCEN) < 0) {
1090 			dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1091 			return -1; /* (0, 0) */
1092 		}
1093 		if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1094 			dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1095 			return -1; /* (1, smrt) = (1, symbolrate) */
1096 		}
1097 		if (CNTM_set(state, TIMINT1, TIMINT2, TIMEXT) < 0) {
1098 			dprintk(verbose, MB86A16_ERROR, 1, "CNTM set error");
1099 			return -1; /* (0, 1, 2) */
1100 		}
1101 		if (S01T_set(state, S1T, S0T) < 0) {
1102 			dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1103 			return -1; /* (0, 0) */
1104 		}
1105 		smrt_info_get(state, state->srate);
1106 		if (smrt_set(state, state->srate) < 0) {
1107 			dprintk(verbose, MB86A16_ERROR, 1, "smrt info get error");
1108 			return -1;
1109 		}
1110 
1111 		R = vco_dev_get(state, state->srate);
1112 		if (R == 1)
1113 			fOSC_start = state->frequency;
1114 
1115 		else if (R == 0) {
1116 			if (state->frequency % 2 == 0) {
1117 				fOSC_start = state->frequency;
1118 			} else {
1119 				fOSC_start = state->frequency + 1;
1120 				if (fOSC_start > 2150)
1121 					fOSC_start = state->frequency - 1;
1122 			}
1123 		}
1124 		loop = 1;
1125 		ftemp = fOSC_start * 1000;
1126 		vmax = 0 ;
1127 		while (loop == 1) {
1128 			ftemp = ftemp + swp_ofs;
1129 			vmax++;
1130 
1131 			/* Upper bound */
1132 			if (ftemp > 2150000) {
1133 				loop = 0;
1134 				vmax--;
1135 			} else {
1136 				if ((ftemp == 2150000) ||
1137 				    (ftemp - state->frequency * 1000 >= fcp + state->srate / 4))
1138 					loop = 0;
1139 			}
1140 		}
1141 
1142 		loop = 1;
1143 		ftemp = fOSC_start * 1000;
1144 		vmin = 0 ;
1145 		while (loop == 1) {
1146 			ftemp = ftemp - swp_ofs;
1147 			vmin--;
1148 
1149 			/* Lower bound */
1150 			if (ftemp < 950000) {
1151 				loop = 0;
1152 				vmin++;
1153 			} else {
1154 				if ((ftemp == 950000) ||
1155 				    (state->frequency * 1000 - ftemp >= fcp + state->srate / 4))
1156 					loop = 0;
1157 			}
1158 		}
1159 
1160 		wait_t = (8000 + state->srate / 2) / state->srate;
1161 		if (wait_t == 0)
1162 			wait_t = 1;
1163 
1164 		i = 0;
1165 		j = 0;
1166 		prev_freq_num = 0;
1167 		loop = 1;
1168 		signal = 0;
1169 		vmax_his = 0;
1170 		vmin_his = 0;
1171 		v = 0;
1172 
1173 		while (loop == 1) {
1174 			swp_info_get(state, fOSC_start, state->srate,
1175 				     v, R, swp_ofs, &fOSC,
1176 				     &afcex_freq, &AFCEX_L, &AFCEX_H);
1177 
1178 			udelay(100);
1179 			if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1180 				dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1181 				return -1;
1182 			}
1183 			udelay(100);
1184 			if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1185 				dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1186 				return -1;
1187 			}
1188 			if (srst(state) < 0) {
1189 				dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1190 				return -1;
1191 			}
1192 			msleep_interruptible(wait_t);
1193 
1194 			if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1195 				dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1196 				return -1;
1197 			}
1198 			V[30 + v] = SIG1 ;
1199 			swp_freq = swp_freq_calcuation(state, i, v, V, vmax, vmin,
1200 						      SIG1MIN, fOSC, afcex_freq,
1201 						      swp_ofs, &SIG1);	/* changed */
1202 
1203 			signal_dupl = 0;
1204 			for (j = 0; j < prev_freq_num; j++) {
1205 				if ((ABS(prev_swp_freq[j] - swp_freq)) < (swp_ofs * 3 / 2)) {
1206 					signal_dupl = 1;
1207 					dprintk(verbose, MB86A16_INFO, 1, "Probably Duplicate Signal, j = %d", j);
1208 				}
1209 			}
1210 			if ((signal_dupl == 0) && (swp_freq > 0) && (ABS(swp_freq - state->frequency * 1000) < fcp + state->srate / 6)) {
1211 				dprintk(verbose, MB86A16_DEBUG, 1, "------ Signal detect ------ [swp_freq=[%07d, srate=%05d]]", swp_freq, state->srate);
1212 				prev_swp_freq[prev_freq_num] = swp_freq;
1213 				prev_freq_num++;
1214 				swp_info_get2(state, state->srate, R, swp_freq,
1215 					      &afcex_freq, &fOSC,
1216 					      &AFCEX_L, &AFCEX_H);
1217 
1218 				if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1219 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1220 					return -1;
1221 				}
1222 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1223 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1224 					return -1;
1225 				}
1226 				signal = signal_det(state, state->srate, &SIG1);
1227 				if (signal == 1) {
1228 					dprintk(verbose, MB86A16_ERROR, 1, "***** Signal Found *****");
1229 					loop = 0;
1230 				} else {
1231 					dprintk(verbose, MB86A16_ERROR, 1, "!!!!! No signal !!!!!, try again...");
1232 					smrt_info_get(state, state->srate);
1233 					if (smrt_set(state, state->srate) < 0) {
1234 						dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1235 						return -1;
1236 					}
1237 				}
1238 			}
1239 			if (v > vmax)
1240 				vmax_his = 1 ;
1241 			if (v < vmin)
1242 				vmin_his = 1 ;
1243 			i++;
1244 
1245 			if ((i % 2 == 1) && (vmax_his == 1))
1246 				i++;
1247 			if ((i % 2 == 0) && (vmin_his == 1))
1248 				i++;
1249 
1250 			if (i % 2 == 1)
1251 				v = (i + 1) / 2;
1252 			else
1253 				v = -i / 2;
1254 
1255 			if ((vmax_his == 1) && (vmin_his == 1))
1256 				loop = 0 ;
1257 		}
1258 
1259 		if (signal == 1) {
1260 			dprintk(verbose, MB86A16_INFO, 1, " Start Freq Error Check");
1261 			S1T = 7 ;
1262 			S0T = 1 ;
1263 			CREN = 0 ;
1264 			AFCEN = 1 ;
1265 			AFCEXEN = 0 ;
1266 
1267 			if (S01T_set(state, S1T, S0T) < 0) {
1268 				dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1269 				return -1;
1270 			}
1271 			smrt_info_get(state, state->srate);
1272 			if (smrt_set(state, state->srate) < 0) {
1273 				dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1274 				return -1;
1275 			}
1276 			if (EN_set(state, CREN, AFCEN) < 0) {
1277 				dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1278 				return -1;
1279 			}
1280 			if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1281 				dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1282 				return -1;
1283 			}
1284 			afcex_info_get(state, afcex_freq, &AFCEX_L, &AFCEX_H);
1285 			if (afcofs_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1286 				dprintk(verbose, MB86A16_ERROR, 1, "AFCOFS data set error");
1287 				return -1;
1288 			}
1289 			if (srst(state) < 0) {
1290 				dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1291 				return -1;
1292 			}
1293 			/* delay 4~200 */
1294 			wait_t = 200000 / state->master_clk + 200000 / state->srate;
1295 			msleep(wait_t);
1296 			afcerr = afcerr_chk(state);
1297 			if (afcerr == -1)
1298 				return -1;
1299 
1300 			swp_freq = fOSC * 1000 + afcerr ;
1301 			AFCEXEN = 1 ;
1302 			if (state->srate >= 1500)
1303 				smrt_d = state->srate / 3;
1304 			else
1305 				smrt_d = state->srate / 2;
1306 			smrt_info_get(state, smrt_d);
1307 			if (smrt_set(state, smrt_d) < 0) {
1308 				dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1309 				return -1;
1310 			}
1311 			if (AFCEXEN_set(state, AFCEXEN, smrt_d) < 0) {
1312 				dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1313 				return -1;
1314 			}
1315 			R = vco_dev_get(state, smrt_d);
1316 			if (DAGC_data_set(state, 2, 0) < 0) {
1317 				dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1318 				return -1;
1319 			}
1320 			for (i = 0; i < 3; i++) {
1321 				temp_freq = swp_freq + (i - 1) * state->srate / 8;
1322 				swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1323 				if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1324 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1325 					return -1;
1326 				}
1327 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1328 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1329 					return -1;
1330 				}
1331 				wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1332 				msleep(wait_t);
1333 				dagcm[i] = dagcm_val_get(state);
1334 			}
1335 			if ((dagcm[0] > dagcm[1]) &&
1336 			    (dagcm[0] > dagcm[2]) &&
1337 			    (dagcm[0] - dagcm[1] > 2 * (dagcm[2] - dagcm[1]))) {
1338 
1339 				temp_freq = swp_freq - 2 * state->srate / 8;
1340 				swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1341 				if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1342 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1343 					return -1;
1344 				}
1345 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1346 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1347 					return -1;
1348 				}
1349 				wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1350 				msleep(wait_t);
1351 				dagcm[3] = dagcm_val_get(state);
1352 				if (dagcm[3] > dagcm[1])
1353 					delta_freq = (dagcm[2] - dagcm[0] + dagcm[1] - dagcm[3]) * state->srate / 300;
1354 				else
1355 					delta_freq = 0;
1356 			} else if ((dagcm[2] > dagcm[1]) &&
1357 				   (dagcm[2] > dagcm[0]) &&
1358 				   (dagcm[2] - dagcm[1] > 2 * (dagcm[0] - dagcm[1]))) {
1359 
1360 				temp_freq = swp_freq + 2 * state->srate / 8;
1361 				swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1362 				if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1363 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set");
1364 					return -1;
1365 				}
1366 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1367 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1368 					return -1;
1369 				}
1370 				wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1371 				msleep(wait_t);
1372 				dagcm[3] = dagcm_val_get(state);
1373 				if (dagcm[3] > dagcm[1])
1374 					delta_freq = (dagcm[2] - dagcm[0] + dagcm[3] - dagcm[1]) * state->srate / 300;
1375 				else
1376 					delta_freq = 0 ;
1377 
1378 			} else {
1379 				delta_freq = 0 ;
1380 			}
1381 			dprintk(verbose, MB86A16_INFO, 1, "SWEEP Frequency = %d", swp_freq);
1382 			swp_freq += delta_freq;
1383 			dprintk(verbose, MB86A16_INFO, 1, "Adjusting .., DELTA Freq = %d, SWEEP Freq=%d", delta_freq, swp_freq);
1384 			if (ABS(state->frequency * 1000 - swp_freq) > 3800) {
1385 				dprintk(verbose, MB86A16_INFO, 1, "NO  --  SIGNAL !");
1386 			} else {
1387 
1388 				S1T = 0;
1389 				S0T = 3;
1390 				CREN = 1;
1391 				AFCEN = 0;
1392 				AFCEXEN = 1;
1393 
1394 				if (S01T_set(state, S1T, S0T) < 0) {
1395 					dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1396 					return -1;
1397 				}
1398 				if (DAGC_data_set(state, 0, 0) < 0) {
1399 					dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1400 					return -1;
1401 				}
1402 				R = vco_dev_get(state, state->srate);
1403 				smrt_info_get(state, state->srate);
1404 				if (smrt_set(state, state->srate) < 0) {
1405 					dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1406 					return -1;
1407 				}
1408 				if (EN_set(state, CREN, AFCEN) < 0) {
1409 					dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1410 					return -1;
1411 				}
1412 				if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1413 					dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1414 					return -1;
1415 				}
1416 				swp_info_get2(state, state->srate, R, swp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1417 				if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1418 					dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1419 					return -1;
1420 				}
1421 				if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1422 					dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1423 					return -1;
1424 				}
1425 				if (srst(state) < 0) {
1426 					dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1427 					return -1;
1428 				}
1429 				wait_t = 7 + (10000 + state->srate / 2) / state->srate;
1430 				if (wait_t == 0)
1431 					wait_t = 1;
1432 				msleep_interruptible(wait_t);
1433 				if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1434 					dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1435 					return -EREMOTEIO;
1436 				}
1437 
1438 				if (SIG1 > 110) {
1439 					S2T = 4; S4T = 1; S5T = 6; ETH = 4; VIA = 6;
1440 					wait_t = 7 + (917504 + state->srate / 2) / state->srate;
1441 				} else if (SIG1 > 105) {
1442 					S2T = 4; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1443 					wait_t = 7 + (1048576 + state->srate / 2) / state->srate;
1444 				} else if (SIG1 > 85) {
1445 					S2T = 5; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1446 					wait_t = 7 + (1310720 + state->srate / 2) / state->srate;
1447 				} else if (SIG1 > 65) {
1448 					S2T = 6; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1449 					wait_t = 7 + (1572864 + state->srate / 2) / state->srate;
1450 				} else {
1451 					S2T = 7; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1452 					wait_t = 7 + (2097152 + state->srate / 2) / state->srate;
1453 				}
1454 				wait_t *= 2; /* FOS */
1455 				S2T_set(state, S2T);
1456 				S45T_set(state, S4T, S5T);
1457 				Vi_set(state, ETH, VIA);
1458 				srst(state);
1459 				msleep_interruptible(wait_t);
1460 				sync = sync_chk(state, &VIRM);
1461 				dprintk(verbose, MB86A16_INFO, 1, "-------- Viterbi=[%d] SYNC=[%d] ---------", VIRM, sync);
1462 				if (VIRM) {
1463 					if (VIRM == 4) {
1464 						/* 5/6 */
1465 						if (SIG1 > 110)
1466 							wait_t = (786432 + state->srate / 2) / state->srate;
1467 						else
1468 							wait_t = (1572864 + state->srate / 2) / state->srate;
1469 						if (state->srate < 5000)
1470 							/* FIXME ! , should be a long wait ! */
1471 							msleep_interruptible(wait_t);
1472 						else
1473 							msleep_interruptible(wait_t);
1474 
1475 						if (sync_chk(state, &junk) == 0) {
1476 							iq_vt_set(state, 1);
1477 							FEC_srst(state);
1478 						}
1479 					}
1480 					/* 1/2, 2/3, 3/4, 7/8 */
1481 					if (SIG1 > 110)
1482 						wait_t = (786432 + state->srate / 2) / state->srate;
1483 					else
1484 						wait_t = (1572864 + state->srate / 2) / state->srate;
1485 					msleep_interruptible(wait_t);
1486 					SEQ_set(state, 1);
1487 				} else {
1488 					dprintk(verbose, MB86A16_INFO, 1, "NO  -- SYNC");
1489 					SEQ_set(state, 1);
1490 					ret = -1;
1491 				}
1492 			}
1493 		} else {
1494 			dprintk(verbose, MB86A16_INFO, 1, "NO  -- SIGNAL");
1495 			ret = -1;
1496 		}
1497 
1498 		sync = sync_chk(state, &junk);
1499 		if (sync) {
1500 			dprintk(verbose, MB86A16_INFO, 1, "******* SYNC *******");
1501 			freqerr_chk(state, state->frequency, state->srate, 1);
1502 			ret = 0;
1503 			break;
1504 		}
1505 	}
1506 
1507 	mb86a16_read(state, 0x15, &agcval);
1508 	mb86a16_read(state, 0x26, &cnmval);
1509 	dprintk(verbose, MB86A16_INFO, 1, "AGC = %02x CNM = %02x", agcval, cnmval);
1510 
1511 	return ret;
1512 }
1513 
1514 static int mb86a16_send_diseqc_msg(struct dvb_frontend *fe,
1515 				   struct dvb_diseqc_master_cmd *cmd)
1516 {
1517 	struct mb86a16_state *state = fe->demodulator_priv;
1518 	int i;
1519 	u8 regs;
1520 
1521 	if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1522 		goto err;
1523 	if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1524 		goto err;
1525 	if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1526 		goto err;
1527 
1528 	regs = 0x18;
1529 
1530 	if (cmd->msg_len > 5 || cmd->msg_len < 4)
1531 		return -EINVAL;
1532 
1533 	for (i = 0; i < cmd->msg_len; i++) {
1534 		if (mb86a16_write(state, regs, cmd->msg[i]) < 0)
1535 			goto err;
1536 
1537 		regs++;
1538 	}
1539 	i += 0x90;
1540 
1541 	msleep_interruptible(10);
1542 
1543 	if (mb86a16_write(state, MB86A16_DCC1, i) < 0)
1544 		goto err;
1545 	if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1546 		goto err;
1547 
1548 	return 0;
1549 
1550 err:
1551 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1552 	return -EREMOTEIO;
1553 }
1554 
1555 static int mb86a16_send_diseqc_burst(struct dvb_frontend *fe,
1556 				     enum fe_sec_mini_cmd burst)
1557 {
1558 	struct mb86a16_state *state = fe->demodulator_priv;
1559 
1560 	switch (burst) {
1561 	case SEC_MINI_A:
1562 		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1563 						       MB86A16_DCC1_TBEN  |
1564 						       MB86A16_DCC1_TBO) < 0)
1565 			goto err;
1566 		if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1567 			goto err;
1568 		break;
1569 	case SEC_MINI_B:
1570 		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1571 						       MB86A16_DCC1_TBEN) < 0)
1572 			goto err;
1573 		if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1574 			goto err;
1575 		break;
1576 	}
1577 
1578 	return 0;
1579 err:
1580 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1581 	return -EREMOTEIO;
1582 }
1583 
1584 static int mb86a16_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
1585 {
1586 	struct mb86a16_state *state = fe->demodulator_priv;
1587 
1588 	switch (tone) {
1589 	case SEC_TONE_ON:
1590 		if (mb86a16_write(state, MB86A16_TONEOUT2, 0x00) < 0)
1591 			goto err;
1592 		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1593 						       MB86A16_DCC1_CTOE) < 0)
1594 
1595 			goto err;
1596 		if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1597 			goto err;
1598 		break;
1599 	case SEC_TONE_OFF:
1600 		if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1601 			goto err;
1602 		if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1603 			goto err;
1604 		if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1605 			goto err;
1606 		break;
1607 	default:
1608 		return -EINVAL;
1609 	}
1610 	return 0;
1611 
1612 err:
1613 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1614 	return -EREMOTEIO;
1615 }
1616 
1617 static enum dvbfe_search mb86a16_search(struct dvb_frontend *fe)
1618 {
1619 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1620 	struct mb86a16_state *state = fe->demodulator_priv;
1621 
1622 	state->frequency = p->frequency / 1000;
1623 	state->srate = p->symbol_rate / 1000;
1624 
1625 	if (!mb86a16_set_fe(state)) {
1626 		dprintk(verbose, MB86A16_ERROR, 1, "Successfully acquired LOCK");
1627 		return DVBFE_ALGO_SEARCH_SUCCESS;
1628 	}
1629 
1630 	dprintk(verbose, MB86A16_ERROR, 1, "Lock acquisition failed!");
1631 	return DVBFE_ALGO_SEARCH_FAILED;
1632 }
1633 
1634 static void mb86a16_release(struct dvb_frontend *fe)
1635 {
1636 	struct mb86a16_state *state = fe->demodulator_priv;
1637 	kfree(state);
1638 }
1639 
1640 static int mb86a16_init(struct dvb_frontend *fe)
1641 {
1642 	return 0;
1643 }
1644 
1645 static int mb86a16_sleep(struct dvb_frontend *fe)
1646 {
1647 	return 0;
1648 }
1649 
1650 static int mb86a16_read_ber(struct dvb_frontend *fe, u32 *ber)
1651 {
1652 	u8 ber_mon, ber_tab, ber_lsb, ber_mid, ber_msb, ber_tim, ber_rst;
1653 	u32 timer;
1654 
1655 	struct mb86a16_state *state = fe->demodulator_priv;
1656 
1657 	*ber = 0;
1658 	if (mb86a16_read(state, MB86A16_BERMON, &ber_mon) != 2)
1659 		goto err;
1660 	if (mb86a16_read(state, MB86A16_BERTAB, &ber_tab) != 2)
1661 		goto err;
1662 	if (mb86a16_read(state, MB86A16_BERLSB, &ber_lsb) != 2)
1663 		goto err;
1664 	if (mb86a16_read(state, MB86A16_BERMID, &ber_mid) != 2)
1665 		goto err;
1666 	if (mb86a16_read(state, MB86A16_BERMSB, &ber_msb) != 2)
1667 		goto err;
1668 	/* BER monitor invalid when BER_EN = 0	*/
1669 	if (ber_mon & 0x04) {
1670 		/* coarse, fast calculation	*/
1671 		*ber = ber_tab & 0x1f;
1672 		dprintk(verbose, MB86A16_DEBUG, 1, "BER coarse=[0x%02x]", *ber);
1673 		if (ber_mon & 0x01) {
1674 			/*
1675 			 * BER_SEL = 1, The monitored BER is the estimated
1676 			 * value with a Reed-Solomon decoder error amount at
1677 			 * the deinterleaver output.
1678 			 * monitored BER is expressed as a 20 bit output in total
1679 			 */
1680 			ber_rst = (ber_mon >> 3) & 0x03;
1681 			*ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1682 			if (ber_rst == 0)
1683 				timer =  12500000;
1684 			else if (ber_rst == 1)
1685 				timer =  25000000;
1686 			else if (ber_rst == 2)
1687 				timer =  50000000;
1688 			else /* ber_rst == 3 */
1689 				timer = 100000000;
1690 
1691 			*ber /= timer;
1692 			dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1693 		} else {
1694 			/*
1695 			 * BER_SEL = 0, The monitored BER is the estimated
1696 			 * value with a Viterbi decoder error amount at the
1697 			 * QPSK demodulator output.
1698 			 * monitored BER is expressed as a 24 bit output in total
1699 			 */
1700 			ber_tim = (ber_mon >> 1) & 0x01;
1701 			*ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1702 			if (ber_tim == 0)
1703 				timer = 16;
1704 			else /* ber_tim == 1 */
1705 				timer = 24;
1706 
1707 			*ber /= 2 ^ timer;
1708 			dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1709 		}
1710 	}
1711 	return 0;
1712 err:
1713 	dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1714 	return -EREMOTEIO;
1715 }
1716 
1717 static int mb86a16_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1718 {
1719 	u8 agcm = 0;
1720 	struct mb86a16_state *state = fe->demodulator_priv;
1721 
1722 	*strength = 0;
1723 	if (mb86a16_read(state, MB86A16_AGCM, &agcm) != 2) {
1724 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1725 		return -EREMOTEIO;
1726 	}
1727 
1728 	*strength = ((0xff - agcm) * 100) / 256;
1729 	dprintk(verbose, MB86A16_DEBUG, 1, "Signal strength=[%d %%]", (u8) *strength);
1730 	*strength = (0xffff - 0xff) + agcm;
1731 
1732 	return 0;
1733 }
1734 
1735 struct cnr {
1736 	u8 cn_reg;
1737 	u8 cn_val;
1738 };
1739 
1740 static const struct cnr cnr_tab[] = {
1741 	{  35,  2 },
1742 	{  40,  3 },
1743 	{  50,  4 },
1744 	{  60,  5 },
1745 	{  70,  6 },
1746 	{  80,  7 },
1747 	{  92,  8 },
1748 	{ 103,  9 },
1749 	{ 115, 10 },
1750 	{ 138, 12 },
1751 	{ 162, 15 },
1752 	{ 180, 18 },
1753 	{ 185, 19 },
1754 	{ 189, 20 },
1755 	{ 195, 22 },
1756 	{ 199, 24 },
1757 	{ 201, 25 },
1758 	{ 202, 26 },
1759 	{ 203, 27 },
1760 	{ 205, 28 },
1761 	{ 208, 30 }
1762 };
1763 
1764 static int mb86a16_read_snr(struct dvb_frontend *fe, u16 *snr)
1765 {
1766 	struct mb86a16_state *state = fe->demodulator_priv;
1767 	int i = 0;
1768 	int low_tide = 2, high_tide = 30, q_level;
1769 	u8  cn;
1770 
1771 	*snr = 0;
1772 	if (mb86a16_read(state, 0x26, &cn) != 2) {
1773 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1774 		return -EREMOTEIO;
1775 	}
1776 
1777 	for (i = 0; i < ARRAY_SIZE(cnr_tab); i++) {
1778 		if (cn < cnr_tab[i].cn_reg) {
1779 			*snr = cnr_tab[i].cn_val;
1780 			break;
1781 		}
1782 	}
1783 	q_level = (*snr * 100) / (high_tide - low_tide);
1784 	dprintk(verbose, MB86A16_ERROR, 1, "SNR (Quality) = [%d dB], Level=%d %%", *snr, q_level);
1785 	*snr = (0xffff - 0xff) + *snr;
1786 
1787 	return 0;
1788 }
1789 
1790 static int mb86a16_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1791 {
1792 	u8 dist;
1793 	struct mb86a16_state *state = fe->demodulator_priv;
1794 
1795 	if (mb86a16_read(state, MB86A16_DISTMON, &dist) != 2) {
1796 		dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1797 		return -EREMOTEIO;
1798 	}
1799 	*ucblocks = dist;
1800 
1801 	return 0;
1802 }
1803 
1804 static enum dvbfe_algo mb86a16_frontend_algo(struct dvb_frontend *fe)
1805 {
1806 	return DVBFE_ALGO_CUSTOM;
1807 }
1808 
1809 static const struct dvb_frontend_ops mb86a16_ops = {
1810 	.delsys = { SYS_DVBS },
1811 	.info = {
1812 		.name			= "Fujitsu MB86A16 DVB-S",
1813 		.frequency_min		= 950000,
1814 		.frequency_max		= 2150000,
1815 		.frequency_stepsize	= 3000,
1816 		.frequency_tolerance	= 0,
1817 		.symbol_rate_min	= 1000000,
1818 		.symbol_rate_max	= 45000000,
1819 		.symbol_rate_tolerance	= 500,
1820 		.caps			= FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
1821 					  FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
1822 					  FE_CAN_FEC_7_8 | FE_CAN_QPSK    |
1823 					  FE_CAN_FEC_AUTO
1824 	},
1825 	.release			= mb86a16_release,
1826 
1827 	.get_frontend_algo		= mb86a16_frontend_algo,
1828 	.search				= mb86a16_search,
1829 	.init				= mb86a16_init,
1830 	.sleep				= mb86a16_sleep,
1831 	.read_status			= mb86a16_read_status,
1832 
1833 	.read_ber			= mb86a16_read_ber,
1834 	.read_signal_strength		= mb86a16_read_signal_strength,
1835 	.read_snr			= mb86a16_read_snr,
1836 	.read_ucblocks			= mb86a16_read_ucblocks,
1837 
1838 	.diseqc_send_master_cmd		= mb86a16_send_diseqc_msg,
1839 	.diseqc_send_burst		= mb86a16_send_diseqc_burst,
1840 	.set_tone			= mb86a16_set_tone,
1841 };
1842 
1843 struct dvb_frontend *mb86a16_attach(const struct mb86a16_config *config,
1844 				    struct i2c_adapter *i2c_adap)
1845 {
1846 	u8 dev_id = 0;
1847 	struct mb86a16_state *state = NULL;
1848 
1849 	state = kmalloc(sizeof(struct mb86a16_state), GFP_KERNEL);
1850 	if (state == NULL)
1851 		goto error;
1852 
1853 	state->config = config;
1854 	state->i2c_adap = i2c_adap;
1855 
1856 	mb86a16_read(state, 0x7f, &dev_id);
1857 	if (dev_id != 0xfe)
1858 		goto error;
1859 
1860 	memcpy(&state->frontend.ops, &mb86a16_ops, sizeof(struct dvb_frontend_ops));
1861 	state->frontend.demodulator_priv = state;
1862 	state->frontend.ops.set_voltage = state->config->set_voltage;
1863 
1864 	return &state->frontend;
1865 error:
1866 	kfree(state);
1867 	return NULL;
1868 }
1869 EXPORT_SYMBOL(mb86a16_attach);
1870 MODULE_LICENSE("GPL");
1871 MODULE_AUTHOR("Manu Abraham");
1872