xref: /openbmc/linux/drivers/media/dvb-frontends/itd1000.c (revision f677b30b487ca3763c3de3f1b4d8c976c2961cd1)
1 /*
2  *  Driver for the Integrant ITD1000 "Zero-IF Tuner IC for Direct Broadcast Satellite"
3  *
4  *  Copyright (c) 2007-8 Patrick Boettcher <pb@linuxtv.org>
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
20  */
21 
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/delay.h>
25 #include <linux/dvb/frontend.h>
26 #include <linux/i2c.h>
27 #include <linux/slab.h>
28 
29 #include "dvb_frontend.h"
30 
31 #include "itd1000.h"
32 #include "itd1000_priv.h"
33 
34 /* Max transfer size done by I2C transfer functions */
35 #define MAX_XFER_SIZE  64
36 
37 static int debug;
38 module_param(debug, int, 0644);
39 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
40 
41 #define itd_dbg(args...)  do { \
42 	if (debug) { \
43 		printk(KERN_DEBUG   "ITD1000: " args);\
44 	} \
45 } while (0)
46 
47 #define itd_warn(args...) do { \
48 	printk(KERN_WARNING "ITD1000: " args); \
49 } while (0)
50 
51 #define itd_info(args...) do { \
52 	printk(KERN_INFO    "ITD1000: " args); \
53 } while (0)
54 
55 /* don't write more than one byte with flexcop behind */
56 static int itd1000_write_regs(struct itd1000_state *state, u8 reg, u8 v[], u8 len)
57 {
58 	u8 buf[MAX_XFER_SIZE];
59 	struct i2c_msg msg = {
60 		.addr = state->cfg->i2c_address, .flags = 0, .buf = buf, .len = len+1
61 	};
62 
63 	if (1 + len > sizeof(buf)) {
64 		printk(KERN_WARNING
65 		       "itd1000: i2c wr reg=%04x: len=%d is too big!\n",
66 		       reg, len);
67 		return -EINVAL;
68 	}
69 
70 	buf[0] = reg;
71 	memcpy(&buf[1], v, len);
72 
73 	/* itd_dbg("wr %02x: %02x\n", reg, v[0]); */
74 
75 	if (i2c_transfer(state->i2c, &msg, 1) != 1) {
76 		printk(KERN_WARNING "itd1000 I2C write failed\n");
77 		return -EREMOTEIO;
78 	}
79 	return 0;
80 }
81 
82 static int itd1000_read_reg(struct itd1000_state *state, u8 reg)
83 {
84 	u8 val;
85 	struct i2c_msg msg[2] = {
86 		{ .addr = state->cfg->i2c_address, .flags = 0,        .buf = &reg, .len = 1 },
87 		{ .addr = state->cfg->i2c_address, .flags = I2C_M_RD, .buf = &val, .len = 1 },
88 	};
89 
90 	/* ugly flexcop workaround */
91 	itd1000_write_regs(state, (reg - 1) & 0xff, &state->shadow[(reg - 1) & 0xff], 1);
92 
93 	if (i2c_transfer(state->i2c, msg, 2) != 2) {
94 		itd_warn("itd1000 I2C read failed\n");
95 		return -EREMOTEIO;
96 	}
97 	return val;
98 }
99 
100 static inline int itd1000_write_reg(struct itd1000_state *state, u8 r, u8 v)
101 {
102 	int ret = itd1000_write_regs(state, r, &v, 1);
103 	state->shadow[r] = v;
104 	return ret;
105 }
106 
107 
108 static struct {
109 	u32 symbol_rate;
110 	u8  pgaext  : 4; /* PLLFH */
111 	u8  bbgvmin : 4; /* BBGVMIN */
112 } itd1000_lpf_pga[] = {
113 	{        0, 0x8, 0x3 },
114 	{  5200000, 0x8, 0x3 },
115 	{ 12200000, 0x4, 0x3 },
116 	{ 15400000, 0x2, 0x3 },
117 	{ 19800000, 0x2, 0x3 },
118 	{ 21500000, 0x2, 0x3 },
119 	{ 24500000, 0x2, 0x3 },
120 	{ 28400000, 0x2, 0x3 },
121 	{ 33400000, 0x2, 0x3 },
122 	{ 34400000, 0x1, 0x4 },
123 	{ 34400000, 0x1, 0x4 },
124 	{ 38400000, 0x1, 0x4 },
125 	{ 38400000, 0x1, 0x4 },
126 	{ 40400000, 0x1, 0x4 },
127 	{ 45400000, 0x1, 0x4 },
128 };
129 
130 static void itd1000_set_lpf_bw(struct itd1000_state *state, u32 symbol_rate)
131 {
132 	u8 i;
133 	u8 con1    = itd1000_read_reg(state, CON1)    & 0xfd;
134 	u8 pllfh   = itd1000_read_reg(state, PLLFH)   & 0x0f;
135 	u8 bbgvmin = itd1000_read_reg(state, BBGVMIN) & 0xf0;
136 	u8 bw      = itd1000_read_reg(state, BW)      & 0xf0;
137 
138 	itd_dbg("symbol_rate = %d\n", symbol_rate);
139 
140 	/* not sure what is that ? - starting to download the table */
141 	itd1000_write_reg(state, CON1, con1 | (1 << 1));
142 
143 	for (i = 0; i < ARRAY_SIZE(itd1000_lpf_pga); i++)
144 		if (symbol_rate < itd1000_lpf_pga[i].symbol_rate) {
145 			itd_dbg("symrate: index: %d pgaext: %x, bbgvmin: %x\n", i, itd1000_lpf_pga[i].pgaext, itd1000_lpf_pga[i].bbgvmin);
146 			itd1000_write_reg(state, PLLFH,   pllfh | (itd1000_lpf_pga[i].pgaext << 4));
147 			itd1000_write_reg(state, BBGVMIN, bbgvmin | (itd1000_lpf_pga[i].bbgvmin));
148 			itd1000_write_reg(state, BW,      bw | (i & 0x0f));
149 			break;
150 		}
151 
152 	itd1000_write_reg(state, CON1, con1 | (0 << 1));
153 }
154 
155 static struct {
156 	u8 vcorg;
157 	u32 fmax_rg;
158 } itd1000_vcorg[] = {
159 	{  1,  920000 },
160 	{  2,  971000 },
161 	{  3, 1031000 },
162 	{  4, 1091000 },
163 	{  5, 1171000 },
164 	{  6, 1281000 },
165 	{  7, 1381000 },
166 	{  8,  500000 },	/* this is intentional. */
167 	{  9, 1451000 },
168 	{ 10, 1531000 },
169 	{ 11, 1631000 },
170 	{ 12, 1741000 },
171 	{ 13, 1891000 },
172 	{ 14, 2071000 },
173 	{ 15, 2250000 },
174 };
175 
176 static void itd1000_set_vco(struct itd1000_state *state, u32 freq_khz)
177 {
178 	u8 i;
179 	u8 gvbb_i2c     = itd1000_read_reg(state, GVBB_I2C) & 0xbf;
180 	u8 vco_chp1_i2c = itd1000_read_reg(state, VCO_CHP1_I2C) & 0x0f;
181 	u8 adcout;
182 
183 	/* reserved bit again (reset ?) */
184 	itd1000_write_reg(state, GVBB_I2C, gvbb_i2c | (1 << 6));
185 
186 	for (i = 0; i < ARRAY_SIZE(itd1000_vcorg); i++) {
187 		if (freq_khz < itd1000_vcorg[i].fmax_rg) {
188 			itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | (itd1000_vcorg[i].vcorg << 4));
189 			msleep(1);
190 
191 			adcout = itd1000_read_reg(state, PLLLOCK) & 0x0f;
192 
193 			itd_dbg("VCO: %dkHz: %d -> ADCOUT: %d %02x\n", freq_khz, itd1000_vcorg[i].vcorg, adcout, vco_chp1_i2c);
194 
195 			if (adcout > 13) {
196 				if (!(itd1000_vcorg[i].vcorg == 7 || itd1000_vcorg[i].vcorg == 15))
197 					itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | ((itd1000_vcorg[i].vcorg + 1) << 4));
198 			} else if (adcout < 2) {
199 				if (!(itd1000_vcorg[i].vcorg == 1 || itd1000_vcorg[i].vcorg == 9))
200 					itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | ((itd1000_vcorg[i].vcorg - 1) << 4));
201 			}
202 			break;
203 		}
204 	}
205 }
206 
207 static const struct {
208 	u32 freq;
209 	u8 values[10]; /* RFTR, RFST1 - RFST9 */
210 } itd1000_fre_values[] = {
211 	{ 1075000, { 0x59, 0x1d, 0x1c, 0x17, 0x16, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
212 	{ 1250000, { 0x89, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
213 	{ 1450000, { 0x89, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
214 	{ 1650000, { 0x69, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
215 	{ 1750000, { 0x69, 0x1e, 0x17, 0x15, 0x14, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
216 	{ 1850000, { 0x69, 0x1d, 0x17, 0x16, 0x14, 0x0f, 0x0e, 0x0d, 0x0b, 0x0a } },
217 	{ 1900000, { 0x69, 0x1d, 0x17, 0x15, 0x14, 0x0f, 0x0e, 0x0d, 0x0b, 0x0a } },
218 	{ 1950000, { 0x69, 0x1d, 0x17, 0x16, 0x14, 0x13, 0x0e, 0x0d, 0x0b, 0x0a } },
219 	{ 2050000, { 0x69, 0x1e, 0x1d, 0x17, 0x16, 0x14, 0x13, 0x0e, 0x0b, 0x0a } },
220 	{ 2150000, { 0x69, 0x1d, 0x1c, 0x17, 0x15, 0x14, 0x13, 0x0f, 0x0e, 0x0b } }
221 };
222 
223 
224 #define FREF 16
225 
226 static void itd1000_set_lo(struct itd1000_state *state, u32 freq_khz)
227 {
228 	int i, j;
229 	u32 plln, pllf;
230 	u64 tmp;
231 
232 	plln = (freq_khz * 1000) / 2 / FREF;
233 
234 	/* Compute the factional part times 1000 */
235 	tmp  = plln % 1000000;
236 	plln /= 1000000;
237 
238 	tmp *= 1048576;
239 	do_div(tmp, 1000000);
240 	pllf = (u32) tmp;
241 
242 	state->frequency = ((plln * 1000) + (pllf * 1000)/1048576) * 2*FREF;
243 	itd_dbg("frequency: %dkHz (wanted) %dkHz (set), PLLF = %d, PLLN = %d\n", freq_khz, state->frequency, pllf, plln);
244 
245 	itd1000_write_reg(state, PLLNH, 0x80); /* PLLNH */
246 	itd1000_write_reg(state, PLLNL, plln & 0xff);
247 	itd1000_write_reg(state, PLLFH, (itd1000_read_reg(state, PLLFH) & 0xf0) | ((pllf >> 16) & 0x0f));
248 	itd1000_write_reg(state, PLLFM, (pllf >> 8) & 0xff);
249 	itd1000_write_reg(state, PLLFL, (pllf >> 0) & 0xff);
250 
251 	for (i = 0; i < ARRAY_SIZE(itd1000_fre_values); i++) {
252 		if (freq_khz <= itd1000_fre_values[i].freq) {
253 			itd_dbg("fre_values: %d\n", i);
254 			itd1000_write_reg(state, RFTR, itd1000_fre_values[i].values[0]);
255 			for (j = 0; j < 9; j++)
256 				itd1000_write_reg(state, RFST1+j, itd1000_fre_values[i].values[j+1]);
257 			break;
258 		}
259 	}
260 
261 	itd1000_set_vco(state, freq_khz);
262 }
263 
264 static int itd1000_set_parameters(struct dvb_frontend *fe)
265 {
266 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
267 	struct itd1000_state *state = fe->tuner_priv;
268 	u8 pllcon1;
269 
270 	itd1000_set_lo(state, c->frequency);
271 	itd1000_set_lpf_bw(state, c->symbol_rate);
272 
273 	pllcon1 = itd1000_read_reg(state, PLLCON1) & 0x7f;
274 	itd1000_write_reg(state, PLLCON1, pllcon1 | (1 << 7));
275 	itd1000_write_reg(state, PLLCON1, pllcon1);
276 
277 	return 0;
278 }
279 
280 static int itd1000_get_frequency(struct dvb_frontend *fe, u32 *frequency)
281 {
282 	struct itd1000_state *state = fe->tuner_priv;
283 	*frequency = state->frequency;
284 	return 0;
285 }
286 
287 static int itd1000_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
288 {
289 	return 0;
290 }
291 
292 static u8 itd1000_init_tab[][2] = {
293 	{ PLLCON1,       0x65 }, /* Register does not change */
294 	{ PLLNH,         0x80 }, /* Bits [7:6] do not change */
295 	{ RESERVED_0X6D, 0x3b },
296 	{ VCO_CHP2_I2C,  0x12 },
297 	{ 0x72,          0xf9 }, /* No such regsister defined */
298 	{ RESERVED_0X73, 0xff },
299 	{ RESERVED_0X74, 0xb2 },
300 	{ RESERVED_0X75, 0xc7 },
301 	{ EXTGVBBRF,     0xf0 },
302 	{ DIVAGCCK,      0x80 },
303 	{ BBTR,          0xa0 },
304 	{ RESERVED_0X7E, 0x4f },
305 	{ 0x82,          0x88 }, /* No such regsister defined */
306 	{ 0x83,          0x80 }, /* No such regsister defined */
307 	{ 0x84,          0x80 }, /* No such regsister defined */
308 	{ RESERVED_0X85, 0x74 },
309 	{ RESERVED_0X86, 0xff },
310 	{ RESERVED_0X88, 0x02 },
311 	{ RESERVED_0X89, 0x16 },
312 	{ RFST0,         0x1f },
313 	{ RESERVED_0X94, 0x66 },
314 	{ RESERVED_0X95, 0x66 },
315 	{ RESERVED_0X96, 0x77 },
316 	{ RESERVED_0X97, 0x99 },
317 	{ RESERVED_0X98, 0xff },
318 	{ RESERVED_0X99, 0xfc },
319 	{ RESERVED_0X9A, 0xba },
320 	{ RESERVED_0X9B, 0xaa },
321 };
322 
323 static u8 itd1000_reinit_tab[][2] = {
324 	{ VCO_CHP1_I2C, 0x8a },
325 	{ BW,           0x87 },
326 	{ GVBB_I2C,     0x03 },
327 	{ BBGVMIN,      0x03 },
328 	{ CON1,         0x2e },
329 };
330 
331 
332 static int itd1000_init(struct dvb_frontend *fe)
333 {
334 	struct itd1000_state *state = fe->tuner_priv;
335 	int i;
336 
337 	for (i = 0; i < ARRAY_SIZE(itd1000_init_tab); i++)
338 		itd1000_write_reg(state, itd1000_init_tab[i][0], itd1000_init_tab[i][1]);
339 
340 	for (i = 0; i < ARRAY_SIZE(itd1000_reinit_tab); i++)
341 		itd1000_write_reg(state, itd1000_reinit_tab[i][0], itd1000_reinit_tab[i][1]);
342 
343 	return 0;
344 }
345 
346 static int itd1000_sleep(struct dvb_frontend *fe)
347 {
348 	return 0;
349 }
350 
351 static int itd1000_release(struct dvb_frontend *fe)
352 {
353 	kfree(fe->tuner_priv);
354 	fe->tuner_priv = NULL;
355 	return 0;
356 }
357 
358 static const struct dvb_tuner_ops itd1000_tuner_ops = {
359 	.info = {
360 		.name           = "Integrant ITD1000",
361 		.frequency_min  = 950000,
362 		.frequency_max  = 2150000,
363 		.frequency_step = 125,     /* kHz for QPSK frontends */
364 	},
365 
366 	.release       = itd1000_release,
367 
368 	.init          = itd1000_init,
369 	.sleep         = itd1000_sleep,
370 
371 	.set_params    = itd1000_set_parameters,
372 	.get_frequency = itd1000_get_frequency,
373 	.get_bandwidth = itd1000_get_bandwidth
374 };
375 
376 
377 struct dvb_frontend *itd1000_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct itd1000_config *cfg)
378 {
379 	struct itd1000_state *state = NULL;
380 	u8 i = 0;
381 
382 	state = kzalloc(sizeof(struct itd1000_state), GFP_KERNEL);
383 	if (state == NULL)
384 		return NULL;
385 
386 	state->cfg = cfg;
387 	state->i2c = i2c;
388 
389 	i = itd1000_read_reg(state, 0);
390 	if (i != 0) {
391 		kfree(state);
392 		return NULL;
393 	}
394 	itd_info("successfully identified (ID: %d)\n", i);
395 
396 	memset(state->shadow, 0xff, sizeof(state->shadow));
397 	for (i = 0x65; i < 0x9c; i++)
398 		state->shadow[i] = itd1000_read_reg(state, i);
399 
400 	memcpy(&fe->ops.tuner_ops, &itd1000_tuner_ops, sizeof(struct dvb_tuner_ops));
401 
402 	fe->tuner_priv = state;
403 
404 	return fe;
405 }
406 EXPORT_SYMBOL(itd1000_attach);
407 
408 MODULE_AUTHOR("Patrick Boettcher <pb@linuxtv.org>");
409 MODULE_DESCRIPTION("Integrant ITD1000 driver");
410 MODULE_LICENSE("GPL");
411