1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for the Integrant ITD1000 "Zero-IF Tuner IC for Direct Broadcast Satellite" 4 * 5 * Copyright (c) 2007-8 Patrick Boettcher <pb@linuxtv.org> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/moduleparam.h> 10 #include <linux/delay.h> 11 #include <linux/dvb/frontend.h> 12 #include <linux/i2c.h> 13 #include <linux/slab.h> 14 15 #include <media/dvb_frontend.h> 16 17 #include "itd1000.h" 18 #include "itd1000_priv.h" 19 20 /* Max transfer size done by I2C transfer functions */ 21 #define MAX_XFER_SIZE 64 22 23 static int debug; 24 module_param(debug, int, 0644); 25 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); 26 27 #define itd_dbg(args...) do { \ 28 if (debug) { \ 29 printk(KERN_DEBUG "ITD1000: " args);\ 30 } \ 31 } while (0) 32 33 #define itd_warn(args...) do { \ 34 printk(KERN_WARNING "ITD1000: " args); \ 35 } while (0) 36 37 #define itd_info(args...) do { \ 38 printk(KERN_INFO "ITD1000: " args); \ 39 } while (0) 40 41 /* don't write more than one byte with flexcop behind */ 42 static int itd1000_write_regs(struct itd1000_state *state, u8 reg, u8 v[], u8 len) 43 { 44 u8 buf[MAX_XFER_SIZE]; 45 struct i2c_msg msg = { 46 .addr = state->cfg->i2c_address, .flags = 0, .buf = buf, .len = len+1 47 }; 48 49 if (1 + len > sizeof(buf)) { 50 printk(KERN_WARNING 51 "itd1000: i2c wr reg=%04x: len=%d is too big!\n", 52 reg, len); 53 return -EINVAL; 54 } 55 56 buf[0] = reg; 57 memcpy(&buf[1], v, len); 58 59 /* itd_dbg("wr %02x: %02x\n", reg, v[0]); */ 60 61 if (i2c_transfer(state->i2c, &msg, 1) != 1) { 62 printk(KERN_WARNING "itd1000 I2C write failed\n"); 63 return -EREMOTEIO; 64 } 65 return 0; 66 } 67 68 static int itd1000_read_reg(struct itd1000_state *state, u8 reg) 69 { 70 u8 val; 71 struct i2c_msg msg[2] = { 72 { .addr = state->cfg->i2c_address, .flags = 0, .buf = ®, .len = 1 }, 73 { .addr = state->cfg->i2c_address, .flags = I2C_M_RD, .buf = &val, .len = 1 }, 74 }; 75 76 /* ugly flexcop workaround */ 77 itd1000_write_regs(state, (reg - 1) & 0xff, &state->shadow[(reg - 1) & 0xff], 1); 78 79 if (i2c_transfer(state->i2c, msg, 2) != 2) { 80 itd_warn("itd1000 I2C read failed\n"); 81 return -EREMOTEIO; 82 } 83 return val; 84 } 85 86 static inline int itd1000_write_reg(struct itd1000_state *state, u8 r, u8 v) 87 { 88 u8 tmp = v; /* see gcc.gnu.org/bugzilla/show_bug.cgi?id=81715 */ 89 int ret = itd1000_write_regs(state, r, &tmp, 1); 90 state->shadow[r] = tmp; 91 return ret; 92 } 93 94 95 static struct { 96 u32 symbol_rate; 97 u8 pgaext : 4; /* PLLFH */ 98 u8 bbgvmin : 4; /* BBGVMIN */ 99 } itd1000_lpf_pga[] = { 100 { 0, 0x8, 0x3 }, 101 { 5200000, 0x8, 0x3 }, 102 { 12200000, 0x4, 0x3 }, 103 { 15400000, 0x2, 0x3 }, 104 { 19800000, 0x2, 0x3 }, 105 { 21500000, 0x2, 0x3 }, 106 { 24500000, 0x2, 0x3 }, 107 { 28400000, 0x2, 0x3 }, 108 { 33400000, 0x2, 0x3 }, 109 { 34400000, 0x1, 0x4 }, 110 { 34400000, 0x1, 0x4 }, 111 { 38400000, 0x1, 0x4 }, 112 { 38400000, 0x1, 0x4 }, 113 { 40400000, 0x1, 0x4 }, 114 { 45400000, 0x1, 0x4 }, 115 }; 116 117 static void itd1000_set_lpf_bw(struct itd1000_state *state, u32 symbol_rate) 118 { 119 u8 i; 120 u8 con1 = itd1000_read_reg(state, CON1) & 0xfd; 121 u8 pllfh = itd1000_read_reg(state, PLLFH) & 0x0f; 122 u8 bbgvmin = itd1000_read_reg(state, BBGVMIN) & 0xf0; 123 u8 bw = itd1000_read_reg(state, BW) & 0xf0; 124 125 itd_dbg("symbol_rate = %d\n", symbol_rate); 126 127 /* not sure what is that ? - starting to download the table */ 128 itd1000_write_reg(state, CON1, con1 | (1 << 1)); 129 130 for (i = 0; i < ARRAY_SIZE(itd1000_lpf_pga); i++) 131 if (symbol_rate < itd1000_lpf_pga[i].symbol_rate) { 132 itd_dbg("symrate: index: %d pgaext: %x, bbgvmin: %x\n", i, itd1000_lpf_pga[i].pgaext, itd1000_lpf_pga[i].bbgvmin); 133 itd1000_write_reg(state, PLLFH, pllfh | (itd1000_lpf_pga[i].pgaext << 4)); 134 itd1000_write_reg(state, BBGVMIN, bbgvmin | (itd1000_lpf_pga[i].bbgvmin)); 135 itd1000_write_reg(state, BW, bw | (i & 0x0f)); 136 break; 137 } 138 139 itd1000_write_reg(state, CON1, con1 | (0 << 1)); 140 } 141 142 static struct { 143 u8 vcorg; 144 u32 fmax_rg; 145 } itd1000_vcorg[] = { 146 { 1, 920000 }, 147 { 2, 971000 }, 148 { 3, 1031000 }, 149 { 4, 1091000 }, 150 { 5, 1171000 }, 151 { 6, 1281000 }, 152 { 7, 1381000 }, 153 { 8, 500000 }, /* this is intentional. */ 154 { 9, 1451000 }, 155 { 10, 1531000 }, 156 { 11, 1631000 }, 157 { 12, 1741000 }, 158 { 13, 1891000 }, 159 { 14, 2071000 }, 160 { 15, 2250000 }, 161 }; 162 163 static void itd1000_set_vco(struct itd1000_state *state, u32 freq_khz) 164 { 165 u8 i; 166 u8 gvbb_i2c = itd1000_read_reg(state, GVBB_I2C) & 0xbf; 167 u8 vco_chp1_i2c = itd1000_read_reg(state, VCO_CHP1_I2C) & 0x0f; 168 u8 adcout; 169 170 /* reserved bit again (reset ?) */ 171 itd1000_write_reg(state, GVBB_I2C, gvbb_i2c | (1 << 6)); 172 173 for (i = 0; i < ARRAY_SIZE(itd1000_vcorg); i++) { 174 if (freq_khz < itd1000_vcorg[i].fmax_rg) { 175 itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | (itd1000_vcorg[i].vcorg << 4)); 176 msleep(1); 177 178 adcout = itd1000_read_reg(state, PLLLOCK) & 0x0f; 179 180 itd_dbg("VCO: %dkHz: %d -> ADCOUT: %d %02x\n", freq_khz, itd1000_vcorg[i].vcorg, adcout, vco_chp1_i2c); 181 182 if (adcout > 13) { 183 if (!(itd1000_vcorg[i].vcorg == 7 || itd1000_vcorg[i].vcorg == 15)) 184 itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | ((itd1000_vcorg[i].vcorg + 1) << 4)); 185 } else if (adcout < 2) { 186 if (!(itd1000_vcorg[i].vcorg == 1 || itd1000_vcorg[i].vcorg == 9)) 187 itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | ((itd1000_vcorg[i].vcorg - 1) << 4)); 188 } 189 break; 190 } 191 } 192 } 193 194 static const struct { 195 u32 freq; 196 u8 values[10]; /* RFTR, RFST1 - RFST9 */ 197 } itd1000_fre_values[] = { 198 { 1075000, { 0x59, 0x1d, 0x1c, 0x17, 0x16, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } }, 199 { 1250000, { 0x89, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } }, 200 { 1450000, { 0x89, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } }, 201 { 1650000, { 0x69, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } }, 202 { 1750000, { 0x69, 0x1e, 0x17, 0x15, 0x14, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } }, 203 { 1850000, { 0x69, 0x1d, 0x17, 0x16, 0x14, 0x0f, 0x0e, 0x0d, 0x0b, 0x0a } }, 204 { 1900000, { 0x69, 0x1d, 0x17, 0x15, 0x14, 0x0f, 0x0e, 0x0d, 0x0b, 0x0a } }, 205 { 1950000, { 0x69, 0x1d, 0x17, 0x16, 0x14, 0x13, 0x0e, 0x0d, 0x0b, 0x0a } }, 206 { 2050000, { 0x69, 0x1e, 0x1d, 0x17, 0x16, 0x14, 0x13, 0x0e, 0x0b, 0x0a } }, 207 { 2150000, { 0x69, 0x1d, 0x1c, 0x17, 0x15, 0x14, 0x13, 0x0f, 0x0e, 0x0b } } 208 }; 209 210 211 #define FREF 16 212 213 static void itd1000_set_lo(struct itd1000_state *state, u32 freq_khz) 214 { 215 int i, j; 216 u32 plln, pllf; 217 u64 tmp; 218 219 plln = (freq_khz * 1000) / 2 / FREF; 220 221 /* Compute the factional part times 1000 */ 222 tmp = plln % 1000000; 223 plln /= 1000000; 224 225 tmp *= 1048576; 226 do_div(tmp, 1000000); 227 pllf = (u32) tmp; 228 229 state->frequency = ((plln * 1000) + (pllf * 1000)/1048576) * 2*FREF; 230 itd_dbg("frequency: %dkHz (wanted) %dkHz (set), PLLF = %d, PLLN = %d\n", freq_khz, state->frequency, pllf, plln); 231 232 itd1000_write_reg(state, PLLNH, 0x80); /* PLLNH */ 233 itd1000_write_reg(state, PLLNL, plln & 0xff); 234 itd1000_write_reg(state, PLLFH, (itd1000_read_reg(state, PLLFH) & 0xf0) | ((pllf >> 16) & 0x0f)); 235 itd1000_write_reg(state, PLLFM, (pllf >> 8) & 0xff); 236 itd1000_write_reg(state, PLLFL, (pllf >> 0) & 0xff); 237 238 for (i = 0; i < ARRAY_SIZE(itd1000_fre_values); i++) { 239 if (freq_khz <= itd1000_fre_values[i].freq) { 240 itd_dbg("fre_values: %d\n", i); 241 itd1000_write_reg(state, RFTR, itd1000_fre_values[i].values[0]); 242 for (j = 0; j < 9; j++) 243 itd1000_write_reg(state, RFST1+j, itd1000_fre_values[i].values[j+1]); 244 break; 245 } 246 } 247 248 itd1000_set_vco(state, freq_khz); 249 } 250 251 static int itd1000_set_parameters(struct dvb_frontend *fe) 252 { 253 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 254 struct itd1000_state *state = fe->tuner_priv; 255 u8 pllcon1; 256 257 itd1000_set_lo(state, c->frequency); 258 itd1000_set_lpf_bw(state, c->symbol_rate); 259 260 pllcon1 = itd1000_read_reg(state, PLLCON1) & 0x7f; 261 itd1000_write_reg(state, PLLCON1, pllcon1 | (1 << 7)); 262 itd1000_write_reg(state, PLLCON1, pllcon1); 263 264 return 0; 265 } 266 267 static int itd1000_get_frequency(struct dvb_frontend *fe, u32 *frequency) 268 { 269 struct itd1000_state *state = fe->tuner_priv; 270 *frequency = state->frequency; 271 return 0; 272 } 273 274 static int itd1000_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth) 275 { 276 return 0; 277 } 278 279 static u8 itd1000_init_tab[][2] = { 280 { PLLCON1, 0x65 }, /* Register does not change */ 281 { PLLNH, 0x80 }, /* Bits [7:6] do not change */ 282 { RESERVED_0X6D, 0x3b }, 283 { VCO_CHP2_I2C, 0x12 }, 284 { 0x72, 0xf9 }, /* No such regsister defined */ 285 { RESERVED_0X73, 0xff }, 286 { RESERVED_0X74, 0xb2 }, 287 { RESERVED_0X75, 0xc7 }, 288 { EXTGVBBRF, 0xf0 }, 289 { DIVAGCCK, 0x80 }, 290 { BBTR, 0xa0 }, 291 { RESERVED_0X7E, 0x4f }, 292 { 0x82, 0x88 }, /* No such regsister defined */ 293 { 0x83, 0x80 }, /* No such regsister defined */ 294 { 0x84, 0x80 }, /* No such regsister defined */ 295 { RESERVED_0X85, 0x74 }, 296 { RESERVED_0X86, 0xff }, 297 { RESERVED_0X88, 0x02 }, 298 { RESERVED_0X89, 0x16 }, 299 { RFST0, 0x1f }, 300 { RESERVED_0X94, 0x66 }, 301 { RESERVED_0X95, 0x66 }, 302 { RESERVED_0X96, 0x77 }, 303 { RESERVED_0X97, 0x99 }, 304 { RESERVED_0X98, 0xff }, 305 { RESERVED_0X99, 0xfc }, 306 { RESERVED_0X9A, 0xba }, 307 { RESERVED_0X9B, 0xaa }, 308 }; 309 310 static u8 itd1000_reinit_tab[][2] = { 311 { VCO_CHP1_I2C, 0x8a }, 312 { BW, 0x87 }, 313 { GVBB_I2C, 0x03 }, 314 { BBGVMIN, 0x03 }, 315 { CON1, 0x2e }, 316 }; 317 318 319 static int itd1000_init(struct dvb_frontend *fe) 320 { 321 struct itd1000_state *state = fe->tuner_priv; 322 int i; 323 324 for (i = 0; i < ARRAY_SIZE(itd1000_init_tab); i++) 325 itd1000_write_reg(state, itd1000_init_tab[i][0], itd1000_init_tab[i][1]); 326 327 for (i = 0; i < ARRAY_SIZE(itd1000_reinit_tab); i++) 328 itd1000_write_reg(state, itd1000_reinit_tab[i][0], itd1000_reinit_tab[i][1]); 329 330 return 0; 331 } 332 333 static int itd1000_sleep(struct dvb_frontend *fe) 334 { 335 return 0; 336 } 337 338 static void itd1000_release(struct dvb_frontend *fe) 339 { 340 kfree(fe->tuner_priv); 341 fe->tuner_priv = NULL; 342 } 343 344 static const struct dvb_tuner_ops itd1000_tuner_ops = { 345 .info = { 346 .name = "Integrant ITD1000", 347 .frequency_min_hz = 950 * MHz, 348 .frequency_max_hz = 2150 * MHz, 349 .frequency_step_hz = 125 * kHz, 350 }, 351 352 .release = itd1000_release, 353 354 .init = itd1000_init, 355 .sleep = itd1000_sleep, 356 357 .set_params = itd1000_set_parameters, 358 .get_frequency = itd1000_get_frequency, 359 .get_bandwidth = itd1000_get_bandwidth 360 }; 361 362 363 struct dvb_frontend *itd1000_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct itd1000_config *cfg) 364 { 365 struct itd1000_state *state = NULL; 366 u8 i = 0; 367 368 state = kzalloc(sizeof(struct itd1000_state), GFP_KERNEL); 369 if (state == NULL) 370 return NULL; 371 372 state->cfg = cfg; 373 state->i2c = i2c; 374 375 i = itd1000_read_reg(state, 0); 376 if (i != 0) { 377 kfree(state); 378 return NULL; 379 } 380 itd_info("successfully identified (ID: %d)\n", i); 381 382 memset(state->shadow, 0xff, sizeof(state->shadow)); 383 for (i = 0x65; i < 0x9c; i++) 384 state->shadow[i] = itd1000_read_reg(state, i); 385 386 memcpy(&fe->ops.tuner_ops, &itd1000_tuner_ops, sizeof(struct dvb_tuner_ops)); 387 388 fe->tuner_priv = state; 389 390 return fe; 391 } 392 EXPORT_SYMBOL_GPL(itd1000_attach); 393 394 MODULE_AUTHOR("Patrick Boettcher <pb@linuxtv.org>"); 395 MODULE_DESCRIPTION("Integrant ITD1000 driver"); 396 MODULE_LICENSE("GPL"); 397