xref: /openbmc/linux/drivers/media/dvb-frontends/drxd_hard.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
4  *
5  * Copyright (C) 2003-2007 Micronas
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/moduleparam.h>
11 #include <linux/init.h>
12 #include <linux/delay.h>
13 #include <linux/firmware.h>
14 #include <linux/i2c.h>
15 #include <asm/div64.h>
16 
17 #include <media/dvb_frontend.h>
18 #include "drxd.h"
19 #include "drxd_firm.h"
20 
21 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
22 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
23 
24 #define CHUNK_SIZE 48
25 
26 #define DRX_I2C_RMW           0x10
27 #define DRX_I2C_BROADCAST     0x20
28 #define DRX_I2C_CLEARCRC      0x80
29 #define DRX_I2C_SINGLE_MASTER 0xC0
30 #define DRX_I2C_MODEFLAGS     0xC0
31 #define DRX_I2C_FLAGS         0xF0
32 
33 #define DEFAULT_LOCK_TIMEOUT    1100
34 
35 #define DRX_CHANNEL_AUTO 0
36 #define DRX_CHANNEL_HIGH 1
37 #define DRX_CHANNEL_LOW  2
38 
39 #define DRX_LOCK_MPEG  1
40 #define DRX_LOCK_FEC   2
41 #define DRX_LOCK_DEMOD 4
42 
43 /****************************************************************************/
44 
45 enum CSCDState {
46 	CSCD_INIT = 0,
47 	CSCD_SET,
48 	CSCD_SAVED
49 };
50 
51 enum CDrxdState {
52 	DRXD_UNINITIALIZED = 0,
53 	DRXD_STOPPED,
54 	DRXD_STARTED
55 };
56 
57 enum AGC_CTRL_MODE {
58 	AGC_CTRL_AUTO = 0,
59 	AGC_CTRL_USER,
60 	AGC_CTRL_OFF
61 };
62 
63 enum OperationMode {
64 	OM_Default,
65 	OM_DVBT_Diversity_Front,
66 	OM_DVBT_Diversity_End
67 };
68 
69 struct SCfgAgc {
70 	enum AGC_CTRL_MODE ctrlMode;
71 	u16 outputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
72 	u16 settleLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
73 	u16 minOutputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
74 	u16 maxOutputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
75 	u16 speed;		/* range [0, ... , 1023], 1/n of fullscale range */
76 
77 	u16 R1;
78 	u16 R2;
79 	u16 R3;
80 };
81 
82 struct SNoiseCal {
83 	int cpOpt;
84 	short cpNexpOfs;
85 	short tdCal2k;
86 	short tdCal8k;
87 };
88 
89 enum app_env {
90 	APPENV_STATIC = 0,
91 	APPENV_PORTABLE = 1,
92 	APPENV_MOBILE = 2
93 };
94 
95 enum EIFFilter {
96 	IFFILTER_SAW = 0,
97 	IFFILTER_DISCRETE = 1
98 };
99 
100 struct drxd_state {
101 	struct dvb_frontend frontend;
102 	struct dvb_frontend_ops ops;
103 	struct dtv_frontend_properties props;
104 
105 	const struct firmware *fw;
106 	struct device *dev;
107 
108 	struct i2c_adapter *i2c;
109 	void *priv;
110 	struct drxd_config config;
111 
112 	int i2c_access;
113 	int init_done;
114 	struct mutex mutex;
115 
116 	u8 chip_adr;
117 	u16 hi_cfg_timing_div;
118 	u16 hi_cfg_bridge_delay;
119 	u16 hi_cfg_wakeup_key;
120 	u16 hi_cfg_ctrl;
121 
122 	u16 intermediate_freq;
123 	u16 osc_clock_freq;
124 
125 	enum CSCDState cscd_state;
126 	enum CDrxdState drxd_state;
127 
128 	u16 sys_clock_freq;
129 	s16 osc_clock_deviation;
130 	u16 expected_sys_clock_freq;
131 
132 	u16 insert_rs_byte;
133 	u16 enable_parallel;
134 
135 	int operation_mode;
136 
137 	struct SCfgAgc if_agc_cfg;
138 	struct SCfgAgc rf_agc_cfg;
139 
140 	struct SNoiseCal noise_cal;
141 
142 	u32 fe_fs_add_incr;
143 	u32 org_fe_fs_add_incr;
144 	u16 current_fe_if_incr;
145 
146 	u16 m_FeAgRegAgPwd;
147 	u16 m_FeAgRegAgAgcSio;
148 
149 	u16 m_EcOcRegOcModeLop;
150 	u16 m_EcOcRegSncSncLvl;
151 	u8 *m_InitAtomicRead;
152 	u8 *m_HiI2cPatch;
153 
154 	u8 *m_ResetCEFR;
155 	u8 *m_InitFE_1;
156 	u8 *m_InitFE_2;
157 	u8 *m_InitCP;
158 	u8 *m_InitCE;
159 	u8 *m_InitEQ;
160 	u8 *m_InitSC;
161 	u8 *m_InitEC;
162 	u8 *m_ResetECRAM;
163 	u8 *m_InitDiversityFront;
164 	u8 *m_InitDiversityEnd;
165 	u8 *m_DisableDiversity;
166 	u8 *m_StartDiversityFront;
167 	u8 *m_StartDiversityEnd;
168 
169 	u8 *m_DiversityDelay8MHZ;
170 	u8 *m_DiversityDelay6MHZ;
171 
172 	u8 *microcode;
173 	u32 microcode_length;
174 
175 	int type_A;
176 	int PGA;
177 	int diversity;
178 	int tuner_mirrors;
179 
180 	enum app_env app_env_default;
181 	enum app_env app_env_diversity;
182 
183 };
184 
185 /****************************************************************************/
186 /* I2C **********************************************************************/
187 /****************************************************************************/
188 
189 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
190 {
191 	struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
192 
193 	if (i2c_transfer(adap, &msg, 1) != 1)
194 		return -1;
195 	return 0;
196 }
197 
198 static int i2c_read(struct i2c_adapter *adap,
199 		    u8 adr, u8 *msg, int len, u8 *answ, int alen)
200 {
201 	struct i2c_msg msgs[2] = {
202 		{
203 			.addr = adr, .flags = 0,
204 			.buf = msg, .len = len
205 		}, {
206 			.addr = adr, .flags = I2C_M_RD,
207 			.buf = answ, .len = alen
208 		}
209 	};
210 	if (i2c_transfer(adap, msgs, 2) != 2)
211 		return -1;
212 	return 0;
213 }
214 
215 static inline u32 MulDiv32(u32 a, u32 b, u32 c)
216 {
217 	u64 tmp64;
218 
219 	tmp64 = (u64)a * (u64)b;
220 	do_div(tmp64, c);
221 
222 	return (u32) tmp64;
223 }
224 
225 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
226 {
227 	u8 adr = state->config.demod_address;
228 	u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
229 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
230 	};
231 	u8 mm2[2];
232 	if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
233 		return -1;
234 	if (data)
235 		*data = mm2[0] | (mm2[1] << 8);
236 	return mm2[0] | (mm2[1] << 8);
237 }
238 
239 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
240 {
241 	u8 adr = state->config.demod_address;
242 	u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
243 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
244 	};
245 	u8 mm2[4];
246 
247 	if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
248 		return -1;
249 	if (data)
250 		*data =
251 		    mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
252 	return 0;
253 }
254 
255 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
256 {
257 	u8 adr = state->config.demod_address;
258 	u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
259 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
260 		data & 0xff, (data >> 8) & 0xff
261 	};
262 
263 	if (i2c_write(state->i2c, adr, mm, 6) < 0)
264 		return -1;
265 	return 0;
266 }
267 
268 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
269 {
270 	u8 adr = state->config.demod_address;
271 	u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
272 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
273 		data & 0xff, (data >> 8) & 0xff,
274 		(data >> 16) & 0xff, (data >> 24) & 0xff
275 	};
276 
277 	if (i2c_write(state->i2c, adr, mm, 8) < 0)
278 		return -1;
279 	return 0;
280 }
281 
282 static int write_chunk(struct drxd_state *state,
283 		       u32 reg, u8 *data, u32 len, u8 flags)
284 {
285 	u8 adr = state->config.demod_address;
286 	u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
287 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
288 	};
289 	int i;
290 
291 	for (i = 0; i < len; i++)
292 		mm[4 + i] = data[i];
293 	if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
294 		printk(KERN_ERR "error in write_chunk\n");
295 		return -1;
296 	}
297 	return 0;
298 }
299 
300 static int WriteBlock(struct drxd_state *state,
301 		      u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
302 {
303 	while (BlockSize > 0) {
304 		u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
305 
306 		if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
307 			return -1;
308 		pBlock += Chunk;
309 		Address += (Chunk >> 1);
310 		BlockSize -= Chunk;
311 	}
312 	return 0;
313 }
314 
315 static int WriteTable(struct drxd_state *state, u8 * pTable)
316 {
317 	int status = 0;
318 
319 	if (!pTable)
320 		return 0;
321 
322 	while (!status) {
323 		u16 Length;
324 		u32 Address = pTable[0] | (pTable[1] << 8) |
325 		    (pTable[2] << 16) | (pTable[3] << 24);
326 
327 		if (Address == 0xFFFFFFFF)
328 			break;
329 		pTable += sizeof(u32);
330 
331 		Length = pTable[0] | (pTable[1] << 8);
332 		pTable += sizeof(u16);
333 		if (!Length)
334 			break;
335 		status = WriteBlock(state, Address, Length * 2, pTable, 0);
336 		pTable += (Length * 2);
337 	}
338 	return status;
339 }
340 
341 /****************************************************************************/
342 /****************************************************************************/
343 /****************************************************************************/
344 
345 static int ResetCEFR(struct drxd_state *state)
346 {
347 	return WriteTable(state, state->m_ResetCEFR);
348 }
349 
350 static int InitCP(struct drxd_state *state)
351 {
352 	return WriteTable(state, state->m_InitCP);
353 }
354 
355 static int InitCE(struct drxd_state *state)
356 {
357 	int status;
358 	enum app_env AppEnv = state->app_env_default;
359 
360 	do {
361 		status = WriteTable(state, state->m_InitCE);
362 		if (status < 0)
363 			break;
364 
365 		if (state->operation_mode == OM_DVBT_Diversity_Front ||
366 		    state->operation_mode == OM_DVBT_Diversity_End) {
367 			AppEnv = state->app_env_diversity;
368 		}
369 		if (AppEnv == APPENV_STATIC) {
370 			status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
371 			if (status < 0)
372 				break;
373 		} else if (AppEnv == APPENV_PORTABLE) {
374 			status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
375 			if (status < 0)
376 				break;
377 		} else if (AppEnv == APPENV_MOBILE && state->type_A) {
378 			status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
379 			if (status < 0)
380 				break;
381 		} else if (AppEnv == APPENV_MOBILE && !state->type_A) {
382 			status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
383 			if (status < 0)
384 				break;
385 		}
386 
387 		/* start ce */
388 		status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
389 		if (status < 0)
390 			break;
391 	} while (0);
392 	return status;
393 }
394 
395 static int StopOC(struct drxd_state *state)
396 {
397 	int status = 0;
398 	u16 ocSyncLvl = 0;
399 	u16 ocModeLop = state->m_EcOcRegOcModeLop;
400 	u16 dtoIncLop = 0;
401 	u16 dtoIncHip = 0;
402 
403 	do {
404 		/* Store output configuration */
405 		status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
406 		if (status < 0)
407 			break;
408 		/* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
409 		state->m_EcOcRegSncSncLvl = ocSyncLvl;
410 		/* m_EcOcRegOcModeLop = ocModeLop; */
411 
412 		/* Flush FIFO (byte-boundary) at fixed rate */
413 		status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
414 		if (status < 0)
415 			break;
416 		status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
417 		if (status < 0)
418 			break;
419 		status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
420 		if (status < 0)
421 			break;
422 		status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
423 		if (status < 0)
424 			break;
425 		ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
426 		ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
427 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
428 		if (status < 0)
429 			break;
430 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
431 		if (status < 0)
432 			break;
433 
434 		msleep(1);
435 		/* Output pins to '0' */
436 		status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
437 		if (status < 0)
438 			break;
439 
440 		/* Force the OC out of sync */
441 		ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
442 		status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
443 		if (status < 0)
444 			break;
445 		ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
446 		ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
447 		ocModeLop |= 0x2;	/* Magically-out-of-sync */
448 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
449 		if (status < 0)
450 			break;
451 		status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
452 		if (status < 0)
453 			break;
454 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
455 		if (status < 0)
456 			break;
457 	} while (0);
458 
459 	return status;
460 }
461 
462 static int StartOC(struct drxd_state *state)
463 {
464 	int status = 0;
465 
466 	do {
467 		/* Stop OC */
468 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
469 		if (status < 0)
470 			break;
471 
472 		/* Restore output configuration */
473 		status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
474 		if (status < 0)
475 			break;
476 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
477 		if (status < 0)
478 			break;
479 
480 		/* Output pins active again */
481 		status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
482 		if (status < 0)
483 			break;
484 
485 		/* Start OC */
486 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
487 		if (status < 0)
488 			break;
489 	} while (0);
490 	return status;
491 }
492 
493 static int InitEQ(struct drxd_state *state)
494 {
495 	return WriteTable(state, state->m_InitEQ);
496 }
497 
498 static int InitEC(struct drxd_state *state)
499 {
500 	return WriteTable(state, state->m_InitEC);
501 }
502 
503 static int InitSC(struct drxd_state *state)
504 {
505 	return WriteTable(state, state->m_InitSC);
506 }
507 
508 static int InitAtomicRead(struct drxd_state *state)
509 {
510 	return WriteTable(state, state->m_InitAtomicRead);
511 }
512 
513 static int CorrectSysClockDeviation(struct drxd_state *state);
514 
515 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
516 {
517 	u16 ScRaRamLock = 0;
518 	const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
519 				    SC_RA_RAM_LOCK_FEC__M |
520 				    SC_RA_RAM_LOCK_DEMOD__M);
521 	const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
522 				   SC_RA_RAM_LOCK_DEMOD__M);
523 	const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
524 
525 	int status;
526 
527 	*pLockStatus = 0;
528 
529 	status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
530 	if (status < 0) {
531 		printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
532 		return status;
533 	}
534 
535 	if (state->drxd_state != DRXD_STARTED)
536 		return 0;
537 
538 	if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
539 		*pLockStatus |= DRX_LOCK_MPEG;
540 		CorrectSysClockDeviation(state);
541 	}
542 
543 	if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
544 		*pLockStatus |= DRX_LOCK_FEC;
545 
546 	if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
547 		*pLockStatus |= DRX_LOCK_DEMOD;
548 	return 0;
549 }
550 
551 /****************************************************************************/
552 
553 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
554 {
555 	int status;
556 
557 	if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
558 		return -1;
559 
560 	if (cfg->ctrlMode == AGC_CTRL_USER) {
561 		do {
562 			u16 FeAgRegPm1AgcWri;
563 			u16 FeAgRegAgModeLop;
564 
565 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
566 			if (status < 0)
567 				break;
568 			FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
569 			FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
570 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
571 			if (status < 0)
572 				break;
573 
574 			FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
575 						  FE_AG_REG_PM1_AGC_WRI__M);
576 			status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
577 			if (status < 0)
578 				break;
579 		} while (0);
580 	} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
581 		if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
582 		    ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
583 		    ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
584 		    ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
585 		    )
586 			return -1;
587 		do {
588 			u16 FeAgRegAgModeLop;
589 			u16 FeAgRegEgcSetLvl;
590 			u16 slope, offset;
591 
592 			/* == Mode == */
593 
594 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
595 			if (status < 0)
596 				break;
597 			FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
598 			FeAgRegAgModeLop |=
599 			    FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
600 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
601 			if (status < 0)
602 				break;
603 
604 			/* == Settle level == */
605 
606 			FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
607 						  FE_AG_REG_EGC_SET_LVL__M);
608 			status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
609 			if (status < 0)
610 				break;
611 
612 			/* == Min/Max == */
613 
614 			slope = (u16) ((cfg->maxOutputLevel -
615 					cfg->minOutputLevel) / 2);
616 			offset = (u16) ((cfg->maxOutputLevel +
617 					 cfg->minOutputLevel) / 2 - 511);
618 
619 			status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
620 			if (status < 0)
621 				break;
622 			status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
623 			if (status < 0)
624 				break;
625 
626 			/* == Speed == */
627 			{
628 				const u16 maxRur = 8;
629 				static const u16 slowIncrDecLUT[] = {
630 					3, 4, 4, 5, 6 };
631 				static const u16 fastIncrDecLUT[] = {
632 					14, 15, 15, 16,
633 					17, 18, 18, 19,
634 					20, 21, 22, 23,
635 					24, 26, 27, 28,
636 					29, 31
637 				};
638 
639 				u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
640 				    (maxRur + 1);
641 				u16 fineSpeed = (u16) (cfg->speed -
642 						       ((cfg->speed /
643 							 fineSteps) *
644 							fineSteps));
645 				u16 invRurCount = (u16) (cfg->speed /
646 							 fineSteps);
647 				u16 rurCount;
648 				if (invRurCount > maxRur) {
649 					rurCount = 0;
650 					fineSpeed += fineSteps;
651 				} else {
652 					rurCount = maxRur - invRurCount;
653 				}
654 
655 				/*
656 				   fastInc = default *
657 				   (2^(fineSpeed/fineSteps))
658 				   => range[default...2*default>
659 				   slowInc = default *
660 				   (2^(fineSpeed/fineSteps))
661 				 */
662 				{
663 					u16 fastIncrDec =
664 					    fastIncrDecLUT[fineSpeed /
665 							   ((fineSteps /
666 							     (14 + 1)) + 1)];
667 					u16 slowIncrDec =
668 					    slowIncrDecLUT[fineSpeed /
669 							   (fineSteps /
670 							    (3 + 1))];
671 
672 					status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
673 					if (status < 0)
674 						break;
675 					status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
676 					if (status < 0)
677 						break;
678 					status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
679 					if (status < 0)
680 						break;
681 					status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
682 					if (status < 0)
683 						break;
684 					status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
685 					if (status < 0)
686 						break;
687 				}
688 			}
689 		} while (0);
690 
691 	} else {
692 		/* No OFF mode for IF control */
693 		return -1;
694 	}
695 	return status;
696 }
697 
698 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
699 {
700 	int status = 0;
701 
702 	if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
703 		return -1;
704 
705 	if (cfg->ctrlMode == AGC_CTRL_USER) {
706 		do {
707 			u16 AgModeLop = 0;
708 			u16 level = (cfg->outputLevel);
709 
710 			if (level == DRXD_FE_CTRL_MAX)
711 				level++;
712 
713 			status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
714 			if (status < 0)
715 				break;
716 
717 			/*==== Mode ====*/
718 
719 			/* Powerdown PD2, WRI source */
720 			state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
721 			state->m_FeAgRegAgPwd |=
722 			    FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
723 			status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
724 			if (status < 0)
725 				break;
726 
727 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
728 			if (status < 0)
729 				break;
730 			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
731 					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
732 			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
733 				      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
734 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
735 			if (status < 0)
736 				break;
737 
738 			/* enable AGC2 pin */
739 			{
740 				u16 FeAgRegAgAgcSio = 0;
741 				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
742 				if (status < 0)
743 					break;
744 				FeAgRegAgAgcSio &=
745 				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
746 				FeAgRegAgAgcSio |=
747 				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
748 				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
749 				if (status < 0)
750 					break;
751 			}
752 
753 		} while (0);
754 	} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
755 		u16 AgModeLop = 0;
756 
757 		do {
758 			u16 level;
759 			/* Automatic control */
760 			/* Powerup PD2, AGC2 as output, TGC source */
761 			(state->m_FeAgRegAgPwd) &=
762 			    ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
763 			(state->m_FeAgRegAgPwd) |=
764 			    FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
765 			status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
766 			if (status < 0)
767 				break;
768 
769 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
770 			if (status < 0)
771 				break;
772 			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
773 					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
774 			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
775 				      FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
776 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
777 			if (status < 0)
778 				break;
779 			/* Settle level */
780 			level = (((cfg->settleLevel) >> 4) &
781 				 FE_AG_REG_TGC_SET_LVL__M);
782 			status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
783 			if (status < 0)
784 				break;
785 
786 			/* Min/max: don't care */
787 
788 			/* Speed: TODO */
789 
790 			/* enable AGC2 pin */
791 			{
792 				u16 FeAgRegAgAgcSio = 0;
793 				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
794 				if (status < 0)
795 					break;
796 				FeAgRegAgAgcSio &=
797 				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
798 				FeAgRegAgAgcSio |=
799 				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
800 				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
801 				if (status < 0)
802 					break;
803 			}
804 
805 		} while (0);
806 	} else {
807 		u16 AgModeLop = 0;
808 
809 		do {
810 			/* No RF AGC control */
811 			/* Powerdown PD2, AGC2 as output, WRI source */
812 			(state->m_FeAgRegAgPwd) &=
813 			    ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
814 			(state->m_FeAgRegAgPwd) |=
815 			    FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
816 			status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
817 			if (status < 0)
818 				break;
819 
820 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
821 			if (status < 0)
822 				break;
823 			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
824 					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
825 			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
826 				      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
827 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
828 			if (status < 0)
829 				break;
830 
831 			/* set FeAgRegAgAgcSio AGC2 (RF) as input */
832 			{
833 				u16 FeAgRegAgAgcSio = 0;
834 				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
835 				if (status < 0)
836 					break;
837 				FeAgRegAgAgcSio &=
838 				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
839 				FeAgRegAgAgcSio |=
840 				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
841 				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
842 				if (status < 0)
843 					break;
844 			}
845 		} while (0);
846 	}
847 	return status;
848 }
849 
850 static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
851 {
852 	int status = 0;
853 
854 	*pValue = 0;
855 	if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
856 		u16 Value;
857 		status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
858 		Value &= FE_AG_REG_GC1_AGC_DAT__M;
859 		if (status >= 0) {
860 			/*           3.3V
861 			   |
862 			   R1
863 			   |
864 			   Vin - R3 - * -- Vout
865 			   |
866 			   R2
867 			   |
868 			   GND
869 			 */
870 			u32 R1 = state->if_agc_cfg.R1;
871 			u32 R2 = state->if_agc_cfg.R2;
872 			u32 R3 = state->if_agc_cfg.R3;
873 
874 			u32 Vmax, Rpar, Vmin, Vout;
875 
876 			if (R2 == 0 && (R1 == 0 || R3 == 0))
877 				return 0;
878 
879 			Vmax = (3300 * R2) / (R1 + R2);
880 			Rpar = (R2 * R3) / (R3 + R2);
881 			Vmin = (3300 * Rpar) / (R1 + Rpar);
882 			Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
883 
884 			*pValue = Vout;
885 		}
886 	}
887 	return status;
888 }
889 
890 static int load_firmware(struct drxd_state *state, const char *fw_name)
891 {
892 	const struct firmware *fw;
893 
894 	if (request_firmware(&fw, fw_name, state->dev) < 0) {
895 		printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
896 		return -EIO;
897 	}
898 
899 	state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
900 	if (!state->microcode) {
901 		release_firmware(fw);
902 		return -ENOMEM;
903 	}
904 
905 	state->microcode_length = fw->size;
906 	release_firmware(fw);
907 	return 0;
908 }
909 
910 static int DownloadMicrocode(struct drxd_state *state,
911 			     const u8 *pMCImage, u32 Length)
912 {
913 	u8 *pSrc;
914 	u32 Address;
915 	u16 nBlocks;
916 	u16 BlockSize;
917 	u32 offset = 0;
918 	int i, status = 0;
919 
920 	pSrc = (u8 *) pMCImage;
921 	/* We're not using Flags */
922 	/* Flags = (pSrc[0] << 8) | pSrc[1]; */
923 	pSrc += sizeof(u16);
924 	offset += sizeof(u16);
925 	nBlocks = (pSrc[0] << 8) | pSrc[1];
926 	pSrc += sizeof(u16);
927 	offset += sizeof(u16);
928 
929 	for (i = 0; i < nBlocks; i++) {
930 		Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
931 		    (pSrc[2] << 8) | pSrc[3];
932 		pSrc += sizeof(u32);
933 		offset += sizeof(u32);
934 
935 		BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
936 		pSrc += sizeof(u16);
937 		offset += sizeof(u16);
938 
939 		/* We're not using Flags */
940 		/* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
941 		pSrc += sizeof(u16);
942 		offset += sizeof(u16);
943 
944 		/* We're not using BlockCRC */
945 		/* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
946 		pSrc += sizeof(u16);
947 		offset += sizeof(u16);
948 
949 		status = WriteBlock(state, Address, BlockSize,
950 				    pSrc, DRX_I2C_CLEARCRC);
951 		if (status < 0)
952 			break;
953 		pSrc += BlockSize;
954 		offset += BlockSize;
955 	}
956 
957 	return status;
958 }
959 
960 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
961 {
962 	u32 nrRetries = 0;
963 	int status;
964 
965 	status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
966 	if (status < 0)
967 		return status;
968 
969 	do {
970 		nrRetries += 1;
971 		if (nrRetries > DRXD_MAX_RETRIES) {
972 			status = -1;
973 			break;
974 		}
975 		status = Read16(state, HI_RA_RAM_SRV_CMD__A, NULL, 0);
976 	} while (status != 0);
977 
978 	if (status >= 0)
979 		status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
980 	return status;
981 }
982 
983 static int HI_CfgCommand(struct drxd_state *state)
984 {
985 	int status = 0;
986 
987 	mutex_lock(&state->mutex);
988 	Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
989 	Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
990 	Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
991 	Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
992 	Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
993 
994 	Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
995 
996 	if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
997 	    HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
998 		status = Write16(state, HI_RA_RAM_SRV_CMD__A,
999 				 HI_RA_RAM_SRV_CMD_CONFIG, 0);
1000 	else
1001 		status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
1002 	mutex_unlock(&state->mutex);
1003 	return status;
1004 }
1005 
1006 static int InitHI(struct drxd_state *state)
1007 {
1008 	state->hi_cfg_wakeup_key = (state->chip_adr);
1009 	/* port/bridge/power down ctrl */
1010 	state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1011 	return HI_CfgCommand(state);
1012 }
1013 
1014 static int HI_ResetCommand(struct drxd_state *state)
1015 {
1016 	int status;
1017 
1018 	mutex_lock(&state->mutex);
1019 	status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1020 			 HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1021 	if (status == 0)
1022 		status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
1023 	mutex_unlock(&state->mutex);
1024 	msleep(1);
1025 	return status;
1026 }
1027 
1028 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1029 {
1030 	state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1031 	if (bEnableBridge)
1032 		state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1033 	else
1034 		state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1035 
1036 	return HI_CfgCommand(state);
1037 }
1038 
1039 #define HI_TR_WRITE      0x9
1040 #define HI_TR_READ       0xA
1041 #define HI_TR_READ_WRITE 0xB
1042 #define HI_TR_BROADCAST  0x4
1043 
1044 #if 0
1045 static int AtomicReadBlock(struct drxd_state *state,
1046 			   u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1047 {
1048 	int status;
1049 	int i = 0;
1050 
1051 	/* Parameter check */
1052 	if ((!pData) || ((DataSize & 1) != 0))
1053 		return -1;
1054 
1055 	mutex_lock(&state->mutex);
1056 
1057 	do {
1058 		/* Instruct HI to read n bytes */
1059 		/* TODO use proper names forthese egisters */
1060 		status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1061 		if (status < 0)
1062 			break;
1063 		status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1064 		if (status < 0)
1065 			break;
1066 		status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1067 		if (status < 0)
1068 			break;
1069 		status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1070 		if (status < 0)
1071 			break;
1072 		status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1073 		if (status < 0)
1074 			break;
1075 
1076 		status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1077 		if (status < 0)
1078 			break;
1079 
1080 	} while (0);
1081 
1082 	if (status >= 0) {
1083 		for (i = 0; i < (DataSize / 2); i += 1) {
1084 			u16 word;
1085 
1086 			status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1087 					&word, 0);
1088 			if (status < 0)
1089 				break;
1090 			pData[2 * i] = (u8) (word & 0xFF);
1091 			pData[(2 * i) + 1] = (u8) (word >> 8);
1092 		}
1093 	}
1094 	mutex_unlock(&state->mutex);
1095 	return status;
1096 }
1097 
1098 static int AtomicReadReg32(struct drxd_state *state,
1099 			   u32 Addr, u32 *pData, u8 Flags)
1100 {
1101 	u8 buf[sizeof(u32)];
1102 	int status;
1103 
1104 	if (!pData)
1105 		return -1;
1106 	status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1107 	*pData = (((u32) buf[0]) << 0) +
1108 	    (((u32) buf[1]) << 8) +
1109 	    (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1110 	return status;
1111 }
1112 #endif
1113 
1114 static int StopAllProcessors(struct drxd_state *state)
1115 {
1116 	return Write16(state, HI_COMM_EXEC__A,
1117 		       SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1118 }
1119 
1120 static int EnableAndResetMB(struct drxd_state *state)
1121 {
1122 	if (state->type_A) {
1123 		/* disable? monitor bus observe @ EC_OC */
1124 		Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1125 	}
1126 
1127 	/* do inverse broadcast, followed by explicit write to HI */
1128 	Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1129 	Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1130 	return 0;
1131 }
1132 
1133 static int InitCC(struct drxd_state *state)
1134 {
1135 	int status = 0;
1136 
1137 	if (state->osc_clock_freq == 0 ||
1138 	    state->osc_clock_freq > 20000 ||
1139 	    (state->osc_clock_freq % 4000) != 0) {
1140 		printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1141 		return -1;
1142 	}
1143 
1144 	status |= Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1145 	status |= Write16(state, CC_REG_PLL_MODE__A,
1146 				CC_REG_PLL_MODE_BYPASS_PLL |
1147 				CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1148 	status |= Write16(state, CC_REG_REF_DIVIDE__A,
1149 				state->osc_clock_freq / 4000, 0);
1150 	status |= Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL,
1151 				0);
1152 	status |= Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1153 
1154 	return status;
1155 }
1156 
1157 static int ResetECOD(struct drxd_state *state)
1158 {
1159 	int status = 0;
1160 
1161 	if (state->type_A)
1162 		status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1163 	else
1164 		status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1165 
1166 	if (!(status < 0))
1167 		status = WriteTable(state, state->m_ResetECRAM);
1168 	if (!(status < 0))
1169 		status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1170 	return status;
1171 }
1172 
1173 /* Configure PGA switch */
1174 
1175 static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1176 {
1177 	int status;
1178 	u16 AgModeLop = 0;
1179 	u16 AgModeHip = 0;
1180 	do {
1181 		if (pgaSwitch) {
1182 			/* PGA on */
1183 			/* fine gain */
1184 			status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1185 			if (status < 0)
1186 				break;
1187 			AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1188 			AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1189 			status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1190 			if (status < 0)
1191 				break;
1192 
1193 			/* coarse gain */
1194 			status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1195 			if (status < 0)
1196 				break;
1197 			AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1198 			AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1199 			status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1200 			if (status < 0)
1201 				break;
1202 
1203 			/* enable fine and coarse gain, enable AAF,
1204 			   no ext resistor */
1205 			status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1206 			if (status < 0)
1207 				break;
1208 		} else {
1209 			/* PGA off, bypass */
1210 
1211 			/* fine gain */
1212 			status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1213 			if (status < 0)
1214 				break;
1215 			AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1216 			AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1217 			status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1218 			if (status < 0)
1219 				break;
1220 
1221 			/* coarse gain */
1222 			status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1223 			if (status < 0)
1224 				break;
1225 			AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1226 			AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1227 			status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1228 			if (status < 0)
1229 				break;
1230 
1231 			/* disable fine and coarse gain, enable AAF,
1232 			   no ext resistor */
1233 			status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1234 			if (status < 0)
1235 				break;
1236 		}
1237 	} while (0);
1238 	return status;
1239 }
1240 
1241 static int InitFE(struct drxd_state *state)
1242 {
1243 	int status;
1244 
1245 	do {
1246 		status = WriteTable(state, state->m_InitFE_1);
1247 		if (status < 0)
1248 			break;
1249 
1250 		if (state->type_A) {
1251 			status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1252 					 FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1253 					 0);
1254 		} else {
1255 			if (state->PGA)
1256 				status = SetCfgPga(state, 0);
1257 			else
1258 				status =
1259 				    Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1260 					    B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1261 					    0);
1262 		}
1263 
1264 		if (status < 0)
1265 			break;
1266 		status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1267 		if (status < 0)
1268 			break;
1269 		status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1270 		if (status < 0)
1271 			break;
1272 
1273 		status = WriteTable(state, state->m_InitFE_2);
1274 		if (status < 0)
1275 			break;
1276 
1277 	} while (0);
1278 
1279 	return status;
1280 }
1281 
1282 static int InitFT(struct drxd_state *state)
1283 {
1284 	/*
1285 	   norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1286 	   SC stuff
1287 	 */
1288 	return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1289 }
1290 
1291 static int SC_WaitForReady(struct drxd_state *state)
1292 {
1293 	int i;
1294 
1295 	for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1296 		int status = Read16(state, SC_RA_RAM_CMD__A, NULL, 0);
1297 		if (status == 0)
1298 			return status;
1299 	}
1300 	return -1;
1301 }
1302 
1303 static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1304 {
1305 	int status = 0, ret;
1306 	u16 errCode;
1307 
1308 	status = Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1309 	if (status < 0)
1310 		return status;
1311 
1312 	SC_WaitForReady(state);
1313 
1314 	ret = Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1315 
1316 	if (ret < 0 || errCode == 0xFFFF) {
1317 		printk(KERN_ERR "Command Error\n");
1318 		status = -1;
1319 	}
1320 
1321 	return status;
1322 }
1323 
1324 static int SC_ProcStartCommand(struct drxd_state *state,
1325 			       u16 subCmd, u16 param0, u16 param1)
1326 {
1327 	int ret, status = 0;
1328 	u16 scExec;
1329 
1330 	mutex_lock(&state->mutex);
1331 	do {
1332 		ret = Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1333 		if (ret < 0 || scExec != 1) {
1334 			status = -1;
1335 			break;
1336 		}
1337 		SC_WaitForReady(state);
1338 		status |= Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1339 		status |= Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1340 		status |= Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1341 
1342 		SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1343 	} while (0);
1344 	mutex_unlock(&state->mutex);
1345 	return status;
1346 }
1347 
1348 static int SC_SetPrefParamCommand(struct drxd_state *state,
1349 				  u16 subCmd, u16 param0, u16 param1)
1350 {
1351 	int status;
1352 
1353 	mutex_lock(&state->mutex);
1354 	do {
1355 		status = SC_WaitForReady(state);
1356 		if (status < 0)
1357 			break;
1358 		status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1359 		if (status < 0)
1360 			break;
1361 		status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1362 		if (status < 0)
1363 			break;
1364 		status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1365 		if (status < 0)
1366 			break;
1367 
1368 		status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1369 		if (status < 0)
1370 			break;
1371 	} while (0);
1372 	mutex_unlock(&state->mutex);
1373 	return status;
1374 }
1375 
1376 #if 0
1377 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1378 {
1379 	int status = 0;
1380 
1381 	mutex_lock(&state->mutex);
1382 	do {
1383 		status = SC_WaitForReady(state);
1384 		if (status < 0)
1385 			break;
1386 		status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1387 		if (status < 0)
1388 			break;
1389 		status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1390 		if (status < 0)
1391 			break;
1392 	} while (0);
1393 	mutex_unlock(&state->mutex);
1394 	return status;
1395 }
1396 #endif
1397 
1398 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1399 {
1400 	int status;
1401 
1402 	do {
1403 		u16 EcOcRegIprInvMpg = 0;
1404 		u16 EcOcRegOcModeLop = 0;
1405 		u16 EcOcRegOcModeHip = 0;
1406 		u16 EcOcRegOcMpgSio = 0;
1407 
1408 		/*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1409 
1410 		if (state->operation_mode == OM_DVBT_Diversity_Front) {
1411 			if (bEnableOutput) {
1412 				EcOcRegOcModeHip |=
1413 				    B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1414 			} else
1415 				EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1416 			EcOcRegOcModeLop |=
1417 			    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1418 		} else {
1419 			EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1420 
1421 			if (bEnableOutput)
1422 				EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1423 			else
1424 				EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1425 
1426 			/* Don't Insert RS Byte */
1427 			if (state->insert_rs_byte) {
1428 				EcOcRegOcModeLop &=
1429 				    (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1430 				EcOcRegOcModeHip &=
1431 				    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1432 				EcOcRegOcModeHip |=
1433 				    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1434 			} else {
1435 				EcOcRegOcModeLop |=
1436 				    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1437 				EcOcRegOcModeHip &=
1438 				    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1439 				EcOcRegOcModeHip |=
1440 				    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1441 			}
1442 
1443 			/* Mode = Parallel */
1444 			if (state->enable_parallel)
1445 				EcOcRegOcModeLop &=
1446 				    (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1447 			else
1448 				EcOcRegOcModeLop |=
1449 				    EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1450 		}
1451 		/* Invert Data */
1452 		/* EcOcRegIprInvMpg |= 0x00FF; */
1453 		EcOcRegIprInvMpg &= (~(0x00FF));
1454 
1455 		/* Invert Error ( we don't use the pin ) */
1456 		/*  EcOcRegIprInvMpg |= 0x0100; */
1457 		EcOcRegIprInvMpg &= (~(0x0100));
1458 
1459 		/* Invert Start ( we don't use the pin ) */
1460 		/* EcOcRegIprInvMpg |= 0x0200; */
1461 		EcOcRegIprInvMpg &= (~(0x0200));
1462 
1463 		/* Invert Valid ( we don't use the pin ) */
1464 		/* EcOcRegIprInvMpg |= 0x0400; */
1465 		EcOcRegIprInvMpg &= (~(0x0400));
1466 
1467 		/* Invert Clock */
1468 		/* EcOcRegIprInvMpg |= 0x0800; */
1469 		EcOcRegIprInvMpg &= (~(0x0800));
1470 
1471 		/* EcOcRegOcModeLop =0x05; */
1472 		status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1473 		if (status < 0)
1474 			break;
1475 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1476 		if (status < 0)
1477 			break;
1478 		status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1479 		if (status < 0)
1480 			break;
1481 		status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1482 		if (status < 0)
1483 			break;
1484 	} while (0);
1485 	return status;
1486 }
1487 
1488 static int SetDeviceTypeId(struct drxd_state *state)
1489 {
1490 	int status = 0;
1491 	u16 deviceId = 0;
1492 
1493 	do {
1494 		status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1495 		if (status < 0)
1496 			break;
1497 		/* TODO: why twice? */
1498 		status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1499 		if (status < 0)
1500 			break;
1501 		printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1502 
1503 		state->type_A = 0;
1504 		state->PGA = 0;
1505 		state->diversity = 0;
1506 		if (deviceId == 0) {	/* on A2 only 3975 available */
1507 			state->type_A = 1;
1508 			printk(KERN_INFO "DRX3975D-A2\n");
1509 		} else {
1510 			deviceId >>= 12;
1511 			printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1512 			switch (deviceId) {
1513 			case 4:
1514 				state->diversity = 1;
1515 				fallthrough;
1516 			case 3:
1517 			case 7:
1518 				state->PGA = 1;
1519 				break;
1520 			case 6:
1521 				state->diversity = 1;
1522 				fallthrough;
1523 			case 5:
1524 			case 8:
1525 				break;
1526 			default:
1527 				status = -1;
1528 				break;
1529 			}
1530 		}
1531 	} while (0);
1532 
1533 	if (status < 0)
1534 		return status;
1535 
1536 	/* Init Table selection */
1537 	state->m_InitAtomicRead = DRXD_InitAtomicRead;
1538 	state->m_InitSC = DRXD_InitSC;
1539 	state->m_ResetECRAM = DRXD_ResetECRAM;
1540 	if (state->type_A) {
1541 		state->m_ResetCEFR = DRXD_ResetCEFR;
1542 		state->m_InitFE_1 = DRXD_InitFEA2_1;
1543 		state->m_InitFE_2 = DRXD_InitFEA2_2;
1544 		state->m_InitCP = DRXD_InitCPA2;
1545 		state->m_InitCE = DRXD_InitCEA2;
1546 		state->m_InitEQ = DRXD_InitEQA2;
1547 		state->m_InitEC = DRXD_InitECA2;
1548 		if (load_firmware(state, DRX_FW_FILENAME_A2))
1549 			return -EIO;
1550 	} else {
1551 		state->m_ResetCEFR = NULL;
1552 		state->m_InitFE_1 = DRXD_InitFEB1_1;
1553 		state->m_InitFE_2 = DRXD_InitFEB1_2;
1554 		state->m_InitCP = DRXD_InitCPB1;
1555 		state->m_InitCE = DRXD_InitCEB1;
1556 		state->m_InitEQ = DRXD_InitEQB1;
1557 		state->m_InitEC = DRXD_InitECB1;
1558 		if (load_firmware(state, DRX_FW_FILENAME_B1))
1559 			return -EIO;
1560 	}
1561 	if (state->diversity) {
1562 		state->m_InitDiversityFront = DRXD_InitDiversityFront;
1563 		state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1564 		state->m_DisableDiversity = DRXD_DisableDiversity;
1565 		state->m_StartDiversityFront = DRXD_StartDiversityFront;
1566 		state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1567 		state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1568 		state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1569 	} else {
1570 		state->m_InitDiversityFront = NULL;
1571 		state->m_InitDiversityEnd = NULL;
1572 		state->m_DisableDiversity = NULL;
1573 		state->m_StartDiversityFront = NULL;
1574 		state->m_StartDiversityEnd = NULL;
1575 		state->m_DiversityDelay8MHZ = NULL;
1576 		state->m_DiversityDelay6MHZ = NULL;
1577 	}
1578 
1579 	return status;
1580 }
1581 
1582 static int CorrectSysClockDeviation(struct drxd_state *state)
1583 {
1584 	int status;
1585 	s32 incr = 0;
1586 	s32 nomincr = 0;
1587 	u32 bandwidth = 0;
1588 	u32 sysClockInHz = 0;
1589 	u32 sysClockFreq = 0;	/* in kHz */
1590 	s16 oscClockDeviation;
1591 	s16 Diff;
1592 
1593 	do {
1594 		/* Retrieve bandwidth and incr, sanity check */
1595 
1596 		/* These accesses should be AtomicReadReg32, but that
1597 		   causes trouble (at least for diversity */
1598 		status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1599 		if (status < 0)
1600 			break;
1601 		status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1602 		if (status < 0)
1603 			break;
1604 
1605 		if (state->type_A) {
1606 			if ((nomincr - incr < -500) || (nomincr - incr > 500))
1607 				break;
1608 		} else {
1609 			if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1610 				break;
1611 		}
1612 
1613 		switch (state->props.bandwidth_hz) {
1614 		case 8000000:
1615 			bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1616 			break;
1617 		case 7000000:
1618 			bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1619 			break;
1620 		case 6000000:
1621 			bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1622 			break;
1623 		default:
1624 			return -1;
1625 		}
1626 
1627 		/* Compute new sysclock value
1628 		   sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1629 		incr += (1 << 23);
1630 		sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1631 		sysClockFreq = (u32) (sysClockInHz / 1000);
1632 		/* rounding */
1633 		if ((sysClockInHz % 1000) > 500)
1634 			sysClockFreq++;
1635 
1636 		/* Compute clock deviation in ppm */
1637 		oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1638 					     (s32)
1639 					     (state->expected_sys_clock_freq)) *
1640 					    1000000L) /
1641 					   (s32)
1642 					   (state->expected_sys_clock_freq));
1643 
1644 		Diff = oscClockDeviation - state->osc_clock_deviation;
1645 		/*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1646 		if (Diff >= -200 && Diff <= 200) {
1647 			state->sys_clock_freq = (u16) sysClockFreq;
1648 			if (oscClockDeviation != state->osc_clock_deviation) {
1649 				if (state->config.osc_deviation) {
1650 					state->config.osc_deviation(state->priv,
1651 								    oscClockDeviation,
1652 								    1);
1653 					state->osc_clock_deviation =
1654 					    oscClockDeviation;
1655 				}
1656 			}
1657 			/* switch OFF SRMM scan in SC */
1658 			status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1659 			if (status < 0)
1660 				break;
1661 			/* overrule FE_IF internal value for
1662 			   proper re-locking */
1663 			status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1664 			if (status < 0)
1665 				break;
1666 			state->cscd_state = CSCD_SAVED;
1667 		}
1668 	} while (0);
1669 
1670 	return status;
1671 }
1672 
1673 static int DRX_Stop(struct drxd_state *state)
1674 {
1675 	int status;
1676 
1677 	if (state->drxd_state != DRXD_STARTED)
1678 		return 0;
1679 
1680 	do {
1681 		if (state->cscd_state != CSCD_SAVED) {
1682 			u32 lock;
1683 			status = DRX_GetLockStatus(state, &lock);
1684 			if (status < 0)
1685 				break;
1686 		}
1687 
1688 		status = StopOC(state);
1689 		if (status < 0)
1690 			break;
1691 
1692 		state->drxd_state = DRXD_STOPPED;
1693 
1694 		status = ConfigureMPEGOutput(state, 0);
1695 		if (status < 0)
1696 			break;
1697 
1698 		if (state->type_A) {
1699 			/* Stop relevant processors off the device */
1700 			status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1701 			if (status < 0)
1702 				break;
1703 
1704 			status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1705 			if (status < 0)
1706 				break;
1707 			status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1708 			if (status < 0)
1709 				break;
1710 		} else {
1711 			/* Stop all processors except HI & CC & FE */
1712 			status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1713 			if (status < 0)
1714 				break;
1715 			status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1716 			if (status < 0)
1717 				break;
1718 			status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1719 			if (status < 0)
1720 				break;
1721 			status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1722 			if (status < 0)
1723 				break;
1724 			status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1725 			if (status < 0)
1726 				break;
1727 			status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1728 			if (status < 0)
1729 				break;
1730 			status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1731 			if (status < 0)
1732 				break;
1733 		}
1734 
1735 	} while (0);
1736 	return status;
1737 }
1738 
1739 #if 0	/* Currently unused */
1740 static int SetOperationMode(struct drxd_state *state, int oMode)
1741 {
1742 	int status;
1743 
1744 	do {
1745 		if (state->drxd_state != DRXD_STOPPED) {
1746 			status = -1;
1747 			break;
1748 		}
1749 
1750 		if (oMode == state->operation_mode) {
1751 			status = 0;
1752 			break;
1753 		}
1754 
1755 		if (oMode != OM_Default && !state->diversity) {
1756 			status = -1;
1757 			break;
1758 		}
1759 
1760 		switch (oMode) {
1761 		case OM_DVBT_Diversity_Front:
1762 			status = WriteTable(state, state->m_InitDiversityFront);
1763 			break;
1764 		case OM_DVBT_Diversity_End:
1765 			status = WriteTable(state, state->m_InitDiversityEnd);
1766 			break;
1767 		case OM_Default:
1768 			/* We need to check how to
1769 			   get DRXD out of diversity */
1770 		default:
1771 			status = WriteTable(state, state->m_DisableDiversity);
1772 			break;
1773 		}
1774 	} while (0);
1775 
1776 	if (!status)
1777 		state->operation_mode = oMode;
1778 	return status;
1779 }
1780 #endif
1781 
1782 static int StartDiversity(struct drxd_state *state)
1783 {
1784 	int status = 0;
1785 	u16 rcControl;
1786 
1787 	do {
1788 		if (state->operation_mode == OM_DVBT_Diversity_Front) {
1789 			status = WriteTable(state, state->m_StartDiversityFront);
1790 			if (status < 0)
1791 				break;
1792 		} else if (state->operation_mode == OM_DVBT_Diversity_End) {
1793 			status = WriteTable(state, state->m_StartDiversityEnd);
1794 			if (status < 0)
1795 				break;
1796 			if (state->props.bandwidth_hz == 8000000) {
1797 				status = WriteTable(state, state->m_DiversityDelay8MHZ);
1798 				if (status < 0)
1799 					break;
1800 			} else {
1801 				status = WriteTable(state, state->m_DiversityDelay6MHZ);
1802 				if (status < 0)
1803 					break;
1804 			}
1805 
1806 			status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1807 			if (status < 0)
1808 				break;
1809 			rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1810 			rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1811 			    /*  combining enabled */
1812 			    B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1813 			    B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1814 			    B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1815 			status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1816 			if (status < 0)
1817 				break;
1818 		}
1819 	} while (0);
1820 	return status;
1821 }
1822 
1823 static int SetFrequencyShift(struct drxd_state *state,
1824 			     u32 offsetFreq, int channelMirrored)
1825 {
1826 	int negativeShift = (state->tuner_mirrors == channelMirrored);
1827 
1828 	/* Handle all mirroring
1829 	 *
1830 	 * Note: ADC mirroring (aliasing) is implictly handled by limiting
1831 	 * feFsRegAddInc to 28 bits below
1832 	 * (if the result before masking is more than 28 bits, this means
1833 	 *  that the ADC is mirroring.
1834 	 * The masking is in fact the aliasing of the ADC)
1835 	 *
1836 	 */
1837 
1838 	/* Compute register value, unsigned computation */
1839 	state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1840 					 offsetFreq,
1841 					 1 << 28, state->sys_clock_freq);
1842 	/* Remove integer part */
1843 	state->fe_fs_add_incr &= 0x0FFFFFFFL;
1844 	if (negativeShift)
1845 		state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1846 
1847 	/* Save the frequency shift without tunerOffset compensation
1848 	   for CtrlGetChannel. */
1849 	state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1850 					     1 << 28, state->sys_clock_freq);
1851 	/* Remove integer part */
1852 	state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1853 	if (negativeShift)
1854 		state->org_fe_fs_add_incr = ((1L << 28) -
1855 					     state->org_fe_fs_add_incr);
1856 
1857 	return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1858 		       state->fe_fs_add_incr, 0);
1859 }
1860 
1861 static int SetCfgNoiseCalibration(struct drxd_state *state,
1862 				  struct SNoiseCal *noiseCal)
1863 {
1864 	u16 beOptEna;
1865 	int status = 0;
1866 
1867 	do {
1868 		status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1869 		if (status < 0)
1870 			break;
1871 		if (noiseCal->cpOpt) {
1872 			beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1873 		} else {
1874 			beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1875 			status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1876 			if (status < 0)
1877 				break;
1878 		}
1879 		status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1880 		if (status < 0)
1881 			break;
1882 
1883 		if (!state->type_A) {
1884 			status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1885 			if (status < 0)
1886 				break;
1887 			status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1888 			if (status < 0)
1889 				break;
1890 		}
1891 	} while (0);
1892 
1893 	return status;
1894 }
1895 
1896 static int DRX_Start(struct drxd_state *state, s32 off)
1897 {
1898 	struct dtv_frontend_properties *p = &state->props;
1899 	int status;
1900 
1901 	u16 transmissionParams = 0;
1902 	u16 operationMode = 0;
1903 	u16 qpskTdTpsPwr = 0;
1904 	u16 qam16TdTpsPwr = 0;
1905 	u16 qam64TdTpsPwr = 0;
1906 	u32 feIfIncr = 0;
1907 	u32 bandwidth = 0;
1908 	int mirrorFreqSpect;
1909 
1910 	u16 qpskSnCeGain = 0;
1911 	u16 qam16SnCeGain = 0;
1912 	u16 qam64SnCeGain = 0;
1913 	u16 qpskIsGainMan = 0;
1914 	u16 qam16IsGainMan = 0;
1915 	u16 qam64IsGainMan = 0;
1916 	u16 qpskIsGainExp = 0;
1917 	u16 qam16IsGainExp = 0;
1918 	u16 qam64IsGainExp = 0;
1919 	u16 bandwidthParam = 0;
1920 
1921 	if (off < 0)
1922 		off = (off - 500) / 1000;
1923 	else
1924 		off = (off + 500) / 1000;
1925 
1926 	do {
1927 		if (state->drxd_state != DRXD_STOPPED)
1928 			return -1;
1929 		status = ResetECOD(state);
1930 		if (status < 0)
1931 			break;
1932 		if (state->type_A) {
1933 			status = InitSC(state);
1934 			if (status < 0)
1935 				break;
1936 		} else {
1937 			status = InitFT(state);
1938 			if (status < 0)
1939 				break;
1940 			status = InitCP(state);
1941 			if (status < 0)
1942 				break;
1943 			status = InitCE(state);
1944 			if (status < 0)
1945 				break;
1946 			status = InitEQ(state);
1947 			if (status < 0)
1948 				break;
1949 			status = InitSC(state);
1950 			if (status < 0)
1951 				break;
1952 		}
1953 
1954 		/* Restore current IF & RF AGC settings */
1955 
1956 		status = SetCfgIfAgc(state, &state->if_agc_cfg);
1957 		if (status < 0)
1958 			break;
1959 		status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1960 		if (status < 0)
1961 			break;
1962 
1963 		mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1964 
1965 		switch (p->transmission_mode) {
1966 		default:	/* Not set, detect it automatically */
1967 			operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1968 			fallthrough;	/* try first guess DRX_FFTMODE_8K */
1969 		case TRANSMISSION_MODE_8K:
1970 			transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1971 			if (state->type_A) {
1972 				status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1973 				if (status < 0)
1974 					break;
1975 				qpskSnCeGain = 99;
1976 				qam16SnCeGain = 83;
1977 				qam64SnCeGain = 67;
1978 			}
1979 			break;
1980 		case TRANSMISSION_MODE_2K:
1981 			transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1982 			if (state->type_A) {
1983 				status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1984 				if (status < 0)
1985 					break;
1986 				qpskSnCeGain = 97;
1987 				qam16SnCeGain = 71;
1988 				qam64SnCeGain = 65;
1989 			}
1990 			break;
1991 		}
1992 
1993 		switch (p->guard_interval) {
1994 		case GUARD_INTERVAL_1_4:
1995 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
1996 			break;
1997 		case GUARD_INTERVAL_1_8:
1998 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
1999 			break;
2000 		case GUARD_INTERVAL_1_16:
2001 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2002 			break;
2003 		case GUARD_INTERVAL_1_32:
2004 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2005 			break;
2006 		default:	/* Not set, detect it automatically */
2007 			operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2008 			/* try first guess 1/4 */
2009 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2010 			break;
2011 		}
2012 
2013 		switch (p->hierarchy) {
2014 		case HIERARCHY_1:
2015 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2016 			if (state->type_A) {
2017 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2018 				if (status < 0)
2019 					break;
2020 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2021 				if (status < 0)
2022 					break;
2023 
2024 				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2025 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2026 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2027 
2028 				qpskIsGainMan =
2029 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2030 				qam16IsGainMan =
2031 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2032 				qam64IsGainMan =
2033 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2034 
2035 				qpskIsGainExp =
2036 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2037 				qam16IsGainExp =
2038 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2039 				qam64IsGainExp =
2040 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2041 			}
2042 			break;
2043 
2044 		case HIERARCHY_2:
2045 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2046 			if (state->type_A) {
2047 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2048 				if (status < 0)
2049 					break;
2050 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2051 				if (status < 0)
2052 					break;
2053 
2054 				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2055 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2056 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2057 
2058 				qpskIsGainMan =
2059 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2060 				qam16IsGainMan =
2061 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2062 				qam64IsGainMan =
2063 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2064 
2065 				qpskIsGainExp =
2066 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2067 				qam16IsGainExp =
2068 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2069 				qam64IsGainExp =
2070 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2071 			}
2072 			break;
2073 		case HIERARCHY_4:
2074 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2075 			if (state->type_A) {
2076 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2077 				if (status < 0)
2078 					break;
2079 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2080 				if (status < 0)
2081 					break;
2082 
2083 				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2084 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2085 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2086 
2087 				qpskIsGainMan =
2088 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2089 				qam16IsGainMan =
2090 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2091 				qam64IsGainMan =
2092 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2093 
2094 				qpskIsGainExp =
2095 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2096 				qam16IsGainExp =
2097 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2098 				qam64IsGainExp =
2099 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2100 			}
2101 			break;
2102 		case HIERARCHY_AUTO:
2103 		default:
2104 			/* Not set, detect it automatically, start with none */
2105 			operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2106 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2107 			if (state->type_A) {
2108 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2109 				if (status < 0)
2110 					break;
2111 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2112 				if (status < 0)
2113 					break;
2114 
2115 				qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2116 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2117 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2118 
2119 				qpskIsGainMan =
2120 				    SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2121 				qam16IsGainMan =
2122 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2123 				qam64IsGainMan =
2124 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2125 
2126 				qpskIsGainExp =
2127 				    SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2128 				qam16IsGainExp =
2129 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2130 				qam64IsGainExp =
2131 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2132 			}
2133 			break;
2134 		}
2135 		if (status < 0)
2136 			break;
2137 
2138 		switch (p->modulation) {
2139 		default:
2140 			operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2141 			fallthrough;	/* try first guess DRX_CONSTELLATION_QAM64 */
2142 		case QAM_64:
2143 			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2144 			if (state->type_A) {
2145 				status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2146 				if (status < 0)
2147 					break;
2148 				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2149 				if (status < 0)
2150 					break;
2151 				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2152 				if (status < 0)
2153 					break;
2154 				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2155 				if (status < 0)
2156 					break;
2157 				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2158 				if (status < 0)
2159 					break;
2160 
2161 				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2162 				if (status < 0)
2163 					break;
2164 				status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2165 				if (status < 0)
2166 					break;
2167 				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2168 				if (status < 0)
2169 					break;
2170 				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2171 				if (status < 0)
2172 					break;
2173 			}
2174 			break;
2175 		case QPSK:
2176 			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2177 			if (state->type_A) {
2178 				status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2179 				if (status < 0)
2180 					break;
2181 				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2182 				if (status < 0)
2183 					break;
2184 				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2185 				if (status < 0)
2186 					break;
2187 				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2188 				if (status < 0)
2189 					break;
2190 				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2191 				if (status < 0)
2192 					break;
2193 
2194 				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2195 				if (status < 0)
2196 					break;
2197 				status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2198 				if (status < 0)
2199 					break;
2200 				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2201 				if (status < 0)
2202 					break;
2203 				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2204 				if (status < 0)
2205 					break;
2206 			}
2207 			break;
2208 
2209 		case QAM_16:
2210 			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2211 			if (state->type_A) {
2212 				status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2213 				if (status < 0)
2214 					break;
2215 				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2216 				if (status < 0)
2217 					break;
2218 				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2219 				if (status < 0)
2220 					break;
2221 				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2222 				if (status < 0)
2223 					break;
2224 				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2225 				if (status < 0)
2226 					break;
2227 
2228 				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2229 				if (status < 0)
2230 					break;
2231 				status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2232 				if (status < 0)
2233 					break;
2234 				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2235 				if (status < 0)
2236 					break;
2237 				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2238 				if (status < 0)
2239 					break;
2240 			}
2241 			break;
2242 
2243 		}
2244 		if (status < 0)
2245 			break;
2246 
2247 		switch (DRX_CHANNEL_HIGH) {
2248 		default:
2249 		case DRX_CHANNEL_AUTO:
2250 		case DRX_CHANNEL_LOW:
2251 			transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2252 			status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2253 			break;
2254 		case DRX_CHANNEL_HIGH:
2255 			transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2256 			status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2257 			break;
2258 		}
2259 
2260 		switch (p->code_rate_HP) {
2261 		case FEC_1_2:
2262 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2263 			if (state->type_A)
2264 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2265 			break;
2266 		default:
2267 			operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2268 			fallthrough;
2269 		case FEC_2_3:
2270 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2271 			if (state->type_A)
2272 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2273 			break;
2274 		case FEC_3_4:
2275 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2276 			if (state->type_A)
2277 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2278 			break;
2279 		case FEC_5_6:
2280 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2281 			if (state->type_A)
2282 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2283 			break;
2284 		case FEC_7_8:
2285 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2286 			if (state->type_A)
2287 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2288 			break;
2289 		}
2290 		if (status < 0)
2291 			break;
2292 
2293 		/* First determine real bandwidth (Hz) */
2294 		/* Also set delay for impulse noise cruncher (only A2) */
2295 		/* Also set parameters for EC_OC fix, note
2296 		   EC_OC_REG_TMD_HIL_MAR is changed
2297 		   by SC for fix for some 8K,1/8 guard but is restored by
2298 		   InitEC and ResetEC
2299 		   functions */
2300 		switch (p->bandwidth_hz) {
2301 		case 0:
2302 			p->bandwidth_hz = 8000000;
2303 			fallthrough;
2304 		case 8000000:
2305 			/* (64/7)*(8/8)*1000000 */
2306 			bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2307 
2308 			bandwidthParam = 0;
2309 			status = Write16(state,
2310 					 FE_AG_REG_IND_DEL__A, 50, 0x0000);
2311 			break;
2312 		case 7000000:
2313 			/* (64/7)*(7/8)*1000000 */
2314 			bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2315 			bandwidthParam = 0x4807;	/*binary:0100 1000 0000 0111 */
2316 			status = Write16(state,
2317 					 FE_AG_REG_IND_DEL__A, 59, 0x0000);
2318 			break;
2319 		case 6000000:
2320 			/* (64/7)*(6/8)*1000000 */
2321 			bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2322 			bandwidthParam = 0x0F07;	/*binary: 0000 1111 0000 0111 */
2323 			status = Write16(state,
2324 					 FE_AG_REG_IND_DEL__A, 71, 0x0000);
2325 			break;
2326 		default:
2327 			status = -EINVAL;
2328 		}
2329 		if (status < 0)
2330 			break;
2331 
2332 		status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2333 		if (status < 0)
2334 			break;
2335 
2336 		{
2337 			u16 sc_config;
2338 			status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2339 			if (status < 0)
2340 				break;
2341 
2342 			/* enable SLAVE mode in 2k 1/32 to
2343 			   prevent timing change glitches */
2344 			if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2345 			    (p->guard_interval == GUARD_INTERVAL_1_32)) {
2346 				/* enable slave */
2347 				sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2348 			} else {
2349 				/* disable slave */
2350 				sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2351 			}
2352 			status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2353 			if (status < 0)
2354 				break;
2355 		}
2356 
2357 		status = SetCfgNoiseCalibration(state, &state->noise_cal);
2358 		if (status < 0)
2359 			break;
2360 
2361 		if (state->cscd_state == CSCD_INIT) {
2362 			/* switch on SRMM scan in SC */
2363 			status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2364 			if (status < 0)
2365 				break;
2366 /*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2367 			state->cscd_state = CSCD_SET;
2368 		}
2369 
2370 		/* Now compute FE_IF_REG_INCR */
2371 		/*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2372 		   ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2373 		feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2374 				    (1ULL << 21), bandwidth) - (1 << 23);
2375 		status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2376 		if (status < 0)
2377 			break;
2378 		status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2379 		if (status < 0)
2380 			break;
2381 		/* Bandwidth setting done */
2382 
2383 		/* Mirror & frequency offset */
2384 		SetFrequencyShift(state, off, mirrorFreqSpect);
2385 
2386 		/* Start SC, write channel settings to SC */
2387 
2388 		/* Enable SC after setting all other parameters */
2389 		status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2390 		if (status < 0)
2391 			break;
2392 		status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2393 		if (status < 0)
2394 			break;
2395 
2396 		/* Write SC parameter registers, operation mode */
2397 #if 1
2398 		operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2399 				 SC_RA_RAM_OP_AUTO_GUARD__M |
2400 				 SC_RA_RAM_OP_AUTO_CONST__M |
2401 				 SC_RA_RAM_OP_AUTO_HIER__M |
2402 				 SC_RA_RAM_OP_AUTO_RATE__M);
2403 #endif
2404 		status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2405 		if (status < 0)
2406 			break;
2407 
2408 		/* Start correct processes to get in lock */
2409 		status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2410 		if (status < 0)
2411 			break;
2412 
2413 		status = StartOC(state);
2414 		if (status < 0)
2415 			break;
2416 
2417 		if (state->operation_mode != OM_Default) {
2418 			status = StartDiversity(state);
2419 			if (status < 0)
2420 				break;
2421 		}
2422 
2423 		state->drxd_state = DRXD_STARTED;
2424 	} while (0);
2425 
2426 	return status;
2427 }
2428 
2429 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2430 {
2431 	u32 ulRfAgcOutputLevel = 0xffffffff;
2432 	u32 ulRfAgcSettleLevel = 528;	/* Optimum value for MT2060 */
2433 	u32 ulRfAgcMinLevel = 0;	/* Currently unused */
2434 	u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX;	/* Currently unused */
2435 	u32 ulRfAgcSpeed = 0;	/* Currently unused */
2436 	u32 ulRfAgcMode = 0;	/*2;   Off */
2437 	u32 ulRfAgcR1 = 820;
2438 	u32 ulRfAgcR2 = 2200;
2439 	u32 ulRfAgcR3 = 150;
2440 	u32 ulIfAgcMode = 0;	/* Auto */
2441 	u32 ulIfAgcOutputLevel = 0xffffffff;
2442 	u32 ulIfAgcSettleLevel = 0xffffffff;
2443 	u32 ulIfAgcMinLevel = 0xffffffff;
2444 	u32 ulIfAgcMaxLevel = 0xffffffff;
2445 	u32 ulIfAgcSpeed = 0xffffffff;
2446 	u32 ulIfAgcR1 = 820;
2447 	u32 ulIfAgcR2 = 2200;
2448 	u32 ulIfAgcR3 = 150;
2449 	u32 ulClock = state->config.clock;
2450 	u32 ulSerialMode = 0;
2451 	u32 ulEcOcRegOcModeLop = 4;	/* Dynamic DTO source */
2452 	u32 ulHiI2cDelay = HI_I2C_DELAY;
2453 	u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2454 	u32 ulHiI2cPatch = 0;
2455 	u32 ulEnvironment = APPENV_PORTABLE;
2456 	u32 ulEnvironmentDiversity = APPENV_MOBILE;
2457 	u32 ulIFFilter = IFFILTER_SAW;
2458 
2459 	state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2460 	state->if_agc_cfg.outputLevel = 0;
2461 	state->if_agc_cfg.settleLevel = 140;
2462 	state->if_agc_cfg.minOutputLevel = 0;
2463 	state->if_agc_cfg.maxOutputLevel = 1023;
2464 	state->if_agc_cfg.speed = 904;
2465 
2466 	if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2467 		state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2468 		state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2469 	}
2470 
2471 	if (ulIfAgcMode == 0 &&
2472 	    ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2473 	    ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2474 	    ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2475 	    ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2476 		state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2477 		state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2478 		state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2479 		state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2480 		state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2481 	}
2482 
2483 	state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2484 	state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2485 	state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2486 
2487 	state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2488 	state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2489 	state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2490 
2491 	state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2492 	/* rest of the RFAgcCfg structure currently unused */
2493 	if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2494 		state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2495 		state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2496 	}
2497 
2498 	if (ulRfAgcMode == 0 &&
2499 	    ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2500 	    ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2501 	    ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2502 	    ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2503 		state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2504 		state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2505 		state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2506 		state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2507 		state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2508 	}
2509 
2510 	if (ulRfAgcMode == 2)
2511 		state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2512 
2513 	if (ulEnvironment <= 2)
2514 		state->app_env_default = (enum app_env)
2515 		    (ulEnvironment);
2516 	if (ulEnvironmentDiversity <= 2)
2517 		state->app_env_diversity = (enum app_env)
2518 		    (ulEnvironmentDiversity);
2519 
2520 	if (ulIFFilter == IFFILTER_DISCRETE) {
2521 		/* discrete filter */
2522 		state->noise_cal.cpOpt = 0;
2523 		state->noise_cal.cpNexpOfs = 40;
2524 		state->noise_cal.tdCal2k = -40;
2525 		state->noise_cal.tdCal8k = -24;
2526 	} else {
2527 		/* SAW filter */
2528 		state->noise_cal.cpOpt = 1;
2529 		state->noise_cal.cpNexpOfs = 0;
2530 		state->noise_cal.tdCal2k = -21;
2531 		state->noise_cal.tdCal8k = -24;
2532 	}
2533 	state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2534 
2535 	state->chip_adr = (state->config.demod_address << 1) | 1;
2536 	switch (ulHiI2cPatch) {
2537 	case 1:
2538 		state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2539 		break;
2540 	case 3:
2541 		state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2542 		break;
2543 	default:
2544 		state->m_HiI2cPatch = NULL;
2545 	}
2546 
2547 	/* modify tuner and clock attributes */
2548 	state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2549 	/* expected system clock frequency in kHz */
2550 	state->expected_sys_clock_freq = 48000;
2551 	/* real system clock frequency in kHz */
2552 	state->sys_clock_freq = 48000;
2553 	state->osc_clock_freq = (u16) ulClock;
2554 	state->osc_clock_deviation = 0;
2555 	state->cscd_state = CSCD_INIT;
2556 	state->drxd_state = DRXD_UNINITIALIZED;
2557 
2558 	state->PGA = 0;
2559 	state->type_A = 0;
2560 	state->tuner_mirrors = 0;
2561 
2562 	/* modify MPEG output attributes */
2563 	state->insert_rs_byte = state->config.insert_rs_byte;
2564 	state->enable_parallel = (ulSerialMode != 1);
2565 
2566 	/* Timing div, 250ns/Psys */
2567 	/* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2568 
2569 	state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2570 					  ulHiI2cDelay) / 1000;
2571 	/* Bridge delay, uses oscilator clock */
2572 	/* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2573 	state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2574 					    ulHiI2cBridgeDelay) / 1000;
2575 
2576 	state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2577 	/* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2578 	state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2579 	return 0;
2580 }
2581 
2582 static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2583 {
2584 	int status = 0;
2585 	u32 driverVersion;
2586 
2587 	if (state->init_done)
2588 		return 0;
2589 
2590 	CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2591 
2592 	do {
2593 		state->operation_mode = OM_Default;
2594 
2595 		status = SetDeviceTypeId(state);
2596 		if (status < 0)
2597 			break;
2598 
2599 		/* Apply I2c address patch to B1 */
2600 		if (!state->type_A && state->m_HiI2cPatch) {
2601 			status = WriteTable(state, state->m_HiI2cPatch);
2602 			if (status < 0)
2603 				break;
2604 		}
2605 
2606 		if (state->type_A) {
2607 			/* HI firmware patch for UIO readout,
2608 			   avoid clearing of result register */
2609 			status = Write16(state, 0x43012D, 0x047f, 0);
2610 			if (status < 0)
2611 				break;
2612 		}
2613 
2614 		status = HI_ResetCommand(state);
2615 		if (status < 0)
2616 			break;
2617 
2618 		status = StopAllProcessors(state);
2619 		if (status < 0)
2620 			break;
2621 		status = InitCC(state);
2622 		if (status < 0)
2623 			break;
2624 
2625 		state->osc_clock_deviation = 0;
2626 
2627 		if (state->config.osc_deviation)
2628 			state->osc_clock_deviation =
2629 			    state->config.osc_deviation(state->priv, 0, 0);
2630 		{
2631 			/* Handle clock deviation */
2632 			s32 devB;
2633 			s32 devA = (s32) (state->osc_clock_deviation) *
2634 			    (s32) (state->expected_sys_clock_freq);
2635 			/* deviation in kHz */
2636 			s32 deviation = (devA / (1000000L));
2637 			/* rounding, signed */
2638 			if (devA > 0)
2639 				devB = (2);
2640 			else
2641 				devB = (-2);
2642 			if ((devB * (devA % 1000000L) > 1000000L)) {
2643 				/* add +1 or -1 */
2644 				deviation += (devB / 2);
2645 			}
2646 
2647 			state->sys_clock_freq =
2648 			    (u16) ((state->expected_sys_clock_freq) +
2649 				   deviation);
2650 		}
2651 		status = InitHI(state);
2652 		if (status < 0)
2653 			break;
2654 		status = InitAtomicRead(state);
2655 		if (status < 0)
2656 			break;
2657 
2658 		status = EnableAndResetMB(state);
2659 		if (status < 0)
2660 			break;
2661 		if (state->type_A) {
2662 			status = ResetCEFR(state);
2663 			if (status < 0)
2664 				break;
2665 		}
2666 		if (fw) {
2667 			status = DownloadMicrocode(state, fw, fw_size);
2668 			if (status < 0)
2669 				break;
2670 		} else {
2671 			status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2672 			if (status < 0)
2673 				break;
2674 		}
2675 
2676 		if (state->PGA) {
2677 			state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2678 			SetCfgPga(state, 0);	/* PGA = 0 dB */
2679 		} else {
2680 			state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2681 		}
2682 
2683 		state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2684 
2685 		status = InitFE(state);
2686 		if (status < 0)
2687 			break;
2688 		status = InitFT(state);
2689 		if (status < 0)
2690 			break;
2691 		status = InitCP(state);
2692 		if (status < 0)
2693 			break;
2694 		status = InitCE(state);
2695 		if (status < 0)
2696 			break;
2697 		status = InitEQ(state);
2698 		if (status < 0)
2699 			break;
2700 		status = InitEC(state);
2701 		if (status < 0)
2702 			break;
2703 		status = InitSC(state);
2704 		if (status < 0)
2705 			break;
2706 
2707 		status = SetCfgIfAgc(state, &state->if_agc_cfg);
2708 		if (status < 0)
2709 			break;
2710 		status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2711 		if (status < 0)
2712 			break;
2713 
2714 		state->cscd_state = CSCD_INIT;
2715 		status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2716 		if (status < 0)
2717 			break;
2718 		status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2719 		if (status < 0)
2720 			break;
2721 
2722 		driverVersion = (((VERSION_MAJOR / 10) << 4) +
2723 				 (VERSION_MAJOR % 10)) << 24;
2724 		driverVersion += (((VERSION_MINOR / 10) << 4) +
2725 				  (VERSION_MINOR % 10)) << 16;
2726 		driverVersion += ((VERSION_PATCH / 1000) << 12) +
2727 		    ((VERSION_PATCH / 100) << 8) +
2728 		    ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2729 
2730 		status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2731 		if (status < 0)
2732 			break;
2733 
2734 		status = StopOC(state);
2735 		if (status < 0)
2736 			break;
2737 
2738 		state->drxd_state = DRXD_STOPPED;
2739 		state->init_done = 1;
2740 		status = 0;
2741 	} while (0);
2742 	return status;
2743 }
2744 
2745 static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2746 {
2747 	DRX_GetLockStatus(state, pLockStatus);
2748 
2749 	/*if (*pLockStatus&DRX_LOCK_MPEG) */
2750 	if (*pLockStatus & DRX_LOCK_FEC) {
2751 		ConfigureMPEGOutput(state, 1);
2752 		/* Get status again, in case we have MPEG lock now */
2753 		/*DRX_GetLockStatus(state, pLockStatus); */
2754 	}
2755 
2756 	return 0;
2757 }
2758 
2759 /****************************************************************************/
2760 /****************************************************************************/
2761 /****************************************************************************/
2762 
2763 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2764 {
2765 	struct drxd_state *state = fe->demodulator_priv;
2766 	u32 value;
2767 	int res;
2768 
2769 	res = ReadIFAgc(state, &value);
2770 	if (res < 0)
2771 		*strength = 0;
2772 	else
2773 		*strength = 0xffff - (value << 4);
2774 	return 0;
2775 }
2776 
2777 static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
2778 {
2779 	struct drxd_state *state = fe->demodulator_priv;
2780 	u32 lock;
2781 
2782 	DRXD_status(state, &lock);
2783 	*status = 0;
2784 	/* No MPEG lock in V255 firmware, bug ? */
2785 #if 1
2786 	if (lock & DRX_LOCK_MPEG)
2787 		*status |= FE_HAS_LOCK;
2788 #else
2789 	if (lock & DRX_LOCK_FEC)
2790 		*status |= FE_HAS_LOCK;
2791 #endif
2792 	if (lock & DRX_LOCK_FEC)
2793 		*status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2794 	if (lock & DRX_LOCK_DEMOD)
2795 		*status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2796 
2797 	return 0;
2798 }
2799 
2800 static int drxd_init(struct dvb_frontend *fe)
2801 {
2802 	struct drxd_state *state = fe->demodulator_priv;
2803 
2804 	return DRXD_init(state, NULL, 0);
2805 }
2806 
2807 static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2808 {
2809 	struct drxd_state *state = fe->demodulator_priv;
2810 
2811 	if (state->config.disable_i2c_gate_ctrl == 1)
2812 		return 0;
2813 
2814 	return DRX_ConfigureI2CBridge(state, onoff);
2815 }
2816 
2817 static int drxd_get_tune_settings(struct dvb_frontend *fe,
2818 				  struct dvb_frontend_tune_settings *sets)
2819 {
2820 	sets->min_delay_ms = 10000;
2821 	sets->max_drift = 0;
2822 	sets->step_size = 0;
2823 	return 0;
2824 }
2825 
2826 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2827 {
2828 	*ber = 0;
2829 	return 0;
2830 }
2831 
2832 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2833 {
2834 	*snr = 0;
2835 	return 0;
2836 }
2837 
2838 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2839 {
2840 	*ucblocks = 0;
2841 	return 0;
2842 }
2843 
2844 static int drxd_sleep(struct dvb_frontend *fe)
2845 {
2846 	struct drxd_state *state = fe->demodulator_priv;
2847 
2848 	ConfigureMPEGOutput(state, 0);
2849 	return 0;
2850 }
2851 
2852 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2853 {
2854 	return drxd_config_i2c(fe, enable);
2855 }
2856 
2857 static int drxd_set_frontend(struct dvb_frontend *fe)
2858 {
2859 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2860 	struct drxd_state *state = fe->demodulator_priv;
2861 	s32 off = 0;
2862 
2863 	state->props = *p;
2864 	DRX_Stop(state);
2865 
2866 	if (fe->ops.tuner_ops.set_params) {
2867 		fe->ops.tuner_ops.set_params(fe);
2868 		if (fe->ops.i2c_gate_ctrl)
2869 			fe->ops.i2c_gate_ctrl(fe, 0);
2870 	}
2871 
2872 	msleep(200);
2873 
2874 	return DRX_Start(state, off);
2875 }
2876 
2877 static void drxd_release(struct dvb_frontend *fe)
2878 {
2879 	struct drxd_state *state = fe->demodulator_priv;
2880 
2881 	kfree(state);
2882 }
2883 
2884 static const struct dvb_frontend_ops drxd_ops = {
2885 	.delsys = { SYS_DVBT},
2886 	.info = {
2887 		 .name = "Micronas DRXD DVB-T",
2888 		 .frequency_min_hz =  47125 * kHz,
2889 		 .frequency_max_hz = 855250 * kHz,
2890 		 .frequency_stepsize_hz = 166667,
2891 		 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2892 		 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2893 		 FE_CAN_FEC_AUTO |
2894 		 FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2895 		 FE_CAN_QAM_AUTO |
2896 		 FE_CAN_TRANSMISSION_MODE_AUTO |
2897 		 FE_CAN_GUARD_INTERVAL_AUTO |
2898 		 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2899 
2900 	.release = drxd_release,
2901 	.init = drxd_init,
2902 	.sleep = drxd_sleep,
2903 	.i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2904 
2905 	.set_frontend = drxd_set_frontend,
2906 	.get_tune_settings = drxd_get_tune_settings,
2907 
2908 	.read_status = drxd_read_status,
2909 	.read_ber = drxd_read_ber,
2910 	.read_signal_strength = drxd_read_signal_strength,
2911 	.read_snr = drxd_read_snr,
2912 	.read_ucblocks = drxd_read_ucblocks,
2913 };
2914 
2915 struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2916 				 void *priv, struct i2c_adapter *i2c,
2917 				 struct device *dev)
2918 {
2919 	struct drxd_state *state = NULL;
2920 
2921 	state = kzalloc(sizeof(*state), GFP_KERNEL);
2922 	if (!state)
2923 		return NULL;
2924 
2925 	state->ops = drxd_ops;
2926 	state->dev = dev;
2927 	state->config = *config;
2928 	state->i2c = i2c;
2929 	state->priv = priv;
2930 
2931 	mutex_init(&state->mutex);
2932 
2933 	if (Read16(state, 0, NULL, 0) < 0)
2934 		goto error;
2935 
2936 	state->frontend.ops = drxd_ops;
2937 	state->frontend.demodulator_priv = state;
2938 	ConfigureMPEGOutput(state, 0);
2939 	/* add few initialization to allow gate control */
2940 	CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2941 	InitHI(state);
2942 
2943 	return &state->frontend;
2944 
2945 error:
2946 	printk(KERN_ERR "drxd: not found\n");
2947 	kfree(state);
2948 	return NULL;
2949 }
2950 EXPORT_SYMBOL(drxd_attach);
2951 
2952 MODULE_DESCRIPTION("DRXD driver");
2953 MODULE_AUTHOR("Micronas");
2954 MODULE_LICENSE("GPL");
2955