1 /*
2  * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
3  *
4  * Copyright (C) 2003-2007 Micronas
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * version 2 only, as published by the Free Software Foundation.
9  *
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * To obtain the license, point your browser to
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/i2c.h>
27 #include <asm/div64.h>
28 
29 #include "dvb_frontend.h"
30 #include "drxd.h"
31 #include "drxd_firm.h"
32 
33 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
34 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
35 
36 #define CHUNK_SIZE 48
37 
38 #define DRX_I2C_RMW           0x10
39 #define DRX_I2C_BROADCAST     0x20
40 #define DRX_I2C_CLEARCRC      0x80
41 #define DRX_I2C_SINGLE_MASTER 0xC0
42 #define DRX_I2C_MODEFLAGS     0xC0
43 #define DRX_I2C_FLAGS         0xF0
44 
45 #define DEFAULT_LOCK_TIMEOUT    1100
46 
47 #define DRX_CHANNEL_AUTO 0
48 #define DRX_CHANNEL_HIGH 1
49 #define DRX_CHANNEL_LOW  2
50 
51 #define DRX_LOCK_MPEG  1
52 #define DRX_LOCK_FEC   2
53 #define DRX_LOCK_DEMOD 4
54 
55 /****************************************************************************/
56 
57 enum CSCDState {
58 	CSCD_INIT = 0,
59 	CSCD_SET,
60 	CSCD_SAVED
61 };
62 
63 enum CDrxdState {
64 	DRXD_UNINITIALIZED = 0,
65 	DRXD_STOPPED,
66 	DRXD_STARTED
67 };
68 
69 enum AGC_CTRL_MODE {
70 	AGC_CTRL_AUTO = 0,
71 	AGC_CTRL_USER,
72 	AGC_CTRL_OFF
73 };
74 
75 enum OperationMode {
76 	OM_Default,
77 	OM_DVBT_Diversity_Front,
78 	OM_DVBT_Diversity_End
79 };
80 
81 struct SCfgAgc {
82 	enum AGC_CTRL_MODE ctrlMode;
83 	u16 outputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
84 	u16 settleLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
85 	u16 minOutputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
86 	u16 maxOutputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
87 	u16 speed;		/* range [0, ... , 1023], 1/n of fullscale range */
88 
89 	u16 R1;
90 	u16 R2;
91 	u16 R3;
92 };
93 
94 struct SNoiseCal {
95 	int cpOpt;
96 	short cpNexpOfs;
97 	short tdCal2k;
98 	short tdCal8k;
99 };
100 
101 enum app_env {
102 	APPENV_STATIC = 0,
103 	APPENV_PORTABLE = 1,
104 	APPENV_MOBILE = 2
105 };
106 
107 enum EIFFilter {
108 	IFFILTER_SAW = 0,
109 	IFFILTER_DISCRETE = 1
110 };
111 
112 struct drxd_state {
113 	struct dvb_frontend frontend;
114 	struct dvb_frontend_ops ops;
115 	struct dtv_frontend_properties props;
116 
117 	const struct firmware *fw;
118 	struct device *dev;
119 
120 	struct i2c_adapter *i2c;
121 	void *priv;
122 	struct drxd_config config;
123 
124 	int i2c_access;
125 	int init_done;
126 	struct mutex mutex;
127 
128 	u8 chip_adr;
129 	u16 hi_cfg_timing_div;
130 	u16 hi_cfg_bridge_delay;
131 	u16 hi_cfg_wakeup_key;
132 	u16 hi_cfg_ctrl;
133 
134 	u16 intermediate_freq;
135 	u16 osc_clock_freq;
136 
137 	enum CSCDState cscd_state;
138 	enum CDrxdState drxd_state;
139 
140 	u16 sys_clock_freq;
141 	s16 osc_clock_deviation;
142 	u16 expected_sys_clock_freq;
143 
144 	u16 insert_rs_byte;
145 	u16 enable_parallel;
146 
147 	int operation_mode;
148 
149 	struct SCfgAgc if_agc_cfg;
150 	struct SCfgAgc rf_agc_cfg;
151 
152 	struct SNoiseCal noise_cal;
153 
154 	u32 fe_fs_add_incr;
155 	u32 org_fe_fs_add_incr;
156 	u16 current_fe_if_incr;
157 
158 	u16 m_FeAgRegAgPwd;
159 	u16 m_FeAgRegAgAgcSio;
160 
161 	u16 m_EcOcRegOcModeLop;
162 	u16 m_EcOcRegSncSncLvl;
163 	u8 *m_InitAtomicRead;
164 	u8 *m_HiI2cPatch;
165 
166 	u8 *m_ResetCEFR;
167 	u8 *m_InitFE_1;
168 	u8 *m_InitFE_2;
169 	u8 *m_InitCP;
170 	u8 *m_InitCE;
171 	u8 *m_InitEQ;
172 	u8 *m_InitSC;
173 	u8 *m_InitEC;
174 	u8 *m_ResetECRAM;
175 	u8 *m_InitDiversityFront;
176 	u8 *m_InitDiversityEnd;
177 	u8 *m_DisableDiversity;
178 	u8 *m_StartDiversityFront;
179 	u8 *m_StartDiversityEnd;
180 
181 	u8 *m_DiversityDelay8MHZ;
182 	u8 *m_DiversityDelay6MHZ;
183 
184 	u8 *microcode;
185 	u32 microcode_length;
186 
187 	int type_A;
188 	int PGA;
189 	int diversity;
190 	int tuner_mirrors;
191 
192 	enum app_env app_env_default;
193 	enum app_env app_env_diversity;
194 
195 };
196 
197 /****************************************************************************/
198 /* I2C **********************************************************************/
199 /****************************************************************************/
200 
201 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
202 {
203 	struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
204 
205 	if (i2c_transfer(adap, &msg, 1) != 1)
206 		return -1;
207 	return 0;
208 }
209 
210 static int i2c_read(struct i2c_adapter *adap,
211 		    u8 adr, u8 *msg, int len, u8 *answ, int alen)
212 {
213 	struct i2c_msg msgs[2] = {
214 		{
215 			.addr = adr, .flags = 0,
216 			.buf = msg, .len = len
217 		}, {
218 			.addr = adr, .flags = I2C_M_RD,
219 			.buf = answ, .len = alen
220 		}
221 	};
222 	if (i2c_transfer(adap, msgs, 2) != 2)
223 		return -1;
224 	return 0;
225 }
226 
227 static inline u32 MulDiv32(u32 a, u32 b, u32 c)
228 {
229 	u64 tmp64;
230 
231 	tmp64 = (u64)a * (u64)b;
232 	do_div(tmp64, c);
233 
234 	return (u32) tmp64;
235 }
236 
237 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
238 {
239 	u8 adr = state->config.demod_address;
240 	u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
241 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
242 	};
243 	u8 mm2[2];
244 	if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
245 		return -1;
246 	if (data)
247 		*data = mm2[0] | (mm2[1] << 8);
248 	return mm2[0] | (mm2[1] << 8);
249 }
250 
251 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
252 {
253 	u8 adr = state->config.demod_address;
254 	u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
255 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
256 	};
257 	u8 mm2[4];
258 
259 	if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
260 		return -1;
261 	if (data)
262 		*data =
263 		    mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
264 	return 0;
265 }
266 
267 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
268 {
269 	u8 adr = state->config.demod_address;
270 	u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
271 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
272 		data & 0xff, (data >> 8) & 0xff
273 	};
274 
275 	if (i2c_write(state->i2c, adr, mm, 6) < 0)
276 		return -1;
277 	return 0;
278 }
279 
280 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
281 {
282 	u8 adr = state->config.demod_address;
283 	u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
284 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
285 		data & 0xff, (data >> 8) & 0xff,
286 		(data >> 16) & 0xff, (data >> 24) & 0xff
287 	};
288 
289 	if (i2c_write(state->i2c, adr, mm, 8) < 0)
290 		return -1;
291 	return 0;
292 }
293 
294 static int write_chunk(struct drxd_state *state,
295 		       u32 reg, u8 *data, u32 len, u8 flags)
296 {
297 	u8 adr = state->config.demod_address;
298 	u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
299 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
300 	};
301 	int i;
302 
303 	for (i = 0; i < len; i++)
304 		mm[4 + i] = data[i];
305 	if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
306 		printk(KERN_ERR "error in write_chunk\n");
307 		return -1;
308 	}
309 	return 0;
310 }
311 
312 static int WriteBlock(struct drxd_state *state,
313 		      u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
314 {
315 	while (BlockSize > 0) {
316 		u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
317 
318 		if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
319 			return -1;
320 		pBlock += Chunk;
321 		Address += (Chunk >> 1);
322 		BlockSize -= Chunk;
323 	}
324 	return 0;
325 }
326 
327 static int WriteTable(struct drxd_state *state, u8 * pTable)
328 {
329 	int status = 0;
330 
331 	if (pTable == NULL)
332 		return 0;
333 
334 	while (!status) {
335 		u16 Length;
336 		u32 Address = pTable[0] | (pTable[1] << 8) |
337 		    (pTable[2] << 16) | (pTable[3] << 24);
338 
339 		if (Address == 0xFFFFFFFF)
340 			break;
341 		pTable += sizeof(u32);
342 
343 		Length = pTable[0] | (pTable[1] << 8);
344 		pTable += sizeof(u16);
345 		if (!Length)
346 			break;
347 		status = WriteBlock(state, Address, Length * 2, pTable, 0);
348 		pTable += (Length * 2);
349 	}
350 	return status;
351 }
352 
353 /****************************************************************************/
354 /****************************************************************************/
355 /****************************************************************************/
356 
357 static int ResetCEFR(struct drxd_state *state)
358 {
359 	return WriteTable(state, state->m_ResetCEFR);
360 }
361 
362 static int InitCP(struct drxd_state *state)
363 {
364 	return WriteTable(state, state->m_InitCP);
365 }
366 
367 static int InitCE(struct drxd_state *state)
368 {
369 	int status;
370 	enum app_env AppEnv = state->app_env_default;
371 
372 	do {
373 		status = WriteTable(state, state->m_InitCE);
374 		if (status < 0)
375 			break;
376 
377 		if (state->operation_mode == OM_DVBT_Diversity_Front ||
378 		    state->operation_mode == OM_DVBT_Diversity_End) {
379 			AppEnv = state->app_env_diversity;
380 		}
381 		if (AppEnv == APPENV_STATIC) {
382 			status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
383 			if (status < 0)
384 				break;
385 		} else if (AppEnv == APPENV_PORTABLE) {
386 			status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
387 			if (status < 0)
388 				break;
389 		} else if (AppEnv == APPENV_MOBILE && state->type_A) {
390 			status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
391 			if (status < 0)
392 				break;
393 		} else if (AppEnv == APPENV_MOBILE && !state->type_A) {
394 			status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
395 			if (status < 0)
396 				break;
397 		}
398 
399 		/* start ce */
400 		status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
401 		if (status < 0)
402 			break;
403 	} while (0);
404 	return status;
405 }
406 
407 static int StopOC(struct drxd_state *state)
408 {
409 	int status = 0;
410 	u16 ocSyncLvl = 0;
411 	u16 ocModeLop = state->m_EcOcRegOcModeLop;
412 	u16 dtoIncLop = 0;
413 	u16 dtoIncHip = 0;
414 
415 	do {
416 		/* Store output configuration */
417 		status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
418 		if (status < 0)
419 			break;
420 		/* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
421 		state->m_EcOcRegSncSncLvl = ocSyncLvl;
422 		/* m_EcOcRegOcModeLop = ocModeLop; */
423 
424 		/* Flush FIFO (byte-boundary) at fixed rate */
425 		status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
426 		if (status < 0)
427 			break;
428 		status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
429 		if (status < 0)
430 			break;
431 		status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
432 		if (status < 0)
433 			break;
434 		status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
435 		if (status < 0)
436 			break;
437 		ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
438 		ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
439 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
440 		if (status < 0)
441 			break;
442 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
443 		if (status < 0)
444 			break;
445 
446 		msleep(1);
447 		/* Output pins to '0' */
448 		status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
449 		if (status < 0)
450 			break;
451 
452 		/* Force the OC out of sync */
453 		ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
454 		status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
455 		if (status < 0)
456 			break;
457 		ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
458 		ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
459 		ocModeLop |= 0x2;	/* Magically-out-of-sync */
460 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
461 		if (status < 0)
462 			break;
463 		status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
464 		if (status < 0)
465 			break;
466 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
467 		if (status < 0)
468 			break;
469 	} while (0);
470 
471 	return status;
472 }
473 
474 static int StartOC(struct drxd_state *state)
475 {
476 	int status = 0;
477 
478 	do {
479 		/* Stop OC */
480 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
481 		if (status < 0)
482 			break;
483 
484 		/* Restore output configuration */
485 		status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
486 		if (status < 0)
487 			break;
488 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
489 		if (status < 0)
490 			break;
491 
492 		/* Output pins active again */
493 		status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
494 		if (status < 0)
495 			break;
496 
497 		/* Start OC */
498 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
499 		if (status < 0)
500 			break;
501 	} while (0);
502 	return status;
503 }
504 
505 static int InitEQ(struct drxd_state *state)
506 {
507 	return WriteTable(state, state->m_InitEQ);
508 }
509 
510 static int InitEC(struct drxd_state *state)
511 {
512 	return WriteTable(state, state->m_InitEC);
513 }
514 
515 static int InitSC(struct drxd_state *state)
516 {
517 	return WriteTable(state, state->m_InitSC);
518 }
519 
520 static int InitAtomicRead(struct drxd_state *state)
521 {
522 	return WriteTable(state, state->m_InitAtomicRead);
523 }
524 
525 static int CorrectSysClockDeviation(struct drxd_state *state);
526 
527 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
528 {
529 	u16 ScRaRamLock = 0;
530 	const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
531 				    SC_RA_RAM_LOCK_FEC__M |
532 				    SC_RA_RAM_LOCK_DEMOD__M);
533 	const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
534 				   SC_RA_RAM_LOCK_DEMOD__M);
535 	const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
536 
537 	int status;
538 
539 	*pLockStatus = 0;
540 
541 	status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
542 	if (status < 0) {
543 		printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
544 		return status;
545 	}
546 
547 	if (state->drxd_state != DRXD_STARTED)
548 		return 0;
549 
550 	if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
551 		*pLockStatus |= DRX_LOCK_MPEG;
552 		CorrectSysClockDeviation(state);
553 	}
554 
555 	if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
556 		*pLockStatus |= DRX_LOCK_FEC;
557 
558 	if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
559 		*pLockStatus |= DRX_LOCK_DEMOD;
560 	return 0;
561 }
562 
563 /****************************************************************************/
564 
565 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
566 {
567 	int status;
568 
569 	if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
570 		return -1;
571 
572 	if (cfg->ctrlMode == AGC_CTRL_USER) {
573 		do {
574 			u16 FeAgRegPm1AgcWri;
575 			u16 FeAgRegAgModeLop;
576 
577 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
578 			if (status < 0)
579 				break;
580 			FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
581 			FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
582 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
583 			if (status < 0)
584 				break;
585 
586 			FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
587 						  FE_AG_REG_PM1_AGC_WRI__M);
588 			status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
589 			if (status < 0)
590 				break;
591 		} while (0);
592 	} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
593 		if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
594 		    ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
595 		    ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
596 		    ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
597 		    )
598 			return -1;
599 		do {
600 			u16 FeAgRegAgModeLop;
601 			u16 FeAgRegEgcSetLvl;
602 			u16 slope, offset;
603 
604 			/* == Mode == */
605 
606 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
607 			if (status < 0)
608 				break;
609 			FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
610 			FeAgRegAgModeLop |=
611 			    FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
612 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
613 			if (status < 0)
614 				break;
615 
616 			/* == Settle level == */
617 
618 			FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
619 						  FE_AG_REG_EGC_SET_LVL__M);
620 			status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
621 			if (status < 0)
622 				break;
623 
624 			/* == Min/Max == */
625 
626 			slope = (u16) ((cfg->maxOutputLevel -
627 					cfg->minOutputLevel) / 2);
628 			offset = (u16) ((cfg->maxOutputLevel +
629 					 cfg->minOutputLevel) / 2 - 511);
630 
631 			status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
632 			if (status < 0)
633 				break;
634 			status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
635 			if (status < 0)
636 				break;
637 
638 			/* == Speed == */
639 			{
640 				const u16 maxRur = 8;
641 				const u16 slowIncrDecLUT[] = { 3, 4, 4, 5, 6 };
642 				const u16 fastIncrDecLUT[] = { 14, 15, 15, 16,
643 					17, 18, 18, 19,
644 					20, 21, 22, 23,
645 					24, 26, 27, 28,
646 					29, 31
647 				};
648 
649 				u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
650 				    (maxRur + 1);
651 				u16 fineSpeed = (u16) (cfg->speed -
652 						       ((cfg->speed /
653 							 fineSteps) *
654 							fineSteps));
655 				u16 invRurCount = (u16) (cfg->speed /
656 							 fineSteps);
657 				u16 rurCount;
658 				if (invRurCount > maxRur) {
659 					rurCount = 0;
660 					fineSpeed += fineSteps;
661 				} else {
662 					rurCount = maxRur - invRurCount;
663 				}
664 
665 				/*
666 				   fastInc = default *
667 				   (2^(fineSpeed/fineSteps))
668 				   => range[default...2*default>
669 				   slowInc = default *
670 				   (2^(fineSpeed/fineSteps))
671 				 */
672 				{
673 					u16 fastIncrDec =
674 					    fastIncrDecLUT[fineSpeed /
675 							   ((fineSteps /
676 							     (14 + 1)) + 1)];
677 					u16 slowIncrDec =
678 					    slowIncrDecLUT[fineSpeed /
679 							   (fineSteps /
680 							    (3 + 1))];
681 
682 					status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
683 					if (status < 0)
684 						break;
685 					status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
686 					if (status < 0)
687 						break;
688 					status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
689 					if (status < 0)
690 						break;
691 					status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
692 					if (status < 0)
693 						break;
694 					status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
695 					if (status < 0)
696 						break;
697 				}
698 			}
699 		} while (0);
700 
701 	} else {
702 		/* No OFF mode for IF control */
703 		return -1;
704 	}
705 	return status;
706 }
707 
708 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
709 {
710 	int status = 0;
711 
712 	if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
713 		return -1;
714 
715 	if (cfg->ctrlMode == AGC_CTRL_USER) {
716 		do {
717 			u16 AgModeLop = 0;
718 			u16 level = (cfg->outputLevel);
719 
720 			if (level == DRXD_FE_CTRL_MAX)
721 				level++;
722 
723 			status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
724 			if (status < 0)
725 				break;
726 
727 			/*==== Mode ====*/
728 
729 			/* Powerdown PD2, WRI source */
730 			state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
731 			state->m_FeAgRegAgPwd |=
732 			    FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
733 			status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
734 			if (status < 0)
735 				break;
736 
737 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
738 			if (status < 0)
739 				break;
740 			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
741 					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
742 			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
743 				      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
744 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
745 			if (status < 0)
746 				break;
747 
748 			/* enable AGC2 pin */
749 			{
750 				u16 FeAgRegAgAgcSio = 0;
751 				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
752 				if (status < 0)
753 					break;
754 				FeAgRegAgAgcSio &=
755 				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
756 				FeAgRegAgAgcSio |=
757 				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
758 				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
759 				if (status < 0)
760 					break;
761 			}
762 
763 		} while (0);
764 	} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
765 		u16 AgModeLop = 0;
766 
767 		do {
768 			u16 level;
769 			/* Automatic control */
770 			/* Powerup PD2, AGC2 as output, TGC source */
771 			(state->m_FeAgRegAgPwd) &=
772 			    ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
773 			(state->m_FeAgRegAgPwd) |=
774 			    FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
775 			status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
776 			if (status < 0)
777 				break;
778 
779 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
780 			if (status < 0)
781 				break;
782 			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
783 					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
784 			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
785 				      FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
786 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
787 			if (status < 0)
788 				break;
789 			/* Settle level */
790 			level = (((cfg->settleLevel) >> 4) &
791 				 FE_AG_REG_TGC_SET_LVL__M);
792 			status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
793 			if (status < 0)
794 				break;
795 
796 			/* Min/max: don't care */
797 
798 			/* Speed: TODO */
799 
800 			/* enable AGC2 pin */
801 			{
802 				u16 FeAgRegAgAgcSio = 0;
803 				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
804 				if (status < 0)
805 					break;
806 				FeAgRegAgAgcSio &=
807 				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
808 				FeAgRegAgAgcSio |=
809 				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
810 				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
811 				if (status < 0)
812 					break;
813 			}
814 
815 		} while (0);
816 	} else {
817 		u16 AgModeLop = 0;
818 
819 		do {
820 			/* No RF AGC control */
821 			/* Powerdown PD2, AGC2 as output, WRI source */
822 			(state->m_FeAgRegAgPwd) &=
823 			    ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
824 			(state->m_FeAgRegAgPwd) |=
825 			    FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
826 			status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
827 			if (status < 0)
828 				break;
829 
830 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
831 			if (status < 0)
832 				break;
833 			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
834 					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
835 			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
836 				      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
837 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
838 			if (status < 0)
839 				break;
840 
841 			/* set FeAgRegAgAgcSio AGC2 (RF) as input */
842 			{
843 				u16 FeAgRegAgAgcSio = 0;
844 				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
845 				if (status < 0)
846 					break;
847 				FeAgRegAgAgcSio &=
848 				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
849 				FeAgRegAgAgcSio |=
850 				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
851 				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
852 				if (status < 0)
853 					break;
854 			}
855 		} while (0);
856 	}
857 	return status;
858 }
859 
860 static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
861 {
862 	int status = 0;
863 
864 	*pValue = 0;
865 	if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
866 		u16 Value;
867 		status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
868 		Value &= FE_AG_REG_GC1_AGC_DAT__M;
869 		if (status >= 0) {
870 			/*           3.3V
871 			   |
872 			   R1
873 			   |
874 			   Vin - R3 - * -- Vout
875 			   |
876 			   R2
877 			   |
878 			   GND
879 			 */
880 			u32 R1 = state->if_agc_cfg.R1;
881 			u32 R2 = state->if_agc_cfg.R2;
882 			u32 R3 = state->if_agc_cfg.R3;
883 
884 			u32 Vmax, Rpar, Vmin, Vout;
885 
886 			if (R2 == 0 && (R1 == 0 || R3 == 0))
887 				return 0;
888 
889 			Vmax = (3300 * R2) / (R1 + R2);
890 			Rpar = (R2 * R3) / (R3 + R2);
891 			Vmin = (3300 * Rpar) / (R1 + Rpar);
892 			Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
893 
894 			*pValue = Vout;
895 		}
896 	}
897 	return status;
898 }
899 
900 static int load_firmware(struct drxd_state *state, const char *fw_name)
901 {
902 	const struct firmware *fw;
903 
904 	if (request_firmware(&fw, fw_name, state->dev) < 0) {
905 		printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
906 		return -EIO;
907 	}
908 
909 	state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
910 	if (state->microcode == NULL) {
911 		release_firmware(fw);
912 		printk(KERN_ERR "drxd: firmware load failure: no memory\n");
913 		return -ENOMEM;
914 	}
915 
916 	state->microcode_length = fw->size;
917 	release_firmware(fw);
918 	return 0;
919 }
920 
921 static int DownloadMicrocode(struct drxd_state *state,
922 			     const u8 *pMCImage, u32 Length)
923 {
924 	u8 *pSrc;
925 	u32 Address;
926 	u16 nBlocks;
927 	u16 BlockSize;
928 	u32 offset = 0;
929 	int i, status = 0;
930 
931 	pSrc = (u8 *) pMCImage;
932 	/* We're not using Flags */
933 	/* Flags = (pSrc[0] << 8) | pSrc[1]; */
934 	pSrc += sizeof(u16);
935 	offset += sizeof(u16);
936 	nBlocks = (pSrc[0] << 8) | pSrc[1];
937 	pSrc += sizeof(u16);
938 	offset += sizeof(u16);
939 
940 	for (i = 0; i < nBlocks; i++) {
941 		Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
942 		    (pSrc[2] << 8) | pSrc[3];
943 		pSrc += sizeof(u32);
944 		offset += sizeof(u32);
945 
946 		BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
947 		pSrc += sizeof(u16);
948 		offset += sizeof(u16);
949 
950 		/* We're not using Flags */
951 		/* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
952 		pSrc += sizeof(u16);
953 		offset += sizeof(u16);
954 
955 		/* We're not using BlockCRC */
956 		/* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
957 		pSrc += sizeof(u16);
958 		offset += sizeof(u16);
959 
960 		status = WriteBlock(state, Address, BlockSize,
961 				    pSrc, DRX_I2C_CLEARCRC);
962 		if (status < 0)
963 			break;
964 		pSrc += BlockSize;
965 		offset += BlockSize;
966 	}
967 
968 	return status;
969 }
970 
971 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
972 {
973 	u32 nrRetries = 0;
974 	u16 waitCmd;
975 	int status;
976 
977 	status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
978 	if (status < 0)
979 		return status;
980 
981 	do {
982 		nrRetries += 1;
983 		if (nrRetries > DRXD_MAX_RETRIES) {
984 			status = -1;
985 			break;
986 		}
987 		status = Read16(state, HI_RA_RAM_SRV_CMD__A, &waitCmd, 0);
988 	} while (waitCmd != 0);
989 
990 	if (status >= 0)
991 		status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
992 	return status;
993 }
994 
995 static int HI_CfgCommand(struct drxd_state *state)
996 {
997 	int status = 0;
998 
999 	mutex_lock(&state->mutex);
1000 	Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1001 	Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
1002 	Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
1003 	Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
1004 	Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
1005 
1006 	Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1007 
1008 	if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
1009 	    HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
1010 		status = Write16(state, HI_RA_RAM_SRV_CMD__A,
1011 				 HI_RA_RAM_SRV_CMD_CONFIG, 0);
1012 	else
1013 		status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
1014 	mutex_unlock(&state->mutex);
1015 	return status;
1016 }
1017 
1018 static int InitHI(struct drxd_state *state)
1019 {
1020 	state->hi_cfg_wakeup_key = (state->chip_adr);
1021 	/* port/bridge/power down ctrl */
1022 	state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1023 	return HI_CfgCommand(state);
1024 }
1025 
1026 static int HI_ResetCommand(struct drxd_state *state)
1027 {
1028 	int status;
1029 
1030 	mutex_lock(&state->mutex);
1031 	status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1032 			 HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1033 	if (status == 0)
1034 		status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
1035 	mutex_unlock(&state->mutex);
1036 	msleep(1);
1037 	return status;
1038 }
1039 
1040 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1041 {
1042 	state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1043 	if (bEnableBridge)
1044 		state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1045 	else
1046 		state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1047 
1048 	return HI_CfgCommand(state);
1049 }
1050 
1051 #define HI_TR_WRITE      0x9
1052 #define HI_TR_READ       0xA
1053 #define HI_TR_READ_WRITE 0xB
1054 #define HI_TR_BROADCAST  0x4
1055 
1056 #if 0
1057 static int AtomicReadBlock(struct drxd_state *state,
1058 			   u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1059 {
1060 	int status;
1061 	int i = 0;
1062 
1063 	/* Parameter check */
1064 	if ((!pData) || ((DataSize & 1) != 0))
1065 		return -1;
1066 
1067 	mutex_lock(&state->mutex);
1068 
1069 	do {
1070 		/* Instruct HI to read n bytes */
1071 		/* TODO use proper names forthese egisters */
1072 		status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1073 		if (status < 0)
1074 			break;
1075 		status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1076 		if (status < 0)
1077 			break;
1078 		status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1079 		if (status < 0)
1080 			break;
1081 		status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1082 		if (status < 0)
1083 			break;
1084 		status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1085 		if (status < 0)
1086 			break;
1087 
1088 		status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1089 		if (status < 0)
1090 			break;
1091 
1092 	} while (0);
1093 
1094 	if (status >= 0) {
1095 		for (i = 0; i < (DataSize / 2); i += 1) {
1096 			u16 word;
1097 
1098 			status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1099 					&word, 0);
1100 			if (status < 0)
1101 				break;
1102 			pData[2 * i] = (u8) (word & 0xFF);
1103 			pData[(2 * i) + 1] = (u8) (word >> 8);
1104 		}
1105 	}
1106 	mutex_unlock(&state->mutex);
1107 	return status;
1108 }
1109 
1110 static int AtomicReadReg32(struct drxd_state *state,
1111 			   u32 Addr, u32 *pData, u8 Flags)
1112 {
1113 	u8 buf[sizeof(u32)];
1114 	int status;
1115 
1116 	if (!pData)
1117 		return -1;
1118 	status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1119 	*pData = (((u32) buf[0]) << 0) +
1120 	    (((u32) buf[1]) << 8) +
1121 	    (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1122 	return status;
1123 }
1124 #endif
1125 
1126 static int StopAllProcessors(struct drxd_state *state)
1127 {
1128 	return Write16(state, HI_COMM_EXEC__A,
1129 		       SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1130 }
1131 
1132 static int EnableAndResetMB(struct drxd_state *state)
1133 {
1134 	if (state->type_A) {
1135 		/* disable? monitor bus observe @ EC_OC */
1136 		Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1137 	}
1138 
1139 	/* do inverse broadcast, followed by explicit write to HI */
1140 	Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1141 	Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1142 	return 0;
1143 }
1144 
1145 static int InitCC(struct drxd_state *state)
1146 {
1147 	if (state->osc_clock_freq == 0 ||
1148 	    state->osc_clock_freq > 20000 ||
1149 	    (state->osc_clock_freq % 4000) != 0) {
1150 		printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1151 		return -1;
1152 	}
1153 
1154 	Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1155 	Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL |
1156 		CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1157 	Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq / 4000, 0);
1158 	Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0);
1159 	Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1160 
1161 	return 0;
1162 }
1163 
1164 static int ResetECOD(struct drxd_state *state)
1165 {
1166 	int status = 0;
1167 
1168 	if (state->type_A)
1169 		status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1170 	else
1171 		status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1172 
1173 	if (!(status < 0))
1174 		status = WriteTable(state, state->m_ResetECRAM);
1175 	if (!(status < 0))
1176 		status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1177 	return status;
1178 }
1179 
1180 /* Configure PGA switch */
1181 
1182 static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1183 {
1184 	int status;
1185 	u16 AgModeLop = 0;
1186 	u16 AgModeHip = 0;
1187 	do {
1188 		if (pgaSwitch) {
1189 			/* PGA on */
1190 			/* fine gain */
1191 			status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1192 			if (status < 0)
1193 				break;
1194 			AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1195 			AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1196 			status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1197 			if (status < 0)
1198 				break;
1199 
1200 			/* coarse gain */
1201 			status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1202 			if (status < 0)
1203 				break;
1204 			AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1205 			AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1206 			status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1207 			if (status < 0)
1208 				break;
1209 
1210 			/* enable fine and coarse gain, enable AAF,
1211 			   no ext resistor */
1212 			status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1213 			if (status < 0)
1214 				break;
1215 		} else {
1216 			/* PGA off, bypass */
1217 
1218 			/* fine gain */
1219 			status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1220 			if (status < 0)
1221 				break;
1222 			AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1223 			AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1224 			status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1225 			if (status < 0)
1226 				break;
1227 
1228 			/* coarse gain */
1229 			status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1230 			if (status < 0)
1231 				break;
1232 			AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1233 			AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1234 			status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1235 			if (status < 0)
1236 				break;
1237 
1238 			/* disable fine and coarse gain, enable AAF,
1239 			   no ext resistor */
1240 			status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1241 			if (status < 0)
1242 				break;
1243 		}
1244 	} while (0);
1245 	return status;
1246 }
1247 
1248 static int InitFE(struct drxd_state *state)
1249 {
1250 	int status;
1251 
1252 	do {
1253 		status = WriteTable(state, state->m_InitFE_1);
1254 		if (status < 0)
1255 			break;
1256 
1257 		if (state->type_A) {
1258 			status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1259 					 FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1260 					 0);
1261 		} else {
1262 			if (state->PGA)
1263 				status = SetCfgPga(state, 0);
1264 			else
1265 				status =
1266 				    Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1267 					    B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1268 					    0);
1269 		}
1270 
1271 		if (status < 0)
1272 			break;
1273 		status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1274 		if (status < 0)
1275 			break;
1276 		status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1277 		if (status < 0)
1278 			break;
1279 
1280 		status = WriteTable(state, state->m_InitFE_2);
1281 		if (status < 0)
1282 			break;
1283 
1284 	} while (0);
1285 
1286 	return status;
1287 }
1288 
1289 static int InitFT(struct drxd_state *state)
1290 {
1291 	/*
1292 	   norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1293 	   SC stuff
1294 	 */
1295 	return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1296 }
1297 
1298 static int SC_WaitForReady(struct drxd_state *state)
1299 {
1300 	u16 curCmd;
1301 	int i;
1302 
1303 	for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1304 		int status = Read16(state, SC_RA_RAM_CMD__A, &curCmd, 0);
1305 		if (status == 0 || curCmd == 0)
1306 			return status;
1307 	}
1308 	return -1;
1309 }
1310 
1311 static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1312 {
1313 	int status = 0;
1314 	u16 errCode;
1315 
1316 	Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1317 	SC_WaitForReady(state);
1318 
1319 	Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1320 
1321 	if (errCode == 0xFFFF) {
1322 		printk(KERN_ERR "Command Error\n");
1323 		status = -1;
1324 	}
1325 
1326 	return status;
1327 }
1328 
1329 static int SC_ProcStartCommand(struct drxd_state *state,
1330 			       u16 subCmd, u16 param0, u16 param1)
1331 {
1332 	int status = 0;
1333 	u16 scExec;
1334 
1335 	mutex_lock(&state->mutex);
1336 	do {
1337 		Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1338 		if (scExec != 1) {
1339 			status = -1;
1340 			break;
1341 		}
1342 		SC_WaitForReady(state);
1343 		Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1344 		Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1345 		Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1346 
1347 		SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1348 	} while (0);
1349 	mutex_unlock(&state->mutex);
1350 	return status;
1351 }
1352 
1353 static int SC_SetPrefParamCommand(struct drxd_state *state,
1354 				  u16 subCmd, u16 param0, u16 param1)
1355 {
1356 	int status;
1357 
1358 	mutex_lock(&state->mutex);
1359 	do {
1360 		status = SC_WaitForReady(state);
1361 		if (status < 0)
1362 			break;
1363 		status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1364 		if (status < 0)
1365 			break;
1366 		status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1367 		if (status < 0)
1368 			break;
1369 		status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1370 		if (status < 0)
1371 			break;
1372 
1373 		status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1374 		if (status < 0)
1375 			break;
1376 	} while (0);
1377 	mutex_unlock(&state->mutex);
1378 	return status;
1379 }
1380 
1381 #if 0
1382 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1383 {
1384 	int status = 0;
1385 
1386 	mutex_lock(&state->mutex);
1387 	do {
1388 		status = SC_WaitForReady(state);
1389 		if (status < 0)
1390 			break;
1391 		status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1392 		if (status < 0)
1393 			break;
1394 		status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1395 		if (status < 0)
1396 			break;
1397 	} while (0);
1398 	mutex_unlock(&state->mutex);
1399 	return status;
1400 }
1401 #endif
1402 
1403 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1404 {
1405 	int status;
1406 
1407 	do {
1408 		u16 EcOcRegIprInvMpg = 0;
1409 		u16 EcOcRegOcModeLop = 0;
1410 		u16 EcOcRegOcModeHip = 0;
1411 		u16 EcOcRegOcMpgSio = 0;
1412 
1413 		/*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1414 
1415 		if (state->operation_mode == OM_DVBT_Diversity_Front) {
1416 			if (bEnableOutput) {
1417 				EcOcRegOcModeHip |=
1418 				    B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1419 			} else
1420 				EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1421 			EcOcRegOcModeLop |=
1422 			    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1423 		} else {
1424 			EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1425 
1426 			if (bEnableOutput)
1427 				EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1428 			else
1429 				EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1430 
1431 			/* Don't Insert RS Byte */
1432 			if (state->insert_rs_byte) {
1433 				EcOcRegOcModeLop &=
1434 				    (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1435 				EcOcRegOcModeHip &=
1436 				    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1437 				EcOcRegOcModeHip |=
1438 				    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1439 			} else {
1440 				EcOcRegOcModeLop |=
1441 				    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1442 				EcOcRegOcModeHip &=
1443 				    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1444 				EcOcRegOcModeHip |=
1445 				    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1446 			}
1447 
1448 			/* Mode = Parallel */
1449 			if (state->enable_parallel)
1450 				EcOcRegOcModeLop &=
1451 				    (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1452 			else
1453 				EcOcRegOcModeLop |=
1454 				    EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1455 		}
1456 		/* Invert Data */
1457 		/* EcOcRegIprInvMpg |= 0x00FF; */
1458 		EcOcRegIprInvMpg &= (~(0x00FF));
1459 
1460 		/* Invert Error ( we don't use the pin ) */
1461 		/*  EcOcRegIprInvMpg |= 0x0100; */
1462 		EcOcRegIprInvMpg &= (~(0x0100));
1463 
1464 		/* Invert Start ( we don't use the pin ) */
1465 		/* EcOcRegIprInvMpg |= 0x0200; */
1466 		EcOcRegIprInvMpg &= (~(0x0200));
1467 
1468 		/* Invert Valid ( we don't use the pin ) */
1469 		/* EcOcRegIprInvMpg |= 0x0400; */
1470 		EcOcRegIprInvMpg &= (~(0x0400));
1471 
1472 		/* Invert Clock */
1473 		/* EcOcRegIprInvMpg |= 0x0800; */
1474 		EcOcRegIprInvMpg &= (~(0x0800));
1475 
1476 		/* EcOcRegOcModeLop =0x05; */
1477 		status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1478 		if (status < 0)
1479 			break;
1480 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1481 		if (status < 0)
1482 			break;
1483 		status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1484 		if (status < 0)
1485 			break;
1486 		status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1487 		if (status < 0)
1488 			break;
1489 	} while (0);
1490 	return status;
1491 }
1492 
1493 static int SetDeviceTypeId(struct drxd_state *state)
1494 {
1495 	int status = 0;
1496 	u16 deviceId = 0;
1497 
1498 	do {
1499 		status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1500 		if (status < 0)
1501 			break;
1502 		/* TODO: why twice? */
1503 		status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1504 		if (status < 0)
1505 			break;
1506 		printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1507 
1508 		state->type_A = 0;
1509 		state->PGA = 0;
1510 		state->diversity = 0;
1511 		if (deviceId == 0) {	/* on A2 only 3975 available */
1512 			state->type_A = 1;
1513 			printk(KERN_INFO "DRX3975D-A2\n");
1514 		} else {
1515 			deviceId >>= 12;
1516 			printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1517 			switch (deviceId) {
1518 			case 4:
1519 				state->diversity = 1;
1520 				/* fall through */
1521 			case 3:
1522 			case 7:
1523 				state->PGA = 1;
1524 				break;
1525 			case 6:
1526 				state->diversity = 1;
1527 				/* fall through */
1528 			case 5:
1529 			case 8:
1530 				break;
1531 			default:
1532 				status = -1;
1533 				break;
1534 			}
1535 		}
1536 	} while (0);
1537 
1538 	if (status < 0)
1539 		return status;
1540 
1541 	/* Init Table selection */
1542 	state->m_InitAtomicRead = DRXD_InitAtomicRead;
1543 	state->m_InitSC = DRXD_InitSC;
1544 	state->m_ResetECRAM = DRXD_ResetECRAM;
1545 	if (state->type_A) {
1546 		state->m_ResetCEFR = DRXD_ResetCEFR;
1547 		state->m_InitFE_1 = DRXD_InitFEA2_1;
1548 		state->m_InitFE_2 = DRXD_InitFEA2_2;
1549 		state->m_InitCP = DRXD_InitCPA2;
1550 		state->m_InitCE = DRXD_InitCEA2;
1551 		state->m_InitEQ = DRXD_InitEQA2;
1552 		state->m_InitEC = DRXD_InitECA2;
1553 		if (load_firmware(state, DRX_FW_FILENAME_A2))
1554 			return -EIO;
1555 	} else {
1556 		state->m_ResetCEFR = NULL;
1557 		state->m_InitFE_1 = DRXD_InitFEB1_1;
1558 		state->m_InitFE_2 = DRXD_InitFEB1_2;
1559 		state->m_InitCP = DRXD_InitCPB1;
1560 		state->m_InitCE = DRXD_InitCEB1;
1561 		state->m_InitEQ = DRXD_InitEQB1;
1562 		state->m_InitEC = DRXD_InitECB1;
1563 		if (load_firmware(state, DRX_FW_FILENAME_B1))
1564 			return -EIO;
1565 	}
1566 	if (state->diversity) {
1567 		state->m_InitDiversityFront = DRXD_InitDiversityFront;
1568 		state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1569 		state->m_DisableDiversity = DRXD_DisableDiversity;
1570 		state->m_StartDiversityFront = DRXD_StartDiversityFront;
1571 		state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1572 		state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1573 		state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1574 	} else {
1575 		state->m_InitDiversityFront = NULL;
1576 		state->m_InitDiversityEnd = NULL;
1577 		state->m_DisableDiversity = NULL;
1578 		state->m_StartDiversityFront = NULL;
1579 		state->m_StartDiversityEnd = NULL;
1580 		state->m_DiversityDelay8MHZ = NULL;
1581 		state->m_DiversityDelay6MHZ = NULL;
1582 	}
1583 
1584 	return status;
1585 }
1586 
1587 static int CorrectSysClockDeviation(struct drxd_state *state)
1588 {
1589 	int status;
1590 	s32 incr = 0;
1591 	s32 nomincr = 0;
1592 	u32 bandwidth = 0;
1593 	u32 sysClockInHz = 0;
1594 	u32 sysClockFreq = 0;	/* in kHz */
1595 	s16 oscClockDeviation;
1596 	s16 Diff;
1597 
1598 	do {
1599 		/* Retrieve bandwidth and incr, sanity check */
1600 
1601 		/* These accesses should be AtomicReadReg32, but that
1602 		   causes trouble (at least for diversity */
1603 		status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1604 		if (status < 0)
1605 			break;
1606 		status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1607 		if (status < 0)
1608 			break;
1609 
1610 		if (state->type_A) {
1611 			if ((nomincr - incr < -500) || (nomincr - incr > 500))
1612 				break;
1613 		} else {
1614 			if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1615 				break;
1616 		}
1617 
1618 		switch (state->props.bandwidth_hz) {
1619 		case 8000000:
1620 			bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1621 			break;
1622 		case 7000000:
1623 			bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1624 			break;
1625 		case 6000000:
1626 			bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1627 			break;
1628 		default:
1629 			return -1;
1630 			break;
1631 		}
1632 
1633 		/* Compute new sysclock value
1634 		   sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1635 		incr += (1 << 23);
1636 		sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1637 		sysClockFreq = (u32) (sysClockInHz / 1000);
1638 		/* rounding */
1639 		if ((sysClockInHz % 1000) > 500)
1640 			sysClockFreq++;
1641 
1642 		/* Compute clock deviation in ppm */
1643 		oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1644 					     (s32)
1645 					     (state->expected_sys_clock_freq)) *
1646 					    1000000L) /
1647 					   (s32)
1648 					   (state->expected_sys_clock_freq));
1649 
1650 		Diff = oscClockDeviation - state->osc_clock_deviation;
1651 		/*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1652 		if (Diff >= -200 && Diff <= 200) {
1653 			state->sys_clock_freq = (u16) sysClockFreq;
1654 			if (oscClockDeviation != state->osc_clock_deviation) {
1655 				if (state->config.osc_deviation) {
1656 					state->config.osc_deviation(state->priv,
1657 								    oscClockDeviation,
1658 								    1);
1659 					state->osc_clock_deviation =
1660 					    oscClockDeviation;
1661 				}
1662 			}
1663 			/* switch OFF SRMM scan in SC */
1664 			status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1665 			if (status < 0)
1666 				break;
1667 			/* overrule FE_IF internal value for
1668 			   proper re-locking */
1669 			status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1670 			if (status < 0)
1671 				break;
1672 			state->cscd_state = CSCD_SAVED;
1673 		}
1674 	} while (0);
1675 
1676 	return status;
1677 }
1678 
1679 static int DRX_Stop(struct drxd_state *state)
1680 {
1681 	int status;
1682 
1683 	if (state->drxd_state != DRXD_STARTED)
1684 		return 0;
1685 
1686 	do {
1687 		if (state->cscd_state != CSCD_SAVED) {
1688 			u32 lock;
1689 			status = DRX_GetLockStatus(state, &lock);
1690 			if (status < 0)
1691 				break;
1692 		}
1693 
1694 		status = StopOC(state);
1695 		if (status < 0)
1696 			break;
1697 
1698 		state->drxd_state = DRXD_STOPPED;
1699 
1700 		status = ConfigureMPEGOutput(state, 0);
1701 		if (status < 0)
1702 			break;
1703 
1704 		if (state->type_A) {
1705 			/* Stop relevant processors off the device */
1706 			status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1707 			if (status < 0)
1708 				break;
1709 
1710 			status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1711 			if (status < 0)
1712 				break;
1713 			status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1714 			if (status < 0)
1715 				break;
1716 		} else {
1717 			/* Stop all processors except HI & CC & FE */
1718 			status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1719 			if (status < 0)
1720 				break;
1721 			status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1722 			if (status < 0)
1723 				break;
1724 			status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1725 			if (status < 0)
1726 				break;
1727 			status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1728 			if (status < 0)
1729 				break;
1730 			status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1731 			if (status < 0)
1732 				break;
1733 			status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1734 			if (status < 0)
1735 				break;
1736 			status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1737 			if (status < 0)
1738 				break;
1739 		}
1740 
1741 	} while (0);
1742 	return status;
1743 }
1744 
1745 #if 0	/* Currently unused */
1746 static int SetOperationMode(struct drxd_state *state, int oMode)
1747 {
1748 	int status;
1749 
1750 	do {
1751 		if (state->drxd_state != DRXD_STOPPED) {
1752 			status = -1;
1753 			break;
1754 		}
1755 
1756 		if (oMode == state->operation_mode) {
1757 			status = 0;
1758 			break;
1759 		}
1760 
1761 		if (oMode != OM_Default && !state->diversity) {
1762 			status = -1;
1763 			break;
1764 		}
1765 
1766 		switch (oMode) {
1767 		case OM_DVBT_Diversity_Front:
1768 			status = WriteTable(state, state->m_InitDiversityFront);
1769 			break;
1770 		case OM_DVBT_Diversity_End:
1771 			status = WriteTable(state, state->m_InitDiversityEnd);
1772 			break;
1773 		case OM_Default:
1774 			/* We need to check how to
1775 			   get DRXD out of diversity */
1776 		default:
1777 			status = WriteTable(state, state->m_DisableDiversity);
1778 			break;
1779 		}
1780 	} while (0);
1781 
1782 	if (!status)
1783 		state->operation_mode = oMode;
1784 	return status;
1785 }
1786 #endif
1787 
1788 static int StartDiversity(struct drxd_state *state)
1789 {
1790 	int status = 0;
1791 	u16 rcControl;
1792 
1793 	do {
1794 		if (state->operation_mode == OM_DVBT_Diversity_Front) {
1795 			status = WriteTable(state, state->m_StartDiversityFront);
1796 			if (status < 0)
1797 				break;
1798 		} else if (state->operation_mode == OM_DVBT_Diversity_End) {
1799 			status = WriteTable(state, state->m_StartDiversityEnd);
1800 			if (status < 0)
1801 				break;
1802 			if (state->props.bandwidth_hz == 8000000) {
1803 				status = WriteTable(state, state->m_DiversityDelay8MHZ);
1804 				if (status < 0)
1805 					break;
1806 			} else {
1807 				status = WriteTable(state, state->m_DiversityDelay6MHZ);
1808 				if (status < 0)
1809 					break;
1810 			}
1811 
1812 			status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1813 			if (status < 0)
1814 				break;
1815 			rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1816 			rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1817 			    /*  combining enabled */
1818 			    B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1819 			    B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1820 			    B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1821 			status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1822 			if (status < 0)
1823 				break;
1824 		}
1825 	} while (0);
1826 	return status;
1827 }
1828 
1829 static int SetFrequencyShift(struct drxd_state *state,
1830 			     u32 offsetFreq, int channelMirrored)
1831 {
1832 	int negativeShift = (state->tuner_mirrors == channelMirrored);
1833 
1834 	/* Handle all mirroring
1835 	 *
1836 	 * Note: ADC mirroring (aliasing) is implictly handled by limiting
1837 	 * feFsRegAddInc to 28 bits below
1838 	 * (if the result before masking is more than 28 bits, this means
1839 	 *  that the ADC is mirroring.
1840 	 * The masking is in fact the aliasing of the ADC)
1841 	 *
1842 	 */
1843 
1844 	/* Compute register value, unsigned computation */
1845 	state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1846 					 offsetFreq,
1847 					 1 << 28, state->sys_clock_freq);
1848 	/* Remove integer part */
1849 	state->fe_fs_add_incr &= 0x0FFFFFFFL;
1850 	if (negativeShift)
1851 		state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1852 
1853 	/* Save the frequency shift without tunerOffset compensation
1854 	   for CtrlGetChannel. */
1855 	state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1856 					     1 << 28, state->sys_clock_freq);
1857 	/* Remove integer part */
1858 	state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1859 	if (negativeShift)
1860 		state->org_fe_fs_add_incr = ((1L << 28) -
1861 					     state->org_fe_fs_add_incr);
1862 
1863 	return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1864 		       state->fe_fs_add_incr, 0);
1865 }
1866 
1867 static int SetCfgNoiseCalibration(struct drxd_state *state,
1868 				  struct SNoiseCal *noiseCal)
1869 {
1870 	u16 beOptEna;
1871 	int status = 0;
1872 
1873 	do {
1874 		status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1875 		if (status < 0)
1876 			break;
1877 		if (noiseCal->cpOpt) {
1878 			beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1879 		} else {
1880 			beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1881 			status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1882 			if (status < 0)
1883 				break;
1884 		}
1885 		status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1886 		if (status < 0)
1887 			break;
1888 
1889 		if (!state->type_A) {
1890 			status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1891 			if (status < 0)
1892 				break;
1893 			status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1894 			if (status < 0)
1895 				break;
1896 		}
1897 	} while (0);
1898 
1899 	return status;
1900 }
1901 
1902 static int DRX_Start(struct drxd_state *state, s32 off)
1903 {
1904 	struct dtv_frontend_properties *p = &state->props;
1905 	int status;
1906 
1907 	u16 transmissionParams = 0;
1908 	u16 operationMode = 0;
1909 	u16 qpskTdTpsPwr = 0;
1910 	u16 qam16TdTpsPwr = 0;
1911 	u16 qam64TdTpsPwr = 0;
1912 	u32 feIfIncr = 0;
1913 	u32 bandwidth = 0;
1914 	int mirrorFreqSpect;
1915 
1916 	u16 qpskSnCeGain = 0;
1917 	u16 qam16SnCeGain = 0;
1918 	u16 qam64SnCeGain = 0;
1919 	u16 qpskIsGainMan = 0;
1920 	u16 qam16IsGainMan = 0;
1921 	u16 qam64IsGainMan = 0;
1922 	u16 qpskIsGainExp = 0;
1923 	u16 qam16IsGainExp = 0;
1924 	u16 qam64IsGainExp = 0;
1925 	u16 bandwidthParam = 0;
1926 
1927 	if (off < 0)
1928 		off = (off - 500) / 1000;
1929 	else
1930 		off = (off + 500) / 1000;
1931 
1932 	do {
1933 		if (state->drxd_state != DRXD_STOPPED)
1934 			return -1;
1935 		status = ResetECOD(state);
1936 		if (status < 0)
1937 			break;
1938 		if (state->type_A) {
1939 			status = InitSC(state);
1940 			if (status < 0)
1941 				break;
1942 		} else {
1943 			status = InitFT(state);
1944 			if (status < 0)
1945 				break;
1946 			status = InitCP(state);
1947 			if (status < 0)
1948 				break;
1949 			status = InitCE(state);
1950 			if (status < 0)
1951 				break;
1952 			status = InitEQ(state);
1953 			if (status < 0)
1954 				break;
1955 			status = InitSC(state);
1956 			if (status < 0)
1957 				break;
1958 		}
1959 
1960 		/* Restore current IF & RF AGC settings */
1961 
1962 		status = SetCfgIfAgc(state, &state->if_agc_cfg);
1963 		if (status < 0)
1964 			break;
1965 		status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1966 		if (status < 0)
1967 			break;
1968 
1969 		mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1970 
1971 		switch (p->transmission_mode) {
1972 		default:	/* Not set, detect it automatically */
1973 			operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1974 			/* try first guess DRX_FFTMODE_8K */
1975 			/* fall through */
1976 		case TRANSMISSION_MODE_8K:
1977 			transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1978 			if (state->type_A) {
1979 				status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1980 				if (status < 0)
1981 					break;
1982 				qpskSnCeGain = 99;
1983 				qam16SnCeGain = 83;
1984 				qam64SnCeGain = 67;
1985 			}
1986 			break;
1987 		case TRANSMISSION_MODE_2K:
1988 			transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1989 			if (state->type_A) {
1990 				status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1991 				if (status < 0)
1992 					break;
1993 				qpskSnCeGain = 97;
1994 				qam16SnCeGain = 71;
1995 				qam64SnCeGain = 65;
1996 			}
1997 			break;
1998 		}
1999 
2000 		switch (p->guard_interval) {
2001 		case GUARD_INTERVAL_1_4:
2002 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2003 			break;
2004 		case GUARD_INTERVAL_1_8:
2005 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
2006 			break;
2007 		case GUARD_INTERVAL_1_16:
2008 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2009 			break;
2010 		case GUARD_INTERVAL_1_32:
2011 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2012 			break;
2013 		default:	/* Not set, detect it automatically */
2014 			operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2015 			/* try first guess 1/4 */
2016 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2017 			break;
2018 		}
2019 
2020 		switch (p->hierarchy) {
2021 		case HIERARCHY_1:
2022 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2023 			if (state->type_A) {
2024 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2025 				if (status < 0)
2026 					break;
2027 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2028 				if (status < 0)
2029 					break;
2030 
2031 				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2032 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2033 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2034 
2035 				qpskIsGainMan =
2036 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2037 				qam16IsGainMan =
2038 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2039 				qam64IsGainMan =
2040 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2041 
2042 				qpskIsGainExp =
2043 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2044 				qam16IsGainExp =
2045 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2046 				qam64IsGainExp =
2047 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2048 			}
2049 			break;
2050 
2051 		case HIERARCHY_2:
2052 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2053 			if (state->type_A) {
2054 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2055 				if (status < 0)
2056 					break;
2057 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2058 				if (status < 0)
2059 					break;
2060 
2061 				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2062 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2063 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2064 
2065 				qpskIsGainMan =
2066 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2067 				qam16IsGainMan =
2068 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2069 				qam64IsGainMan =
2070 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2071 
2072 				qpskIsGainExp =
2073 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2074 				qam16IsGainExp =
2075 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2076 				qam64IsGainExp =
2077 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2078 			}
2079 			break;
2080 		case HIERARCHY_4:
2081 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2082 			if (state->type_A) {
2083 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2084 				if (status < 0)
2085 					break;
2086 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2087 				if (status < 0)
2088 					break;
2089 
2090 				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2091 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2092 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2093 
2094 				qpskIsGainMan =
2095 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2096 				qam16IsGainMan =
2097 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2098 				qam64IsGainMan =
2099 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2100 
2101 				qpskIsGainExp =
2102 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2103 				qam16IsGainExp =
2104 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2105 				qam64IsGainExp =
2106 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2107 			}
2108 			break;
2109 		case HIERARCHY_AUTO:
2110 		default:
2111 			/* Not set, detect it automatically, start with none */
2112 			operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2113 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2114 			if (state->type_A) {
2115 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2116 				if (status < 0)
2117 					break;
2118 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2119 				if (status < 0)
2120 					break;
2121 
2122 				qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2123 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2124 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2125 
2126 				qpskIsGainMan =
2127 				    SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2128 				qam16IsGainMan =
2129 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2130 				qam64IsGainMan =
2131 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2132 
2133 				qpskIsGainExp =
2134 				    SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2135 				qam16IsGainExp =
2136 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2137 				qam64IsGainExp =
2138 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2139 			}
2140 			break;
2141 		}
2142 		status = status;
2143 		if (status < 0)
2144 			break;
2145 
2146 		switch (p->modulation) {
2147 		default:
2148 			operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2149 			/* try first guess DRX_CONSTELLATION_QAM64 */
2150 			/* fall through */
2151 		case QAM_64:
2152 			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2153 			if (state->type_A) {
2154 				status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2155 				if (status < 0)
2156 					break;
2157 				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2158 				if (status < 0)
2159 					break;
2160 				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2161 				if (status < 0)
2162 					break;
2163 				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2164 				if (status < 0)
2165 					break;
2166 				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2167 				if (status < 0)
2168 					break;
2169 
2170 				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2171 				if (status < 0)
2172 					break;
2173 				status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2174 				if (status < 0)
2175 					break;
2176 				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2177 				if (status < 0)
2178 					break;
2179 				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2180 				if (status < 0)
2181 					break;
2182 			}
2183 			break;
2184 		case QPSK:
2185 			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2186 			if (state->type_A) {
2187 				status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2188 				if (status < 0)
2189 					break;
2190 				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2191 				if (status < 0)
2192 					break;
2193 				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2194 				if (status < 0)
2195 					break;
2196 				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2197 				if (status < 0)
2198 					break;
2199 				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2200 				if (status < 0)
2201 					break;
2202 
2203 				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2204 				if (status < 0)
2205 					break;
2206 				status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2207 				if (status < 0)
2208 					break;
2209 				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2210 				if (status < 0)
2211 					break;
2212 				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2213 				if (status < 0)
2214 					break;
2215 			}
2216 			break;
2217 
2218 		case QAM_16:
2219 			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2220 			if (state->type_A) {
2221 				status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2222 				if (status < 0)
2223 					break;
2224 				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2225 				if (status < 0)
2226 					break;
2227 				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2228 				if (status < 0)
2229 					break;
2230 				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2231 				if (status < 0)
2232 					break;
2233 				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2234 				if (status < 0)
2235 					break;
2236 
2237 				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2238 				if (status < 0)
2239 					break;
2240 				status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2241 				if (status < 0)
2242 					break;
2243 				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2244 				if (status < 0)
2245 					break;
2246 				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2247 				if (status < 0)
2248 					break;
2249 			}
2250 			break;
2251 
2252 		}
2253 		status = status;
2254 		if (status < 0)
2255 			break;
2256 
2257 		switch (DRX_CHANNEL_HIGH) {
2258 		default:
2259 		case DRX_CHANNEL_AUTO:
2260 		case DRX_CHANNEL_LOW:
2261 			transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2262 			status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2263 			if (status < 0)
2264 				break;
2265 			break;
2266 		case DRX_CHANNEL_HIGH:
2267 			transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2268 			status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2269 			if (status < 0)
2270 				break;
2271 			break;
2272 
2273 		}
2274 
2275 		switch (p->code_rate_HP) {
2276 		case FEC_1_2:
2277 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2278 			if (state->type_A) {
2279 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2280 				if (status < 0)
2281 					break;
2282 			}
2283 			break;
2284 		default:
2285 			operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2286 			/* fall through */
2287 		case FEC_2_3:
2288 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2289 			if (state->type_A) {
2290 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2291 				if (status < 0)
2292 					break;
2293 			}
2294 			break;
2295 		case FEC_3_4:
2296 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2297 			if (state->type_A) {
2298 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2299 				if (status < 0)
2300 					break;
2301 			}
2302 			break;
2303 		case FEC_5_6:
2304 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2305 			if (state->type_A) {
2306 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2307 				if (status < 0)
2308 					break;
2309 			}
2310 			break;
2311 		case FEC_7_8:
2312 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2313 			if (state->type_A) {
2314 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2315 				if (status < 0)
2316 					break;
2317 			}
2318 			break;
2319 		}
2320 		status = status;
2321 		if (status < 0)
2322 			break;
2323 
2324 		/* First determine real bandwidth (Hz) */
2325 		/* Also set delay for impulse noise cruncher (only A2) */
2326 		/* Also set parameters for EC_OC fix, note
2327 		   EC_OC_REG_TMD_HIL_MAR is changed
2328 		   by SC for fix for some 8K,1/8 guard but is restored by
2329 		   InitEC and ResetEC
2330 		   functions */
2331 		switch (p->bandwidth_hz) {
2332 		case 0:
2333 			p->bandwidth_hz = 8000000;
2334 			/* fall through */
2335 		case 8000000:
2336 			/* (64/7)*(8/8)*1000000 */
2337 			bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2338 
2339 			bandwidthParam = 0;
2340 			status = Write16(state,
2341 					 FE_AG_REG_IND_DEL__A, 50, 0x0000);
2342 			break;
2343 		case 7000000:
2344 			/* (64/7)*(7/8)*1000000 */
2345 			bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2346 			bandwidthParam = 0x4807;	/*binary:0100 1000 0000 0111 */
2347 			status = Write16(state,
2348 					 FE_AG_REG_IND_DEL__A, 59, 0x0000);
2349 			break;
2350 		case 6000000:
2351 			/* (64/7)*(6/8)*1000000 */
2352 			bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2353 			bandwidthParam = 0x0F07;	/*binary: 0000 1111 0000 0111 */
2354 			status = Write16(state,
2355 					 FE_AG_REG_IND_DEL__A, 71, 0x0000);
2356 			break;
2357 		default:
2358 			status = -EINVAL;
2359 		}
2360 		if (status < 0)
2361 			break;
2362 
2363 		status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2364 		if (status < 0)
2365 			break;
2366 
2367 		{
2368 			u16 sc_config;
2369 			status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2370 			if (status < 0)
2371 				break;
2372 
2373 			/* enable SLAVE mode in 2k 1/32 to
2374 			   prevent timing change glitches */
2375 			if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2376 			    (p->guard_interval == GUARD_INTERVAL_1_32)) {
2377 				/* enable slave */
2378 				sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2379 			} else {
2380 				/* disable slave */
2381 				sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2382 			}
2383 			status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2384 			if (status < 0)
2385 				break;
2386 		}
2387 
2388 		status = SetCfgNoiseCalibration(state, &state->noise_cal);
2389 		if (status < 0)
2390 			break;
2391 
2392 		if (state->cscd_state == CSCD_INIT) {
2393 			/* switch on SRMM scan in SC */
2394 			status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2395 			if (status < 0)
2396 				break;
2397 /*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2398 			state->cscd_state = CSCD_SET;
2399 		}
2400 
2401 		/* Now compute FE_IF_REG_INCR */
2402 		/*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2403 		   ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2404 		feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2405 				    (1ULL << 21), bandwidth) - (1 << 23);
2406 		status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2407 		if (status < 0)
2408 			break;
2409 		status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2410 		if (status < 0)
2411 			break;
2412 		/* Bandwidth setting done */
2413 
2414 		/* Mirror & frequency offset */
2415 		SetFrequencyShift(state, off, mirrorFreqSpect);
2416 
2417 		/* Start SC, write channel settings to SC */
2418 
2419 		/* Enable SC after setting all other parameters */
2420 		status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2421 		if (status < 0)
2422 			break;
2423 		status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2424 		if (status < 0)
2425 			break;
2426 
2427 		/* Write SC parameter registers, operation mode */
2428 #if 1
2429 		operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2430 				 SC_RA_RAM_OP_AUTO_GUARD__M |
2431 				 SC_RA_RAM_OP_AUTO_CONST__M |
2432 				 SC_RA_RAM_OP_AUTO_HIER__M |
2433 				 SC_RA_RAM_OP_AUTO_RATE__M);
2434 #endif
2435 		status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2436 		if (status < 0)
2437 			break;
2438 
2439 		/* Start correct processes to get in lock */
2440 		status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2441 		if (status < 0)
2442 			break;
2443 
2444 		status = StartOC(state);
2445 		if (status < 0)
2446 			break;
2447 
2448 		if (state->operation_mode != OM_Default) {
2449 			status = StartDiversity(state);
2450 			if (status < 0)
2451 				break;
2452 		}
2453 
2454 		state->drxd_state = DRXD_STARTED;
2455 	} while (0);
2456 
2457 	return status;
2458 }
2459 
2460 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2461 {
2462 	u32 ulRfAgcOutputLevel = 0xffffffff;
2463 	u32 ulRfAgcSettleLevel = 528;	/* Optimum value for MT2060 */
2464 	u32 ulRfAgcMinLevel = 0;	/* Currently unused */
2465 	u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX;	/* Currently unused */
2466 	u32 ulRfAgcSpeed = 0;	/* Currently unused */
2467 	u32 ulRfAgcMode = 0;	/*2;   Off */
2468 	u32 ulRfAgcR1 = 820;
2469 	u32 ulRfAgcR2 = 2200;
2470 	u32 ulRfAgcR3 = 150;
2471 	u32 ulIfAgcMode = 0;	/* Auto */
2472 	u32 ulIfAgcOutputLevel = 0xffffffff;
2473 	u32 ulIfAgcSettleLevel = 0xffffffff;
2474 	u32 ulIfAgcMinLevel = 0xffffffff;
2475 	u32 ulIfAgcMaxLevel = 0xffffffff;
2476 	u32 ulIfAgcSpeed = 0xffffffff;
2477 	u32 ulIfAgcR1 = 820;
2478 	u32 ulIfAgcR2 = 2200;
2479 	u32 ulIfAgcR3 = 150;
2480 	u32 ulClock = state->config.clock;
2481 	u32 ulSerialMode = 0;
2482 	u32 ulEcOcRegOcModeLop = 4;	/* Dynamic DTO source */
2483 	u32 ulHiI2cDelay = HI_I2C_DELAY;
2484 	u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2485 	u32 ulHiI2cPatch = 0;
2486 	u32 ulEnvironment = APPENV_PORTABLE;
2487 	u32 ulEnvironmentDiversity = APPENV_MOBILE;
2488 	u32 ulIFFilter = IFFILTER_SAW;
2489 
2490 	state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2491 	state->if_agc_cfg.outputLevel = 0;
2492 	state->if_agc_cfg.settleLevel = 140;
2493 	state->if_agc_cfg.minOutputLevel = 0;
2494 	state->if_agc_cfg.maxOutputLevel = 1023;
2495 	state->if_agc_cfg.speed = 904;
2496 
2497 	if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2498 		state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2499 		state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2500 	}
2501 
2502 	if (ulIfAgcMode == 0 &&
2503 	    ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2504 	    ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2505 	    ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2506 	    ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2507 		state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2508 		state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2509 		state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2510 		state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2511 		state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2512 	}
2513 
2514 	state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2515 	state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2516 	state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2517 
2518 	state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2519 	state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2520 	state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2521 
2522 	state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2523 	/* rest of the RFAgcCfg structure currently unused */
2524 	if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2525 		state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2526 		state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2527 	}
2528 
2529 	if (ulRfAgcMode == 0 &&
2530 	    ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2531 	    ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2532 	    ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2533 	    ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2534 		state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2535 		state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2536 		state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2537 		state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2538 		state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2539 	}
2540 
2541 	if (ulRfAgcMode == 2)
2542 		state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2543 
2544 	if (ulEnvironment <= 2)
2545 		state->app_env_default = (enum app_env)
2546 		    (ulEnvironment);
2547 	if (ulEnvironmentDiversity <= 2)
2548 		state->app_env_diversity = (enum app_env)
2549 		    (ulEnvironmentDiversity);
2550 
2551 	if (ulIFFilter == IFFILTER_DISCRETE) {
2552 		/* discrete filter */
2553 		state->noise_cal.cpOpt = 0;
2554 		state->noise_cal.cpNexpOfs = 40;
2555 		state->noise_cal.tdCal2k = -40;
2556 		state->noise_cal.tdCal8k = -24;
2557 	} else {
2558 		/* SAW filter */
2559 		state->noise_cal.cpOpt = 1;
2560 		state->noise_cal.cpNexpOfs = 0;
2561 		state->noise_cal.tdCal2k = -21;
2562 		state->noise_cal.tdCal8k = -24;
2563 	}
2564 	state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2565 
2566 	state->chip_adr = (state->config.demod_address << 1) | 1;
2567 	switch (ulHiI2cPatch) {
2568 	case 1:
2569 		state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2570 		break;
2571 	case 3:
2572 		state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2573 		break;
2574 	default:
2575 		state->m_HiI2cPatch = NULL;
2576 	}
2577 
2578 	/* modify tuner and clock attributes */
2579 	state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2580 	/* expected system clock frequency in kHz */
2581 	state->expected_sys_clock_freq = 48000;
2582 	/* real system clock frequency in kHz */
2583 	state->sys_clock_freq = 48000;
2584 	state->osc_clock_freq = (u16) ulClock;
2585 	state->osc_clock_deviation = 0;
2586 	state->cscd_state = CSCD_INIT;
2587 	state->drxd_state = DRXD_UNINITIALIZED;
2588 
2589 	state->PGA = 0;
2590 	state->type_A = 0;
2591 	state->tuner_mirrors = 0;
2592 
2593 	/* modify MPEG output attributes */
2594 	state->insert_rs_byte = state->config.insert_rs_byte;
2595 	state->enable_parallel = (ulSerialMode != 1);
2596 
2597 	/* Timing div, 250ns/Psys */
2598 	/* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2599 
2600 	state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2601 					  ulHiI2cDelay) / 1000;
2602 	/* Bridge delay, uses oscilator clock */
2603 	/* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2604 	state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2605 					    ulHiI2cBridgeDelay) / 1000;
2606 
2607 	state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2608 	/* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2609 	state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2610 	return 0;
2611 }
2612 
2613 static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2614 {
2615 	int status = 0;
2616 	u32 driverVersion;
2617 
2618 	if (state->init_done)
2619 		return 0;
2620 
2621 	CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2622 
2623 	do {
2624 		state->operation_mode = OM_Default;
2625 
2626 		status = SetDeviceTypeId(state);
2627 		if (status < 0)
2628 			break;
2629 
2630 		/* Apply I2c address patch to B1 */
2631 		if (!state->type_A && state->m_HiI2cPatch != NULL) {
2632 			status = WriteTable(state, state->m_HiI2cPatch);
2633 			if (status < 0)
2634 				break;
2635 		}
2636 
2637 		if (state->type_A) {
2638 			/* HI firmware patch for UIO readout,
2639 			   avoid clearing of result register */
2640 			status = Write16(state, 0x43012D, 0x047f, 0);
2641 			if (status < 0)
2642 				break;
2643 		}
2644 
2645 		status = HI_ResetCommand(state);
2646 		if (status < 0)
2647 			break;
2648 
2649 		status = StopAllProcessors(state);
2650 		if (status < 0)
2651 			break;
2652 		status = InitCC(state);
2653 		if (status < 0)
2654 			break;
2655 
2656 		state->osc_clock_deviation = 0;
2657 
2658 		if (state->config.osc_deviation)
2659 			state->osc_clock_deviation =
2660 			    state->config.osc_deviation(state->priv, 0, 0);
2661 		{
2662 			/* Handle clock deviation */
2663 			s32 devB;
2664 			s32 devA = (s32) (state->osc_clock_deviation) *
2665 			    (s32) (state->expected_sys_clock_freq);
2666 			/* deviation in kHz */
2667 			s32 deviation = (devA / (1000000L));
2668 			/* rounding, signed */
2669 			if (devA > 0)
2670 				devB = (2);
2671 			else
2672 				devB = (-2);
2673 			if ((devB * (devA % 1000000L) > 1000000L)) {
2674 				/* add +1 or -1 */
2675 				deviation += (devB / 2);
2676 			}
2677 
2678 			state->sys_clock_freq =
2679 			    (u16) ((state->expected_sys_clock_freq) +
2680 				   deviation);
2681 		}
2682 		status = InitHI(state);
2683 		if (status < 0)
2684 			break;
2685 		status = InitAtomicRead(state);
2686 		if (status < 0)
2687 			break;
2688 
2689 		status = EnableAndResetMB(state);
2690 		if (status < 0)
2691 			break;
2692 		if (state->type_A) {
2693 			status = ResetCEFR(state);
2694 			if (status < 0)
2695 				break;
2696 		}
2697 		if (fw) {
2698 			status = DownloadMicrocode(state, fw, fw_size);
2699 			if (status < 0)
2700 				break;
2701 		} else {
2702 			status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2703 			if (status < 0)
2704 				break;
2705 		}
2706 
2707 		if (state->PGA) {
2708 			state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2709 			SetCfgPga(state, 0);	/* PGA = 0 dB */
2710 		} else {
2711 			state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2712 		}
2713 
2714 		state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2715 
2716 		status = InitFE(state);
2717 		if (status < 0)
2718 			break;
2719 		status = InitFT(state);
2720 		if (status < 0)
2721 			break;
2722 		status = InitCP(state);
2723 		if (status < 0)
2724 			break;
2725 		status = InitCE(state);
2726 		if (status < 0)
2727 			break;
2728 		status = InitEQ(state);
2729 		if (status < 0)
2730 			break;
2731 		status = InitEC(state);
2732 		if (status < 0)
2733 			break;
2734 		status = InitSC(state);
2735 		if (status < 0)
2736 			break;
2737 
2738 		status = SetCfgIfAgc(state, &state->if_agc_cfg);
2739 		if (status < 0)
2740 			break;
2741 		status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2742 		if (status < 0)
2743 			break;
2744 
2745 		state->cscd_state = CSCD_INIT;
2746 		status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2747 		if (status < 0)
2748 			break;
2749 		status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2750 		if (status < 0)
2751 			break;
2752 
2753 		driverVersion = (((VERSION_MAJOR / 10) << 4) +
2754 				 (VERSION_MAJOR % 10)) << 24;
2755 		driverVersion += (((VERSION_MINOR / 10) << 4) +
2756 				  (VERSION_MINOR % 10)) << 16;
2757 		driverVersion += ((VERSION_PATCH / 1000) << 12) +
2758 		    ((VERSION_PATCH / 100) << 8) +
2759 		    ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2760 
2761 		status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2762 		if (status < 0)
2763 			break;
2764 
2765 		status = StopOC(state);
2766 		if (status < 0)
2767 			break;
2768 
2769 		state->drxd_state = DRXD_STOPPED;
2770 		state->init_done = 1;
2771 		status = 0;
2772 	} while (0);
2773 	return status;
2774 }
2775 
2776 static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2777 {
2778 	DRX_GetLockStatus(state, pLockStatus);
2779 
2780 	/*if (*pLockStatus&DRX_LOCK_MPEG) */
2781 	if (*pLockStatus & DRX_LOCK_FEC) {
2782 		ConfigureMPEGOutput(state, 1);
2783 		/* Get status again, in case we have MPEG lock now */
2784 		/*DRX_GetLockStatus(state, pLockStatus); */
2785 	}
2786 
2787 	return 0;
2788 }
2789 
2790 /****************************************************************************/
2791 /****************************************************************************/
2792 /****************************************************************************/
2793 
2794 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2795 {
2796 	struct drxd_state *state = fe->demodulator_priv;
2797 	u32 value;
2798 	int res;
2799 
2800 	res = ReadIFAgc(state, &value);
2801 	if (res < 0)
2802 		*strength = 0;
2803 	else
2804 		*strength = 0xffff - (value << 4);
2805 	return 0;
2806 }
2807 
2808 static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
2809 {
2810 	struct drxd_state *state = fe->demodulator_priv;
2811 	u32 lock;
2812 
2813 	DRXD_status(state, &lock);
2814 	*status = 0;
2815 	/* No MPEG lock in V255 firmware, bug ? */
2816 #if 1
2817 	if (lock & DRX_LOCK_MPEG)
2818 		*status |= FE_HAS_LOCK;
2819 #else
2820 	if (lock & DRX_LOCK_FEC)
2821 		*status |= FE_HAS_LOCK;
2822 #endif
2823 	if (lock & DRX_LOCK_FEC)
2824 		*status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2825 	if (lock & DRX_LOCK_DEMOD)
2826 		*status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2827 
2828 	return 0;
2829 }
2830 
2831 static int drxd_init(struct dvb_frontend *fe)
2832 {
2833 	struct drxd_state *state = fe->demodulator_priv;
2834 
2835 	return DRXD_init(state, NULL, 0);
2836 }
2837 
2838 static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2839 {
2840 	struct drxd_state *state = fe->demodulator_priv;
2841 
2842 	if (state->config.disable_i2c_gate_ctrl == 1)
2843 		return 0;
2844 
2845 	return DRX_ConfigureI2CBridge(state, onoff);
2846 }
2847 
2848 static int drxd_get_tune_settings(struct dvb_frontend *fe,
2849 				  struct dvb_frontend_tune_settings *sets)
2850 {
2851 	sets->min_delay_ms = 10000;
2852 	sets->max_drift = 0;
2853 	sets->step_size = 0;
2854 	return 0;
2855 }
2856 
2857 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2858 {
2859 	*ber = 0;
2860 	return 0;
2861 }
2862 
2863 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2864 {
2865 	*snr = 0;
2866 	return 0;
2867 }
2868 
2869 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2870 {
2871 	*ucblocks = 0;
2872 	return 0;
2873 }
2874 
2875 static int drxd_sleep(struct dvb_frontend *fe)
2876 {
2877 	struct drxd_state *state = fe->demodulator_priv;
2878 
2879 	ConfigureMPEGOutput(state, 0);
2880 	return 0;
2881 }
2882 
2883 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2884 {
2885 	return drxd_config_i2c(fe, enable);
2886 }
2887 
2888 static int drxd_set_frontend(struct dvb_frontend *fe)
2889 {
2890 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2891 	struct drxd_state *state = fe->demodulator_priv;
2892 	s32 off = 0;
2893 
2894 	state->props = *p;
2895 	DRX_Stop(state);
2896 
2897 	if (fe->ops.tuner_ops.set_params) {
2898 		fe->ops.tuner_ops.set_params(fe);
2899 		if (fe->ops.i2c_gate_ctrl)
2900 			fe->ops.i2c_gate_ctrl(fe, 0);
2901 	}
2902 
2903 	msleep(200);
2904 
2905 	return DRX_Start(state, off);
2906 }
2907 
2908 static void drxd_release(struct dvb_frontend *fe)
2909 {
2910 	struct drxd_state *state = fe->demodulator_priv;
2911 
2912 	kfree(state);
2913 }
2914 
2915 static const struct dvb_frontend_ops drxd_ops = {
2916 	.delsys = { SYS_DVBT},
2917 	.info = {
2918 		 .name = "Micronas DRXD DVB-T",
2919 		 .frequency_min = 47125000,
2920 		 .frequency_max = 855250000,
2921 		 .frequency_stepsize = 166667,
2922 		 .frequency_tolerance = 0,
2923 		 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2924 		 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2925 		 FE_CAN_FEC_AUTO |
2926 		 FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2927 		 FE_CAN_QAM_AUTO |
2928 		 FE_CAN_TRANSMISSION_MODE_AUTO |
2929 		 FE_CAN_GUARD_INTERVAL_AUTO |
2930 		 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2931 
2932 	.release = drxd_release,
2933 	.init = drxd_init,
2934 	.sleep = drxd_sleep,
2935 	.i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2936 
2937 	.set_frontend = drxd_set_frontend,
2938 	.get_tune_settings = drxd_get_tune_settings,
2939 
2940 	.read_status = drxd_read_status,
2941 	.read_ber = drxd_read_ber,
2942 	.read_signal_strength = drxd_read_signal_strength,
2943 	.read_snr = drxd_read_snr,
2944 	.read_ucblocks = drxd_read_ucblocks,
2945 };
2946 
2947 struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2948 				 void *priv, struct i2c_adapter *i2c,
2949 				 struct device *dev)
2950 {
2951 	struct drxd_state *state = NULL;
2952 
2953 	state = kzalloc(sizeof(*state), GFP_KERNEL);
2954 	if (!state)
2955 		return NULL;
2956 
2957 	state->ops = drxd_ops;
2958 	state->dev = dev;
2959 	state->config = *config;
2960 	state->i2c = i2c;
2961 	state->priv = priv;
2962 
2963 	mutex_init(&state->mutex);
2964 
2965 	if (Read16(state, 0, NULL, 0) < 0)
2966 		goto error;
2967 
2968 	state->frontend.ops = drxd_ops;
2969 	state->frontend.demodulator_priv = state;
2970 	ConfigureMPEGOutput(state, 0);
2971 	/* add few initialization to allow gate control */
2972 	CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2973 	InitHI(state);
2974 
2975 	return &state->frontend;
2976 
2977 error:
2978 	printk(KERN_ERR "drxd: not found\n");
2979 	kfree(state);
2980 	return NULL;
2981 }
2982 EXPORT_SYMBOL(drxd_attach);
2983 
2984 MODULE_DESCRIPTION("DRXD driver");
2985 MODULE_AUTHOR("Micronas");
2986 MODULE_LICENSE("GPL");
2987