1 /*
2  * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
3  *
4  * Copyright (C) 2003-2007 Micronas
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * version 2 only, as published by the Free Software Foundation.
9  *
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20  * 02110-1301, USA
21  * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
22  */
23 
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/firmware.h>
30 #include <linux/i2c.h>
31 #include <asm/div64.h>
32 
33 #include "dvb_frontend.h"
34 #include "drxd.h"
35 #include "drxd_firm.h"
36 
37 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
38 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
39 
40 #define CHUNK_SIZE 48
41 
42 #define DRX_I2C_RMW           0x10
43 #define DRX_I2C_BROADCAST     0x20
44 #define DRX_I2C_CLEARCRC      0x80
45 #define DRX_I2C_SINGLE_MASTER 0xC0
46 #define DRX_I2C_MODEFLAGS     0xC0
47 #define DRX_I2C_FLAGS         0xF0
48 
49 #define DEFAULT_LOCK_TIMEOUT    1100
50 
51 #define DRX_CHANNEL_AUTO 0
52 #define DRX_CHANNEL_HIGH 1
53 #define DRX_CHANNEL_LOW  2
54 
55 #define DRX_LOCK_MPEG  1
56 #define DRX_LOCK_FEC   2
57 #define DRX_LOCK_DEMOD 4
58 
59 /****************************************************************************/
60 
61 enum CSCDState {
62 	CSCD_INIT = 0,
63 	CSCD_SET,
64 	CSCD_SAVED
65 };
66 
67 enum CDrxdState {
68 	DRXD_UNINITIALIZED = 0,
69 	DRXD_STOPPED,
70 	DRXD_STARTED
71 };
72 
73 enum AGC_CTRL_MODE {
74 	AGC_CTRL_AUTO = 0,
75 	AGC_CTRL_USER,
76 	AGC_CTRL_OFF
77 };
78 
79 enum OperationMode {
80 	OM_Default,
81 	OM_DVBT_Diversity_Front,
82 	OM_DVBT_Diversity_End
83 };
84 
85 struct SCfgAgc {
86 	enum AGC_CTRL_MODE ctrlMode;
87 	u16 outputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
88 	u16 settleLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
89 	u16 minOutputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
90 	u16 maxOutputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
91 	u16 speed;		/* range [0, ... , 1023], 1/n of fullscale range */
92 
93 	u16 R1;
94 	u16 R2;
95 	u16 R3;
96 };
97 
98 struct SNoiseCal {
99 	int cpOpt;
100 	short cpNexpOfs;
101 	short tdCal2k;
102 	short tdCal8k;
103 };
104 
105 enum app_env {
106 	APPENV_STATIC = 0,
107 	APPENV_PORTABLE = 1,
108 	APPENV_MOBILE = 2
109 };
110 
111 enum EIFFilter {
112 	IFFILTER_SAW = 0,
113 	IFFILTER_DISCRETE = 1
114 };
115 
116 struct drxd_state {
117 	struct dvb_frontend frontend;
118 	struct dvb_frontend_ops ops;
119 	struct dtv_frontend_properties props;
120 
121 	const struct firmware *fw;
122 	struct device *dev;
123 
124 	struct i2c_adapter *i2c;
125 	void *priv;
126 	struct drxd_config config;
127 
128 	int i2c_access;
129 	int init_done;
130 	struct mutex mutex;
131 
132 	u8 chip_adr;
133 	u16 hi_cfg_timing_div;
134 	u16 hi_cfg_bridge_delay;
135 	u16 hi_cfg_wakeup_key;
136 	u16 hi_cfg_ctrl;
137 
138 	u16 intermediate_freq;
139 	u16 osc_clock_freq;
140 
141 	enum CSCDState cscd_state;
142 	enum CDrxdState drxd_state;
143 
144 	u16 sys_clock_freq;
145 	s16 osc_clock_deviation;
146 	u16 expected_sys_clock_freq;
147 
148 	u16 insert_rs_byte;
149 	u16 enable_parallel;
150 
151 	int operation_mode;
152 
153 	struct SCfgAgc if_agc_cfg;
154 	struct SCfgAgc rf_agc_cfg;
155 
156 	struct SNoiseCal noise_cal;
157 
158 	u32 fe_fs_add_incr;
159 	u32 org_fe_fs_add_incr;
160 	u16 current_fe_if_incr;
161 
162 	u16 m_FeAgRegAgPwd;
163 	u16 m_FeAgRegAgAgcSio;
164 
165 	u16 m_EcOcRegOcModeLop;
166 	u16 m_EcOcRegSncSncLvl;
167 	u8 *m_InitAtomicRead;
168 	u8 *m_HiI2cPatch;
169 
170 	u8 *m_ResetCEFR;
171 	u8 *m_InitFE_1;
172 	u8 *m_InitFE_2;
173 	u8 *m_InitCP;
174 	u8 *m_InitCE;
175 	u8 *m_InitEQ;
176 	u8 *m_InitSC;
177 	u8 *m_InitEC;
178 	u8 *m_ResetECRAM;
179 	u8 *m_InitDiversityFront;
180 	u8 *m_InitDiversityEnd;
181 	u8 *m_DisableDiversity;
182 	u8 *m_StartDiversityFront;
183 	u8 *m_StartDiversityEnd;
184 
185 	u8 *m_DiversityDelay8MHZ;
186 	u8 *m_DiversityDelay6MHZ;
187 
188 	u8 *microcode;
189 	u32 microcode_length;
190 
191 	int type_A;
192 	int PGA;
193 	int diversity;
194 	int tuner_mirrors;
195 
196 	enum app_env app_env_default;
197 	enum app_env app_env_diversity;
198 
199 };
200 
201 /****************************************************************************/
202 /* I2C **********************************************************************/
203 /****************************************************************************/
204 
205 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
206 {
207 	struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
208 
209 	if (i2c_transfer(adap, &msg, 1) != 1)
210 		return -1;
211 	return 0;
212 }
213 
214 static int i2c_read(struct i2c_adapter *adap,
215 		    u8 adr, u8 *msg, int len, u8 *answ, int alen)
216 {
217 	struct i2c_msg msgs[2] = {
218 		{
219 			.addr = adr, .flags = 0,
220 			.buf = msg, .len = len
221 		}, {
222 			.addr = adr, .flags = I2C_M_RD,
223 			.buf = answ, .len = alen
224 		}
225 	};
226 	if (i2c_transfer(adap, msgs, 2) != 2)
227 		return -1;
228 	return 0;
229 }
230 
231 static inline u32 MulDiv32(u32 a, u32 b, u32 c)
232 {
233 	u64 tmp64;
234 
235 	tmp64 = (u64)a * (u64)b;
236 	do_div(tmp64, c);
237 
238 	return (u32) tmp64;
239 }
240 
241 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
242 {
243 	u8 adr = state->config.demod_address;
244 	u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
245 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
246 	};
247 	u8 mm2[2];
248 	if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
249 		return -1;
250 	if (data)
251 		*data = mm2[0] | (mm2[1] << 8);
252 	return mm2[0] | (mm2[1] << 8);
253 }
254 
255 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
256 {
257 	u8 adr = state->config.demod_address;
258 	u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
259 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
260 	};
261 	u8 mm2[4];
262 
263 	if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
264 		return -1;
265 	if (data)
266 		*data =
267 		    mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
268 	return 0;
269 }
270 
271 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
272 {
273 	u8 adr = state->config.demod_address;
274 	u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
275 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
276 		data & 0xff, (data >> 8) & 0xff
277 	};
278 
279 	if (i2c_write(state->i2c, adr, mm, 6) < 0)
280 		return -1;
281 	return 0;
282 }
283 
284 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
285 {
286 	u8 adr = state->config.demod_address;
287 	u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
288 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
289 		data & 0xff, (data >> 8) & 0xff,
290 		(data >> 16) & 0xff, (data >> 24) & 0xff
291 	};
292 
293 	if (i2c_write(state->i2c, adr, mm, 8) < 0)
294 		return -1;
295 	return 0;
296 }
297 
298 static int write_chunk(struct drxd_state *state,
299 		       u32 reg, u8 *data, u32 len, u8 flags)
300 {
301 	u8 adr = state->config.demod_address;
302 	u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
303 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
304 	};
305 	int i;
306 
307 	for (i = 0; i < len; i++)
308 		mm[4 + i] = data[i];
309 	if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
310 		printk(KERN_ERR "error in write_chunk\n");
311 		return -1;
312 	}
313 	return 0;
314 }
315 
316 static int WriteBlock(struct drxd_state *state,
317 		      u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
318 {
319 	while (BlockSize > 0) {
320 		u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
321 
322 		if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
323 			return -1;
324 		pBlock += Chunk;
325 		Address += (Chunk >> 1);
326 		BlockSize -= Chunk;
327 	}
328 	return 0;
329 }
330 
331 static int WriteTable(struct drxd_state *state, u8 * pTable)
332 {
333 	int status = 0;
334 
335 	if (pTable == NULL)
336 		return 0;
337 
338 	while (!status) {
339 		u16 Length;
340 		u32 Address = pTable[0] | (pTable[1] << 8) |
341 		    (pTable[2] << 16) | (pTable[3] << 24);
342 
343 		if (Address == 0xFFFFFFFF)
344 			break;
345 		pTable += sizeof(u32);
346 
347 		Length = pTable[0] | (pTable[1] << 8);
348 		pTable += sizeof(u16);
349 		if (!Length)
350 			break;
351 		status = WriteBlock(state, Address, Length * 2, pTable, 0);
352 		pTable += (Length * 2);
353 	}
354 	return status;
355 }
356 
357 /****************************************************************************/
358 /****************************************************************************/
359 /****************************************************************************/
360 
361 static int ResetCEFR(struct drxd_state *state)
362 {
363 	return WriteTable(state, state->m_ResetCEFR);
364 }
365 
366 static int InitCP(struct drxd_state *state)
367 {
368 	return WriteTable(state, state->m_InitCP);
369 }
370 
371 static int InitCE(struct drxd_state *state)
372 {
373 	int status;
374 	enum app_env AppEnv = state->app_env_default;
375 
376 	do {
377 		status = WriteTable(state, state->m_InitCE);
378 		if (status < 0)
379 			break;
380 
381 		if (state->operation_mode == OM_DVBT_Diversity_Front ||
382 		    state->operation_mode == OM_DVBT_Diversity_End) {
383 			AppEnv = state->app_env_diversity;
384 		}
385 		if (AppEnv == APPENV_STATIC) {
386 			status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
387 			if (status < 0)
388 				break;
389 		} else if (AppEnv == APPENV_PORTABLE) {
390 			status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
391 			if (status < 0)
392 				break;
393 		} else if (AppEnv == APPENV_MOBILE && state->type_A) {
394 			status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
395 			if (status < 0)
396 				break;
397 		} else if (AppEnv == APPENV_MOBILE && !state->type_A) {
398 			status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
399 			if (status < 0)
400 				break;
401 		}
402 
403 		/* start ce */
404 		status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
405 		if (status < 0)
406 			break;
407 	} while (0);
408 	return status;
409 }
410 
411 static int StopOC(struct drxd_state *state)
412 {
413 	int status = 0;
414 	u16 ocSyncLvl = 0;
415 	u16 ocModeLop = state->m_EcOcRegOcModeLop;
416 	u16 dtoIncLop = 0;
417 	u16 dtoIncHip = 0;
418 
419 	do {
420 		/* Store output configuration */
421 		status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
422 		if (status < 0)
423 			break;
424 		/* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
425 		state->m_EcOcRegSncSncLvl = ocSyncLvl;
426 		/* m_EcOcRegOcModeLop = ocModeLop; */
427 
428 		/* Flush FIFO (byte-boundary) at fixed rate */
429 		status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
430 		if (status < 0)
431 			break;
432 		status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
433 		if (status < 0)
434 			break;
435 		status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
436 		if (status < 0)
437 			break;
438 		status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
439 		if (status < 0)
440 			break;
441 		ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
442 		ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
443 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
444 		if (status < 0)
445 			break;
446 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
447 		if (status < 0)
448 			break;
449 
450 		msleep(1);
451 		/* Output pins to '0' */
452 		status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
453 		if (status < 0)
454 			break;
455 
456 		/* Force the OC out of sync */
457 		ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
458 		status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
459 		if (status < 0)
460 			break;
461 		ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
462 		ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
463 		ocModeLop |= 0x2;	/* Magically-out-of-sync */
464 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
465 		if (status < 0)
466 			break;
467 		status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
468 		if (status < 0)
469 			break;
470 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
471 		if (status < 0)
472 			break;
473 	} while (0);
474 
475 	return status;
476 }
477 
478 static int StartOC(struct drxd_state *state)
479 {
480 	int status = 0;
481 
482 	do {
483 		/* Stop OC */
484 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
485 		if (status < 0)
486 			break;
487 
488 		/* Restore output configuration */
489 		status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
490 		if (status < 0)
491 			break;
492 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
493 		if (status < 0)
494 			break;
495 
496 		/* Output pins active again */
497 		status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
498 		if (status < 0)
499 			break;
500 
501 		/* Start OC */
502 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
503 		if (status < 0)
504 			break;
505 	} while (0);
506 	return status;
507 }
508 
509 static int InitEQ(struct drxd_state *state)
510 {
511 	return WriteTable(state, state->m_InitEQ);
512 }
513 
514 static int InitEC(struct drxd_state *state)
515 {
516 	return WriteTable(state, state->m_InitEC);
517 }
518 
519 static int InitSC(struct drxd_state *state)
520 {
521 	return WriteTable(state, state->m_InitSC);
522 }
523 
524 static int InitAtomicRead(struct drxd_state *state)
525 {
526 	return WriteTable(state, state->m_InitAtomicRead);
527 }
528 
529 static int CorrectSysClockDeviation(struct drxd_state *state);
530 
531 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
532 {
533 	u16 ScRaRamLock = 0;
534 	const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
535 				    SC_RA_RAM_LOCK_FEC__M |
536 				    SC_RA_RAM_LOCK_DEMOD__M);
537 	const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
538 				   SC_RA_RAM_LOCK_DEMOD__M);
539 	const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
540 
541 	int status;
542 
543 	*pLockStatus = 0;
544 
545 	status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
546 	if (status < 0) {
547 		printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
548 		return status;
549 	}
550 
551 	if (state->drxd_state != DRXD_STARTED)
552 		return 0;
553 
554 	if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
555 		*pLockStatus |= DRX_LOCK_MPEG;
556 		CorrectSysClockDeviation(state);
557 	}
558 
559 	if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
560 		*pLockStatus |= DRX_LOCK_FEC;
561 
562 	if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
563 		*pLockStatus |= DRX_LOCK_DEMOD;
564 	return 0;
565 }
566 
567 /****************************************************************************/
568 
569 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
570 {
571 	int status;
572 
573 	if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
574 		return -1;
575 
576 	if (cfg->ctrlMode == AGC_CTRL_USER) {
577 		do {
578 			u16 FeAgRegPm1AgcWri;
579 			u16 FeAgRegAgModeLop;
580 
581 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
582 			if (status < 0)
583 				break;
584 			FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
585 			FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
586 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
587 			if (status < 0)
588 				break;
589 
590 			FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
591 						  FE_AG_REG_PM1_AGC_WRI__M);
592 			status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
593 			if (status < 0)
594 				break;
595 		} while (0);
596 	} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
597 		if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
598 		    ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
599 		    ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
600 		    ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
601 		    )
602 			return -1;
603 		do {
604 			u16 FeAgRegAgModeLop;
605 			u16 FeAgRegEgcSetLvl;
606 			u16 slope, offset;
607 
608 			/* == Mode == */
609 
610 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
611 			if (status < 0)
612 				break;
613 			FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
614 			FeAgRegAgModeLop |=
615 			    FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
616 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
617 			if (status < 0)
618 				break;
619 
620 			/* == Settle level == */
621 
622 			FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
623 						  FE_AG_REG_EGC_SET_LVL__M);
624 			status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
625 			if (status < 0)
626 				break;
627 
628 			/* == Min/Max == */
629 
630 			slope = (u16) ((cfg->maxOutputLevel -
631 					cfg->minOutputLevel) / 2);
632 			offset = (u16) ((cfg->maxOutputLevel +
633 					 cfg->minOutputLevel) / 2 - 511);
634 
635 			status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
636 			if (status < 0)
637 				break;
638 			status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
639 			if (status < 0)
640 				break;
641 
642 			/* == Speed == */
643 			{
644 				const u16 maxRur = 8;
645 				const u16 slowIncrDecLUT[] = { 3, 4, 4, 5, 6 };
646 				const u16 fastIncrDecLUT[] = { 14, 15, 15, 16,
647 					17, 18, 18, 19,
648 					20, 21, 22, 23,
649 					24, 26, 27, 28,
650 					29, 31
651 				};
652 
653 				u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
654 				    (maxRur + 1);
655 				u16 fineSpeed = (u16) (cfg->speed -
656 						       ((cfg->speed /
657 							 fineSteps) *
658 							fineSteps));
659 				u16 invRurCount = (u16) (cfg->speed /
660 							 fineSteps);
661 				u16 rurCount;
662 				if (invRurCount > maxRur) {
663 					rurCount = 0;
664 					fineSpeed += fineSteps;
665 				} else {
666 					rurCount = maxRur - invRurCount;
667 				}
668 
669 				/*
670 				   fastInc = default *
671 				   (2^(fineSpeed/fineSteps))
672 				   => range[default...2*default>
673 				   slowInc = default *
674 				   (2^(fineSpeed/fineSteps))
675 				 */
676 				{
677 					u16 fastIncrDec =
678 					    fastIncrDecLUT[fineSpeed /
679 							   ((fineSteps /
680 							     (14 + 1)) + 1)];
681 					u16 slowIncrDec =
682 					    slowIncrDecLUT[fineSpeed /
683 							   (fineSteps /
684 							    (3 + 1))];
685 
686 					status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
687 					if (status < 0)
688 						break;
689 					status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
690 					if (status < 0)
691 						break;
692 					status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
693 					if (status < 0)
694 						break;
695 					status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
696 					if (status < 0)
697 						break;
698 					status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
699 					if (status < 0)
700 						break;
701 				}
702 			}
703 		} while (0);
704 
705 	} else {
706 		/* No OFF mode for IF control */
707 		return -1;
708 	}
709 	return status;
710 }
711 
712 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
713 {
714 	int status = 0;
715 
716 	if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
717 		return -1;
718 
719 	if (cfg->ctrlMode == AGC_CTRL_USER) {
720 		do {
721 			u16 AgModeLop = 0;
722 			u16 level = (cfg->outputLevel);
723 
724 			if (level == DRXD_FE_CTRL_MAX)
725 				level++;
726 
727 			status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
728 			if (status < 0)
729 				break;
730 
731 			/*==== Mode ====*/
732 
733 			/* Powerdown PD2, WRI source */
734 			state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
735 			state->m_FeAgRegAgPwd |=
736 			    FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
737 			status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
738 			if (status < 0)
739 				break;
740 
741 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
742 			if (status < 0)
743 				break;
744 			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
745 					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
746 			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
747 				      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
748 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
749 			if (status < 0)
750 				break;
751 
752 			/* enable AGC2 pin */
753 			{
754 				u16 FeAgRegAgAgcSio = 0;
755 				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
756 				if (status < 0)
757 					break;
758 				FeAgRegAgAgcSio &=
759 				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
760 				FeAgRegAgAgcSio |=
761 				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
762 				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
763 				if (status < 0)
764 					break;
765 			}
766 
767 		} while (0);
768 	} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
769 		u16 AgModeLop = 0;
770 
771 		do {
772 			u16 level;
773 			/* Automatic control */
774 			/* Powerup PD2, AGC2 as output, TGC source */
775 			(state->m_FeAgRegAgPwd) &=
776 			    ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
777 			(state->m_FeAgRegAgPwd) |=
778 			    FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
779 			status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
780 			if (status < 0)
781 				break;
782 
783 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
784 			if (status < 0)
785 				break;
786 			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
787 					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
788 			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
789 				      FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
790 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
791 			if (status < 0)
792 				break;
793 			/* Settle level */
794 			level = (((cfg->settleLevel) >> 4) &
795 				 FE_AG_REG_TGC_SET_LVL__M);
796 			status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
797 			if (status < 0)
798 				break;
799 
800 			/* Min/max: don't care */
801 
802 			/* Speed: TODO */
803 
804 			/* enable AGC2 pin */
805 			{
806 				u16 FeAgRegAgAgcSio = 0;
807 				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
808 				if (status < 0)
809 					break;
810 				FeAgRegAgAgcSio &=
811 				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
812 				FeAgRegAgAgcSio |=
813 				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
814 				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
815 				if (status < 0)
816 					break;
817 			}
818 
819 		} while (0);
820 	} else {
821 		u16 AgModeLop = 0;
822 
823 		do {
824 			/* No RF AGC control */
825 			/* Powerdown PD2, AGC2 as output, WRI source */
826 			(state->m_FeAgRegAgPwd) &=
827 			    ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
828 			(state->m_FeAgRegAgPwd) |=
829 			    FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
830 			status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
831 			if (status < 0)
832 				break;
833 
834 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
835 			if (status < 0)
836 				break;
837 			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
838 					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
839 			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
840 				      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
841 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
842 			if (status < 0)
843 				break;
844 
845 			/* set FeAgRegAgAgcSio AGC2 (RF) as input */
846 			{
847 				u16 FeAgRegAgAgcSio = 0;
848 				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
849 				if (status < 0)
850 					break;
851 				FeAgRegAgAgcSio &=
852 				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
853 				FeAgRegAgAgcSio |=
854 				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
855 				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
856 				if (status < 0)
857 					break;
858 			}
859 		} while (0);
860 	}
861 	return status;
862 }
863 
864 static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
865 {
866 	int status = 0;
867 
868 	*pValue = 0;
869 	if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
870 		u16 Value;
871 		status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
872 		Value &= FE_AG_REG_GC1_AGC_DAT__M;
873 		if (status >= 0) {
874 			/*           3.3V
875 			   |
876 			   R1
877 			   |
878 			   Vin - R3 - * -- Vout
879 			   |
880 			   R2
881 			   |
882 			   GND
883 			 */
884 			u32 R1 = state->if_agc_cfg.R1;
885 			u32 R2 = state->if_agc_cfg.R2;
886 			u32 R3 = state->if_agc_cfg.R3;
887 
888 			u32 Vmax, Rpar, Vmin, Vout;
889 
890 			if (R2 == 0 && (R1 == 0 || R3 == 0))
891 				return 0;
892 
893 			Vmax = (3300 * R2) / (R1 + R2);
894 			Rpar = (R2 * R3) / (R3 + R2);
895 			Vmin = (3300 * Rpar) / (R1 + Rpar);
896 			Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
897 
898 			*pValue = Vout;
899 		}
900 	}
901 	return status;
902 }
903 
904 static int load_firmware(struct drxd_state *state, const char *fw_name)
905 {
906 	const struct firmware *fw;
907 
908 	if (request_firmware(&fw, fw_name, state->dev) < 0) {
909 		printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
910 		return -EIO;
911 	}
912 
913 	state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
914 	if (state->microcode == NULL) {
915 		release_firmware(fw);
916 		printk(KERN_ERR "drxd: firmware load failure: no memory\n");
917 		return -ENOMEM;
918 	}
919 
920 	state->microcode_length = fw->size;
921 	release_firmware(fw);
922 	return 0;
923 }
924 
925 static int DownloadMicrocode(struct drxd_state *state,
926 			     const u8 *pMCImage, u32 Length)
927 {
928 	u8 *pSrc;
929 	u32 Address;
930 	u16 nBlocks;
931 	u16 BlockSize;
932 	u32 offset = 0;
933 	int i, status = 0;
934 
935 	pSrc = (u8 *) pMCImage;
936 	/* We're not using Flags */
937 	/* Flags = (pSrc[0] << 8) | pSrc[1]; */
938 	pSrc += sizeof(u16);
939 	offset += sizeof(u16);
940 	nBlocks = (pSrc[0] << 8) | pSrc[1];
941 	pSrc += sizeof(u16);
942 	offset += sizeof(u16);
943 
944 	for (i = 0; i < nBlocks; i++) {
945 		Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
946 		    (pSrc[2] << 8) | pSrc[3];
947 		pSrc += sizeof(u32);
948 		offset += sizeof(u32);
949 
950 		BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
951 		pSrc += sizeof(u16);
952 		offset += sizeof(u16);
953 
954 		/* We're not using Flags */
955 		/* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
956 		pSrc += sizeof(u16);
957 		offset += sizeof(u16);
958 
959 		/* We're not using BlockCRC */
960 		/* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
961 		pSrc += sizeof(u16);
962 		offset += sizeof(u16);
963 
964 		status = WriteBlock(state, Address, BlockSize,
965 				    pSrc, DRX_I2C_CLEARCRC);
966 		if (status < 0)
967 			break;
968 		pSrc += BlockSize;
969 		offset += BlockSize;
970 	}
971 
972 	return status;
973 }
974 
975 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
976 {
977 	u32 nrRetries = 0;
978 	u16 waitCmd;
979 	int status;
980 
981 	status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
982 	if (status < 0)
983 		return status;
984 
985 	do {
986 		nrRetries += 1;
987 		if (nrRetries > DRXD_MAX_RETRIES) {
988 			status = -1;
989 			break;
990 		}
991 		status = Read16(state, HI_RA_RAM_SRV_CMD__A, &waitCmd, 0);
992 	} while (waitCmd != 0);
993 
994 	if (status >= 0)
995 		status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
996 	return status;
997 }
998 
999 static int HI_CfgCommand(struct drxd_state *state)
1000 {
1001 	int status = 0;
1002 
1003 	mutex_lock(&state->mutex);
1004 	Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1005 	Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
1006 	Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
1007 	Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
1008 	Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
1009 
1010 	Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1011 
1012 	if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
1013 	    HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
1014 		status = Write16(state, HI_RA_RAM_SRV_CMD__A,
1015 				 HI_RA_RAM_SRV_CMD_CONFIG, 0);
1016 	else
1017 		status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
1018 	mutex_unlock(&state->mutex);
1019 	return status;
1020 }
1021 
1022 static int InitHI(struct drxd_state *state)
1023 {
1024 	state->hi_cfg_wakeup_key = (state->chip_adr);
1025 	/* port/bridge/power down ctrl */
1026 	state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1027 	return HI_CfgCommand(state);
1028 }
1029 
1030 static int HI_ResetCommand(struct drxd_state *state)
1031 {
1032 	int status;
1033 
1034 	mutex_lock(&state->mutex);
1035 	status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1036 			 HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1037 	if (status == 0)
1038 		status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
1039 	mutex_unlock(&state->mutex);
1040 	msleep(1);
1041 	return status;
1042 }
1043 
1044 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1045 {
1046 	state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1047 	if (bEnableBridge)
1048 		state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1049 	else
1050 		state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1051 
1052 	return HI_CfgCommand(state);
1053 }
1054 
1055 #define HI_TR_WRITE      0x9
1056 #define HI_TR_READ       0xA
1057 #define HI_TR_READ_WRITE 0xB
1058 #define HI_TR_BROADCAST  0x4
1059 
1060 #if 0
1061 static int AtomicReadBlock(struct drxd_state *state,
1062 			   u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1063 {
1064 	int status;
1065 	int i = 0;
1066 
1067 	/* Parameter check */
1068 	if ((!pData) || ((DataSize & 1) != 0))
1069 		return -1;
1070 
1071 	mutex_lock(&state->mutex);
1072 
1073 	do {
1074 		/* Instruct HI to read n bytes */
1075 		/* TODO use proper names forthese egisters */
1076 		status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1077 		if (status < 0)
1078 			break;
1079 		status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1080 		if (status < 0)
1081 			break;
1082 		status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1083 		if (status < 0)
1084 			break;
1085 		status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1086 		if (status < 0)
1087 			break;
1088 		status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1089 		if (status < 0)
1090 			break;
1091 
1092 		status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1093 		if (status < 0)
1094 			break;
1095 
1096 	} while (0);
1097 
1098 	if (status >= 0) {
1099 		for (i = 0; i < (DataSize / 2); i += 1) {
1100 			u16 word;
1101 
1102 			status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1103 					&word, 0);
1104 			if (status < 0)
1105 				break;
1106 			pData[2 * i] = (u8) (word & 0xFF);
1107 			pData[(2 * i) + 1] = (u8) (word >> 8);
1108 		}
1109 	}
1110 	mutex_unlock(&state->mutex);
1111 	return status;
1112 }
1113 
1114 static int AtomicReadReg32(struct drxd_state *state,
1115 			   u32 Addr, u32 *pData, u8 Flags)
1116 {
1117 	u8 buf[sizeof(u32)];
1118 	int status;
1119 
1120 	if (!pData)
1121 		return -1;
1122 	status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1123 	*pData = (((u32) buf[0]) << 0) +
1124 	    (((u32) buf[1]) << 8) +
1125 	    (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1126 	return status;
1127 }
1128 #endif
1129 
1130 static int StopAllProcessors(struct drxd_state *state)
1131 {
1132 	return Write16(state, HI_COMM_EXEC__A,
1133 		       SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1134 }
1135 
1136 static int EnableAndResetMB(struct drxd_state *state)
1137 {
1138 	if (state->type_A) {
1139 		/* disable? monitor bus observe @ EC_OC */
1140 		Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1141 	}
1142 
1143 	/* do inverse broadcast, followed by explicit write to HI */
1144 	Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1145 	Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1146 	return 0;
1147 }
1148 
1149 static int InitCC(struct drxd_state *state)
1150 {
1151 	if (state->osc_clock_freq == 0 ||
1152 	    state->osc_clock_freq > 20000 ||
1153 	    (state->osc_clock_freq % 4000) != 0) {
1154 		printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1155 		return -1;
1156 	}
1157 
1158 	Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1159 	Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL |
1160 		CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1161 	Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq / 4000, 0);
1162 	Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0);
1163 	Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1164 
1165 	return 0;
1166 }
1167 
1168 static int ResetECOD(struct drxd_state *state)
1169 {
1170 	int status = 0;
1171 
1172 	if (state->type_A)
1173 		status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1174 	else
1175 		status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1176 
1177 	if (!(status < 0))
1178 		status = WriteTable(state, state->m_ResetECRAM);
1179 	if (!(status < 0))
1180 		status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1181 	return status;
1182 }
1183 
1184 /* Configure PGA switch */
1185 
1186 static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1187 {
1188 	int status;
1189 	u16 AgModeLop = 0;
1190 	u16 AgModeHip = 0;
1191 	do {
1192 		if (pgaSwitch) {
1193 			/* PGA on */
1194 			/* fine gain */
1195 			status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1196 			if (status < 0)
1197 				break;
1198 			AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1199 			AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1200 			status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1201 			if (status < 0)
1202 				break;
1203 
1204 			/* coarse gain */
1205 			status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1206 			if (status < 0)
1207 				break;
1208 			AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1209 			AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1210 			status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1211 			if (status < 0)
1212 				break;
1213 
1214 			/* enable fine and coarse gain, enable AAF,
1215 			   no ext resistor */
1216 			status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1217 			if (status < 0)
1218 				break;
1219 		} else {
1220 			/* PGA off, bypass */
1221 
1222 			/* fine gain */
1223 			status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1224 			if (status < 0)
1225 				break;
1226 			AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1227 			AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1228 			status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1229 			if (status < 0)
1230 				break;
1231 
1232 			/* coarse gain */
1233 			status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1234 			if (status < 0)
1235 				break;
1236 			AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1237 			AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1238 			status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1239 			if (status < 0)
1240 				break;
1241 
1242 			/* disable fine and coarse gain, enable AAF,
1243 			   no ext resistor */
1244 			status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1245 			if (status < 0)
1246 				break;
1247 		}
1248 	} while (0);
1249 	return status;
1250 }
1251 
1252 static int InitFE(struct drxd_state *state)
1253 {
1254 	int status;
1255 
1256 	do {
1257 		status = WriteTable(state, state->m_InitFE_1);
1258 		if (status < 0)
1259 			break;
1260 
1261 		if (state->type_A) {
1262 			status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1263 					 FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1264 					 0);
1265 		} else {
1266 			if (state->PGA)
1267 				status = SetCfgPga(state, 0);
1268 			else
1269 				status =
1270 				    Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1271 					    B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1272 					    0);
1273 		}
1274 
1275 		if (status < 0)
1276 			break;
1277 		status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1278 		if (status < 0)
1279 			break;
1280 		status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1281 		if (status < 0)
1282 			break;
1283 
1284 		status = WriteTable(state, state->m_InitFE_2);
1285 		if (status < 0)
1286 			break;
1287 
1288 	} while (0);
1289 
1290 	return status;
1291 }
1292 
1293 static int InitFT(struct drxd_state *state)
1294 {
1295 	/*
1296 	   norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1297 	   SC stuff
1298 	 */
1299 	return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1300 }
1301 
1302 static int SC_WaitForReady(struct drxd_state *state)
1303 {
1304 	u16 curCmd;
1305 	int i;
1306 
1307 	for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1308 		int status = Read16(state, SC_RA_RAM_CMD__A, &curCmd, 0);
1309 		if (status == 0 || curCmd == 0)
1310 			return status;
1311 	}
1312 	return -1;
1313 }
1314 
1315 static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1316 {
1317 	int status = 0;
1318 	u16 errCode;
1319 
1320 	Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1321 	SC_WaitForReady(state);
1322 
1323 	Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1324 
1325 	if (errCode == 0xFFFF) {
1326 		printk(KERN_ERR "Command Error\n");
1327 		status = -1;
1328 	}
1329 
1330 	return status;
1331 }
1332 
1333 static int SC_ProcStartCommand(struct drxd_state *state,
1334 			       u16 subCmd, u16 param0, u16 param1)
1335 {
1336 	int status = 0;
1337 	u16 scExec;
1338 
1339 	mutex_lock(&state->mutex);
1340 	do {
1341 		Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1342 		if (scExec != 1) {
1343 			status = -1;
1344 			break;
1345 		}
1346 		SC_WaitForReady(state);
1347 		Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1348 		Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1349 		Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1350 
1351 		SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1352 	} while (0);
1353 	mutex_unlock(&state->mutex);
1354 	return status;
1355 }
1356 
1357 static int SC_SetPrefParamCommand(struct drxd_state *state,
1358 				  u16 subCmd, u16 param0, u16 param1)
1359 {
1360 	int status;
1361 
1362 	mutex_lock(&state->mutex);
1363 	do {
1364 		status = SC_WaitForReady(state);
1365 		if (status < 0)
1366 			break;
1367 		status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1368 		if (status < 0)
1369 			break;
1370 		status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1371 		if (status < 0)
1372 			break;
1373 		status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1374 		if (status < 0)
1375 			break;
1376 
1377 		status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1378 		if (status < 0)
1379 			break;
1380 	} while (0);
1381 	mutex_unlock(&state->mutex);
1382 	return status;
1383 }
1384 
1385 #if 0
1386 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1387 {
1388 	int status = 0;
1389 
1390 	mutex_lock(&state->mutex);
1391 	do {
1392 		status = SC_WaitForReady(state);
1393 		if (status < 0)
1394 			break;
1395 		status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1396 		if (status < 0)
1397 			break;
1398 		status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1399 		if (status < 0)
1400 			break;
1401 	} while (0);
1402 	mutex_unlock(&state->mutex);
1403 	return status;
1404 }
1405 #endif
1406 
1407 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1408 {
1409 	int status;
1410 
1411 	do {
1412 		u16 EcOcRegIprInvMpg = 0;
1413 		u16 EcOcRegOcModeLop = 0;
1414 		u16 EcOcRegOcModeHip = 0;
1415 		u16 EcOcRegOcMpgSio = 0;
1416 
1417 		/*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1418 
1419 		if (state->operation_mode == OM_DVBT_Diversity_Front) {
1420 			if (bEnableOutput) {
1421 				EcOcRegOcModeHip |=
1422 				    B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1423 			} else
1424 				EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1425 			EcOcRegOcModeLop |=
1426 			    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1427 		} else {
1428 			EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1429 
1430 			if (bEnableOutput)
1431 				EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1432 			else
1433 				EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1434 
1435 			/* Don't Insert RS Byte */
1436 			if (state->insert_rs_byte) {
1437 				EcOcRegOcModeLop &=
1438 				    (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1439 				EcOcRegOcModeHip &=
1440 				    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1441 				EcOcRegOcModeHip |=
1442 				    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1443 			} else {
1444 				EcOcRegOcModeLop |=
1445 				    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1446 				EcOcRegOcModeHip &=
1447 				    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1448 				EcOcRegOcModeHip |=
1449 				    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1450 			}
1451 
1452 			/* Mode = Parallel */
1453 			if (state->enable_parallel)
1454 				EcOcRegOcModeLop &=
1455 				    (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1456 			else
1457 				EcOcRegOcModeLop |=
1458 				    EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1459 		}
1460 		/* Invert Data */
1461 		/* EcOcRegIprInvMpg |= 0x00FF; */
1462 		EcOcRegIprInvMpg &= (~(0x00FF));
1463 
1464 		/* Invert Error ( we don't use the pin ) */
1465 		/*  EcOcRegIprInvMpg |= 0x0100; */
1466 		EcOcRegIprInvMpg &= (~(0x0100));
1467 
1468 		/* Invert Start ( we don't use the pin ) */
1469 		/* EcOcRegIprInvMpg |= 0x0200; */
1470 		EcOcRegIprInvMpg &= (~(0x0200));
1471 
1472 		/* Invert Valid ( we don't use the pin ) */
1473 		/* EcOcRegIprInvMpg |= 0x0400; */
1474 		EcOcRegIprInvMpg &= (~(0x0400));
1475 
1476 		/* Invert Clock */
1477 		/* EcOcRegIprInvMpg |= 0x0800; */
1478 		EcOcRegIprInvMpg &= (~(0x0800));
1479 
1480 		/* EcOcRegOcModeLop =0x05; */
1481 		status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1482 		if (status < 0)
1483 			break;
1484 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1485 		if (status < 0)
1486 			break;
1487 		status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1488 		if (status < 0)
1489 			break;
1490 		status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1491 		if (status < 0)
1492 			break;
1493 	} while (0);
1494 	return status;
1495 }
1496 
1497 static int SetDeviceTypeId(struct drxd_state *state)
1498 {
1499 	int status = 0;
1500 	u16 deviceId = 0;
1501 
1502 	do {
1503 		status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1504 		if (status < 0)
1505 			break;
1506 		/* TODO: why twice? */
1507 		status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1508 		if (status < 0)
1509 			break;
1510 		printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1511 
1512 		state->type_A = 0;
1513 		state->PGA = 0;
1514 		state->diversity = 0;
1515 		if (deviceId == 0) {	/* on A2 only 3975 available */
1516 			state->type_A = 1;
1517 			printk(KERN_INFO "DRX3975D-A2\n");
1518 		} else {
1519 			deviceId >>= 12;
1520 			printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1521 			switch (deviceId) {
1522 			case 4:
1523 				state->diversity = 1;
1524 			case 3:
1525 			case 7:
1526 				state->PGA = 1;
1527 				break;
1528 			case 6:
1529 				state->diversity = 1;
1530 			case 5:
1531 			case 8:
1532 				break;
1533 			default:
1534 				status = -1;
1535 				break;
1536 			}
1537 		}
1538 	} while (0);
1539 
1540 	if (status < 0)
1541 		return status;
1542 
1543 	/* Init Table selection */
1544 	state->m_InitAtomicRead = DRXD_InitAtomicRead;
1545 	state->m_InitSC = DRXD_InitSC;
1546 	state->m_ResetECRAM = DRXD_ResetECRAM;
1547 	if (state->type_A) {
1548 		state->m_ResetCEFR = DRXD_ResetCEFR;
1549 		state->m_InitFE_1 = DRXD_InitFEA2_1;
1550 		state->m_InitFE_2 = DRXD_InitFEA2_2;
1551 		state->m_InitCP = DRXD_InitCPA2;
1552 		state->m_InitCE = DRXD_InitCEA2;
1553 		state->m_InitEQ = DRXD_InitEQA2;
1554 		state->m_InitEC = DRXD_InitECA2;
1555 		if (load_firmware(state, DRX_FW_FILENAME_A2))
1556 			return -EIO;
1557 	} else {
1558 		state->m_ResetCEFR = NULL;
1559 		state->m_InitFE_1 = DRXD_InitFEB1_1;
1560 		state->m_InitFE_2 = DRXD_InitFEB1_2;
1561 		state->m_InitCP = DRXD_InitCPB1;
1562 		state->m_InitCE = DRXD_InitCEB1;
1563 		state->m_InitEQ = DRXD_InitEQB1;
1564 		state->m_InitEC = DRXD_InitECB1;
1565 		if (load_firmware(state, DRX_FW_FILENAME_B1))
1566 			return -EIO;
1567 	}
1568 	if (state->diversity) {
1569 		state->m_InitDiversityFront = DRXD_InitDiversityFront;
1570 		state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1571 		state->m_DisableDiversity = DRXD_DisableDiversity;
1572 		state->m_StartDiversityFront = DRXD_StartDiversityFront;
1573 		state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1574 		state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1575 		state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1576 	} else {
1577 		state->m_InitDiversityFront = NULL;
1578 		state->m_InitDiversityEnd = NULL;
1579 		state->m_DisableDiversity = NULL;
1580 		state->m_StartDiversityFront = NULL;
1581 		state->m_StartDiversityEnd = NULL;
1582 		state->m_DiversityDelay8MHZ = NULL;
1583 		state->m_DiversityDelay6MHZ = NULL;
1584 	}
1585 
1586 	return status;
1587 }
1588 
1589 static int CorrectSysClockDeviation(struct drxd_state *state)
1590 {
1591 	int status;
1592 	s32 incr = 0;
1593 	s32 nomincr = 0;
1594 	u32 bandwidth = 0;
1595 	u32 sysClockInHz = 0;
1596 	u32 sysClockFreq = 0;	/* in kHz */
1597 	s16 oscClockDeviation;
1598 	s16 Diff;
1599 
1600 	do {
1601 		/* Retrieve bandwidth and incr, sanity check */
1602 
1603 		/* These accesses should be AtomicReadReg32, but that
1604 		   causes trouble (at least for diversity */
1605 		status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1606 		if (status < 0)
1607 			break;
1608 		status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1609 		if (status < 0)
1610 			break;
1611 
1612 		if (state->type_A) {
1613 			if ((nomincr - incr < -500) || (nomincr - incr > 500))
1614 				break;
1615 		} else {
1616 			if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1617 				break;
1618 		}
1619 
1620 		switch (state->props.bandwidth_hz) {
1621 		case 8000000:
1622 			bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1623 			break;
1624 		case 7000000:
1625 			bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1626 			break;
1627 		case 6000000:
1628 			bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1629 			break;
1630 		default:
1631 			return -1;
1632 			break;
1633 		}
1634 
1635 		/* Compute new sysclock value
1636 		   sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1637 		incr += (1 << 23);
1638 		sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1639 		sysClockFreq = (u32) (sysClockInHz / 1000);
1640 		/* rounding */
1641 		if ((sysClockInHz % 1000) > 500)
1642 			sysClockFreq++;
1643 
1644 		/* Compute clock deviation in ppm */
1645 		oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1646 					     (s32)
1647 					     (state->expected_sys_clock_freq)) *
1648 					    1000000L) /
1649 					   (s32)
1650 					   (state->expected_sys_clock_freq));
1651 
1652 		Diff = oscClockDeviation - state->osc_clock_deviation;
1653 		/*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1654 		if (Diff >= -200 && Diff <= 200) {
1655 			state->sys_clock_freq = (u16) sysClockFreq;
1656 			if (oscClockDeviation != state->osc_clock_deviation) {
1657 				if (state->config.osc_deviation) {
1658 					state->config.osc_deviation(state->priv,
1659 								    oscClockDeviation,
1660 								    1);
1661 					state->osc_clock_deviation =
1662 					    oscClockDeviation;
1663 				}
1664 			}
1665 			/* switch OFF SRMM scan in SC */
1666 			status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1667 			if (status < 0)
1668 				break;
1669 			/* overrule FE_IF internal value for
1670 			   proper re-locking */
1671 			status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1672 			if (status < 0)
1673 				break;
1674 			state->cscd_state = CSCD_SAVED;
1675 		}
1676 	} while (0);
1677 
1678 	return status;
1679 }
1680 
1681 static int DRX_Stop(struct drxd_state *state)
1682 {
1683 	int status;
1684 
1685 	if (state->drxd_state != DRXD_STARTED)
1686 		return 0;
1687 
1688 	do {
1689 		if (state->cscd_state != CSCD_SAVED) {
1690 			u32 lock;
1691 			status = DRX_GetLockStatus(state, &lock);
1692 			if (status < 0)
1693 				break;
1694 		}
1695 
1696 		status = StopOC(state);
1697 		if (status < 0)
1698 			break;
1699 
1700 		state->drxd_state = DRXD_STOPPED;
1701 
1702 		status = ConfigureMPEGOutput(state, 0);
1703 		if (status < 0)
1704 			break;
1705 
1706 		if (state->type_A) {
1707 			/* Stop relevant processors off the device */
1708 			status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1709 			if (status < 0)
1710 				break;
1711 
1712 			status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1713 			if (status < 0)
1714 				break;
1715 			status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1716 			if (status < 0)
1717 				break;
1718 		} else {
1719 			/* Stop all processors except HI & CC & FE */
1720 			status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1721 			if (status < 0)
1722 				break;
1723 			status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1724 			if (status < 0)
1725 				break;
1726 			status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1727 			if (status < 0)
1728 				break;
1729 			status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1730 			if (status < 0)
1731 				break;
1732 			status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1733 			if (status < 0)
1734 				break;
1735 			status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1736 			if (status < 0)
1737 				break;
1738 			status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1739 			if (status < 0)
1740 				break;
1741 		}
1742 
1743 	} while (0);
1744 	return status;
1745 }
1746 
1747 #if 0	/* Currently unused */
1748 static int SetOperationMode(struct drxd_state *state, int oMode)
1749 {
1750 	int status;
1751 
1752 	do {
1753 		if (state->drxd_state != DRXD_STOPPED) {
1754 			status = -1;
1755 			break;
1756 		}
1757 
1758 		if (oMode == state->operation_mode) {
1759 			status = 0;
1760 			break;
1761 		}
1762 
1763 		if (oMode != OM_Default && !state->diversity) {
1764 			status = -1;
1765 			break;
1766 		}
1767 
1768 		switch (oMode) {
1769 		case OM_DVBT_Diversity_Front:
1770 			status = WriteTable(state, state->m_InitDiversityFront);
1771 			break;
1772 		case OM_DVBT_Diversity_End:
1773 			status = WriteTable(state, state->m_InitDiversityEnd);
1774 			break;
1775 		case OM_Default:
1776 			/* We need to check how to
1777 			   get DRXD out of diversity */
1778 		default:
1779 			status = WriteTable(state, state->m_DisableDiversity);
1780 			break;
1781 		}
1782 	} while (0);
1783 
1784 	if (!status)
1785 		state->operation_mode = oMode;
1786 	return status;
1787 }
1788 #endif
1789 
1790 static int StartDiversity(struct drxd_state *state)
1791 {
1792 	int status = 0;
1793 	u16 rcControl;
1794 
1795 	do {
1796 		if (state->operation_mode == OM_DVBT_Diversity_Front) {
1797 			status = WriteTable(state, state->m_StartDiversityFront);
1798 			if (status < 0)
1799 				break;
1800 		} else if (state->operation_mode == OM_DVBT_Diversity_End) {
1801 			status = WriteTable(state, state->m_StartDiversityEnd);
1802 			if (status < 0)
1803 				break;
1804 			if (state->props.bandwidth_hz == 8000000) {
1805 				status = WriteTable(state, state->m_DiversityDelay8MHZ);
1806 				if (status < 0)
1807 					break;
1808 			} else {
1809 				status = WriteTable(state, state->m_DiversityDelay6MHZ);
1810 				if (status < 0)
1811 					break;
1812 			}
1813 
1814 			status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1815 			if (status < 0)
1816 				break;
1817 			rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1818 			rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1819 			    /*  combining enabled */
1820 			    B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1821 			    B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1822 			    B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1823 			status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1824 			if (status < 0)
1825 				break;
1826 		}
1827 	} while (0);
1828 	return status;
1829 }
1830 
1831 static int SetFrequencyShift(struct drxd_state *state,
1832 			     u32 offsetFreq, int channelMirrored)
1833 {
1834 	int negativeShift = (state->tuner_mirrors == channelMirrored);
1835 
1836 	/* Handle all mirroring
1837 	 *
1838 	 * Note: ADC mirroring (aliasing) is implictly handled by limiting
1839 	 * feFsRegAddInc to 28 bits below
1840 	 * (if the result before masking is more than 28 bits, this means
1841 	 *  that the ADC is mirroring.
1842 	 * The masking is in fact the aliasing of the ADC)
1843 	 *
1844 	 */
1845 
1846 	/* Compute register value, unsigned computation */
1847 	state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1848 					 offsetFreq,
1849 					 1 << 28, state->sys_clock_freq);
1850 	/* Remove integer part */
1851 	state->fe_fs_add_incr &= 0x0FFFFFFFL;
1852 	if (negativeShift)
1853 		state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1854 
1855 	/* Save the frequency shift without tunerOffset compensation
1856 	   for CtrlGetChannel. */
1857 	state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1858 					     1 << 28, state->sys_clock_freq);
1859 	/* Remove integer part */
1860 	state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1861 	if (negativeShift)
1862 		state->org_fe_fs_add_incr = ((1L << 28) -
1863 					     state->org_fe_fs_add_incr);
1864 
1865 	return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1866 		       state->fe_fs_add_incr, 0);
1867 }
1868 
1869 static int SetCfgNoiseCalibration(struct drxd_state *state,
1870 				  struct SNoiseCal *noiseCal)
1871 {
1872 	u16 beOptEna;
1873 	int status = 0;
1874 
1875 	do {
1876 		status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1877 		if (status < 0)
1878 			break;
1879 		if (noiseCal->cpOpt) {
1880 			beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1881 		} else {
1882 			beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1883 			status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1884 			if (status < 0)
1885 				break;
1886 		}
1887 		status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1888 		if (status < 0)
1889 			break;
1890 
1891 		if (!state->type_A) {
1892 			status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1893 			if (status < 0)
1894 				break;
1895 			status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1896 			if (status < 0)
1897 				break;
1898 		}
1899 	} while (0);
1900 
1901 	return status;
1902 }
1903 
1904 static int DRX_Start(struct drxd_state *state, s32 off)
1905 {
1906 	struct dtv_frontend_properties *p = &state->props;
1907 	int status;
1908 
1909 	u16 transmissionParams = 0;
1910 	u16 operationMode = 0;
1911 	u16 qpskTdTpsPwr = 0;
1912 	u16 qam16TdTpsPwr = 0;
1913 	u16 qam64TdTpsPwr = 0;
1914 	u32 feIfIncr = 0;
1915 	u32 bandwidth = 0;
1916 	int mirrorFreqSpect;
1917 
1918 	u16 qpskSnCeGain = 0;
1919 	u16 qam16SnCeGain = 0;
1920 	u16 qam64SnCeGain = 0;
1921 	u16 qpskIsGainMan = 0;
1922 	u16 qam16IsGainMan = 0;
1923 	u16 qam64IsGainMan = 0;
1924 	u16 qpskIsGainExp = 0;
1925 	u16 qam16IsGainExp = 0;
1926 	u16 qam64IsGainExp = 0;
1927 	u16 bandwidthParam = 0;
1928 
1929 	if (off < 0)
1930 		off = (off - 500) / 1000;
1931 	else
1932 		off = (off + 500) / 1000;
1933 
1934 	do {
1935 		if (state->drxd_state != DRXD_STOPPED)
1936 			return -1;
1937 		status = ResetECOD(state);
1938 		if (status < 0)
1939 			break;
1940 		if (state->type_A) {
1941 			status = InitSC(state);
1942 			if (status < 0)
1943 				break;
1944 		} else {
1945 			status = InitFT(state);
1946 			if (status < 0)
1947 				break;
1948 			status = InitCP(state);
1949 			if (status < 0)
1950 				break;
1951 			status = InitCE(state);
1952 			if (status < 0)
1953 				break;
1954 			status = InitEQ(state);
1955 			if (status < 0)
1956 				break;
1957 			status = InitSC(state);
1958 			if (status < 0)
1959 				break;
1960 		}
1961 
1962 		/* Restore current IF & RF AGC settings */
1963 
1964 		status = SetCfgIfAgc(state, &state->if_agc_cfg);
1965 		if (status < 0)
1966 			break;
1967 		status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1968 		if (status < 0)
1969 			break;
1970 
1971 		mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1972 
1973 		switch (p->transmission_mode) {
1974 		default:	/* Not set, detect it automatically */
1975 			operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1976 			/* fall through , try first guess DRX_FFTMODE_8K */
1977 		case TRANSMISSION_MODE_8K:
1978 			transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1979 			if (state->type_A) {
1980 				status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1981 				if (status < 0)
1982 					break;
1983 				qpskSnCeGain = 99;
1984 				qam16SnCeGain = 83;
1985 				qam64SnCeGain = 67;
1986 			}
1987 			break;
1988 		case TRANSMISSION_MODE_2K:
1989 			transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1990 			if (state->type_A) {
1991 				status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1992 				if (status < 0)
1993 					break;
1994 				qpskSnCeGain = 97;
1995 				qam16SnCeGain = 71;
1996 				qam64SnCeGain = 65;
1997 			}
1998 			break;
1999 		}
2000 
2001 		switch (p->guard_interval) {
2002 		case GUARD_INTERVAL_1_4:
2003 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2004 			break;
2005 		case GUARD_INTERVAL_1_8:
2006 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
2007 			break;
2008 		case GUARD_INTERVAL_1_16:
2009 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2010 			break;
2011 		case GUARD_INTERVAL_1_32:
2012 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2013 			break;
2014 		default:	/* Not set, detect it automatically */
2015 			operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2016 			/* try first guess 1/4 */
2017 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2018 			break;
2019 		}
2020 
2021 		switch (p->hierarchy) {
2022 		case HIERARCHY_1:
2023 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2024 			if (state->type_A) {
2025 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2026 				if (status < 0)
2027 					break;
2028 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2029 				if (status < 0)
2030 					break;
2031 
2032 				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2033 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2034 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2035 
2036 				qpskIsGainMan =
2037 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2038 				qam16IsGainMan =
2039 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2040 				qam64IsGainMan =
2041 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2042 
2043 				qpskIsGainExp =
2044 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2045 				qam16IsGainExp =
2046 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2047 				qam64IsGainExp =
2048 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2049 			}
2050 			break;
2051 
2052 		case HIERARCHY_2:
2053 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2054 			if (state->type_A) {
2055 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2056 				if (status < 0)
2057 					break;
2058 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2059 				if (status < 0)
2060 					break;
2061 
2062 				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2063 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2064 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2065 
2066 				qpskIsGainMan =
2067 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2068 				qam16IsGainMan =
2069 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2070 				qam64IsGainMan =
2071 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2072 
2073 				qpskIsGainExp =
2074 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2075 				qam16IsGainExp =
2076 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2077 				qam64IsGainExp =
2078 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2079 			}
2080 			break;
2081 		case HIERARCHY_4:
2082 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2083 			if (state->type_A) {
2084 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2085 				if (status < 0)
2086 					break;
2087 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2088 				if (status < 0)
2089 					break;
2090 
2091 				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2092 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2093 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2094 
2095 				qpskIsGainMan =
2096 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2097 				qam16IsGainMan =
2098 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2099 				qam64IsGainMan =
2100 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2101 
2102 				qpskIsGainExp =
2103 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2104 				qam16IsGainExp =
2105 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2106 				qam64IsGainExp =
2107 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2108 			}
2109 			break;
2110 		case HIERARCHY_AUTO:
2111 		default:
2112 			/* Not set, detect it automatically, start with none */
2113 			operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2114 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2115 			if (state->type_A) {
2116 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2117 				if (status < 0)
2118 					break;
2119 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2120 				if (status < 0)
2121 					break;
2122 
2123 				qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2124 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2125 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2126 
2127 				qpskIsGainMan =
2128 				    SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2129 				qam16IsGainMan =
2130 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2131 				qam64IsGainMan =
2132 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2133 
2134 				qpskIsGainExp =
2135 				    SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2136 				qam16IsGainExp =
2137 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2138 				qam64IsGainExp =
2139 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2140 			}
2141 			break;
2142 		}
2143 		status = status;
2144 		if (status < 0)
2145 			break;
2146 
2147 		switch (p->modulation) {
2148 		default:
2149 			operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2150 			/* fall through , try first guess
2151 			   DRX_CONSTELLATION_QAM64 */
2152 		case QAM_64:
2153 			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2154 			if (state->type_A) {
2155 				status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2156 				if (status < 0)
2157 					break;
2158 				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2159 				if (status < 0)
2160 					break;
2161 				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2162 				if (status < 0)
2163 					break;
2164 				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2165 				if (status < 0)
2166 					break;
2167 				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2168 				if (status < 0)
2169 					break;
2170 
2171 				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2172 				if (status < 0)
2173 					break;
2174 				status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2175 				if (status < 0)
2176 					break;
2177 				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2178 				if (status < 0)
2179 					break;
2180 				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2181 				if (status < 0)
2182 					break;
2183 			}
2184 			break;
2185 		case QPSK:
2186 			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2187 			if (state->type_A) {
2188 				status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2189 				if (status < 0)
2190 					break;
2191 				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2192 				if (status < 0)
2193 					break;
2194 				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2195 				if (status < 0)
2196 					break;
2197 				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2198 				if (status < 0)
2199 					break;
2200 				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2201 				if (status < 0)
2202 					break;
2203 
2204 				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2205 				if (status < 0)
2206 					break;
2207 				status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2208 				if (status < 0)
2209 					break;
2210 				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2211 				if (status < 0)
2212 					break;
2213 				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2214 				if (status < 0)
2215 					break;
2216 			}
2217 			break;
2218 
2219 		case QAM_16:
2220 			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2221 			if (state->type_A) {
2222 				status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2223 				if (status < 0)
2224 					break;
2225 				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2226 				if (status < 0)
2227 					break;
2228 				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2229 				if (status < 0)
2230 					break;
2231 				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2232 				if (status < 0)
2233 					break;
2234 				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2235 				if (status < 0)
2236 					break;
2237 
2238 				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2239 				if (status < 0)
2240 					break;
2241 				status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2242 				if (status < 0)
2243 					break;
2244 				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2245 				if (status < 0)
2246 					break;
2247 				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2248 				if (status < 0)
2249 					break;
2250 			}
2251 			break;
2252 
2253 		}
2254 		status = status;
2255 		if (status < 0)
2256 			break;
2257 
2258 		switch (DRX_CHANNEL_HIGH) {
2259 		default:
2260 		case DRX_CHANNEL_AUTO:
2261 		case DRX_CHANNEL_LOW:
2262 			transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2263 			status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2264 			if (status < 0)
2265 				break;
2266 			break;
2267 		case DRX_CHANNEL_HIGH:
2268 			transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2269 			status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2270 			if (status < 0)
2271 				break;
2272 			break;
2273 
2274 		}
2275 
2276 		switch (p->code_rate_HP) {
2277 		case FEC_1_2:
2278 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2279 			if (state->type_A) {
2280 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2281 				if (status < 0)
2282 					break;
2283 			}
2284 			break;
2285 		default:
2286 			operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2287 		case FEC_2_3:
2288 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2289 			if (state->type_A) {
2290 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2291 				if (status < 0)
2292 					break;
2293 			}
2294 			break;
2295 		case FEC_3_4:
2296 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2297 			if (state->type_A) {
2298 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2299 				if (status < 0)
2300 					break;
2301 			}
2302 			break;
2303 		case FEC_5_6:
2304 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2305 			if (state->type_A) {
2306 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2307 				if (status < 0)
2308 					break;
2309 			}
2310 			break;
2311 		case FEC_7_8:
2312 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2313 			if (state->type_A) {
2314 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2315 				if (status < 0)
2316 					break;
2317 			}
2318 			break;
2319 		}
2320 		status = status;
2321 		if (status < 0)
2322 			break;
2323 
2324 		/* First determine real bandwidth (Hz) */
2325 		/* Also set delay for impulse noise cruncher (only A2) */
2326 		/* Also set parameters for EC_OC fix, note
2327 		   EC_OC_REG_TMD_HIL_MAR is changed
2328 		   by SC for fix for some 8K,1/8 guard but is restored by
2329 		   InitEC and ResetEC
2330 		   functions */
2331 		switch (p->bandwidth_hz) {
2332 		case 0:
2333 			p->bandwidth_hz = 8000000;
2334 			/* fall through */
2335 		case 8000000:
2336 			/* (64/7)*(8/8)*1000000 */
2337 			bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2338 
2339 			bandwidthParam = 0;
2340 			status = Write16(state,
2341 					 FE_AG_REG_IND_DEL__A, 50, 0x0000);
2342 			break;
2343 		case 7000000:
2344 			/* (64/7)*(7/8)*1000000 */
2345 			bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2346 			bandwidthParam = 0x4807;	/*binary:0100 1000 0000 0111 */
2347 			status = Write16(state,
2348 					 FE_AG_REG_IND_DEL__A, 59, 0x0000);
2349 			break;
2350 		case 6000000:
2351 			/* (64/7)*(6/8)*1000000 */
2352 			bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2353 			bandwidthParam = 0x0F07;	/*binary: 0000 1111 0000 0111 */
2354 			status = Write16(state,
2355 					 FE_AG_REG_IND_DEL__A, 71, 0x0000);
2356 			break;
2357 		default:
2358 			status = -EINVAL;
2359 		}
2360 		if (status < 0)
2361 			break;
2362 
2363 		status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2364 		if (status < 0)
2365 			break;
2366 
2367 		{
2368 			u16 sc_config;
2369 			status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2370 			if (status < 0)
2371 				break;
2372 
2373 			/* enable SLAVE mode in 2k 1/32 to
2374 			   prevent timing change glitches */
2375 			if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2376 			    (p->guard_interval == GUARD_INTERVAL_1_32)) {
2377 				/* enable slave */
2378 				sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2379 			} else {
2380 				/* disable slave */
2381 				sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2382 			}
2383 			status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2384 			if (status < 0)
2385 				break;
2386 		}
2387 
2388 		status = SetCfgNoiseCalibration(state, &state->noise_cal);
2389 		if (status < 0)
2390 			break;
2391 
2392 		if (state->cscd_state == CSCD_INIT) {
2393 			/* switch on SRMM scan in SC */
2394 			status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2395 			if (status < 0)
2396 				break;
2397 /*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2398 			state->cscd_state = CSCD_SET;
2399 		}
2400 
2401 		/* Now compute FE_IF_REG_INCR */
2402 		/*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2403 		   ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2404 		feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2405 				    (1ULL << 21), bandwidth) - (1 << 23);
2406 		status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2407 		if (status < 0)
2408 			break;
2409 		status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2410 		if (status < 0)
2411 			break;
2412 		/* Bandwidth setting done */
2413 
2414 		/* Mirror & frequency offset */
2415 		SetFrequencyShift(state, off, mirrorFreqSpect);
2416 
2417 		/* Start SC, write channel settings to SC */
2418 
2419 		/* Enable SC after setting all other parameters */
2420 		status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2421 		if (status < 0)
2422 			break;
2423 		status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2424 		if (status < 0)
2425 			break;
2426 
2427 		/* Write SC parameter registers, operation mode */
2428 #if 1
2429 		operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2430 				 SC_RA_RAM_OP_AUTO_GUARD__M |
2431 				 SC_RA_RAM_OP_AUTO_CONST__M |
2432 				 SC_RA_RAM_OP_AUTO_HIER__M |
2433 				 SC_RA_RAM_OP_AUTO_RATE__M);
2434 #endif
2435 		status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2436 		if (status < 0)
2437 			break;
2438 
2439 		/* Start correct processes to get in lock */
2440 		status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2441 		if (status < 0)
2442 			break;
2443 
2444 		status = StartOC(state);
2445 		if (status < 0)
2446 			break;
2447 
2448 		if (state->operation_mode != OM_Default) {
2449 			status = StartDiversity(state);
2450 			if (status < 0)
2451 				break;
2452 		}
2453 
2454 		state->drxd_state = DRXD_STARTED;
2455 	} while (0);
2456 
2457 	return status;
2458 }
2459 
2460 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2461 {
2462 	u32 ulRfAgcOutputLevel = 0xffffffff;
2463 	u32 ulRfAgcSettleLevel = 528;	/* Optimum value for MT2060 */
2464 	u32 ulRfAgcMinLevel = 0;	/* Currently unused */
2465 	u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX;	/* Currently unused */
2466 	u32 ulRfAgcSpeed = 0;	/* Currently unused */
2467 	u32 ulRfAgcMode = 0;	/*2;   Off */
2468 	u32 ulRfAgcR1 = 820;
2469 	u32 ulRfAgcR2 = 2200;
2470 	u32 ulRfAgcR3 = 150;
2471 	u32 ulIfAgcMode = 0;	/* Auto */
2472 	u32 ulIfAgcOutputLevel = 0xffffffff;
2473 	u32 ulIfAgcSettleLevel = 0xffffffff;
2474 	u32 ulIfAgcMinLevel = 0xffffffff;
2475 	u32 ulIfAgcMaxLevel = 0xffffffff;
2476 	u32 ulIfAgcSpeed = 0xffffffff;
2477 	u32 ulIfAgcR1 = 820;
2478 	u32 ulIfAgcR2 = 2200;
2479 	u32 ulIfAgcR3 = 150;
2480 	u32 ulClock = state->config.clock;
2481 	u32 ulSerialMode = 0;
2482 	u32 ulEcOcRegOcModeLop = 4;	/* Dynamic DTO source */
2483 	u32 ulHiI2cDelay = HI_I2C_DELAY;
2484 	u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2485 	u32 ulHiI2cPatch = 0;
2486 	u32 ulEnvironment = APPENV_PORTABLE;
2487 	u32 ulEnvironmentDiversity = APPENV_MOBILE;
2488 	u32 ulIFFilter = IFFILTER_SAW;
2489 
2490 	state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2491 	state->if_agc_cfg.outputLevel = 0;
2492 	state->if_agc_cfg.settleLevel = 140;
2493 	state->if_agc_cfg.minOutputLevel = 0;
2494 	state->if_agc_cfg.maxOutputLevel = 1023;
2495 	state->if_agc_cfg.speed = 904;
2496 
2497 	if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2498 		state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2499 		state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2500 	}
2501 
2502 	if (ulIfAgcMode == 0 &&
2503 	    ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2504 	    ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2505 	    ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2506 	    ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2507 		state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2508 		state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2509 		state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2510 		state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2511 		state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2512 	}
2513 
2514 	state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2515 	state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2516 	state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2517 
2518 	state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2519 	state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2520 	state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2521 
2522 	state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2523 	/* rest of the RFAgcCfg structure currently unused */
2524 	if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2525 		state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2526 		state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2527 	}
2528 
2529 	if (ulRfAgcMode == 0 &&
2530 	    ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2531 	    ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2532 	    ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2533 	    ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2534 		state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2535 		state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2536 		state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2537 		state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2538 		state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2539 	}
2540 
2541 	if (ulRfAgcMode == 2)
2542 		state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2543 
2544 	if (ulEnvironment <= 2)
2545 		state->app_env_default = (enum app_env)
2546 		    (ulEnvironment);
2547 	if (ulEnvironmentDiversity <= 2)
2548 		state->app_env_diversity = (enum app_env)
2549 		    (ulEnvironmentDiversity);
2550 
2551 	if (ulIFFilter == IFFILTER_DISCRETE) {
2552 		/* discrete filter */
2553 		state->noise_cal.cpOpt = 0;
2554 		state->noise_cal.cpNexpOfs = 40;
2555 		state->noise_cal.tdCal2k = -40;
2556 		state->noise_cal.tdCal8k = -24;
2557 	} else {
2558 		/* SAW filter */
2559 		state->noise_cal.cpOpt = 1;
2560 		state->noise_cal.cpNexpOfs = 0;
2561 		state->noise_cal.tdCal2k = -21;
2562 		state->noise_cal.tdCal8k = -24;
2563 	}
2564 	state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2565 
2566 	state->chip_adr = (state->config.demod_address << 1) | 1;
2567 	switch (ulHiI2cPatch) {
2568 	case 1:
2569 		state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2570 		break;
2571 	case 3:
2572 		state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2573 		break;
2574 	default:
2575 		state->m_HiI2cPatch = NULL;
2576 	}
2577 
2578 	/* modify tuner and clock attributes */
2579 	state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2580 	/* expected system clock frequency in kHz */
2581 	state->expected_sys_clock_freq = 48000;
2582 	/* real system clock frequency in kHz */
2583 	state->sys_clock_freq = 48000;
2584 	state->osc_clock_freq = (u16) ulClock;
2585 	state->osc_clock_deviation = 0;
2586 	state->cscd_state = CSCD_INIT;
2587 	state->drxd_state = DRXD_UNINITIALIZED;
2588 
2589 	state->PGA = 0;
2590 	state->type_A = 0;
2591 	state->tuner_mirrors = 0;
2592 
2593 	/* modify MPEG output attributes */
2594 	state->insert_rs_byte = state->config.insert_rs_byte;
2595 	state->enable_parallel = (ulSerialMode != 1);
2596 
2597 	/* Timing div, 250ns/Psys */
2598 	/* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2599 
2600 	state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2601 					  ulHiI2cDelay) / 1000;
2602 	/* Bridge delay, uses oscilator clock */
2603 	/* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2604 	state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2605 					    ulHiI2cBridgeDelay) / 1000;
2606 
2607 	state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2608 	/* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2609 	state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2610 	return 0;
2611 }
2612 
2613 static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2614 {
2615 	int status = 0;
2616 	u32 driverVersion;
2617 
2618 	if (state->init_done)
2619 		return 0;
2620 
2621 	CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2622 
2623 	do {
2624 		state->operation_mode = OM_Default;
2625 
2626 		status = SetDeviceTypeId(state);
2627 		if (status < 0)
2628 			break;
2629 
2630 		/* Apply I2c address patch to B1 */
2631 		if (!state->type_A && state->m_HiI2cPatch != NULL)
2632 			status = WriteTable(state, state->m_HiI2cPatch);
2633 			if (status < 0)
2634 				break;
2635 
2636 		if (state->type_A) {
2637 			/* HI firmware patch for UIO readout,
2638 			   avoid clearing of result register */
2639 			status = Write16(state, 0x43012D, 0x047f, 0);
2640 			if (status < 0)
2641 				break;
2642 		}
2643 
2644 		status = HI_ResetCommand(state);
2645 		if (status < 0)
2646 			break;
2647 
2648 		status = StopAllProcessors(state);
2649 		if (status < 0)
2650 			break;
2651 		status = InitCC(state);
2652 		if (status < 0)
2653 			break;
2654 
2655 		state->osc_clock_deviation = 0;
2656 
2657 		if (state->config.osc_deviation)
2658 			state->osc_clock_deviation =
2659 			    state->config.osc_deviation(state->priv, 0, 0);
2660 		{
2661 			/* Handle clock deviation */
2662 			s32 devB;
2663 			s32 devA = (s32) (state->osc_clock_deviation) *
2664 			    (s32) (state->expected_sys_clock_freq);
2665 			/* deviation in kHz */
2666 			s32 deviation = (devA / (1000000L));
2667 			/* rounding, signed */
2668 			if (devA > 0)
2669 				devB = (2);
2670 			else
2671 				devB = (-2);
2672 			if ((devB * (devA % 1000000L) > 1000000L)) {
2673 				/* add +1 or -1 */
2674 				deviation += (devB / 2);
2675 			}
2676 
2677 			state->sys_clock_freq =
2678 			    (u16) ((state->expected_sys_clock_freq) +
2679 				   deviation);
2680 		}
2681 		status = InitHI(state);
2682 		if (status < 0)
2683 			break;
2684 		status = InitAtomicRead(state);
2685 		if (status < 0)
2686 			break;
2687 
2688 		status = EnableAndResetMB(state);
2689 		if (status < 0)
2690 			break;
2691 		if (state->type_A) {
2692 			status = ResetCEFR(state);
2693 			if (status < 0)
2694 				break;
2695 		}
2696 		if (fw) {
2697 			status = DownloadMicrocode(state, fw, fw_size);
2698 			if (status < 0)
2699 				break;
2700 		} else {
2701 			status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2702 			if (status < 0)
2703 				break;
2704 		}
2705 
2706 		if (state->PGA) {
2707 			state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2708 			SetCfgPga(state, 0);	/* PGA = 0 dB */
2709 		} else {
2710 			state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2711 		}
2712 
2713 		state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2714 
2715 		status = InitFE(state);
2716 		if (status < 0)
2717 			break;
2718 		status = InitFT(state);
2719 		if (status < 0)
2720 			break;
2721 		status = InitCP(state);
2722 		if (status < 0)
2723 			break;
2724 		status = InitCE(state);
2725 		if (status < 0)
2726 			break;
2727 		status = InitEQ(state);
2728 		if (status < 0)
2729 			break;
2730 		status = InitEC(state);
2731 		if (status < 0)
2732 			break;
2733 		status = InitSC(state);
2734 		if (status < 0)
2735 			break;
2736 
2737 		status = SetCfgIfAgc(state, &state->if_agc_cfg);
2738 		if (status < 0)
2739 			break;
2740 		status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2741 		if (status < 0)
2742 			break;
2743 
2744 		state->cscd_state = CSCD_INIT;
2745 		status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2746 		if (status < 0)
2747 			break;
2748 		status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2749 		if (status < 0)
2750 			break;
2751 
2752 		driverVersion = (((VERSION_MAJOR / 10) << 4) +
2753 				 (VERSION_MAJOR % 10)) << 24;
2754 		driverVersion += (((VERSION_MINOR / 10) << 4) +
2755 				  (VERSION_MINOR % 10)) << 16;
2756 		driverVersion += ((VERSION_PATCH / 1000) << 12) +
2757 		    ((VERSION_PATCH / 100) << 8) +
2758 		    ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2759 
2760 		status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2761 		if (status < 0)
2762 			break;
2763 
2764 		status = StopOC(state);
2765 		if (status < 0)
2766 			break;
2767 
2768 		state->drxd_state = DRXD_STOPPED;
2769 		state->init_done = 1;
2770 		status = 0;
2771 	} while (0);
2772 	return status;
2773 }
2774 
2775 static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2776 {
2777 	DRX_GetLockStatus(state, pLockStatus);
2778 
2779 	/*if (*pLockStatus&DRX_LOCK_MPEG) */
2780 	if (*pLockStatus & DRX_LOCK_FEC) {
2781 		ConfigureMPEGOutput(state, 1);
2782 		/* Get status again, in case we have MPEG lock now */
2783 		/*DRX_GetLockStatus(state, pLockStatus); */
2784 	}
2785 
2786 	return 0;
2787 }
2788 
2789 /****************************************************************************/
2790 /****************************************************************************/
2791 /****************************************************************************/
2792 
2793 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2794 {
2795 	struct drxd_state *state = fe->demodulator_priv;
2796 	u32 value;
2797 	int res;
2798 
2799 	res = ReadIFAgc(state, &value);
2800 	if (res < 0)
2801 		*strength = 0;
2802 	else
2803 		*strength = 0xffff - (value << 4);
2804 	return 0;
2805 }
2806 
2807 static int drxd_read_status(struct dvb_frontend *fe, fe_status_t * status)
2808 {
2809 	struct drxd_state *state = fe->demodulator_priv;
2810 	u32 lock;
2811 
2812 	DRXD_status(state, &lock);
2813 	*status = 0;
2814 	/* No MPEG lock in V255 firmware, bug ? */
2815 #if 1
2816 	if (lock & DRX_LOCK_MPEG)
2817 		*status |= FE_HAS_LOCK;
2818 #else
2819 	if (lock & DRX_LOCK_FEC)
2820 		*status |= FE_HAS_LOCK;
2821 #endif
2822 	if (lock & DRX_LOCK_FEC)
2823 		*status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2824 	if (lock & DRX_LOCK_DEMOD)
2825 		*status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2826 
2827 	return 0;
2828 }
2829 
2830 static int drxd_init(struct dvb_frontend *fe)
2831 {
2832 	struct drxd_state *state = fe->demodulator_priv;
2833 	int err = 0;
2834 
2835 /*	if (request_firmware(&state->fw, "drxd.fw", state->dev)<0) */
2836 	return DRXD_init(state, NULL, 0);
2837 
2838 	err = DRXD_init(state, state->fw->data, state->fw->size);
2839 	release_firmware(state->fw);
2840 	return err;
2841 }
2842 
2843 int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2844 {
2845 	struct drxd_state *state = fe->demodulator_priv;
2846 
2847 	if (state->config.disable_i2c_gate_ctrl == 1)
2848 		return 0;
2849 
2850 	return DRX_ConfigureI2CBridge(state, onoff);
2851 }
2852 EXPORT_SYMBOL(drxd_config_i2c);
2853 
2854 static int drxd_get_tune_settings(struct dvb_frontend *fe,
2855 				  struct dvb_frontend_tune_settings *sets)
2856 {
2857 	sets->min_delay_ms = 10000;
2858 	sets->max_drift = 0;
2859 	sets->step_size = 0;
2860 	return 0;
2861 }
2862 
2863 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2864 {
2865 	*ber = 0;
2866 	return 0;
2867 }
2868 
2869 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2870 {
2871 	*snr = 0;
2872 	return 0;
2873 }
2874 
2875 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2876 {
2877 	*ucblocks = 0;
2878 	return 0;
2879 }
2880 
2881 static int drxd_sleep(struct dvb_frontend *fe)
2882 {
2883 	struct drxd_state *state = fe->demodulator_priv;
2884 
2885 	ConfigureMPEGOutput(state, 0);
2886 	return 0;
2887 }
2888 
2889 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2890 {
2891 	return drxd_config_i2c(fe, enable);
2892 }
2893 
2894 static int drxd_set_frontend(struct dvb_frontend *fe)
2895 {
2896 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2897 	struct drxd_state *state = fe->demodulator_priv;
2898 	s32 off = 0;
2899 
2900 	state->props = *p;
2901 	DRX_Stop(state);
2902 
2903 	if (fe->ops.tuner_ops.set_params) {
2904 		fe->ops.tuner_ops.set_params(fe);
2905 		if (fe->ops.i2c_gate_ctrl)
2906 			fe->ops.i2c_gate_ctrl(fe, 0);
2907 	}
2908 
2909 	msleep(200);
2910 
2911 	return DRX_Start(state, off);
2912 }
2913 
2914 static void drxd_release(struct dvb_frontend *fe)
2915 {
2916 	struct drxd_state *state = fe->demodulator_priv;
2917 
2918 	kfree(state);
2919 }
2920 
2921 static struct dvb_frontend_ops drxd_ops = {
2922 	.delsys = { SYS_DVBT},
2923 	.info = {
2924 		 .name = "Micronas DRXD DVB-T",
2925 		 .frequency_min = 47125000,
2926 		 .frequency_max = 855250000,
2927 		 .frequency_stepsize = 166667,
2928 		 .frequency_tolerance = 0,
2929 		 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2930 		 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2931 		 FE_CAN_FEC_AUTO |
2932 		 FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2933 		 FE_CAN_QAM_AUTO |
2934 		 FE_CAN_TRANSMISSION_MODE_AUTO |
2935 		 FE_CAN_GUARD_INTERVAL_AUTO |
2936 		 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2937 
2938 	.release = drxd_release,
2939 	.init = drxd_init,
2940 	.sleep = drxd_sleep,
2941 	.i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2942 
2943 	.set_frontend = drxd_set_frontend,
2944 	.get_tune_settings = drxd_get_tune_settings,
2945 
2946 	.read_status = drxd_read_status,
2947 	.read_ber = drxd_read_ber,
2948 	.read_signal_strength = drxd_read_signal_strength,
2949 	.read_snr = drxd_read_snr,
2950 	.read_ucblocks = drxd_read_ucblocks,
2951 };
2952 
2953 struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2954 				 void *priv, struct i2c_adapter *i2c,
2955 				 struct device *dev)
2956 {
2957 	struct drxd_state *state = NULL;
2958 
2959 	state = kmalloc(sizeof(struct drxd_state), GFP_KERNEL);
2960 	if (!state)
2961 		return NULL;
2962 	memset(state, 0, sizeof(*state));
2963 
2964 	state->ops = drxd_ops;
2965 	state->dev = dev;
2966 	state->config = *config;
2967 	state->i2c = i2c;
2968 	state->priv = priv;
2969 
2970 	mutex_init(&state->mutex);
2971 
2972 	if (Read16(state, 0, NULL, 0) < 0)
2973 		goto error;
2974 
2975 	state->frontend.ops = drxd_ops;
2976 	state->frontend.demodulator_priv = state;
2977 	ConfigureMPEGOutput(state, 0);
2978 	/* add few initialization to allow gate control */
2979 	CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2980 	InitHI(state);
2981 
2982 	return &state->frontend;
2983 
2984 error:
2985 	printk(KERN_ERR "drxd: not found\n");
2986 	kfree(state);
2987 	return NULL;
2988 }
2989 EXPORT_SYMBOL(drxd_attach);
2990 
2991 MODULE_DESCRIPTION("DRXD driver");
2992 MODULE_AUTHOR("Micronas");
2993 MODULE_LICENSE("GPL");
2994